xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
5  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
31  */
32 #include <sys/cdefs.h>
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in_systm.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 
62 #include <machine/bus.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/tsec/if_tsec.h>
68 #include <dev/tsec/if_tsecreg.h>
69 
70 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
71     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
72     const char *dname);
73 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
74 static void	 tsec_encap(if_t ifp, struct tsec_softc *sc,
75     struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
76 static void	tsec_free_dma(struct tsec_softc *sc);
77 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
78 static int	tsec_ifmedia_upd(if_t ifp);
79 static void	tsec_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr);
80 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
81     struct mbuf **mbufp, uint32_t *paddr);
82 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
83     int nseg, int error);
84 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
85 static void	tsec_init(void *xsc);
86 static void	tsec_init_locked(struct tsec_softc *sc);
87 static int	tsec_ioctl(if_t ifp, u_long command, caddr_t data);
88 static void	tsec_reset_mac(struct tsec_softc *sc);
89 static void	tsec_setfilter(struct tsec_softc *sc);
90 static void	tsec_set_mac_address(struct tsec_softc *sc);
91 static void	tsec_start(if_t ifp);
92 static void	tsec_start_locked(if_t ifp);
93 static void	tsec_stop(struct tsec_softc *sc);
94 static void	tsec_tick(void *arg);
95 static void	tsec_watchdog(struct tsec_softc *sc);
96 static void	tsec_add_sysctls(struct tsec_softc *sc);
97 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
98 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
99 static void	tsec_set_rxic(struct tsec_softc *sc);
100 static void	tsec_set_txic(struct tsec_softc *sc);
101 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
102 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
103 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
104 static void	tsec_offload_setup(struct tsec_softc *sc);
105 static void	tsec_offload_process_frame(struct tsec_softc *sc,
106     struct mbuf *m);
107 static void	tsec_setup_multicast(struct tsec_softc *sc);
108 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
109 
110 DRIVER_MODULE(miibus, tsec, miibus_driver, 0, 0);
111 MODULE_DEPEND(tsec, ether, 1, 1, 1);
112 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
113 
114 struct mtx tsec_phy_mtx;
115 
116 int
117 tsec_attach(struct tsec_softc *sc)
118 {
119 	uint8_t hwaddr[ETHER_ADDR_LEN];
120 	if_t ifp;
121 	int error = 0;
122 	int i;
123 
124 	/* Initialize global (because potentially shared) MII lock */
125 	if (!mtx_initialized(&tsec_phy_mtx))
126 		mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
127 
128 	/* Reset all TSEC counters */
129 	TSEC_TX_RX_COUNTERS_INIT(sc);
130 
131 	/* Stop DMA engine if enabled by firmware */
132 	tsec_dma_ctl(sc, 0);
133 
134 	/* Reset MAC */
135 	tsec_reset_mac(sc);
136 
137 	/* Disable interrupts for now */
138 	tsec_intrs_ctl(sc, 0);
139 
140 	/* Configure defaults for interrupts coalescing */
141 	sc->rx_ic_time = 768;
142 	sc->rx_ic_count = 16;
143 	sc->tx_ic_time = 768;
144 	sc->tx_ic_count = 16;
145 	tsec_set_rxic(sc);
146 	tsec_set_txic(sc);
147 	tsec_add_sysctls(sc);
148 
149 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
150 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
151 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
152 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
153 
154 	if (error) {
155 		tsec_detach(sc);
156 		return (ENXIO);
157 	}
158 
159 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
160 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
161 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
162 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
163 	if (error) {
164 		tsec_detach(sc);
165 		return (ENXIO);
166 	}
167 
168 	/* Allocate a busdma tag for TX mbufs. */
169 	error = bus_dma_tag_create(NULL,	/* parent */
170 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
171 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
172 	    BUS_SPACE_MAXADDR,			/* highaddr */
173 	    NULL, NULL,				/* filtfunc, filtfuncarg */
174 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
175 	    TSEC_TX_MAX_DMA_SEGS,		/* nsegments */
176 	    MCLBYTES, 0,			/* maxsegsz, flags */
177 	    NULL, NULL,				/* lockfunc, lockfuncarg */
178 	    &sc->tsec_tx_mtag);			/* dmat */
179 	if (error) {
180 		device_printf(sc->dev, "failed to allocate busdma tag "
181 		    "(tx mbufs)\n");
182 		tsec_detach(sc);
183 		return (ENXIO);
184 	}
185 
186 	/* Allocate a busdma tag for RX mbufs. */
187 	error = bus_dma_tag_create(NULL,	/* parent */
188 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
189 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
190 	    BUS_SPACE_MAXADDR,			/* highaddr */
191 	    NULL, NULL,				/* filtfunc, filtfuncarg */
192 	    MCLBYTES,				/* maxsize */
193 	    1,					/* nsegments */
194 	    MCLBYTES, 0,			/* maxsegsz, flags */
195 	    NULL, NULL,				/* lockfunc, lockfuncarg */
196 	    &sc->tsec_rx_mtag);			/* dmat */
197 	if (error) {
198 		device_printf(sc->dev, "failed to allocate busdma tag "
199 		    "(rx mbufs)\n");
200 		tsec_detach(sc);
201 		return (ENXIO);
202 	}
203 
204 	/* Create TX busdma maps */
205 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
206 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
207 		   &sc->tx_bufmap[i].map);
208 		if (error) {
209 			device_printf(sc->dev, "failed to init TX ring\n");
210 			tsec_detach(sc);
211 			return (ENXIO);
212 		}
213 		sc->tx_bufmap[i].map_initialized = 1;
214 	}
215 
216 	/* Create RX busdma maps and zero mbuf handlers */
217 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
218 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
219 		    &sc->rx_data[i].map);
220 		if (error) {
221 			device_printf(sc->dev, "failed to init RX ring\n");
222 			tsec_detach(sc);
223 			return (ENXIO);
224 		}
225 		sc->rx_data[i].mbuf = NULL;
226 	}
227 
228 	/* Create mbufs for RX buffers */
229 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
230 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
231 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
232 		if (error) {
233 			device_printf(sc->dev, "can't load rx DMA map %d, "
234 			    "error = %d\n", i, error);
235 			tsec_detach(sc);
236 			return (error);
237 		}
238 	}
239 
240 	/* Create network interface for upper layers */
241 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
242 	if_setsoftc(ifp, sc);
243 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
244 	if_setflags(ifp, IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST);
245 	if_setinitfn(ifp, tsec_init);
246 	if_setstartfn(ifp, tsec_start);
247 	if_setioctlfn(ifp, tsec_ioctl);
248 
249 	if_setsendqlen(ifp, TSEC_TX_NUM_DESC - 1);
250 	if_setsendqready(ifp);
251 
252 	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
253 	if (sc->is_etsec)
254 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
255 
256 	if_setcapenable(ifp, if_getcapabilities(ifp));
257 
258 #ifdef DEVICE_POLLING
259 	/* Advertise that polling is supported */
260 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
261 #endif
262 
263 	/* Attach PHY(s) */
264 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
265 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
266 	    0);
267 	if (error) {
268 		device_printf(sc->dev, "attaching PHYs failed\n");
269 		if_free(ifp);
270 		sc->tsec_ifp = NULL;
271 		tsec_detach(sc);
272 		return (error);
273 	}
274 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
275 
276 	/* Set MAC address */
277 	tsec_get_hwaddr(sc, hwaddr);
278 	ether_ifattach(ifp, hwaddr);
279 
280 	return (0);
281 }
282 
283 int
284 tsec_detach(struct tsec_softc *sc)
285 {
286 
287 	if (sc->tsec_ifp != NULL) {
288 #ifdef DEVICE_POLLING
289 		if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING)
290 			ether_poll_deregister(sc->tsec_ifp);
291 #endif
292 
293 		/* Stop TSEC controller and free TX queue */
294 		if (sc->sc_rres)
295 			tsec_shutdown(sc->dev);
296 
297 		/* Detach network interface */
298 		ether_ifdetach(sc->tsec_ifp);
299 		if_free(sc->tsec_ifp);
300 		sc->tsec_ifp = NULL;
301 	}
302 
303 	/* Free DMA resources */
304 	tsec_free_dma(sc);
305 
306 	return (0);
307 }
308 
309 int
310 tsec_shutdown(device_t dev)
311 {
312 	struct tsec_softc *sc;
313 
314 	sc = device_get_softc(dev);
315 
316 	TSEC_GLOBAL_LOCK(sc);
317 	tsec_stop(sc);
318 	TSEC_GLOBAL_UNLOCK(sc);
319 	return (0);
320 }
321 
322 int
323 tsec_suspend(device_t dev)
324 {
325 
326 	/* TODO not implemented! */
327 	return (0);
328 }
329 
330 int
331 tsec_resume(device_t dev)
332 {
333 
334 	/* TODO not implemented! */
335 	return (0);
336 }
337 
338 static void
339 tsec_init(void *xsc)
340 {
341 	struct tsec_softc *sc = xsc;
342 
343 	TSEC_GLOBAL_LOCK(sc);
344 	tsec_init_locked(sc);
345 	TSEC_GLOBAL_UNLOCK(sc);
346 }
347 
348 static int
349 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
350 {
351 	int timeout;
352 
353 	/*
354 	 * The status indicators are not set immediately after a command.
355 	 * Discard the first value.
356 	 */
357 	TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
358 
359 	timeout = TSEC_READ_RETRY;
360 	while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
361 		DELAY(TSEC_READ_DELAY);
362 
363 	return (timeout == 0);
364 }
365 
366 static void
367 tsec_init_locked(struct tsec_softc *sc)
368 {
369 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
370 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
371 	if_t ifp = sc->tsec_ifp;
372 	uint32_t val, i;
373 	int timeout;
374 
375 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
376 		return;
377 
378 	TSEC_GLOBAL_LOCK_ASSERT(sc);
379 	tsec_stop(sc);
380 
381 	/*
382 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
383 	 * 14.7 Initialization/Application Information
384 	 */
385 
386 	/* Step 1: soft reset MAC */
387 	tsec_reset_mac(sc);
388 
389 	/* Step 2: Initialize MACCFG2 */
390 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
391 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
392 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
393 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
394 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
395 	);
396 
397 	/* Step 3: Initialize ECNTRL
398 	 * While the documentation states that R100M is ignored if RPM is
399 	 * not set, it does seem to be needed to get the orange boxes to
400 	 * work (which have a Marvell 88E1111 PHY). Go figure.
401 	 */
402 
403 	/*
404 	 * XXX kludge - use circumstancial evidence to program ECNTRL
405 	 * correctly. Ideally we need some board information to guide
406 	 * us here.
407 	 */
408 	i = TSEC_READ(sc, TSEC_REG_ID2);
409 	val = (i & 0xffff)
410 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
411 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
412 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
413 
414 	/* Step 4: Initialize MAC station address */
415 	tsec_set_mac_address(sc);
416 
417 	/*
418 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
419 	 * with the external PHY physical address
420 	 */
421 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
422 
423 	TSEC_PHY_LOCK(sc);
424 
425 	/* Step 6: Reset the management interface */
426 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
427 
428 	/* Step 7: Setup the MII Mgmt clock speed */
429 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
430 
431 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
432 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
433 
434 	TSEC_PHY_UNLOCK(sc);
435 	if (timeout) {
436 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
437 		return;
438 	}
439 
440 	/* Step 9: Setup the MII Mgmt */
441 	mii_mediachg(sc->tsec_mii);
442 
443 	/* Step 10: Clear IEVENT register */
444 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
445 
446 	/* Step 11: Enable interrupts */
447 #ifdef DEVICE_POLLING
448 	/*
449 	 * ...only if polling is not turned on. Disable interrupts explicitly
450 	 * if polling is enabled.
451 	 */
452 	if (if_getcapenable(ifp) & IFCAP_POLLING )
453 		tsec_intrs_ctl(sc, 0);
454 	else
455 #endif /* DEVICE_POLLING */
456 	tsec_intrs_ctl(sc, 1);
457 
458 	/* Step 12: Initialize IADDRn */
459 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
460 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
461 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
462 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
463 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
464 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
465 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
466 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
467 
468 	/* Step 13: Initialize GADDRn */
469 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
470 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
471 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
472 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
473 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
474 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
475 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
476 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
477 
478 	/* Step 14: Initialize RCTRL */
479 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
480 
481 	/* Step 15: Initialize DMACTRL */
482 	tsec_dma_ctl(sc, 1);
483 
484 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
485 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
486 
487 	/*
488 	 * Step 17: Initialize transmit/receive descriptor rings.
489 	 * Initialize TBASE and RBASE.
490 	 */
491 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
492 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
493 
494 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
495 		tx_desc[i].bufptr = 0;
496 		tx_desc[i].length = 0;
497 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
498 		    TSEC_TXBD_W : 0);
499 	}
500 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
501 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
502 
503 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
504 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
505 		rx_desc[i].length = 0;
506 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
507 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
508 	}
509 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
510 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
511 
512 	/* Step 18: Initialize the maximum receive buffer length */
513 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
514 
515 	/* Step 19: Configure ethernet frame sizes */
516 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
517 	tsec_set_mtu(sc, if_getmtu(ifp));
518 
519 	/* Step 20: Enable Rx and RxBD sdata snooping */
520 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
521 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
522 
523 	/* Step 21: Reset collision counters in hardware */
524 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
525 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
526 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
527 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
528 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
529 
530 	/* Step 22: Mask all CAM interrupts */
531 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
532 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
533 
534 	/* Step 23: Enable Rx and Tx */
535 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
536 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
537 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
538 
539 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
540 	TSEC_TX_RX_COUNTERS_INIT(sc);
541 
542 	/* Step 25: Setup TCP/IP Off-Load engine */
543 	if (sc->is_etsec)
544 		tsec_offload_setup(sc);
545 
546 	/* Step 26: Setup multicast filters */
547 	tsec_setup_multicast(sc);
548 
549 	/* Step 27: Activate network interface */
550 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
551 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
552 	sc->tsec_if_flags = if_getflags(ifp);
553 	sc->tsec_watchdog = 0;
554 
555 	/* Schedule watchdog timeout */
556 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
557 }
558 
559 static void
560 tsec_set_mac_address(struct tsec_softc *sc)
561 {
562 	uint32_t macbuf[2] = { 0, 0 };
563 	char *macbufp, *curmac;
564 	int i;
565 
566 	TSEC_GLOBAL_LOCK_ASSERT(sc);
567 
568 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
569 	    ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
570 	    sizeof(macbuf)));
571 
572 	macbufp = (char *)macbuf;
573 	curmac = (char *)if_getlladdr(sc->tsec_ifp);
574 
575 	/* Correct order of MAC address bytes */
576 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
577 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
578 
579 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
580 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
581 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
582 }
583 
584 /*
585  * DMA control function, if argument state is:
586  * 0 - DMA engine will be disabled
587  * 1 - DMA engine will be enabled
588  */
589 static void
590 tsec_dma_ctl(struct tsec_softc *sc, int state)
591 {
592 	device_t dev;
593 	uint32_t dma_flags, timeout;
594 
595 	dev = sc->dev;
596 
597 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
598 
599 	switch (state) {
600 	case 0:
601 		/* Temporarily clear stop graceful stop bits. */
602 		tsec_dma_ctl(sc, 1000);
603 
604 		/* Set it again */
605 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
606 		break;
607 	case 1000:
608 	case 1:
609 		/* Set write with response (WWR), wait (WOP) and snoop bits */
610 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
611 		    DMACTRL_WWR | DMACTRL_WOP);
612 
613 		/* Clear graceful stop bits */
614 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
615 		break;
616 	default:
617 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
618 		    state);
619 	}
620 
621 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
622 
623 	switch (state) {
624 	case 0:
625 		/* Wait for DMA stop */
626 		timeout = TSEC_READ_RETRY;
627 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
628 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
629 			DELAY(TSEC_READ_DELAY);
630 
631 		if (timeout == 0)
632 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
633 		break;
634 	case 1:
635 		/* Restart transmission function */
636 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
637 	}
638 }
639 
640 /*
641  * Interrupts control function, if argument state is:
642  * 0 - all TSEC interrupts will be masked
643  * 1 - all TSEC interrupts will be unmasked
644  */
645 static void
646 tsec_intrs_ctl(struct tsec_softc *sc, int state)
647 {
648 	device_t dev;
649 
650 	dev = sc->dev;
651 
652 	switch (state) {
653 	case 0:
654 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
655 		break;
656 	case 1:
657 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
658 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
659 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
660 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
661 		break;
662 	default:
663 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
664 		    state);
665 	}
666 }
667 
668 static void
669 tsec_reset_mac(struct tsec_softc *sc)
670 {
671 	uint32_t maccfg1_flags;
672 
673 	/* Set soft reset bit */
674 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
675 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
676 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
677 
678 	/* Clear soft reset bit */
679 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
680 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
681 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
682 }
683 
684 static void
685 tsec_watchdog(struct tsec_softc *sc)
686 {
687 	if_t ifp;
688 
689 	TSEC_GLOBAL_LOCK_ASSERT(sc);
690 
691 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
692 		return;
693 
694 	ifp = sc->tsec_ifp;
695 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
696 	if_printf(ifp, "watchdog timeout\n");
697 
698 	tsec_stop(sc);
699 	tsec_init_locked(sc);
700 }
701 
702 static void
703 tsec_start(if_t ifp)
704 {
705 	struct tsec_softc *sc = if_getsoftc(ifp);
706 
707 	TSEC_TRANSMIT_LOCK(sc);
708 	tsec_start_locked(ifp);
709 	TSEC_TRANSMIT_UNLOCK(sc);
710 }
711 
712 static void
713 tsec_start_locked(if_t ifp)
714 {
715 	struct tsec_softc *sc;
716 	struct mbuf *m0;
717 	struct tsec_tx_fcb *tx_fcb;
718 	int csum_flags;
719 	int start_tx;
720 	uint16_t fcb_flags;
721 
722 	sc = if_getsoftc(ifp);
723 	start_tx = 0;
724 
725 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
726 
727 	if (sc->tsec_link == 0)
728 		return;
729 
730 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
731 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
732 
733 	for (;;) {
734 		if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
735 			/* No free descriptors */
736 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
737 			break;
738 		}
739 
740 		/* Get packet from the queue */
741 		m0 = if_dequeue(ifp);
742 		if (m0 == NULL)
743 			break;
744 
745 		/* Insert TCP/IP Off-load frame control block */
746 		fcb_flags = 0;
747 		csum_flags = m0->m_pkthdr.csum_flags;
748 		if (csum_flags) {
749 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
750 			if (m0 == NULL)
751 				break;
752 
753 			if (csum_flags & CSUM_IP)
754 				fcb_flags |= TSEC_TX_FCB_IP4 |
755 				    TSEC_TX_FCB_CSUM_IP;
756 
757 			if (csum_flags & CSUM_TCP)
758 				fcb_flags |= TSEC_TX_FCB_TCP |
759 				    TSEC_TX_FCB_CSUM_TCP_UDP;
760 
761 			if (csum_flags & CSUM_UDP)
762 				fcb_flags |= TSEC_TX_FCB_UDP |
763 				    TSEC_TX_FCB_CSUM_TCP_UDP;
764 
765 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
766 			tx_fcb->flags = fcb_flags;
767 			tx_fcb->l3_offset = ETHER_HDR_LEN;
768 			tx_fcb->l4_offset = sizeof(struct ip);
769 		}
770 
771 		tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
772 	}
773 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
774 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
775 
776 	if (start_tx) {
777 		/* Enable transmitter and watchdog timer */
778 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
779 		sc->tsec_watchdog = 5;
780 	}
781 }
782 
783 static void
784 tsec_encap(if_t ifp, struct tsec_softc *sc, struct mbuf *m0,
785     uint16_t fcb_flags, int *start_tx)
786 {
787 	bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
788 	int error, i, nsegs;
789 	struct tsec_bufmap *tx_bufmap;
790 	uint32_t tx_idx;
791 	uint16_t flags;
792 
793 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
794 
795 	tx_idx = sc->tx_idx_head;
796 	tx_bufmap = &sc->tx_bufmap[tx_idx];
797 
798 	/* Create mapping in DMA memory */
799 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
800 	    segs, &nsegs, BUS_DMA_NOWAIT);
801 	if (error == EFBIG) {
802 		/* Too many segments!  Defrag and try again. */
803 		struct mbuf *m = m_defrag(m0, M_NOWAIT);
804 
805 		if (m == NULL) {
806 			m_freem(m0);
807 			return;
808 		}
809 		m0 = m;
810 		error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
811 		    tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
812 	}
813 	if (error != 0) {
814 		/* Give up. */
815 		m_freem(m0);
816 		return;
817 	}
818 
819 	bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
820 	    BUS_DMASYNC_PREWRITE);
821 	tx_bufmap->mbuf = m0;
822 
823 	/*
824 	 * Fill in the TX descriptors back to front so that READY bit in first
825 	 * descriptor is set last.
826 	 */
827 	tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
828 	sc->tx_idx_head = tx_idx;
829 	flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
830 	for (i = nsegs - 1; i >= 0; i--) {
831 		struct tsec_desc *tx_desc;
832 
833 		tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
834 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
835 		tx_desc->length = segs[i].ds_len;
836 		tx_desc->bufptr = segs[i].ds_addr;
837 
838 		if (i == 0) {
839 			wmb();
840 
841 			if (fcb_flags != 0)
842 				flags |= TSEC_TXBD_TOE;
843 		}
844 
845 		/*
846 		 * Set flags:
847 		 *   - wrap
848 		 *   - checksum
849 		 *   - ready to send
850 		 *   - transmit the CRC sequence after the last data byte
851 		 *   - interrupt after the last buffer
852 		 */
853 		tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
854 		    TSEC_TXBD_W : 0) | flags;
855 
856 		flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
857 	}
858 
859 	BPF_MTAP(ifp, m0);
860 	*start_tx = 1;
861 }
862 
863 static void
864 tsec_setfilter(struct tsec_softc *sc)
865 {
866 	if_t ifp;
867 	uint32_t flags;
868 
869 	ifp = sc->tsec_ifp;
870 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
871 
872 	/* Promiscuous mode */
873 	if (if_getflags(ifp) & IFF_PROMISC)
874 		flags |= TSEC_RCTRL_PROM;
875 	else
876 		flags &= ~TSEC_RCTRL_PROM;
877 
878 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
879 }
880 
881 #ifdef DEVICE_POLLING
882 static poll_handler_t tsec_poll;
883 
884 static int
885 tsec_poll(if_t ifp, enum poll_cmd cmd, int count)
886 {
887 	uint32_t ie;
888 	struct tsec_softc *sc = if_getsoftc(ifp);
889 	int rx_npkts;
890 
891 	rx_npkts = 0;
892 
893 	TSEC_GLOBAL_LOCK(sc);
894 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
895 		TSEC_GLOBAL_UNLOCK(sc);
896 		return (rx_npkts);
897 	}
898 
899 	if (cmd == POLL_AND_CHECK_STATUS) {
900 		tsec_error_intr_locked(sc, count);
901 
902 		/* Clear all events reported */
903 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
904 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
905 	}
906 
907 	tsec_transmit_intr_locked(sc);
908 
909 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
910 
911 	rx_npkts = tsec_receive_intr_locked(sc, count);
912 
913 	TSEC_RECEIVE_UNLOCK(sc);
914 
915 	return (rx_npkts);
916 }
917 #endif /* DEVICE_POLLING */
918 
919 static int
920 tsec_ioctl(if_t ifp, u_long command, caddr_t data)
921 {
922 	struct tsec_softc *sc = if_getsoftc(ifp);
923 	struct ifreq *ifr = (struct ifreq *)data;
924 	int mask, error = 0;
925 
926 	switch (command) {
927 	case SIOCSIFMTU:
928 		TSEC_GLOBAL_LOCK(sc);
929 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
930 			if_setmtu(ifp, ifr->ifr_mtu);
931 		else
932 			error = EINVAL;
933 		TSEC_GLOBAL_UNLOCK(sc);
934 		break;
935 	case SIOCSIFFLAGS:
936 		TSEC_GLOBAL_LOCK(sc);
937 		if (if_getflags(ifp) & IFF_UP) {
938 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
939 				if ((sc->tsec_if_flags ^ if_getflags(ifp)) &
940 				    IFF_PROMISC)
941 					tsec_setfilter(sc);
942 
943 				if ((sc->tsec_if_flags ^ if_getflags(ifp)) &
944 				    IFF_ALLMULTI)
945 					tsec_setup_multicast(sc);
946 			} else
947 				tsec_init_locked(sc);
948 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
949 			tsec_stop(sc);
950 
951 		sc->tsec_if_flags = if_getflags(ifp);
952 		TSEC_GLOBAL_UNLOCK(sc);
953 		break;
954 	case SIOCADDMULTI:
955 	case SIOCDELMULTI:
956 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
957 			TSEC_GLOBAL_LOCK(sc);
958 			tsec_setup_multicast(sc);
959 			TSEC_GLOBAL_UNLOCK(sc);
960 		}
961 	case SIOCGIFMEDIA:
962 	case SIOCSIFMEDIA:
963 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
964 		    command);
965 		break;
966 	case SIOCSIFCAP:
967 		mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
968 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
969 			TSEC_GLOBAL_LOCK(sc);
970 			if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
971 			if_setcapenablebit(ifp, IFCAP_HWCSUM & ifr->ifr_reqcap, 0);
972 			tsec_offload_setup(sc);
973 			TSEC_GLOBAL_UNLOCK(sc);
974 		}
975 #ifdef DEVICE_POLLING
976 		if (mask & IFCAP_POLLING) {
977 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
978 				error = ether_poll_register(tsec_poll, ifp);
979 				if (error)
980 					return (error);
981 
982 				TSEC_GLOBAL_LOCK(sc);
983 				/* Disable interrupts */
984 				tsec_intrs_ctl(sc, 0);
985 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
986 				TSEC_GLOBAL_UNLOCK(sc);
987 			} else {
988 				error = ether_poll_deregister(ifp);
989 				TSEC_GLOBAL_LOCK(sc);
990 				/* Enable interrupts */
991 				tsec_intrs_ctl(sc, 1);
992 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
993 				TSEC_GLOBAL_UNLOCK(sc);
994 			}
995 		}
996 #endif
997 		break;
998 
999 	default:
1000 		error = ether_ioctl(ifp, command, data);
1001 	}
1002 
1003 	/* Flush buffers if not empty */
1004 	if (if_getflags(ifp) & IFF_UP)
1005 		tsec_start(ifp);
1006 	return (error);
1007 }
1008 
1009 static int
1010 tsec_ifmedia_upd(if_t ifp)
1011 {
1012 	struct tsec_softc *sc = if_getsoftc(ifp);
1013 	struct mii_data *mii;
1014 
1015 	TSEC_TRANSMIT_LOCK(sc);
1016 
1017 	mii = sc->tsec_mii;
1018 	mii_mediachg(mii);
1019 
1020 	TSEC_TRANSMIT_UNLOCK(sc);
1021 	return (0);
1022 }
1023 
1024 static void
1025 tsec_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
1026 {
1027 	struct tsec_softc *sc = if_getsoftc(ifp);
1028 	struct mii_data *mii;
1029 
1030 	TSEC_TRANSMIT_LOCK(sc);
1031 
1032 	mii = sc->tsec_mii;
1033 	mii_pollstat(mii);
1034 
1035 	ifmr->ifm_active = mii->mii_media_active;
1036 	ifmr->ifm_status = mii->mii_media_status;
1037 
1038 	TSEC_TRANSMIT_UNLOCK(sc);
1039 }
1040 
1041 static int
1042 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1043     uint32_t *paddr)
1044 {
1045 	struct mbuf *new_mbuf;
1046 	bus_dma_segment_t seg[1];
1047 	int error, nsegs;
1048 
1049 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1050 
1051 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1052 	if (new_mbuf == NULL)
1053 		return (ENOBUFS);
1054 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1055 
1056 	if (*mbufp) {
1057 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1058 		bus_dmamap_unload(tag, map);
1059 	}
1060 
1061 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1062 	    BUS_DMA_NOWAIT);
1063 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1064 	if (nsegs != 1 || error)
1065 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1066 
1067 #if 0
1068 	if (error) {
1069 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1070 			error);
1071 		m_freem(new_mbuf);
1072 		return (ENOBUFS);
1073 	}
1074 #endif
1075 
1076 #if 0
1077 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1078 		("Wrong alignment of RX buffer!"));
1079 #endif
1080 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1081 
1082 	(*mbufp) = new_mbuf;
1083 	(*paddr) = seg->ds_addr;
1084 	return (0);
1085 }
1086 
1087 static void
1088 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1089 {
1090 	u_int32_t *paddr;
1091 
1092 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1093 	paddr = arg;
1094 	*paddr = segs->ds_addr;
1095 }
1096 
1097 static int
1098 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1099     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1100 {
1101 	int error;
1102 
1103 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1104 	error = bus_dma_tag_create(NULL,	/* parent */
1105 	    PAGE_SIZE, 0,			/* alignment, boundary */
1106 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1107 	    BUS_SPACE_MAXADDR,			/* highaddr */
1108 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1109 	    dsize, 1,				/* maxsize, nsegments */
1110 	    dsize, 0,				/* maxsegsz, flags */
1111 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1112 	    dtag);				/* dmat */
1113 
1114 	if (error) {
1115 		device_printf(dev, "failed to allocate busdma %s tag\n",
1116 		    dname);
1117 		(*vaddr) = NULL;
1118 		return (ENXIO);
1119 	}
1120 
1121 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1122 	    dmap);
1123 	if (error) {
1124 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1125 		    dname);
1126 		bus_dma_tag_destroy(*dtag);
1127 		(*vaddr) = NULL;
1128 		return (ENXIO);
1129 	}
1130 
1131 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1132 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1133 	if (error) {
1134 		device_printf(dev, "cannot get address of the %s "
1135 		    "descriptors\n", dname);
1136 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1137 		bus_dma_tag_destroy(*dtag);
1138 		(*vaddr) = NULL;
1139 		return (ENXIO);
1140 	}
1141 
1142 	return (0);
1143 }
1144 
1145 static void
1146 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1147 {
1148 
1149 	if (vaddr == NULL)
1150 		return;
1151 
1152 	/* Unmap descriptors from DMA memory */
1153 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1154 	    BUS_DMASYNC_POSTWRITE);
1155 	bus_dmamap_unload(dtag, dmap);
1156 
1157 	/* Free descriptors memory */
1158 	bus_dmamem_free(dtag, vaddr, dmap);
1159 
1160 	/* Destroy descriptors tag */
1161 	bus_dma_tag_destroy(dtag);
1162 }
1163 
1164 static void
1165 tsec_free_dma(struct tsec_softc *sc)
1166 {
1167 	int i;
1168 
1169 	/* Free TX maps */
1170 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1171 		if (sc->tx_bufmap[i].map_initialized)
1172 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1173 			    sc->tx_bufmap[i].map);
1174 	/* Destroy tag for TX mbufs */
1175 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1176 
1177 	/* Free RX mbufs and maps */
1178 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1179 		if (sc->rx_data[i].mbuf) {
1180 			/* Unload buffer from DMA */
1181 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1182 			    BUS_DMASYNC_POSTREAD);
1183 			bus_dmamap_unload(sc->tsec_rx_mtag,
1184 			    sc->rx_data[i].map);
1185 
1186 			/* Free buffer */
1187 			m_freem(sc->rx_data[i].mbuf);
1188 		}
1189 		/* Destroy map for this buffer */
1190 		if (sc->rx_data[i].map != NULL)
1191 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1192 			    sc->rx_data[i].map);
1193 	}
1194 	/* Destroy tag for RX mbufs */
1195 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1196 
1197 	/* Unload TX/RX descriptors */
1198 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1199 	    sc->tsec_tx_vaddr);
1200 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1201 	    sc->tsec_rx_vaddr);
1202 }
1203 
1204 static void
1205 tsec_stop(struct tsec_softc *sc)
1206 {
1207 	if_t ifp;
1208 	uint32_t tmpval;
1209 
1210 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1211 
1212 	ifp = sc->tsec_ifp;
1213 
1214 	/* Disable interface and watchdog timer */
1215 	callout_stop(&sc->tsec_callout);
1216 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1217 	sc->tsec_watchdog = 0;
1218 
1219 	/* Disable all interrupts and stop DMA */
1220 	tsec_intrs_ctl(sc, 0);
1221 	tsec_dma_ctl(sc, 0);
1222 
1223 	/* Remove pending data from TX queue */
1224 	while (sc->tx_idx_tail != sc->tx_idx_head) {
1225 		bus_dmamap_sync(sc->tsec_tx_mtag,
1226 		    sc->tx_bufmap[sc->tx_idx_tail].map,
1227 		    BUS_DMASYNC_POSTWRITE);
1228 		bus_dmamap_unload(sc->tsec_tx_mtag,
1229 		    sc->tx_bufmap[sc->tx_idx_tail].map);
1230 		m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
1231 		sc->tx_idx_tail = (sc->tx_idx_tail + 1)
1232 		    & (TSEC_TX_NUM_DESC - 1);
1233 	}
1234 
1235 	/* Disable RX and TX */
1236 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1237 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1238 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1239 	DELAY(10);
1240 }
1241 
1242 static void
1243 tsec_tick(void *arg)
1244 {
1245 	struct tsec_softc *sc = arg;
1246 	if_t ifp;
1247 	int link;
1248 
1249 	TSEC_GLOBAL_LOCK(sc);
1250 
1251 	tsec_watchdog(sc);
1252 
1253 	ifp = sc->tsec_ifp;
1254 	link = sc->tsec_link;
1255 
1256 	mii_tick(sc->tsec_mii);
1257 
1258 	if (link == 0 && sc->tsec_link == 1 &&
1259 	    (!if_sendq_empty(ifp)))
1260 		tsec_start_locked(ifp);
1261 
1262 	/* Schedule another timeout one second from now. */
1263 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1264 
1265 	TSEC_GLOBAL_UNLOCK(sc);
1266 }
1267 
1268 /*
1269  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1270  *  sends data which have been dma'ed into host memory to upper layer.
1271  *
1272  *  Loops at most count times if count is > 0, or until done if count < 0.
1273  */
1274 static int
1275 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1276 {
1277 	struct tsec_desc *rx_desc;
1278 	if_t ifp;
1279 	struct rx_data_type *rx_data;
1280 	struct mbuf *m;
1281 	uint32_t i;
1282 	int c, rx_npkts;
1283 	uint16_t flags;
1284 
1285 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1286 
1287 	ifp = sc->tsec_ifp;
1288 	rx_data = sc->rx_data;
1289 	rx_npkts = 0;
1290 
1291 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1292 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1293 
1294 	for (c = 0; ; c++) {
1295 		if (count >= 0 && count-- == 0)
1296 			break;
1297 
1298 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1299 		flags = rx_desc->flags;
1300 
1301 		/* Check if there is anything to receive */
1302 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1303 			/*
1304 			 * Avoid generating another interrupt
1305 			 */
1306 			if (flags & TSEC_RXBD_E)
1307 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1308 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1309 			/*
1310 			 * We didn't consume current descriptor and have to
1311 			 * return it to the queue
1312 			 */
1313 			TSEC_BACK_CUR_RX_DESC(sc);
1314 			break;
1315 		}
1316 
1317 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1318 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1319 			rx_desc->length = 0;
1320 			rx_desc->flags = (rx_desc->flags &
1321 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1322 
1323 			if (sc->frame != NULL) {
1324 				m_free(sc->frame);
1325 				sc->frame = NULL;
1326 			}
1327 
1328 			continue;
1329 		}
1330 
1331 		/* Ok... process frame */
1332 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1333 		m = rx_data[i].mbuf;
1334 		m->m_len = rx_desc->length;
1335 
1336 		if (sc->frame != NULL) {
1337 			if ((flags & TSEC_RXBD_L) != 0)
1338 				m->m_len -= m_length(sc->frame, NULL);
1339 
1340 			m->m_flags &= ~M_PKTHDR;
1341 			m_cat(sc->frame, m);
1342 		} else {
1343 			sc->frame = m;
1344 		}
1345 
1346 		m = NULL;
1347 
1348 		if ((flags & TSEC_RXBD_L) != 0) {
1349 			m = sc->frame;
1350 			sc->frame = NULL;
1351 		}
1352 
1353 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1354 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1355 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1356 			/*
1357 			 * We ran out of mbufs; didn't consume current
1358 			 * descriptor and have to return it to the queue.
1359 			 */
1360 			TSEC_BACK_CUR_RX_DESC(sc);
1361 			break;
1362 		}
1363 
1364 		/* Attach new buffer to descriptor and clear flags */
1365 		rx_desc->bufptr = rx_data[i].paddr;
1366 		rx_desc->length = 0;
1367 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1368 		    TSEC_RXBD_E | TSEC_RXBD_I;
1369 
1370 		if (m != NULL) {
1371 			m->m_pkthdr.rcvif = ifp;
1372 
1373 			m_fixhdr(m);
1374 			m_adj(m, -ETHER_CRC_LEN);
1375 
1376 			if (sc->is_etsec)
1377 				tsec_offload_process_frame(sc, m);
1378 
1379 			TSEC_RECEIVE_UNLOCK(sc);
1380 			if_input(ifp, m);
1381 			TSEC_RECEIVE_LOCK(sc);
1382 			rx_npkts++;
1383 		}
1384 	}
1385 
1386 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1387 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1388 
1389 	/*
1390 	 * Make sure TSEC receiver is not halted.
1391 	 *
1392 	 * Various conditions can stop the TSEC receiver, but not all are
1393 	 * signaled and handled by error interrupt, so make sure the receiver
1394 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1395 	 * halted, and is harmless if already running.
1396 	 */
1397 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1398 	return (rx_npkts);
1399 }
1400 
1401 void
1402 tsec_receive_intr(void *arg)
1403 {
1404 	struct tsec_softc *sc = arg;
1405 
1406 	TSEC_RECEIVE_LOCK(sc);
1407 
1408 #ifdef DEVICE_POLLING
1409 	if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING) {
1410 		TSEC_RECEIVE_UNLOCK(sc);
1411 		return;
1412 	}
1413 #endif
1414 
1415 	/* Confirm the interrupt was received by driver */
1416 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1417 	tsec_receive_intr_locked(sc, -1);
1418 
1419 	TSEC_RECEIVE_UNLOCK(sc);
1420 }
1421 
1422 static void
1423 tsec_transmit_intr_locked(struct tsec_softc *sc)
1424 {
1425 	if_t ifp;
1426 	uint32_t tx_idx;
1427 
1428 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1429 
1430 	ifp = sc->tsec_ifp;
1431 
1432 	/* Update collision statistics */
1433 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
1434 
1435 	/* Reset collision counters in hardware */
1436 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1437 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1438 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1439 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1440 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1441 
1442 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1443 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1444 
1445 	tx_idx = sc->tx_idx_tail;
1446 	while (tx_idx != sc->tx_idx_head) {
1447 		struct tsec_desc *tx_desc;
1448 		struct tsec_bufmap *tx_bufmap;
1449 
1450 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
1451 		if (tx_desc->flags & TSEC_TXBD_R) {
1452 			break;
1453 		}
1454 
1455 		tx_bufmap = &sc->tx_bufmap[tx_idx];
1456 		tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
1457 		if (tx_bufmap->mbuf == NULL)
1458 			continue;
1459 
1460 		/*
1461 		 * This is the last buf in this packet, so unmap and free it.
1462 		 */
1463 		bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
1464 		    BUS_DMASYNC_POSTWRITE);
1465 		bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
1466 		m_freem(tx_bufmap->mbuf);
1467 		tx_bufmap->mbuf = NULL;
1468 
1469 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1470 	}
1471 	sc->tx_idx_tail = tx_idx;
1472 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1473 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1474 
1475 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1476 	tsec_start_locked(ifp);
1477 
1478 	if (sc->tx_idx_tail == sc->tx_idx_head)
1479 		sc->tsec_watchdog = 0;
1480 }
1481 
1482 void
1483 tsec_transmit_intr(void *arg)
1484 {
1485 	struct tsec_softc *sc = arg;
1486 
1487 	TSEC_TRANSMIT_LOCK(sc);
1488 
1489 #ifdef DEVICE_POLLING
1490 	if (if_getcapenable(sc->tsec_ifp) & IFCAP_POLLING) {
1491 		TSEC_TRANSMIT_UNLOCK(sc);
1492 		return;
1493 	}
1494 #endif
1495 	/* Confirm the interrupt was received by driver */
1496 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1497 	tsec_transmit_intr_locked(sc);
1498 
1499 	TSEC_TRANSMIT_UNLOCK(sc);
1500 }
1501 
1502 static void
1503 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1504 {
1505 	if_t ifp;
1506 	uint32_t eflags;
1507 
1508 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1509 
1510 	ifp = sc->tsec_ifp;
1511 
1512 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1513 
1514 	/* Clear events bits in hardware */
1515 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1516 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1517 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1518 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1519 
1520 	/* Check transmitter errors */
1521 	if (eflags & TSEC_IEVENT_TXE) {
1522 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1523 
1524 		if (eflags & TSEC_IEVENT_LC)
1525 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1526 
1527 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1528 	}
1529 
1530 	/* Check for discarded frame due to a lack of buffers */
1531 	if (eflags & TSEC_IEVENT_BSY) {
1532 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1533 	}
1534 
1535 	if (if_getflags(ifp) & IFF_DEBUG)
1536 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1537 		    eflags);
1538 
1539 	if (eflags & TSEC_IEVENT_EBERR) {
1540 		if_printf(ifp, "System bus error occurred during"
1541 		    "DMA transaction (flags: 0x%x)\n", eflags);
1542 		tsec_init_locked(sc);
1543 	}
1544 
1545 	if (eflags & TSEC_IEVENT_BABT)
1546 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1547 
1548 	if (eflags & TSEC_IEVENT_BABR)
1549 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1550 }
1551 
1552 void
1553 tsec_error_intr(void *arg)
1554 {
1555 	struct tsec_softc *sc = arg;
1556 
1557 	TSEC_GLOBAL_LOCK(sc);
1558 	tsec_error_intr_locked(sc, -1);
1559 	TSEC_GLOBAL_UNLOCK(sc);
1560 }
1561 
1562 int
1563 tsec_miibus_readreg(device_t dev, int phy, int reg)
1564 {
1565 	struct tsec_softc *sc;
1566 	int timeout;
1567 	int rv;
1568 
1569 	sc = device_get_softc(dev);
1570 
1571 	TSEC_PHY_LOCK();
1572 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1573 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1574 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1575 
1576 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
1577 	rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1578 	TSEC_PHY_UNLOCK();
1579 
1580 	if (timeout)
1581 		device_printf(dev, "Timeout while reading from PHY!\n");
1582 
1583 	return (rv);
1584 }
1585 
1586 int
1587 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1588 {
1589 	struct tsec_softc *sc;
1590 	int timeout;
1591 
1592 	sc = device_get_softc(dev);
1593 
1594 	TSEC_PHY_LOCK();
1595 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1596 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1597 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
1598 	TSEC_PHY_UNLOCK();
1599 
1600 	if (timeout)
1601 		device_printf(dev, "Timeout while writing to PHY!\n");
1602 
1603 	return (0);
1604 }
1605 
1606 void
1607 tsec_miibus_statchg(device_t dev)
1608 {
1609 	struct tsec_softc *sc;
1610 	struct mii_data *mii;
1611 	uint32_t ecntrl, id, tmp;
1612 	int link;
1613 
1614 	sc = device_get_softc(dev);
1615 	mii = sc->tsec_mii;
1616 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1617 
1618 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1619 
1620 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1621 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1622 	else
1623 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1624 
1625 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1626 	case IFM_1000_T:
1627 	case IFM_1000_SX:
1628 		tmp |= TSEC_MACCFG2_GMII;
1629 		sc->tsec_link = link;
1630 		break;
1631 	case IFM_100_TX:
1632 	case IFM_10_T:
1633 		tmp |= TSEC_MACCFG2_MII;
1634 		sc->tsec_link = link;
1635 		break;
1636 	case IFM_NONE:
1637 		if (link)
1638 			device_printf(dev, "No speed selected but link "
1639 			    "active!\n");
1640 		sc->tsec_link = 0;
1641 		return;
1642 	default:
1643 		sc->tsec_link = 0;
1644 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1645 		    IFM_SUBTYPE(mii->mii_media_active),
1646 		        ((link) ? "up" : "down"));
1647 		return;
1648 	}
1649 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1650 
1651 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1652 	id = TSEC_READ(sc, TSEC_REG_ID2);
1653 	if (id & 0xffff) {
1654 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1655 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1656 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1657 	}
1658 }
1659 
1660 static void
1661 tsec_add_sysctls(struct tsec_softc *sc)
1662 {
1663 	struct sysctl_ctx_list *ctx;
1664 	struct sysctl_oid_list *children;
1665 	struct sysctl_oid *tree;
1666 
1667 	ctx = device_get_sysctl_ctx(sc->dev);
1668 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1669 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1670 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "TSEC Interrupts coalescing");
1671 	children = SYSCTL_CHILDREN(tree);
1672 
1673 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1674 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1675 	    tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)");
1676 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1677 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1678 	    tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)");
1679 
1680 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1681 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1682 	    tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)");
1683 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1684 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1685 	    tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)");
1686 }
1687 
1688 /*
1689  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1690  * interrupt is raised either upon:
1691  *
1692  * - threshold-defined period of time elapsed, or
1693  * - threshold-defined number of frames is received/transmitted,
1694  *   whichever occurs first.
1695  *
1696  * The following sysctls regulate IC behaviour (for TX/RX separately):
1697  *
1698  * dev.tsec.<unit>.int_coal.rx_time
1699  * dev.tsec.<unit>.int_coal.rx_count
1700  * dev.tsec.<unit>.int_coal.tx_time
1701  * dev.tsec.<unit>.int_coal.tx_count
1702  *
1703  * Values:
1704  *
1705  * - 0 for either time or count disables IC on the given TX/RX path
1706  *
1707  * - count: 1-255 (expresses frame count number; note that value of 1 is
1708  *   effectively IC off)
1709  *
1710  * - time: 1-65535 (value corresponds to a real time period and is
1711  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1712  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1713  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1714  *   TSEC reference manual.
1715  */
1716 static int
1717 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1718 {
1719 	int error;
1720 	uint32_t time;
1721 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1722 
1723 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1724 
1725 	error = sysctl_handle_int(oidp, &time, 0, req);
1726 	if (error != 0)
1727 		return (error);
1728 
1729 	if (time > 65535)
1730 		return (EINVAL);
1731 
1732 	TSEC_IC_LOCK(sc);
1733 	if (arg2 == TSEC_IC_RX) {
1734 		sc->rx_ic_time = time;
1735 		tsec_set_rxic(sc);
1736 	} else {
1737 		sc->tx_ic_time = time;
1738 		tsec_set_txic(sc);
1739 	}
1740 	TSEC_IC_UNLOCK(sc);
1741 
1742 	return (0);
1743 }
1744 
1745 static int
1746 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1747 {
1748 	int error;
1749 	uint32_t count;
1750 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1751 
1752 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1753 
1754 	error = sysctl_handle_int(oidp, &count, 0, req);
1755 	if (error != 0)
1756 		return (error);
1757 
1758 	if (count > 255)
1759 		return (EINVAL);
1760 
1761 	TSEC_IC_LOCK(sc);
1762 	if (arg2 == TSEC_IC_RX) {
1763 		sc->rx_ic_count = count;
1764 		tsec_set_rxic(sc);
1765 	} else {
1766 		sc->tx_ic_count = count;
1767 		tsec_set_txic(sc);
1768 	}
1769 	TSEC_IC_UNLOCK(sc);
1770 
1771 	return (0);
1772 }
1773 
1774 static void
1775 tsec_set_rxic(struct tsec_softc *sc)
1776 {
1777 	uint32_t rxic_val;
1778 
1779 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1780 		/* Disable RX IC */
1781 		rxic_val = 0;
1782 	else {
1783 		rxic_val = 0x80000000;
1784 		rxic_val |= (sc->rx_ic_count << 21);
1785 		rxic_val |= sc->rx_ic_time;
1786 	}
1787 
1788 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1789 }
1790 
1791 static void
1792 tsec_set_txic(struct tsec_softc *sc)
1793 {
1794 	uint32_t txic_val;
1795 
1796 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1797 		/* Disable TX IC */
1798 		txic_val = 0;
1799 	else {
1800 		txic_val = 0x80000000;
1801 		txic_val |= (sc->tx_ic_count << 21);
1802 		txic_val |= sc->tx_ic_time;
1803 	}
1804 
1805 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1806 }
1807 
1808 static void
1809 tsec_offload_setup(struct tsec_softc *sc)
1810 {
1811 	if_t ifp = sc->tsec_ifp;
1812 	uint32_t reg;
1813 
1814 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1815 
1816 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1817 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1818 
1819 	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
1820 		if_sethwassist(ifp, TSEC_CHECKSUM_FEATURES);
1821 	else
1822 		if_sethwassist(ifp, 0);
1823 
1824 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1825 
1826 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1827 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1828 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1829 
1830 	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
1831 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1832 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1833 
1834 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1835 }
1836 
1837 static void
1838 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1839 {
1840 	struct tsec_rx_fcb rx_fcb;
1841 	int csum_flags = 0;
1842 	int protocol, flags;
1843 
1844 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1845 
1846 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1847 	flags = rx_fcb.flags;
1848 	protocol = rx_fcb.protocol;
1849 
1850 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1851 		csum_flags |= CSUM_IP_CHECKED;
1852 
1853 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1854 			csum_flags |= CSUM_IP_VALID;
1855 	}
1856 
1857 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1858 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1859 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1860 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1861 		m->m_pkthdr.csum_data = 0xFFFF;
1862 	}
1863 
1864 	m->m_pkthdr.csum_flags = csum_flags;
1865 
1866 	if (flags & TSEC_RX_FCB_VLAN) {
1867 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1868 		m->m_flags |= M_VLANTAG;
1869 	}
1870 
1871 	m_adj(m, sizeof(struct tsec_rx_fcb));
1872 }
1873 
1874 static u_int
1875 tsec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1876 {
1877 	uint32_t h, *hashtable = arg;
1878 
1879 	h = (ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 24) & 0xFF;
1880 	hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1881 
1882 	return (1);
1883 }
1884 
1885 static void
1886 tsec_setup_multicast(struct tsec_softc *sc)
1887 {
1888 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1889 	if_t ifp = sc->tsec_ifp;
1890 	int i;
1891 
1892 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1893 
1894 	if (if_getflags(ifp) & IFF_ALLMULTI) {
1895 		for (i = 0; i < 8; i++)
1896 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1897 
1898 		return;
1899 	}
1900 
1901 	if_foreach_llmaddr(ifp, tsec_hash_maddr, &hashtable);
1902 
1903 	for (i = 0; i < 8; i++)
1904 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1905 }
1906 
1907 static int
1908 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1909 {
1910 
1911 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1912 
1913 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1914 
1915 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1916 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1917 		return (mtu);
1918 	}
1919 
1920 	return (0);
1921 }
1922