xref: /freebsd/sys/dev/ti/if_ti.c (revision ee7b0571c2c18bdec848ed2044223cc88db29bd8)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95 
96 #include <net/if.h>
97 #include <net/if_var.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_types.h>
103 #include <net/if_vlan_var.h>
104 
105 #include <net/bpf.h>
106 
107 #include <netinet/in_systm.h>
108 #include <netinet/in.h>
109 #include <netinet/ip.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #ifdef TI_SF_BUF_JUMBO
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128 
129 #include <sys/sysctl.h>
130 
131 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
132 /*
133  * We can only turn on header splitting if we're using extended receive
134  * BDs.
135  */
136 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
137 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
138 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
139 
140 typedef enum {
141 	TI_SWAP_HTON,
142 	TI_SWAP_NTOH
143 } ti_swap_type;
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 
149 static const struct ti_type ti_devs[] = {
150 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
151 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
152 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
153 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
154 	{ TC_VENDORID,	TC_DEVICEID_3C985,
155 		"3Com 3c985-SX Gigabit Ethernet" },
156 	{ NG_VENDORID, NG_DEVICEID_GA620,
157 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
158 	{ NG_VENDORID, NG_DEVICEID_GA620T,
159 		"Netgear GA620 1000baseT Gigabit Ethernet" },
160 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
161 		"Silicon Graphics Gigabit Ethernet" },
162 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
163 		"Farallon PN9000SX Gigabit Ethernet" },
164 	{ 0, 0, NULL }
165 };
166 
167 
168 static	d_open_t	ti_open;
169 static	d_close_t	ti_close;
170 static	d_ioctl_t	ti_ioctl2;
171 
172 static struct cdevsw ti_cdevsw = {
173 	.d_version =	D_VERSION,
174 	.d_flags =	0,
175 	.d_open =	ti_open,
176 	.d_close =	ti_close,
177 	.d_ioctl =	ti_ioctl2,
178 	.d_name =	"ti",
179 };
180 
181 static int ti_probe(device_t);
182 static int ti_attach(device_t);
183 static int ti_detach(device_t);
184 static void ti_txeof(struct ti_softc *);
185 static void ti_rxeof(struct ti_softc *);
186 
187 static void ti_stats_update(struct ti_softc *);
188 static int ti_encap(struct ti_softc *, struct mbuf **);
189 
190 static void ti_intr(void *);
191 static void ti_start(struct ifnet *);
192 static void ti_start_locked(struct ifnet *);
193 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
194 static void ti_init(void *);
195 static void ti_init_locked(void *);
196 static void ti_init2(struct ti_softc *);
197 static void ti_stop(struct ti_softc *);
198 static void ti_watchdog(void *);
199 static int ti_shutdown(device_t);
200 static int ti_ifmedia_upd(struct ifnet *);
201 static int ti_ifmedia_upd_locked(struct ti_softc *);
202 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203 
204 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
205 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
206 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
207 
208 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
209 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
210 static void ti_setmulti(struct ti_softc *);
211 
212 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
213 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
214 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
215 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
216     int);
217 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
218     int, int, int);
219 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
220 static void ti_loadfw(struct ti_softc *);
221 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
222 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
223 static void ti_handle_events(struct ti_softc *);
224 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
225 static int ti_dma_alloc(struct ti_softc *);
226 static void ti_dma_free(struct ti_softc *);
227 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
228     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
229 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
230     bus_dmamap_t, bus_addr_t *);
231 static int ti_newbuf_std(struct ti_softc *, int);
232 static int ti_newbuf_mini(struct ti_softc *, int);
233 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
234 static int ti_init_rx_ring_std(struct ti_softc *);
235 static void ti_free_rx_ring_std(struct ti_softc *);
236 static int ti_init_rx_ring_jumbo(struct ti_softc *);
237 static void ti_free_rx_ring_jumbo(struct ti_softc *);
238 static int ti_init_rx_ring_mini(struct ti_softc *);
239 static void ti_free_rx_ring_mini(struct ti_softc *);
240 static void ti_free_tx_ring(struct ti_softc *);
241 static int ti_init_tx_ring(struct ti_softc *);
242 static void ti_discard_std(struct ti_softc *, int);
243 #ifndef TI_SF_BUF_JUMBO
244 static void ti_discard_jumbo(struct ti_softc *, int);
245 #endif
246 static void ti_discard_mini(struct ti_softc *, int);
247 
248 static int ti_64bitslot_war(struct ti_softc *);
249 static int ti_chipinit(struct ti_softc *);
250 static int ti_gibinit(struct ti_softc *);
251 
252 #ifdef TI_JUMBO_HDRSPLIT
253 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
254     int idx);
255 #endif /* TI_JUMBO_HDRSPLIT */
256 
257 static void ti_sysctl_node(struct ti_softc *);
258 
259 static device_method_t ti_methods[] = {
260 	/* Device interface */
261 	DEVMETHOD(device_probe,		ti_probe),
262 	DEVMETHOD(device_attach,	ti_attach),
263 	DEVMETHOD(device_detach,	ti_detach),
264 	DEVMETHOD(device_shutdown,	ti_shutdown),
265 	{ 0, 0 }
266 };
267 
268 static driver_t ti_driver = {
269 	"ti",
270 	ti_methods,
271 	sizeof(struct ti_softc)
272 };
273 
274 static devclass_t ti_devclass;
275 
276 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
277 MODULE_DEPEND(ti, pci, 1, 1, 1);
278 MODULE_DEPEND(ti, ether, 1, 1, 1);
279 
280 /*
281  * Send an instruction or address to the EEPROM, check for ACK.
282  */
283 static uint32_t
284 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
285 {
286 	int i, ack = 0;
287 
288 	/*
289 	 * Make sure we're in TX mode.
290 	 */
291 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
292 
293 	/*
294 	 * Feed in each bit and stobe the clock.
295 	 */
296 	for (i = 0x80; i; i >>= 1) {
297 		if (byte & i) {
298 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
299 		} else {
300 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301 		}
302 		DELAY(1);
303 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
304 		DELAY(1);
305 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 	}
307 
308 	/*
309 	 * Turn off TX mode.
310 	 */
311 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
312 
313 	/*
314 	 * Check for ack.
315 	 */
316 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
317 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
318 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319 
320 	return (ack);
321 }
322 
323 /*
324  * Read a byte of data stored in the EEPROM at address 'addr.'
325  * We have to send two address bytes since the EEPROM can hold
326  * more than 256 bytes of data.
327  */
328 static uint8_t
329 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
330 {
331 	int i;
332 	uint8_t byte = 0;
333 
334 	EEPROM_START;
335 
336 	/*
337 	 * Send write control code to EEPROM.
338 	 */
339 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
340 		device_printf(sc->ti_dev,
341 		    "failed to send write command, status: %x\n",
342 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
343 		return (1);
344 	}
345 
346 	/*
347 	 * Send first byte of address of byte we want to read.
348 	 */
349 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
350 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
351 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
352 		return (1);
353 	}
354 	/*
355 	 * Send second byte address of byte we want to read.
356 	 */
357 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
358 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
359 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
360 		return (1);
361 	}
362 
363 	EEPROM_STOP;
364 	EEPROM_START;
365 	/*
366 	 * Send read control code to EEPROM.
367 	 */
368 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
369 		device_printf(sc->ti_dev,
370 		    "failed to send read command, status: %x\n",
371 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
372 		return (1);
373 	}
374 
375 	/*
376 	 * Start reading bits from EEPROM.
377 	 */
378 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
379 	for (i = 0x80; i; i >>= 1) {
380 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
381 		DELAY(1);
382 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
383 			byte |= i;
384 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
385 		DELAY(1);
386 	}
387 
388 	EEPROM_STOP;
389 
390 	/*
391 	 * No ACK generated for read, so just return byte.
392 	 */
393 
394 	*dest = byte;
395 
396 	return (0);
397 }
398 
399 /*
400  * Read a sequence of bytes from the EEPROM.
401  */
402 static int
403 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
404 {
405 	int err = 0, i;
406 	uint8_t byte = 0;
407 
408 	for (i = 0; i < cnt; i++) {
409 		err = ti_eeprom_getbyte(sc, off + i, &byte);
410 		if (err)
411 			break;
412 		*(dest + i) = byte;
413 	}
414 
415 	return (err ? 1 : 0);
416 }
417 
418 /*
419  * NIC memory read function.
420  * Can be used to copy data from NIC local memory.
421  */
422 static void
423 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
424 {
425 	int segptr, segsize, cnt;
426 	char *ptr;
427 
428 	segptr = addr;
429 	cnt = len;
430 	ptr = buf;
431 
432 	while (cnt) {
433 		if (cnt < TI_WINLEN)
434 			segsize = cnt;
435 		else
436 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
437 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
440 		    segsize / 4);
441 		ptr += segsize;
442 		segptr += segsize;
443 		cnt -= segsize;
444 	}
445 }
446 
447 
448 /*
449  * NIC memory write function.
450  * Can be used to copy data into NIC local memory.
451  */
452 static void
453 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
454 {
455 	int segptr, segsize, cnt;
456 	char *ptr;
457 
458 	segptr = addr;
459 	cnt = len;
460 	ptr = buf;
461 
462 	while (cnt) {
463 		if (cnt < TI_WINLEN)
464 			segsize = cnt;
465 		else
466 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
467 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
468 		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
469 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
470 		    segsize / 4);
471 		ptr += segsize;
472 		segptr += segsize;
473 		cnt -= segsize;
474 	}
475 }
476 
477 /*
478  * NIC memory read function.
479  * Can be used to clear a section of NIC local memory.
480  */
481 static void
482 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
483 {
484 	int segptr, segsize, cnt;
485 
486 	segptr = addr;
487 	cnt = len;
488 
489 	while (cnt) {
490 		if (cnt < TI_WINLEN)
491 			segsize = cnt;
492 		else
493 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
494 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
495 		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
496 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
497 		segptr += segsize;
498 		cnt -= segsize;
499 	}
500 }
501 
502 static int
503 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
504     caddr_t buf, int useraddr, int readdata)
505 {
506 	int segptr, segsize, cnt;
507 	caddr_t ptr;
508 	uint32_t origwin;
509 	int resid, segresid;
510 	int first_pass;
511 
512 	TI_LOCK_ASSERT(sc);
513 
514 	/*
515 	 * At the moment, we don't handle non-aligned cases, we just bail.
516 	 * If this proves to be a problem, it will be fixed.
517 	 */
518 	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
519 		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
520 		    "word-aligned\n", __func__, tigon_addr);
521 		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
522 		    "yet supported\n", __func__);
523 		return (EINVAL);
524 	}
525 
526 	segptr = tigon_addr & ~0x3;
527 	segresid = tigon_addr - segptr;
528 
529 	/*
530 	 * This is the non-aligned amount left over that we'll need to
531 	 * copy.
532 	 */
533 	resid = len & 0x3;
534 
535 	/* Add in the left over amount at the front of the buffer */
536 	resid += segresid;
537 
538 	cnt = len & ~0x3;
539 	/*
540 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
541 	 * decrease the residual by that much.
542 	 */
543 	cnt += resid & ~0x3;
544 	resid -= resid & ~0x3;
545 
546 	ptr = buf;
547 
548 	first_pass = 1;
549 
550 	/*
551 	 * Save the old window base value.
552 	 */
553 	origwin = CSR_READ_4(sc, TI_WINBASE);
554 
555 	while (cnt) {
556 		bus_size_t ti_offset;
557 
558 		if (cnt < TI_WINLEN)
559 			segsize = cnt;
560 		else
561 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
562 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
563 
564 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
565 
566 		if (readdata) {
567 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
568 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
569 			if (useraddr) {
570 				/*
571 				 * Yeah, this is a little on the kludgy
572 				 * side, but at least this code is only
573 				 * used for debugging.
574 				 */
575 				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
576 				    segsize, TI_SWAP_NTOH);
577 
578 				TI_UNLOCK(sc);
579 				if (first_pass) {
580 					copyout(&sc->ti_membuf2[segresid], ptr,
581 					    segsize - segresid);
582 					first_pass = 0;
583 				} else
584 					copyout(sc->ti_membuf2, ptr, segsize);
585 				TI_LOCK(sc);
586 			} else {
587 				if (first_pass) {
588 
589 					ti_bcopy_swap(sc->ti_membuf,
590 					    sc->ti_membuf2, segsize,
591 					    TI_SWAP_NTOH);
592 					TI_UNLOCK(sc);
593 					bcopy(&sc->ti_membuf2[segresid], ptr,
594 					    segsize - segresid);
595 					TI_LOCK(sc);
596 					first_pass = 0;
597 				} else
598 					ti_bcopy_swap(sc->ti_membuf, ptr,
599 					    segsize, TI_SWAP_NTOH);
600 			}
601 
602 		} else {
603 			if (useraddr) {
604 				TI_UNLOCK(sc);
605 				copyin(ptr, sc->ti_membuf2, segsize);
606 				TI_LOCK(sc);
607 				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
608 				    segsize, TI_SWAP_HTON);
609 			} else
610 				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
611 				    TI_SWAP_HTON);
612 
613 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
614 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
615 		}
616 		segptr += segsize;
617 		ptr += segsize;
618 		cnt -= segsize;
619 	}
620 
621 	/*
622 	 * Handle leftover, non-word-aligned bytes.
623 	 */
624 	if (resid != 0) {
625 		uint32_t tmpval, tmpval2;
626 		bus_size_t ti_offset;
627 
628 		/*
629 		 * Set the segment pointer.
630 		 */
631 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
632 
633 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
634 
635 		/*
636 		 * First, grab whatever is in our source/destination.
637 		 * We'll obviously need this for reads, but also for
638 		 * writes, since we'll be doing read/modify/write.
639 		 */
640 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
641 		    ti_offset, &tmpval, 1);
642 
643 		/*
644 		 * Next, translate this from little-endian to big-endian
645 		 * (at least on i386 boxes).
646 		 */
647 		tmpval2 = ntohl(tmpval);
648 
649 		if (readdata) {
650 			/*
651 			 * If we're reading, just copy the leftover number
652 			 * of bytes from the host byte order buffer to
653 			 * the user's buffer.
654 			 */
655 			if (useraddr) {
656 				TI_UNLOCK(sc);
657 				copyout(&tmpval2, ptr, resid);
658 				TI_LOCK(sc);
659 			} else
660 				bcopy(&tmpval2, ptr, resid);
661 		} else {
662 			/*
663 			 * If we're writing, first copy the bytes to be
664 			 * written into the network byte order buffer,
665 			 * leaving the rest of the buffer with whatever was
666 			 * originally in there.  Then, swap the bytes
667 			 * around into host order and write them out.
668 			 *
669 			 * XXX KDM the read side of this has been verified
670 			 * to work, but the write side of it has not been
671 			 * verified.  So user beware.
672 			 */
673 			if (useraddr) {
674 				TI_UNLOCK(sc);
675 				copyin(ptr, &tmpval2, resid);
676 				TI_LOCK(sc);
677 			} else
678 				bcopy(ptr, &tmpval2, resid);
679 
680 			tmpval = htonl(tmpval2);
681 
682 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
683 			    ti_offset, &tmpval, 1);
684 		}
685 	}
686 
687 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
688 
689 	return (0);
690 }
691 
692 static int
693 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
694     caddr_t buf, int useraddr, int readdata, int cpu)
695 {
696 	uint32_t segptr;
697 	int cnt;
698 	uint32_t tmpval, tmpval2;
699 	caddr_t ptr;
700 
701 	TI_LOCK_ASSERT(sc);
702 
703 	/*
704 	 * At the moment, we don't handle non-aligned cases, we just bail.
705 	 * If this proves to be a problem, it will be fixed.
706 	 */
707 	if (tigon_addr & 0x3) {
708 		device_printf(sc->ti_dev, "%s: tigon address %#x "
709 		    "isn't word-aligned\n", __func__, tigon_addr);
710 		return (EINVAL);
711 	}
712 
713 	if (len & 0x3) {
714 		device_printf(sc->ti_dev, "%s: transfer length %d "
715 		    "isn't word-aligned\n", __func__, len);
716 		return (EINVAL);
717 	}
718 
719 	segptr = tigon_addr;
720 	cnt = len;
721 	ptr = buf;
722 
723 	while (cnt) {
724 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
725 
726 		if (readdata) {
727 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
728 
729 			tmpval = ntohl(tmpval2);
730 
731 			/*
732 			 * Note:  I've used this debugging interface
733 			 * extensively with Alteon's 12.3.15 firmware,
734 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
735 			 *
736 			 * When you compile the firmware without
737 			 * optimization, which is necessary sometimes in
738 			 * order to properly step through it, you sometimes
739 			 * read out a bogus value of 0xc0017c instead of
740 			 * whatever was supposed to be in that scratchpad
741 			 * location.  That value is on the stack somewhere,
742 			 * but I've never been able to figure out what was
743 			 * causing the problem.
744 			 *
745 			 * The address seems to pop up in random places,
746 			 * often not in the same place on two subsequent
747 			 * reads.
748 			 *
749 			 * In any case, the underlying data doesn't seem
750 			 * to be affected, just the value read out.
751 			 *
752 			 * KDM, 3/7/2000
753 			 */
754 
755 			if (tmpval2 == 0xc0017c)
756 				device_printf(sc->ti_dev, "found 0xc0017c at "
757 				    "%#x (tmpval2)\n", segptr);
758 
759 			if (tmpval == 0xc0017c)
760 				device_printf(sc->ti_dev, "found 0xc0017c at "
761 				    "%#x (tmpval)\n", segptr);
762 
763 			if (useraddr)
764 				copyout(&tmpval, ptr, 4);
765 			else
766 				bcopy(&tmpval, ptr, 4);
767 		} else {
768 			if (useraddr)
769 				copyin(ptr, &tmpval2, 4);
770 			else
771 				bcopy(ptr, &tmpval2, 4);
772 
773 			tmpval = htonl(tmpval2);
774 
775 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
776 		}
777 
778 		cnt -= 4;
779 		segptr += 4;
780 		ptr += 4;
781 	}
782 
783 	return (0);
784 }
785 
786 static int
787 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
788 {
789 	const uint8_t *tmpsrc;
790 	uint8_t *tmpdst;
791 	size_t tmplen;
792 
793 	if (len & 0x3) {
794 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
795 		return (-1);
796 	}
797 
798 	tmpsrc = src;
799 	tmpdst = dst;
800 	tmplen = len;
801 
802 	while (tmplen) {
803 		if (swap_type == TI_SWAP_NTOH)
804 			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
805 		else
806 			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
807 		tmpsrc += 4;
808 		tmpdst += 4;
809 		tmplen -= 4;
810 	}
811 
812 	return (0);
813 }
814 
815 /*
816  * Load firmware image into the NIC. Check that the firmware revision
817  * is acceptable and see if we want the firmware for the Tigon 1 or
818  * Tigon 2.
819  */
820 static void
821 ti_loadfw(struct ti_softc *sc)
822 {
823 
824 	TI_LOCK_ASSERT(sc);
825 
826 	switch (sc->ti_hwrev) {
827 	case TI_HWREV_TIGON:
828 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
829 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
830 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
831 			device_printf(sc->ti_dev, "firmware revision mismatch; "
832 			    "want %d.%d.%d, got %d.%d.%d\n",
833 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
834 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
835 			    tigonFwReleaseMinor, tigonFwReleaseFix);
836 			return;
837 		}
838 		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
839 		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
840 		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
841 		    tigonFwRodata);
842 		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
843 		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
844 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
845 		break;
846 	case TI_HWREV_TIGON_II:
847 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
848 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
849 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
850 			device_printf(sc->ti_dev, "firmware revision mismatch; "
851 			    "want %d.%d.%d, got %d.%d.%d\n",
852 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
853 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
854 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
855 			return;
856 		}
857 		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
858 		    tigon2FwText);
859 		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
860 		    tigon2FwData);
861 		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
862 		    tigon2FwRodata);
863 		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
864 		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
865 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
866 		break;
867 	default:
868 		device_printf(sc->ti_dev,
869 		    "can't load firmware: unknown hardware rev\n");
870 		break;
871 	}
872 }
873 
874 /*
875  * Send the NIC a command via the command ring.
876  */
877 static void
878 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
879 {
880 	int index;
881 
882 	index = sc->ti_cmd_saved_prodidx;
883 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
884 	TI_INC(index, TI_CMD_RING_CNT);
885 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
886 	sc->ti_cmd_saved_prodidx = index;
887 }
888 
889 /*
890  * Send the NIC an extended command. The 'len' parameter specifies the
891  * number of command slots to include after the initial command.
892  */
893 static void
894 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
895 {
896 	int index;
897 	int i;
898 
899 	index = sc->ti_cmd_saved_prodidx;
900 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
901 	TI_INC(index, TI_CMD_RING_CNT);
902 	for (i = 0; i < len; i++) {
903 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
904 		    *(uint32_t *)(&arg[i * 4]));
905 		TI_INC(index, TI_CMD_RING_CNT);
906 	}
907 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
908 	sc->ti_cmd_saved_prodidx = index;
909 }
910 
911 /*
912  * Handle events that have triggered interrupts.
913  */
914 static void
915 ti_handle_events(struct ti_softc *sc)
916 {
917 	struct ti_event_desc *e;
918 
919 	if (sc->ti_rdata.ti_event_ring == NULL)
920 		return;
921 
922 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
923 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
924 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
925 		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
926 		switch (TI_EVENT_EVENT(e)) {
927 		case TI_EV_LINKSTAT_CHANGED:
928 			sc->ti_linkstat = TI_EVENT_CODE(e);
929 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
930 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
931 				sc->ti_ifp->if_baudrate = IF_Mbps(100);
932 				if (bootverbose)
933 					device_printf(sc->ti_dev,
934 					    "10/100 link up\n");
935 			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
936 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
937 				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
938 				if (bootverbose)
939 					device_printf(sc->ti_dev,
940 					    "gigabit link up\n");
941 			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
942 				if_link_state_change(sc->ti_ifp,
943 				    LINK_STATE_DOWN);
944 				sc->ti_ifp->if_baudrate = 0;
945 				if (bootverbose)
946 					device_printf(sc->ti_dev,
947 					    "link down\n");
948 			}
949 			break;
950 		case TI_EV_ERROR:
951 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
952 				device_printf(sc->ti_dev, "invalid command\n");
953 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
954 				device_printf(sc->ti_dev, "unknown command\n");
955 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
956 				device_printf(sc->ti_dev, "bad config data\n");
957 			break;
958 		case TI_EV_FIRMWARE_UP:
959 			ti_init2(sc);
960 			break;
961 		case TI_EV_STATS_UPDATED:
962 			ti_stats_update(sc);
963 			break;
964 		case TI_EV_RESET_JUMBO_RING:
965 		case TI_EV_MCAST_UPDATED:
966 			/* Who cares. */
967 			break;
968 		default:
969 			device_printf(sc->ti_dev, "unknown event: %d\n",
970 			    TI_EVENT_EVENT(e));
971 			break;
972 		}
973 		/* Advance the consumer index. */
974 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
975 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
976 	}
977 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
978 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
979 }
980 
981 struct ti_dmamap_arg {
982 	bus_addr_t	ti_busaddr;
983 };
984 
985 static void
986 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987 {
988 	struct ti_dmamap_arg *ctx;
989 
990 	if (error)
991 		return;
992 
993 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994 
995 	ctx = arg;
996 	ctx->ti_busaddr = segs->ds_addr;
997 }
998 
999 static int
1000 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1001     bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1002     const char *msg)
1003 {
1004 	struct ti_dmamap_arg ctx;
1005 	int error;
1006 
1007 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1008 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1009 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1010 	if (error != 0) {
1011 		device_printf(sc->ti_dev,
1012 		    "could not create %s dma tag\n", msg);
1013 		return (error);
1014 	}
1015 	/* Allocate DMA'able memory for ring. */
1016 	error = bus_dmamem_alloc(*tag, (void **)ring,
1017 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1018 	if (error != 0) {
1019 		device_printf(sc->ti_dev,
1020 		    "could not allocate DMA'able memory for %s\n", msg);
1021 		return (error);
1022 	}
1023 	/* Load the address of the ring. */
1024 	ctx.ti_busaddr = 0;
1025 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1026 	    &ctx, BUS_DMA_NOWAIT);
1027 	if (error != 0) {
1028 		device_printf(sc->ti_dev,
1029 		    "could not load DMA'able memory for %s\n", msg);
1030 		return (error);
1031 	}
1032 	*paddr = ctx.ti_busaddr;
1033 	return (0);
1034 }
1035 
1036 static void
1037 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1038     bus_dmamap_t map, bus_addr_t *paddr)
1039 {
1040 
1041 	if (*paddr != 0) {
1042 		bus_dmamap_unload(*tag, map);
1043 		*paddr = 0;
1044 	}
1045 	if (*ring != NULL) {
1046 		bus_dmamem_free(*tag, *ring, map);
1047 		*ring = NULL;
1048 	}
1049 	if (*tag) {
1050 		bus_dma_tag_destroy(*tag);
1051 		*tag = NULL;
1052 	}
1053 }
1054 
1055 static int
1056 ti_dma_alloc(struct ti_softc *sc)
1057 {
1058 	bus_addr_t lowaddr;
1059 	int i, error;
1060 
1061 	lowaddr = BUS_SPACE_MAXADDR;
1062 	if (sc->ti_dac == 0)
1063 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1064 
1065 	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1066 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1067 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1068 	    &sc->ti_cdata.ti_parent_tag);
1069 	if (error != 0) {
1070 		device_printf(sc->ti_dev,
1071 		    "could not allocate parent dma tag\n");
1072 		return (ENOMEM);
1073 	}
1074 
1075 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1076 	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1077 	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1078 	if (error)
1079 		return (error);
1080 
1081 	/* Producer/consumer status */
1082 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1083 	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1084 	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1085 	    "event ring");
1086 	if (error)
1087 		return (error);
1088 
1089 	/* Event ring */
1090 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1091 	    &sc->ti_cdata.ti_event_ring_tag,
1092 	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1093 	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1094 	    "event ring");
1095 	if (error)
1096 		return (error);
1097 
1098 	/* Command ring lives in shared memory so no need to create DMA area. */
1099 
1100 	/* Standard RX ring */
1101 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1102 	    &sc->ti_cdata.ti_rx_std_ring_tag,
1103 	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1104 	    &sc->ti_cdata.ti_rx_std_ring_map,
1105 	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1106 	if (error)
1107 		return (error);
1108 
1109 	/* Jumbo RX ring */
1110 	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1111 	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1112 	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1113 	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1114 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1115 	if (error)
1116 		return (error);
1117 
1118 	/* RX return ring */
1119 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1120 	    &sc->ti_cdata.ti_rx_return_ring_tag,
1121 	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1122 	    &sc->ti_cdata.ti_rx_return_ring_map,
1123 	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1124 	if (error)
1125 		return (error);
1126 
1127 	/* Create DMA tag for standard RX mbufs. */
1128 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1129 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1130 	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1131 	if (error) {
1132 		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1133 		return (error);
1134 	}
1135 
1136 	/* Create DMA tag for jumbo RX mbufs. */
1137 #ifdef TI_SF_BUF_JUMBO
1138 	/*
1139 	 * The VM system will take care of providing aligned pages.  Alignment
1140 	 * is set to 1 here so that busdma resources won't be wasted.
1141 	 */
1142 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1143 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1144 	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1145 #else
1146 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1147 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1148 	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1149 #endif
1150 	if (error) {
1151 		device_printf(sc->ti_dev,
1152 		    "could not allocate jumbo RX dma tag\n");
1153 		return (error);
1154 	}
1155 
1156 	/* Create DMA tag for TX mbufs. */
1157 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1158 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1159 	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1160 	    &sc->ti_cdata.ti_tx_tag);
1161 	if (error) {
1162 		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1163 		return (ENOMEM);
1164 	}
1165 
1166 	/* Create DMA maps for RX buffers. */
1167 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1168 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1169 		    &sc->ti_cdata.ti_rx_std_maps[i]);
1170 		if (error) {
1171 			device_printf(sc->ti_dev,
1172 			    "could not create DMA map for RX\n");
1173 			return (error);
1174 		}
1175 	}
1176 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1177 	    &sc->ti_cdata.ti_rx_std_sparemap);
1178 	if (error) {
1179 		device_printf(sc->ti_dev,
1180 		    "could not create spare DMA map for RX\n");
1181 		return (error);
1182 	}
1183 
1184 	/* Create DMA maps for jumbo RX buffers. */
1185 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1186 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1187 		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1188 		if (error) {
1189 			device_printf(sc->ti_dev,
1190 			    "could not create DMA map for jumbo RX\n");
1191 			return (error);
1192 		}
1193 	}
1194 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1195 	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1196 	if (error) {
1197 		device_printf(sc->ti_dev,
1198 		    "could not create spare DMA map for jumbo RX\n");
1199 		return (error);
1200 	}
1201 
1202 	/* Create DMA maps for TX buffers. */
1203 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1204 		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1205 		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1206 		if (error) {
1207 			device_printf(sc->ti_dev,
1208 			    "could not create DMA map for TX\n");
1209 			return (ENOMEM);
1210 		}
1211 	}
1212 
1213 	/* Mini ring and TX ring is not available on Tigon 1. */
1214 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1215 		return (0);
1216 
1217 	/* TX ring */
1218 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1219 	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1220 	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1221 	    "TX ring");
1222 	if (error)
1223 		return (error);
1224 
1225 	/* Mini RX ring */
1226 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1227 	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1228 	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1229 	    &sc->ti_cdata.ti_rx_mini_ring_map,
1230 	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1231 	if (error)
1232 		return (error);
1233 
1234 	/* Create DMA tag for mini RX mbufs. */
1235 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1236 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1237 	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1238 	if (error) {
1239 		device_printf(sc->ti_dev,
1240 		    "could not allocate mini RX dma tag\n");
1241 		return (error);
1242 	}
1243 
1244 	/* Create DMA maps for mini RX buffers. */
1245 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1246 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1247 		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1248 		if (error) {
1249 			device_printf(sc->ti_dev,
1250 			    "could not create DMA map for mini RX\n");
1251 			return (error);
1252 		}
1253 	}
1254 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1255 	    &sc->ti_cdata.ti_rx_mini_sparemap);
1256 	if (error) {
1257 		device_printf(sc->ti_dev,
1258 		    "could not create spare DMA map for mini RX\n");
1259 		return (error);
1260 	}
1261 
1262 	return (0);
1263 }
1264 
1265 static void
1266 ti_dma_free(struct ti_softc *sc)
1267 {
1268 	int i;
1269 
1270 	/* Destroy DMA maps for RX buffers. */
1271 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1272 		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1273 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1274 			    sc->ti_cdata.ti_rx_std_maps[i]);
1275 			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1276 		}
1277 	}
1278 	if (sc->ti_cdata.ti_rx_std_sparemap) {
1279 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1280 		    sc->ti_cdata.ti_rx_std_sparemap);
1281 		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1282 	}
1283 	if (sc->ti_cdata.ti_rx_std_tag) {
1284 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1285 		sc->ti_cdata.ti_rx_std_tag = NULL;
1286 	}
1287 
1288 	/* Destroy DMA maps for jumbo RX buffers. */
1289 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1290 		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1291 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1292 			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1293 			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1294 		}
1295 	}
1296 	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1297 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1298 		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1299 		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1300 	}
1301 	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1302 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1303 		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1304 	}
1305 
1306 	/* Destroy DMA maps for mini RX buffers. */
1307 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1308 		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1309 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1310 			    sc->ti_cdata.ti_rx_mini_maps[i]);
1311 			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1312 		}
1313 	}
1314 	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1315 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1316 		    sc->ti_cdata.ti_rx_mini_sparemap);
1317 		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1318 	}
1319 	if (sc->ti_cdata.ti_rx_mini_tag) {
1320 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1321 		sc->ti_cdata.ti_rx_mini_tag = NULL;
1322 	}
1323 
1324 	/* Destroy DMA maps for TX buffers. */
1325 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1326 		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1327 			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1328 			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1329 			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1330 		}
1331 	}
1332 	if (sc->ti_cdata.ti_tx_tag) {
1333 		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1334 		sc->ti_cdata.ti_tx_tag = NULL;
1335 	}
1336 
1337 	/* Destroy standard RX ring. */
1338 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1339 	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1340 	    sc->ti_cdata.ti_rx_std_ring_map,
1341 	    &sc->ti_rdata.ti_rx_std_ring_paddr);
1342 	/* Destroy jumbo RX ring. */
1343 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1344 	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1345 	    sc->ti_cdata.ti_rx_jumbo_ring_map,
1346 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
1347 	/* Destroy mini RX ring. */
1348 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1349 	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1350 	    sc->ti_cdata.ti_rx_mini_ring_map,
1351 	    &sc->ti_rdata.ti_rx_mini_ring_paddr);
1352 	/* Destroy RX return ring. */
1353 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1354 	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1355 	    sc->ti_cdata.ti_rx_return_ring_map,
1356 	    &sc->ti_rdata.ti_rx_return_ring_paddr);
1357 	/* Destroy TX ring. */
1358 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1359 	    (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
1360 	    &sc->ti_rdata.ti_tx_ring_paddr);
1361 	/* Destroy status block. */
1362 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1363 	    (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
1364 	    &sc->ti_rdata.ti_status_paddr);
1365 	/* Destroy event ring. */
1366 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1367 	    (void *)&sc->ti_rdata.ti_event_ring,
1368 	    sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
1369 	/* Destroy GIB */
1370 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1371 	    (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
1372 	    &sc->ti_rdata.ti_info_paddr);
1373 
1374 	/* Destroy the parent tag. */
1375 	if (sc->ti_cdata.ti_parent_tag) {
1376 		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1377 		sc->ti_cdata.ti_parent_tag = NULL;
1378 	}
1379 }
1380 
1381 /*
1382  * Intialize a standard receive ring descriptor.
1383  */
1384 static int
1385 ti_newbuf_std(struct ti_softc *sc, int i)
1386 {
1387 	bus_dmamap_t map;
1388 	bus_dma_segment_t segs[1];
1389 	struct mbuf *m;
1390 	struct ti_rx_desc *r;
1391 	int error, nsegs;
1392 
1393 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1394 	if (m == NULL)
1395 		return (ENOBUFS);
1396 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1397 	m_adj(m, ETHER_ALIGN);
1398 
1399 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1400 	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1401 	if (error != 0) {
1402 		m_freem(m);
1403 		return (error);
1404         }
1405 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1406 
1407 	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1408 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1409 		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1410 		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1411 		    sc->ti_cdata.ti_rx_std_maps[i]);
1412 	}
1413 
1414 	map = sc->ti_cdata.ti_rx_std_maps[i];
1415 	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1416 	sc->ti_cdata.ti_rx_std_sparemap = map;
1417 	sc->ti_cdata.ti_rx_std_chain[i] = m;
1418 
1419 	r = &sc->ti_rdata.ti_rx_std_ring[i];
1420 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1421 	r->ti_len = segs[0].ds_len;
1422 	r->ti_type = TI_BDTYPE_RECV_BD;
1423 	r->ti_flags = 0;
1424 	r->ti_vlan_tag = 0;
1425 	r->ti_tcp_udp_cksum = 0;
1426 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1427 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1428 	r->ti_idx = i;
1429 
1430 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1431 	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1432 	return (0);
1433 }
1434 
1435 /*
1436  * Intialize a mini receive ring descriptor. This only applies to
1437  * the Tigon 2.
1438  */
1439 static int
1440 ti_newbuf_mini(struct ti_softc *sc, int i)
1441 {
1442 	bus_dmamap_t map;
1443 	bus_dma_segment_t segs[1];
1444 	struct mbuf *m;
1445 	struct ti_rx_desc *r;
1446 	int error, nsegs;
1447 
1448 	MGETHDR(m, M_NOWAIT, MT_DATA);
1449 	if (m == NULL)
1450 		return (ENOBUFS);
1451 	m->m_len = m->m_pkthdr.len = MHLEN;
1452 	m_adj(m, ETHER_ALIGN);
1453 
1454 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1455 	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1456 	if (error != 0) {
1457 		m_freem(m);
1458 		return (error);
1459         }
1460 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1461 
1462 	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1463 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1464 		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1465 		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1466 		    sc->ti_cdata.ti_rx_mini_maps[i]);
1467 	}
1468 
1469 	map = sc->ti_cdata.ti_rx_mini_maps[i];
1470 	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1471 	sc->ti_cdata.ti_rx_mini_sparemap = map;
1472 	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1473 
1474 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1475 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1476 	r->ti_len = segs[0].ds_len;
1477 	r->ti_type = TI_BDTYPE_RECV_BD;
1478 	r->ti_flags = TI_BDFLAG_MINI_RING;
1479 	r->ti_vlan_tag = 0;
1480 	r->ti_tcp_udp_cksum = 0;
1481 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1482 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1483 	r->ti_idx = i;
1484 
1485 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1486 	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1487 	return (0);
1488 }
1489 
1490 #ifndef TI_SF_BUF_JUMBO
1491 
1492 /*
1493  * Initialize a jumbo receive ring descriptor. This allocates
1494  * a jumbo buffer from the pool managed internally by the driver.
1495  */
1496 static int
1497 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1498 {
1499 	bus_dmamap_t map;
1500 	bus_dma_segment_t segs[1];
1501 	struct mbuf *m;
1502 	struct ti_rx_desc *r;
1503 	int error, nsegs;
1504 
1505 	(void)dummy;
1506 
1507 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1508 	if (m == NULL)
1509 		return (ENOBUFS);
1510 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1511 	m_adj(m, ETHER_ALIGN);
1512 
1513 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1514 	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1515 	if (error != 0) {
1516 		m_freem(m);
1517 		return (error);
1518         }
1519 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1520 
1521 	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1522 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1523 		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1524 		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1525 		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1526 	}
1527 
1528 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1529 	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1530 	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1531 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1532 
1533 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1534 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1535 	r->ti_len = segs[0].ds_len;
1536 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1537 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1538 	r->ti_vlan_tag = 0;
1539 	r->ti_tcp_udp_cksum = 0;
1540 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1541 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1542 	r->ti_idx = i;
1543 
1544 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1545 	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1546 	return (0);
1547 }
1548 
1549 #else
1550 
1551 #if (PAGE_SIZE == 4096)
1552 #define NPAYLOAD 2
1553 #else
1554 #define NPAYLOAD 1
1555 #endif
1556 
1557 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1558 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1559 #define NFS_HDR_LEN (UDP_HDR_LEN)
1560 static int HDR_LEN = TCP_HDR_LEN;
1561 
1562 /*
1563  * Initialize a jumbo receive ring descriptor. This allocates
1564  * a jumbo buffer from the pool managed internally by the driver.
1565  */
1566 static int
1567 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1568 {
1569 	bus_dmamap_t map;
1570 	struct mbuf *cur, *m_new = NULL;
1571 	struct mbuf *m[3] = {NULL, NULL, NULL};
1572 	struct ti_rx_desc_ext *r;
1573 	vm_page_t frame;
1574 	/* 1 extra buf to make nobufs easy*/
1575 	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1576 	int i;
1577 	bus_dma_segment_t segs[4];
1578 	int nsegs;
1579 
1580 	if (m_old != NULL) {
1581 		m_new = m_old;
1582 		cur = m_old->m_next;
1583 		for (i = 0; i <= NPAYLOAD; i++){
1584 			m[i] = cur;
1585 			cur = cur->m_next;
1586 		}
1587 	} else {
1588 		/* Allocate the mbufs. */
1589 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1590 		if (m_new == NULL) {
1591 			device_printf(sc->ti_dev, "mbuf allocation failed "
1592 			    "-- packet dropped!\n");
1593 			goto nobufs;
1594 		}
1595 		MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
1596 		if (m[NPAYLOAD] == NULL) {
1597 			device_printf(sc->ti_dev, "cluster mbuf allocation "
1598 			    "failed -- packet dropped!\n");
1599 			goto nobufs;
1600 		}
1601 		MCLGET(m[NPAYLOAD], M_NOWAIT);
1602 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1603 			device_printf(sc->ti_dev, "mbuf allocation failed "
1604 			    "-- packet dropped!\n");
1605 			goto nobufs;
1606 		}
1607 		m[NPAYLOAD]->m_len = MCLBYTES;
1608 
1609 		for (i = 0; i < NPAYLOAD; i++){
1610 			MGET(m[i], M_NOWAIT, MT_DATA);
1611 			if (m[i] == NULL) {
1612 				device_printf(sc->ti_dev, "mbuf allocation "
1613 				    "failed -- packet dropped!\n");
1614 				goto nobufs;
1615 			}
1616 			frame = vm_page_alloc(NULL, 0,
1617 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1618 			    VM_ALLOC_WIRED);
1619 			if (frame == NULL) {
1620 				device_printf(sc->ti_dev, "buffer allocation "
1621 				    "failed -- packet dropped!\n");
1622 				printf("      index %d page %d\n", idx, i);
1623 				goto nobufs;
1624 			}
1625 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1626 			if (sf[i] == NULL) {
1627 				vm_page_unwire(frame, PQ_INACTIVE);
1628 				vm_page_free(frame);
1629 				device_printf(sc->ti_dev, "buffer allocation "
1630 				    "failed -- packet dropped!\n");
1631 				printf("      index %d page %d\n", idx, i);
1632 				goto nobufs;
1633 			}
1634 		}
1635 		for (i = 0; i < NPAYLOAD; i++){
1636 		/* Attach the buffer to the mbuf. */
1637 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1638 			m[i]->m_len = PAGE_SIZE;
1639 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1640 			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1641 			    0, EXT_DISPOSABLE);
1642 			m[i]->m_next = m[i+1];
1643 		}
1644 		/* link the buffers to the header */
1645 		m_new->m_next = m[0];
1646 		m_new->m_data += ETHER_ALIGN;
1647 		if (sc->ti_hdrsplit)
1648 			m_new->m_len = MHLEN - ETHER_ALIGN;
1649 		else
1650 			m_new->m_len = HDR_LEN;
1651 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1652 	}
1653 
1654 	/* Set up the descriptor. */
1655 	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1656 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1657 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1658 	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1659 	    segs, &nsegs, 0))
1660 		return (ENOBUFS);
1661 	if ((nsegs < 1) || (nsegs > 4))
1662 		return (ENOBUFS);
1663 	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1664 	r->ti_len0 = m_new->m_len;
1665 
1666 	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1667 	r->ti_len1 = PAGE_SIZE;
1668 
1669 	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1670 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1671 
1672 	if (PAGE_SIZE == 4096) {
1673 		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1674 		r->ti_len3 = MCLBYTES;
1675 	} else {
1676 		r->ti_len3 = 0;
1677 	}
1678 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1679 
1680 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1681 
1682 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1683 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1684 
1685 	r->ti_idx = idx;
1686 
1687 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1688 	return (0);
1689 
1690 nobufs:
1691 
1692 	/*
1693 	 * Warning! :
1694 	 * This can only be called before the mbufs are strung together.
1695 	 * If the mbufs are strung together, m_freem() will free the chain,
1696 	 * so that the later mbufs will be freed multiple times.
1697 	 */
1698 	if (m_new)
1699 		m_freem(m_new);
1700 
1701 	for (i = 0; i < 3; i++) {
1702 		if (m[i])
1703 			m_freem(m[i]);
1704 		if (sf[i])
1705 			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1706 	}
1707 	return (ENOBUFS);
1708 }
1709 #endif
1710 
1711 /*
1712  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1713  * that's 1MB or memory, which is a lot. For now, we fill only the first
1714  * 256 ring entries and hope that our CPU is fast enough to keep up with
1715  * the NIC.
1716  */
1717 static int
1718 ti_init_rx_ring_std(struct ti_softc *sc)
1719 {
1720 	int i;
1721 	struct ti_cmd_desc cmd;
1722 
1723 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1724 		if (ti_newbuf_std(sc, i) != 0)
1725 			return (ENOBUFS);
1726 	};
1727 
1728 	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1729 	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1730 
1731 	return (0);
1732 }
1733 
1734 static void
1735 ti_free_rx_ring_std(struct ti_softc *sc)
1736 {
1737 	bus_dmamap_t map;
1738 	int i;
1739 
1740 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1741 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1742 			map = sc->ti_cdata.ti_rx_std_maps[i];
1743 			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1744 			    BUS_DMASYNC_POSTREAD);
1745 			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1746 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1747 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1748 		}
1749 	}
1750 	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1751 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1752 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1753 }
1754 
1755 static int
1756 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1757 {
1758 	struct ti_cmd_desc cmd;
1759 	int i;
1760 
1761 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1762 		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1763 			return (ENOBUFS);
1764 	};
1765 
1766 	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1767 	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1768 
1769 	return (0);
1770 }
1771 
1772 static void
1773 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1774 {
1775 	bus_dmamap_t map;
1776 	int i;
1777 
1778 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1779 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1780 			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1781 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1782 			    BUS_DMASYNC_POSTREAD);
1783 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1784 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1785 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1786 		}
1787 	}
1788 	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1789 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1790 	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1791 }
1792 
1793 static int
1794 ti_init_rx_ring_mini(struct ti_softc *sc)
1795 {
1796 	int i;
1797 
1798 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1799 		if (ti_newbuf_mini(sc, i) != 0)
1800 			return (ENOBUFS);
1801 	};
1802 
1803 	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1804 	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1805 
1806 	return (0);
1807 }
1808 
1809 static void
1810 ti_free_rx_ring_mini(struct ti_softc *sc)
1811 {
1812 	bus_dmamap_t map;
1813 	int i;
1814 
1815 	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1816 		return;
1817 
1818 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1819 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1820 			map = sc->ti_cdata.ti_rx_mini_maps[i];
1821 			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1822 			    BUS_DMASYNC_POSTREAD);
1823 			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1824 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1825 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1826 		}
1827 	}
1828 	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1829 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1830 	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1831 }
1832 
1833 static void
1834 ti_free_tx_ring(struct ti_softc *sc)
1835 {
1836 	struct ti_txdesc *txd;
1837 	int i;
1838 
1839 	if (sc->ti_rdata.ti_tx_ring == NULL)
1840 		return;
1841 
1842 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1843 		txd = &sc->ti_cdata.ti_txdesc[i];
1844 		if (txd->tx_m != NULL) {
1845 			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1846 			    BUS_DMASYNC_POSTWRITE);
1847 			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1848 			    txd->tx_dmamap);
1849 			m_freem(txd->tx_m);
1850 			txd->tx_m = NULL;
1851 		}
1852 	}
1853 	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1854 	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1855 	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1856 }
1857 
1858 static int
1859 ti_init_tx_ring(struct ti_softc *sc)
1860 {
1861 	struct ti_txdesc *txd;
1862 	int i;
1863 
1864 	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1865 	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1866 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1867 		txd = &sc->ti_cdata.ti_txdesc[i];
1868 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1869 	}
1870 	sc->ti_txcnt = 0;
1871 	sc->ti_tx_saved_considx = 0;
1872 	sc->ti_tx_saved_prodidx = 0;
1873 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1874 	return (0);
1875 }
1876 
1877 /*
1878  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1879  * but we have to support the old way too so that Tigon 1 cards will
1880  * work.
1881  */
1882 static void
1883 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1884 {
1885 	struct ti_cmd_desc cmd;
1886 	uint16_t *m;
1887 	uint32_t ext[2] = {0, 0};
1888 
1889 	m = (uint16_t *)&addr->octet[0];
1890 
1891 	switch (sc->ti_hwrev) {
1892 	case TI_HWREV_TIGON:
1893 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1894 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1895 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1896 		break;
1897 	case TI_HWREV_TIGON_II:
1898 		ext[0] = htons(m[0]);
1899 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1900 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1901 		break;
1902 	default:
1903 		device_printf(sc->ti_dev, "unknown hwrev\n");
1904 		break;
1905 	}
1906 }
1907 
1908 static void
1909 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1910 {
1911 	struct ti_cmd_desc cmd;
1912 	uint16_t *m;
1913 	uint32_t ext[2] = {0, 0};
1914 
1915 	m = (uint16_t *)&addr->octet[0];
1916 
1917 	switch (sc->ti_hwrev) {
1918 	case TI_HWREV_TIGON:
1919 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1920 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1921 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1922 		break;
1923 	case TI_HWREV_TIGON_II:
1924 		ext[0] = htons(m[0]);
1925 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1926 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1927 		break;
1928 	default:
1929 		device_printf(sc->ti_dev, "unknown hwrev\n");
1930 		break;
1931 	}
1932 }
1933 
1934 /*
1935  * Configure the Tigon's multicast address filter.
1936  *
1937  * The actual multicast table management is a bit of a pain, thanks to
1938  * slight brain damage on the part of both Alteon and us. With our
1939  * multicast code, we are only alerted when the multicast address table
1940  * changes and at that point we only have the current list of addresses:
1941  * we only know the current state, not the previous state, so we don't
1942  * actually know what addresses were removed or added. The firmware has
1943  * state, but we can't get our grubby mits on it, and there is no 'delete
1944  * all multicast addresses' command. Hence, we have to maintain our own
1945  * state so we know what addresses have been programmed into the NIC at
1946  * any given time.
1947  */
1948 static void
1949 ti_setmulti(struct ti_softc *sc)
1950 {
1951 	struct ifnet *ifp;
1952 	struct ifmultiaddr *ifma;
1953 	struct ti_cmd_desc cmd;
1954 	struct ti_mc_entry *mc;
1955 	uint32_t intrs;
1956 
1957 	TI_LOCK_ASSERT(sc);
1958 
1959 	ifp = sc->ti_ifp;
1960 
1961 	if (ifp->if_flags & IFF_ALLMULTI) {
1962 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1963 		return;
1964 	} else {
1965 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1966 	}
1967 
1968 	/* Disable interrupts. */
1969 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1970 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1971 
1972 	/* First, zot all the existing filters. */
1973 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1974 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1975 		ti_del_mcast(sc, &mc->mc_addr);
1976 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1977 		free(mc, M_DEVBUF);
1978 	}
1979 
1980 	/* Now program new ones. */
1981 	if_maddr_rlock(ifp);
1982 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1983 		if (ifma->ifma_addr->sa_family != AF_LINK)
1984 			continue;
1985 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1986 		if (mc == NULL) {
1987 			device_printf(sc->ti_dev,
1988 			    "no memory for mcast filter entry\n");
1989 			continue;
1990 		}
1991 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1992 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1993 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1994 		ti_add_mcast(sc, &mc->mc_addr);
1995 	}
1996 	if_maddr_runlock(ifp);
1997 
1998 	/* Re-enable interrupts. */
1999 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
2000 }
2001 
2002 /*
2003  * Check to see if the BIOS has configured us for a 64 bit slot when
2004  * we aren't actually in one. If we detect this condition, we can work
2005  * around it on the Tigon 2 by setting a bit in the PCI state register,
2006  * but for the Tigon 1 we must give up and abort the interface attach.
2007  */
2008 static int
2009 ti_64bitslot_war(struct ti_softc *sc)
2010 {
2011 
2012 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2013 		CSR_WRITE_4(sc, 0x600, 0);
2014 		CSR_WRITE_4(sc, 0x604, 0);
2015 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2016 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2017 			if (sc->ti_hwrev == TI_HWREV_TIGON)
2018 				return (EINVAL);
2019 			else {
2020 				TI_SETBIT(sc, TI_PCI_STATE,
2021 				    TI_PCISTATE_32BIT_BUS);
2022 				return (0);
2023 			}
2024 		}
2025 	}
2026 
2027 	return (0);
2028 }
2029 
2030 /*
2031  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2032  * self-test results.
2033  */
2034 static int
2035 ti_chipinit(struct ti_softc *sc)
2036 {
2037 	uint32_t cacheline;
2038 	uint32_t pci_writemax = 0;
2039 	uint32_t hdrsplit;
2040 
2041 	/* Initialize link to down state. */
2042 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2043 
2044 	/* Set endianness before we access any non-PCI registers. */
2045 #if 0 && BYTE_ORDER == BIG_ENDIAN
2046 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2047 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2048 #else
2049 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2050 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2051 #endif
2052 
2053 	/* Check the ROM failed bit to see if self-tests passed. */
2054 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2055 		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2056 		return (ENODEV);
2057 	}
2058 
2059 	/* Halt the CPU. */
2060 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2061 
2062 	/* Figure out the hardware revision. */
2063 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2064 	case TI_REV_TIGON_I:
2065 		sc->ti_hwrev = TI_HWREV_TIGON;
2066 		break;
2067 	case TI_REV_TIGON_II:
2068 		sc->ti_hwrev = TI_HWREV_TIGON_II;
2069 		break;
2070 	default:
2071 		device_printf(sc->ti_dev, "unsupported chip revision\n");
2072 		return (ENODEV);
2073 	}
2074 
2075 	/* Do special setup for Tigon 2. */
2076 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2077 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2078 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2079 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2080 	}
2081 
2082 	/*
2083 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2084 	 * can't do header splitting.
2085 	 */
2086 #ifdef TI_JUMBO_HDRSPLIT
2087 	if (sc->ti_hwrev != TI_HWREV_TIGON)
2088 		sc->ti_hdrsplit = 1;
2089 	else
2090 		device_printf(sc->ti_dev,
2091 		    "can't do header splitting on a Tigon I board\n");
2092 #endif /* TI_JUMBO_HDRSPLIT */
2093 
2094 	/* Set up the PCI state register. */
2095 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2096 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2097 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2098 	}
2099 
2100 	/* Clear the read/write max DMA parameters. */
2101 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2102 	    TI_PCISTATE_READ_MAXDMA));
2103 
2104 	/* Get cache line size. */
2105 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2106 
2107 	/*
2108 	 * If the system has set enabled the PCI memory write
2109 	 * and invalidate command in the command register, set
2110 	 * the write max parameter accordingly. This is necessary
2111 	 * to use MWI with the Tigon 2.
2112 	 */
2113 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2114 		switch (cacheline) {
2115 		case 1:
2116 		case 4:
2117 		case 8:
2118 		case 16:
2119 		case 32:
2120 		case 64:
2121 			break;
2122 		default:
2123 		/* Disable PCI memory write and invalidate. */
2124 			if (bootverbose)
2125 				device_printf(sc->ti_dev, "cache line size %d"
2126 				    " not supported; disabling PCI MWI\n",
2127 				    cacheline);
2128 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2129 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2130 			break;
2131 		}
2132 	}
2133 
2134 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2135 
2136 	/* This sets the min dma param all the way up (0xff). */
2137 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2138 
2139 	if (sc->ti_hdrsplit)
2140 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2141 	else
2142 		hdrsplit = 0;
2143 
2144 	/* Configure DMA variables. */
2145 #if BYTE_ORDER == BIG_ENDIAN
2146 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2147 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2148 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2149 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2150 #else /* BYTE_ORDER */
2151 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2152 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2153 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2154 #endif /* BYTE_ORDER */
2155 
2156 	/*
2157 	 * Only allow 1 DMA channel to be active at a time.
2158 	 * I don't think this is a good idea, but without it
2159 	 * the firmware racks up lots of nicDmaReadRingFull
2160 	 * errors.  This is not compatible with hardware checksums.
2161 	 */
2162 	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2163 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2164 
2165 	/* Recommended settings from Tigon manual. */
2166 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2167 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2168 
2169 	if (ti_64bitslot_war(sc)) {
2170 		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2171 		    "but we aren't");
2172 		return (EINVAL);
2173 	}
2174 
2175 	return (0);
2176 }
2177 
2178 /*
2179  * Initialize the general information block and firmware, and
2180  * start the CPU(s) running.
2181  */
2182 static int
2183 ti_gibinit(struct ti_softc *sc)
2184 {
2185 	struct ifnet *ifp;
2186 	struct ti_rcb *rcb;
2187 	int i;
2188 
2189 	TI_LOCK_ASSERT(sc);
2190 
2191 	ifp = sc->ti_ifp;
2192 
2193 	/* Disable interrupts for now. */
2194 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2195 
2196 	/* Tell the chip where to find the general information block. */
2197 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2198 	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2199 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2200 	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2201 
2202 	/* Load the firmware into SRAM. */
2203 	ti_loadfw(sc);
2204 
2205 	/* Set up the contents of the general info and ring control blocks. */
2206 
2207 	/* Set up the event ring and producer pointer. */
2208 	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2209 	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2210 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2211 	rcb->ti_flags = 0;
2212 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2213 	    sc->ti_rdata.ti_status_paddr +
2214 	    offsetof(struct ti_status, ti_ev_prodidx_r));
2215 	sc->ti_ev_prodidx.ti_idx = 0;
2216 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2217 	sc->ti_ev_saved_considx = 0;
2218 
2219 	/* Set up the command ring and producer mailbox. */
2220 	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2221 	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2222 	rcb->ti_flags = 0;
2223 	rcb->ti_max_len = 0;
2224 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2225 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2226 	}
2227 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2228 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2229 	sc->ti_cmd_saved_prodidx = 0;
2230 
2231 	/*
2232 	 * Assign the address of the stats refresh buffer.
2233 	 * We re-use the current stats buffer for this to
2234 	 * conserve memory.
2235 	 */
2236 	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2237 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2238 	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2239 
2240 	/* Set up the standard receive ring. */
2241 	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2242 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2243 	rcb->ti_max_len = TI_FRAMELEN;
2244 	rcb->ti_flags = 0;
2245 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2246 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2247 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2248 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2249 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2250 
2251 	/* Set up the jumbo receive ring. */
2252 	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2253 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2254 
2255 #ifndef TI_SF_BUF_JUMBO
2256 	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2257 	rcb->ti_flags = 0;
2258 #else
2259 	rcb->ti_max_len = PAGE_SIZE;
2260 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2261 #endif
2262 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2263 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2264 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2265 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2266 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2267 
2268 	/*
2269 	 * Set up the mini ring. Only activated on the
2270 	 * Tigon 2 but the slot in the config block is
2271 	 * still there on the Tigon 1.
2272 	 */
2273 	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2274 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2275 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2276 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2277 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2278 	else
2279 		rcb->ti_flags = 0;
2280 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2281 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2282 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2283 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2284 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2285 
2286 	/*
2287 	 * Set up the receive return ring.
2288 	 */
2289 	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2290 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2291 	rcb->ti_flags = 0;
2292 	rcb->ti_max_len = TI_RETURN_RING_CNT;
2293 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2294 	    sc->ti_rdata.ti_status_paddr +
2295 	    offsetof(struct ti_status, ti_return_prodidx_r));
2296 
2297 	/*
2298 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2299 	 * of putting the transmit ring in the host's address space and
2300 	 * letting the chip DMA it instead of leaving the ring in the NIC's
2301 	 * memory and accessing it through the shared memory region. We
2302 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2303 	 * so we have to revert to the shared memory scheme if we detect
2304 	 * a Tigon 1 chip.
2305 	 */
2306 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2307 	if (sc->ti_rdata.ti_tx_ring != NULL)
2308 		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2309 	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2310 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2311 		rcb->ti_flags = 0;
2312 	else
2313 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2314 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2315 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2316 	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2317 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2318 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2319 	rcb->ti_max_len = TI_TX_RING_CNT;
2320 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2321 		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2322 	else
2323 		ti_hostaddr64(&rcb->ti_hostaddr,
2324 		    sc->ti_rdata.ti_tx_ring_paddr);
2325 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2326 	    sc->ti_rdata.ti_status_paddr +
2327 	    offsetof(struct ti_status, ti_tx_considx_r));
2328 
2329 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2330 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2331 	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2332 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2333 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2334 	    sc->ti_cdata.ti_event_ring_map,
2335 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2336 	if (sc->ti_rdata.ti_tx_ring != NULL)
2337 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2338 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2339 
2340 	/* Set up tunables */
2341 #if 0
2342 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2343 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2344 		    (sc->ti_rx_coal_ticks / 10));
2345 	else
2346 #endif
2347 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2348 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2349 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2350 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2351 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2352 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2353 
2354 	/* Turn interrupts on. */
2355 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2356 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2357 
2358 	/* Start CPU. */
2359 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2360 
2361 	return (0);
2362 }
2363 
2364 /*
2365  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2366  * against our list and return its name if we find a match.
2367  */
2368 static int
2369 ti_probe(device_t dev)
2370 {
2371 	const struct ti_type *t;
2372 
2373 	t = ti_devs;
2374 
2375 	while (t->ti_name != NULL) {
2376 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2377 		    (pci_get_device(dev) == t->ti_did)) {
2378 			device_set_desc(dev, t->ti_name);
2379 			return (BUS_PROBE_DEFAULT);
2380 		}
2381 		t++;
2382 	}
2383 
2384 	return (ENXIO);
2385 }
2386 
2387 static int
2388 ti_attach(device_t dev)
2389 {
2390 	struct ifnet *ifp;
2391 	struct ti_softc *sc;
2392 	int error = 0, rid;
2393 	u_char eaddr[6];
2394 
2395 	sc = device_get_softc(dev);
2396 	sc->ti_dev = dev;
2397 
2398 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2399 	    MTX_DEF);
2400 	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2401 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2402 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2403 	if (ifp == NULL) {
2404 		device_printf(dev, "can not if_alloc()\n");
2405 		error = ENOSPC;
2406 		goto fail;
2407 	}
2408 	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2409 	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2410 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2411 
2412 	/*
2413 	 * Map control/status registers.
2414 	 */
2415 	pci_enable_busmaster(dev);
2416 
2417 	rid = PCIR_BAR(0);
2418 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2419 	    RF_ACTIVE);
2420 
2421 	if (sc->ti_res == NULL) {
2422 		device_printf(dev, "couldn't map memory\n");
2423 		error = ENXIO;
2424 		goto fail;
2425 	}
2426 
2427 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2428 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2429 
2430 	/* Allocate interrupt */
2431 	rid = 0;
2432 
2433 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2434 	    RF_SHAREABLE | RF_ACTIVE);
2435 
2436 	if (sc->ti_irq == NULL) {
2437 		device_printf(dev, "couldn't map interrupt\n");
2438 		error = ENXIO;
2439 		goto fail;
2440 	}
2441 
2442 	if (ti_chipinit(sc)) {
2443 		device_printf(dev, "chip initialization failed\n");
2444 		error = ENXIO;
2445 		goto fail;
2446 	}
2447 
2448 	/* Zero out the NIC's on-board SRAM. */
2449 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2450 
2451 	/* Init again -- zeroing memory may have clobbered some registers. */
2452 	if (ti_chipinit(sc)) {
2453 		device_printf(dev, "chip initialization failed\n");
2454 		error = ENXIO;
2455 		goto fail;
2456 	}
2457 
2458 	/*
2459 	 * Get station address from the EEPROM. Note: the manual states
2460 	 * that the MAC address is at offset 0x8c, however the data is
2461 	 * stored as two longwords (since that's how it's loaded into
2462 	 * the NIC). This means the MAC address is actually preceded
2463 	 * by two zero bytes. We need to skip over those.
2464 	 */
2465 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2466 		device_printf(dev, "failed to read station address\n");
2467 		error = ENXIO;
2468 		goto fail;
2469 	}
2470 
2471 	/* Allocate working area for memory dump. */
2472 	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2473 	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2474 	    M_NOWAIT);
2475 	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2476 		device_printf(dev, "cannot allocate memory buffer\n");
2477 		error = ENOMEM;
2478 		goto fail;
2479 	}
2480 	if ((error = ti_dma_alloc(sc)) != 0)
2481 		goto fail;
2482 
2483 	/*
2484 	 * We really need a better way to tell a 1000baseTX card
2485 	 * from a 1000baseSX one, since in theory there could be
2486 	 * OEMed 1000baseTX cards from lame vendors who aren't
2487 	 * clever enough to change the PCI ID. For the moment
2488 	 * though, the AceNIC is the only copper card available.
2489 	 */
2490 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2491 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2492 		sc->ti_copper = 1;
2493 	/* Ok, it's not the only copper card available. */
2494 	if (pci_get_vendor(dev) == NG_VENDORID &&
2495 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2496 		sc->ti_copper = 1;
2497 
2498 	/* Set default tunable values. */
2499 	ti_sysctl_node(sc);
2500 
2501 	/* Set up ifnet structure */
2502 	ifp->if_softc = sc;
2503 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2504 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2505 	ifp->if_ioctl = ti_ioctl;
2506 	ifp->if_start = ti_start;
2507 	ifp->if_init = ti_init;
2508 	ifp->if_baudrate = IF_Gbps(1UL);
2509 	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2510 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2511 	IFQ_SET_READY(&ifp->if_snd);
2512 
2513 	/* Set up ifmedia support. */
2514 	if (sc->ti_copper) {
2515 		/*
2516 		 * Copper cards allow manual 10/100 mode selection,
2517 		 * but not manual 1000baseTX mode selection. Why?
2518 		 * Becuase currently there's no way to specify the
2519 		 * master/slave setting through the firmware interface,
2520 		 * so Alteon decided to just bag it and handle it
2521 		 * via autonegotiation.
2522 		 */
2523 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2524 		ifmedia_add(&sc->ifmedia,
2525 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2526 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2527 		ifmedia_add(&sc->ifmedia,
2528 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2529 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2530 		ifmedia_add(&sc->ifmedia,
2531 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2532 	} else {
2533 		/* Fiber cards don't support 10/100 modes. */
2534 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2535 		ifmedia_add(&sc->ifmedia,
2536 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2537 	}
2538 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2539 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2540 
2541 	/*
2542 	 * We're assuming here that card initialization is a sequential
2543 	 * thing.  If it isn't, multiple cards probing at the same time
2544 	 * could stomp on the list of softcs here.
2545 	 */
2546 
2547 	/* Register the device */
2548 	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2549 	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2550 	sc->dev->si_drv1 = sc;
2551 
2552 	/*
2553 	 * Call MI attach routine.
2554 	 */
2555 	ether_ifattach(ifp, eaddr);
2556 
2557 	/* VLAN capability setup. */
2558 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2559 	    IFCAP_VLAN_HWTAGGING;
2560 	ifp->if_capenable = ifp->if_capabilities;
2561 	/* Tell the upper layer we support VLAN over-sized frames. */
2562 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2563 
2564 	/* Driver supports link state tracking. */
2565 	ifp->if_capabilities |= IFCAP_LINKSTATE;
2566 	ifp->if_capenable |= IFCAP_LINKSTATE;
2567 
2568 	/* Hook interrupt last to avoid having to lock softc */
2569 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2570 	   NULL, ti_intr, sc, &sc->ti_intrhand);
2571 
2572 	if (error) {
2573 		device_printf(dev, "couldn't set up irq\n");
2574 		goto fail;
2575 	}
2576 
2577 fail:
2578 	if (error)
2579 		ti_detach(dev);
2580 
2581 	return (error);
2582 }
2583 
2584 /*
2585  * Shutdown hardware and free up resources. This can be called any
2586  * time after the mutex has been initialized. It is called in both
2587  * the error case in attach and the normal detach case so it needs
2588  * to be careful about only freeing resources that have actually been
2589  * allocated.
2590  */
2591 static int
2592 ti_detach(device_t dev)
2593 {
2594 	struct ti_softc *sc;
2595 	struct ifnet *ifp;
2596 
2597 	sc = device_get_softc(dev);
2598 	if (sc->dev)
2599 		destroy_dev(sc->dev);
2600 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2601 	ifp = sc->ti_ifp;
2602 	if (device_is_attached(dev)) {
2603 		ether_ifdetach(ifp);
2604 		TI_LOCK(sc);
2605 		ti_stop(sc);
2606 		TI_UNLOCK(sc);
2607 	}
2608 
2609 	/* These should only be active if attach succeeded */
2610 	callout_drain(&sc->ti_watchdog);
2611 	bus_generic_detach(dev);
2612 	ti_dma_free(sc);
2613 	ifmedia_removeall(&sc->ifmedia);
2614 
2615 	if (sc->ti_intrhand)
2616 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2617 	if (sc->ti_irq)
2618 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2619 	if (sc->ti_res) {
2620 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2621 		    sc->ti_res);
2622 	}
2623 	if (ifp)
2624 		if_free(ifp);
2625 	if (sc->ti_membuf)
2626 		free(sc->ti_membuf, M_DEVBUF);
2627 	if (sc->ti_membuf2)
2628 		free(sc->ti_membuf2, M_DEVBUF);
2629 
2630 	mtx_destroy(&sc->ti_mtx);
2631 
2632 	return (0);
2633 }
2634 
2635 #ifdef TI_JUMBO_HDRSPLIT
2636 /*
2637  * If hdr_len is 0, that means that header splitting wasn't done on
2638  * this packet for some reason.  The two most likely reasons are that
2639  * the protocol isn't a supported protocol for splitting, or this
2640  * packet had a fragment offset that wasn't 0.
2641  *
2642  * The header length, if it is non-zero, will always be the length of
2643  * the headers on the packet, but that length could be longer than the
2644  * first mbuf.  So we take the minimum of the two as the actual
2645  * length.
2646  */
2647 static __inline void
2648 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2649 {
2650 	int i = 0;
2651 	int lengths[4] = {0, 0, 0, 0};
2652 	struct mbuf *m, *mp;
2653 
2654 	if (hdr_len != 0)
2655 		top->m_len = min(hdr_len, top->m_len);
2656 	pkt_len -= top->m_len;
2657 	lengths[i++] = top->m_len;
2658 
2659 	mp = top;
2660 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2661 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2662 		pkt_len -= m->m_len;
2663 		lengths[i++] = m->m_len;
2664 		mp = m;
2665 	}
2666 
2667 #if 0
2668 	if (hdr_len != 0)
2669 		printf("got split packet: ");
2670 	else
2671 		printf("got non-split packet: ");
2672 
2673 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2674 	    lengths[1], lengths[2], lengths[3],
2675 	    lengths[0] + lengths[1] + lengths[2] +
2676 	    lengths[3]);
2677 #endif
2678 
2679 	if (pkt_len)
2680 		panic("header splitting didn't");
2681 
2682 	if (m) {
2683 		m_freem(m);
2684 		mp->m_next = NULL;
2685 
2686 	}
2687 	if (mp->m_next != NULL)
2688 		panic("ti_hdr_split: last mbuf in chain should be null");
2689 }
2690 #endif /* TI_JUMBO_HDRSPLIT */
2691 
2692 static void
2693 ti_discard_std(struct ti_softc *sc, int i)
2694 {
2695 
2696 	struct ti_rx_desc *r;
2697 
2698 	r = &sc->ti_rdata.ti_rx_std_ring[i];
2699 	r->ti_len = MCLBYTES - ETHER_ALIGN;
2700 	r->ti_type = TI_BDTYPE_RECV_BD;
2701 	r->ti_flags = 0;
2702 	r->ti_vlan_tag = 0;
2703 	r->ti_tcp_udp_cksum = 0;
2704 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2705 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2706 	r->ti_idx = i;
2707 }
2708 
2709 static void
2710 ti_discard_mini(struct ti_softc *sc, int i)
2711 {
2712 
2713 	struct ti_rx_desc *r;
2714 
2715 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2716 	r->ti_len = MHLEN - ETHER_ALIGN;
2717 	r->ti_type = TI_BDTYPE_RECV_BD;
2718 	r->ti_flags = TI_BDFLAG_MINI_RING;
2719 	r->ti_vlan_tag = 0;
2720 	r->ti_tcp_udp_cksum = 0;
2721 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2722 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2723 	r->ti_idx = i;
2724 }
2725 
2726 #ifndef TI_SF_BUF_JUMBO
2727 static void
2728 ti_discard_jumbo(struct ti_softc *sc, int i)
2729 {
2730 
2731 	struct ti_rx_desc *r;
2732 
2733 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2734 	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2735 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2736 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2737 	r->ti_vlan_tag = 0;
2738 	r->ti_tcp_udp_cksum = 0;
2739 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2740 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2741 	r->ti_idx = i;
2742 }
2743 #endif
2744 
2745 /*
2746  * Frame reception handling. This is called if there's a frame
2747  * on the receive return list.
2748  *
2749  * Note: we have to be able to handle three possibilities here:
2750  * 1) the frame is from the mini receive ring (can only happen)
2751  *    on Tigon 2 boards)
2752  * 2) the frame is from the jumbo recieve ring
2753  * 3) the frame is from the standard receive ring
2754  */
2755 
2756 static void
2757 ti_rxeof(struct ti_softc *sc)
2758 {
2759 	struct ifnet *ifp;
2760 #ifdef TI_SF_BUF_JUMBO
2761 	bus_dmamap_t map;
2762 #endif
2763 	struct ti_cmd_desc cmd;
2764 	int jumbocnt, minicnt, stdcnt, ti_len;
2765 
2766 	TI_LOCK_ASSERT(sc);
2767 
2768 	ifp = sc->ti_ifp;
2769 
2770 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2771 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2772 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2773 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2774 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2775 	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2776 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2777 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2778 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2779 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2780 
2781 	jumbocnt = minicnt = stdcnt = 0;
2782 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2783 		struct ti_rx_desc *cur_rx;
2784 		uint32_t rxidx;
2785 		struct mbuf *m = NULL;
2786 		uint16_t vlan_tag = 0;
2787 		int have_tag = 0;
2788 
2789 		cur_rx =
2790 		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2791 		rxidx = cur_rx->ti_idx;
2792 		ti_len = cur_rx->ti_len;
2793 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2794 
2795 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2796 			have_tag = 1;
2797 			vlan_tag = cur_rx->ti_vlan_tag;
2798 		}
2799 
2800 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2801 			jumbocnt++;
2802 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2803 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2804 #ifndef TI_SF_BUF_JUMBO
2805 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2806 				ifp->if_ierrors++;
2807 				ti_discard_jumbo(sc, rxidx);
2808 				continue;
2809 			}
2810 			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2811 				ifp->if_iqdrops++;
2812 				ti_discard_jumbo(sc, rxidx);
2813 				continue;
2814 			}
2815 			m->m_len = ti_len;
2816 #else /* !TI_SF_BUF_JUMBO */
2817 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2818 			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2819 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2820 			    BUS_DMASYNC_POSTREAD);
2821 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2822 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2823 				ifp->if_ierrors++;
2824 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2825 				continue;
2826 			}
2827 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2828 				ifp->if_iqdrops++;
2829 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2830 				continue;
2831 			}
2832 #ifdef TI_JUMBO_HDRSPLIT
2833 			if (sc->ti_hdrsplit)
2834 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2835 					     ti_len, rxidx);
2836 			else
2837 #endif /* TI_JUMBO_HDRSPLIT */
2838 			m_adj(m, ti_len - m->m_pkthdr.len);
2839 #endif /* TI_SF_BUF_JUMBO */
2840 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2841 			minicnt++;
2842 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2843 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2844 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2845 				ifp->if_ierrors++;
2846 				ti_discard_mini(sc, rxidx);
2847 				continue;
2848 			}
2849 			if (ti_newbuf_mini(sc, rxidx) != 0) {
2850 				ifp->if_iqdrops++;
2851 				ti_discard_mini(sc, rxidx);
2852 				continue;
2853 			}
2854 			m->m_len = ti_len;
2855 		} else {
2856 			stdcnt++;
2857 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2858 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2859 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2860 				ifp->if_ierrors++;
2861 				ti_discard_std(sc, rxidx);
2862 				continue;
2863 			}
2864 			if (ti_newbuf_std(sc, rxidx) != 0) {
2865 				ifp->if_iqdrops++;
2866 				ti_discard_std(sc, rxidx);
2867 				continue;
2868 			}
2869 			m->m_len = ti_len;
2870 		}
2871 
2872 		m->m_pkthdr.len = ti_len;
2873 		ifp->if_ipackets++;
2874 		m->m_pkthdr.rcvif = ifp;
2875 
2876 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2877 			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2878 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2879 				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2880 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2881 			}
2882 			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2883 				m->m_pkthdr.csum_data =
2884 				    cur_rx->ti_tcp_udp_cksum;
2885 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2886 			}
2887 		}
2888 
2889 		/*
2890 		 * If we received a packet with a vlan tag,
2891 		 * tag it before passing the packet upward.
2892 		 */
2893 		if (have_tag) {
2894 			m->m_pkthdr.ether_vtag = vlan_tag;
2895 			m->m_flags |= M_VLANTAG;
2896 		}
2897 		TI_UNLOCK(sc);
2898 		(*ifp->if_input)(ifp, m);
2899 		TI_LOCK(sc);
2900 	}
2901 
2902 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2903 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2904 	/* Only necessary on the Tigon 1. */
2905 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2906 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2907 		    sc->ti_rx_saved_considx);
2908 
2909 	if (stdcnt > 0) {
2910 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2911 		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2912 		TI_UPDATE_STDPROD(sc, sc->ti_std);
2913 	}
2914 	if (minicnt > 0) {
2915 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2916 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2917 		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2918 	}
2919 	if (jumbocnt > 0) {
2920 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2921 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2922 		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2923 	}
2924 }
2925 
2926 static void
2927 ti_txeof(struct ti_softc *sc)
2928 {
2929 	struct ti_txdesc *txd;
2930 	struct ti_tx_desc txdesc;
2931 	struct ti_tx_desc *cur_tx = NULL;
2932 	struct ifnet *ifp;
2933 	int idx;
2934 
2935 	ifp = sc->ti_ifp;
2936 
2937 	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2938 	if (txd == NULL)
2939 		return;
2940 
2941 	if (sc->ti_rdata.ti_tx_ring != NULL)
2942 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2943 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2944 	/*
2945 	 * Go through our tx ring and free mbufs for those
2946 	 * frames that have been sent.
2947 	 */
2948 	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2949 	    TI_INC(idx, TI_TX_RING_CNT)) {
2950 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2951 			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2952 			    sizeof(txdesc), &txdesc);
2953 			cur_tx = &txdesc;
2954 		} else
2955 			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2956 		sc->ti_txcnt--;
2957 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2958 		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2959 			continue;
2960 		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2961 		    BUS_DMASYNC_POSTWRITE);
2962 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2963 
2964 		ifp->if_opackets++;
2965 		m_freem(txd->tx_m);
2966 		txd->tx_m = NULL;
2967 		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2968 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2969 		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2970 	}
2971 	sc->ti_tx_saved_considx = idx;
2972 	if (sc->ti_txcnt == 0)
2973 		sc->ti_timer = 0;
2974 }
2975 
2976 static void
2977 ti_intr(void *xsc)
2978 {
2979 	struct ti_softc *sc;
2980 	struct ifnet *ifp;
2981 
2982 	sc = xsc;
2983 	TI_LOCK(sc);
2984 	ifp = sc->ti_ifp;
2985 
2986 	/* Make sure this is really our interrupt. */
2987 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2988 		TI_UNLOCK(sc);
2989 		return;
2990 	}
2991 
2992 	/* Ack interrupt and stop others from occuring. */
2993 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2994 
2995 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2996 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2997 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2998 		/* Check RX return ring producer/consumer */
2999 		ti_rxeof(sc);
3000 
3001 		/* Check TX ring producer/consumer */
3002 		ti_txeof(sc);
3003 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
3004 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
3005 	}
3006 
3007 	ti_handle_events(sc);
3008 
3009 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3010 		/* Re-enable interrupts. */
3011 		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3012 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3013 			ti_start_locked(ifp);
3014 	}
3015 
3016 	TI_UNLOCK(sc);
3017 }
3018 
3019 static void
3020 ti_stats_update(struct ti_softc *sc)
3021 {
3022 	struct ifnet *ifp;
3023 	struct ti_stats *s;
3024 
3025 	ifp = sc->ti_ifp;
3026 
3027 	if (sc->ti_stat_ticks == 0)
3028 		return;
3029 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3030 	    BUS_DMASYNC_POSTREAD);
3031 
3032 	s = &sc->ti_rdata.ti_info->ti_stats;
3033 	ifp->if_collisions += (s->dot3StatsSingleCollisionFrames +
3034 	   s->dot3StatsMultipleCollisionFrames +
3035 	   s->dot3StatsExcessiveCollisions + s->dot3StatsLateCollisions) -
3036 	    ifp->if_collisions;
3037 
3038 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3039 	    BUS_DMASYNC_PREREAD);
3040 }
3041 
3042 /*
3043  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3044  * pointers to descriptors.
3045  */
3046 static int
3047 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3048 {
3049 	struct ti_txdesc *txd;
3050 	struct ti_tx_desc *f;
3051 	struct ti_tx_desc txdesc;
3052 	struct mbuf *m;
3053 	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3054 	uint16_t csum_flags;
3055 	int error, frag, i, nseg;
3056 
3057 	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3058 		return (ENOBUFS);
3059 
3060 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3061 	    *m_head, txsegs, &nseg, 0);
3062 	if (error == EFBIG) {
3063 		m = m_defrag(*m_head, M_NOWAIT);
3064 		if (m == NULL) {
3065 			m_freem(*m_head);
3066 			*m_head = NULL;
3067 			return (ENOMEM);
3068 		}
3069 		*m_head = m;
3070 		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3071 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3072 		if (error) {
3073 			m_freem(*m_head);
3074 			*m_head = NULL;
3075 			return (error);
3076 		}
3077 	} else if (error != 0)
3078 		return (error);
3079 	if (nseg == 0) {
3080 		m_freem(*m_head);
3081 		*m_head = NULL;
3082 		return (EIO);
3083 	}
3084 
3085 	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3086 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3087 		return (ENOBUFS);
3088 	}
3089 	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3090 	    BUS_DMASYNC_PREWRITE);
3091 
3092 	m = *m_head;
3093 	csum_flags = 0;
3094 	if (m->m_pkthdr.csum_flags & CSUM_IP)
3095 		csum_flags |= TI_BDFLAG_IP_CKSUM;
3096 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3097 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3098 
3099 	frag = sc->ti_tx_saved_prodidx;
3100 	for (i = 0; i < nseg; i++) {
3101 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3102 			bzero(&txdesc, sizeof(txdesc));
3103 			f = &txdesc;
3104 		} else
3105 			f = &sc->ti_rdata.ti_tx_ring[frag];
3106 		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3107 		f->ti_len = txsegs[i].ds_len;
3108 		f->ti_flags = csum_flags;
3109 		if (m->m_flags & M_VLANTAG) {
3110 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3111 			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3112 		} else {
3113 			f->ti_vlan_tag = 0;
3114 		}
3115 
3116 		if (sc->ti_hwrev == TI_HWREV_TIGON)
3117 			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3118 			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3119 		TI_INC(frag, TI_TX_RING_CNT);
3120 	}
3121 
3122 	sc->ti_tx_saved_prodidx = frag;
3123 	/* set TI_BDFLAG_END on the last descriptor */
3124 	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3125 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3126 		txdesc.ti_flags |= TI_BDFLAG_END;
3127 		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3128 		    sizeof(txdesc), &txdesc);
3129 	} else
3130 		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3131 
3132 	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3133 	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3134 	txd->tx_m = m;
3135 	sc->ti_txcnt += nseg;
3136 
3137 	return (0);
3138 }
3139 
3140 static void
3141 ti_start(struct ifnet *ifp)
3142 {
3143 	struct ti_softc *sc;
3144 
3145 	sc = ifp->if_softc;
3146 	TI_LOCK(sc);
3147 	ti_start_locked(ifp);
3148 	TI_UNLOCK(sc);
3149 }
3150 
3151 /*
3152  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3153  * to the mbuf data regions directly in the transmit descriptors.
3154  */
3155 static void
3156 ti_start_locked(struct ifnet *ifp)
3157 {
3158 	struct ti_softc *sc;
3159 	struct mbuf *m_head = NULL;
3160 	int enq = 0;
3161 
3162 	sc = ifp->if_softc;
3163 
3164 	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3165 	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3166 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3167 		if (m_head == NULL)
3168 			break;
3169 
3170 		/*
3171 		 * Pack the data into the transmit ring. If we
3172 		 * don't have room, set the OACTIVE flag and wait
3173 		 * for the NIC to drain the ring.
3174 		 */
3175 		if (ti_encap(sc, &m_head)) {
3176 			if (m_head == NULL)
3177 				break;
3178 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3179 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3180 			break;
3181 		}
3182 
3183 		enq++;
3184 		/*
3185 		 * If there's a BPF listener, bounce a copy of this frame
3186 		 * to him.
3187 		 */
3188 		ETHER_BPF_MTAP(ifp, m_head);
3189 	}
3190 
3191 	if (enq > 0) {
3192 		if (sc->ti_rdata.ti_tx_ring != NULL)
3193 			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3194 			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3195 		/* Transmit */
3196 		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3197 
3198 		/*
3199 		 * Set a timeout in case the chip goes out to lunch.
3200 		 */
3201 		sc->ti_timer = 5;
3202 	}
3203 }
3204 
3205 static void
3206 ti_init(void *xsc)
3207 {
3208 	struct ti_softc *sc;
3209 
3210 	sc = xsc;
3211 	TI_LOCK(sc);
3212 	ti_init_locked(sc);
3213 	TI_UNLOCK(sc);
3214 }
3215 
3216 static void
3217 ti_init_locked(void *xsc)
3218 {
3219 	struct ti_softc *sc = xsc;
3220 
3221 	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3222 		return;
3223 
3224 	/* Cancel pending I/O and flush buffers. */
3225 	ti_stop(sc);
3226 
3227 	/* Init the gen info block, ring control blocks and firmware. */
3228 	if (ti_gibinit(sc)) {
3229 		device_printf(sc->ti_dev, "initialization failure\n");
3230 		return;
3231 	}
3232 }
3233 
3234 static void ti_init2(struct ti_softc *sc)
3235 {
3236 	struct ti_cmd_desc cmd;
3237 	struct ifnet *ifp;
3238 	uint8_t *ea;
3239 	struct ifmedia *ifm;
3240 	int tmp;
3241 
3242 	TI_LOCK_ASSERT(sc);
3243 
3244 	ifp = sc->ti_ifp;
3245 
3246 	/* Specify MTU and interface index. */
3247 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3248 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3249 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3250 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3251 
3252 	/* Load our MAC address. */
3253 	ea = IF_LLADDR(sc->ti_ifp);
3254 	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3255 	CSR_WRITE_4(sc, TI_GCR_PAR1,
3256 	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3257 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3258 
3259 	/* Enable or disable promiscuous mode as needed. */
3260 	if (ifp->if_flags & IFF_PROMISC) {
3261 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3262 	} else {
3263 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3264 	}
3265 
3266 	/* Program multicast filter. */
3267 	ti_setmulti(sc);
3268 
3269 	/*
3270 	 * If this is a Tigon 1, we should tell the
3271 	 * firmware to use software packet filtering.
3272 	 */
3273 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3274 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3275 	}
3276 
3277 	/* Init RX ring. */
3278 	if (ti_init_rx_ring_std(sc) != 0) {
3279 		/* XXX */
3280 		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3281 		return;
3282 	}
3283 
3284 	/* Init jumbo RX ring. */
3285 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3286 		if (ti_init_rx_ring_jumbo(sc) != 0) {
3287 			/* XXX */
3288 			device_printf(sc->ti_dev,
3289 			    "no memory for jumbo Rx buffers.\n");
3290 			return;
3291 		}
3292 	}
3293 
3294 	/*
3295 	 * If this is a Tigon 2, we can also configure the
3296 	 * mini ring.
3297 	 */
3298 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3299 		if (ti_init_rx_ring_mini(sc) != 0) {
3300 			/* XXX */
3301 			device_printf(sc->ti_dev,
3302 			    "no memory for mini Rx buffers.\n");
3303 			return;
3304 		}
3305 	}
3306 
3307 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3308 	sc->ti_rx_saved_considx = 0;
3309 
3310 	/* Init TX ring. */
3311 	ti_init_tx_ring(sc);
3312 
3313 	/* Tell firmware we're alive. */
3314 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3315 
3316 	/* Enable host interrupts. */
3317 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3318 
3319 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3320 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3321 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3322 
3323 	/*
3324 	 * Make sure to set media properly. We have to do this
3325 	 * here since we have to issue commands in order to set
3326 	 * the link negotiation and we can't issue commands until
3327 	 * the firmware is running.
3328 	 */
3329 	ifm = &sc->ifmedia;
3330 	tmp = ifm->ifm_media;
3331 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3332 	ti_ifmedia_upd_locked(sc);
3333 	ifm->ifm_media = tmp;
3334 }
3335 
3336 /*
3337  * Set media options.
3338  */
3339 static int
3340 ti_ifmedia_upd(struct ifnet *ifp)
3341 {
3342 	struct ti_softc *sc;
3343 	int error;
3344 
3345 	sc = ifp->if_softc;
3346 	TI_LOCK(sc);
3347 	error = ti_ifmedia_upd(ifp);
3348 	TI_UNLOCK(sc);
3349 
3350 	return (error);
3351 }
3352 
3353 static int
3354 ti_ifmedia_upd_locked(struct ti_softc *sc)
3355 {
3356 	struct ifmedia *ifm;
3357 	struct ti_cmd_desc cmd;
3358 	uint32_t flowctl;
3359 
3360 	ifm = &sc->ifmedia;
3361 
3362 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3363 		return (EINVAL);
3364 
3365 	flowctl = 0;
3366 
3367 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3368 	case IFM_AUTO:
3369 		/*
3370 		 * Transmit flow control doesn't work on the Tigon 1.
3371 		 */
3372 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3373 
3374 		/*
3375 		 * Transmit flow control can also cause problems on the
3376 		 * Tigon 2, apparantly with both the copper and fiber
3377 		 * boards.  The symptom is that the interface will just
3378 		 * hang.  This was reproduced with Alteon 180 switches.
3379 		 */
3380 #if 0
3381 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3382 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3383 #endif
3384 
3385 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3386 		    TI_GLNK_FULL_DUPLEX| flowctl |
3387 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3388 
3389 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3390 #if 0
3391 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3392 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3393 #endif
3394 
3395 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3396 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3397 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3398 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3399 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3400 		break;
3401 	case IFM_1000_SX:
3402 	case IFM_1000_T:
3403 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3404 #if 0
3405 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3406 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3407 #endif
3408 
3409 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3410 		    flowctl |TI_GLNK_ENB);
3411 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3412 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3413 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3414 		}
3415 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3416 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3417 		break;
3418 	case IFM_100_FX:
3419 	case IFM_10_FL:
3420 	case IFM_100_TX:
3421 	case IFM_10_T:
3422 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3423 #if 0
3424 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3425 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3426 #endif
3427 
3428 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3429 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3430 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3431 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3432 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3433 		} else {
3434 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3435 		}
3436 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3437 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3438 		} else {
3439 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3440 		}
3441 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3442 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3443 		break;
3444 	}
3445 
3446 	return (0);
3447 }
3448 
3449 /*
3450  * Report current media status.
3451  */
3452 static void
3453 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3454 {
3455 	struct ti_softc *sc;
3456 	uint32_t media = 0;
3457 
3458 	sc = ifp->if_softc;
3459 
3460 	TI_LOCK(sc);
3461 
3462 	ifmr->ifm_status = IFM_AVALID;
3463 	ifmr->ifm_active = IFM_ETHER;
3464 
3465 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3466 		TI_UNLOCK(sc);
3467 		return;
3468 	}
3469 
3470 	ifmr->ifm_status |= IFM_ACTIVE;
3471 
3472 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3473 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3474 		if (sc->ti_copper)
3475 			ifmr->ifm_active |= IFM_1000_T;
3476 		else
3477 			ifmr->ifm_active |= IFM_1000_SX;
3478 		if (media & TI_GLNK_FULL_DUPLEX)
3479 			ifmr->ifm_active |= IFM_FDX;
3480 		else
3481 			ifmr->ifm_active |= IFM_HDX;
3482 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3483 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3484 		if (sc->ti_copper) {
3485 			if (media & TI_LNK_100MB)
3486 				ifmr->ifm_active |= IFM_100_TX;
3487 			if (media & TI_LNK_10MB)
3488 				ifmr->ifm_active |= IFM_10_T;
3489 		} else {
3490 			if (media & TI_LNK_100MB)
3491 				ifmr->ifm_active |= IFM_100_FX;
3492 			if (media & TI_LNK_10MB)
3493 				ifmr->ifm_active |= IFM_10_FL;
3494 		}
3495 		if (media & TI_LNK_FULL_DUPLEX)
3496 			ifmr->ifm_active |= IFM_FDX;
3497 		if (media & TI_LNK_HALF_DUPLEX)
3498 			ifmr->ifm_active |= IFM_HDX;
3499 	}
3500 	TI_UNLOCK(sc);
3501 }
3502 
3503 static int
3504 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3505 {
3506 	struct ti_softc *sc = ifp->if_softc;
3507 	struct ifreq *ifr = (struct ifreq *) data;
3508 	struct ti_cmd_desc cmd;
3509 	int mask, error = 0;
3510 
3511 	switch (command) {
3512 	case SIOCSIFMTU:
3513 		TI_LOCK(sc);
3514 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3515 			error = EINVAL;
3516 		else {
3517 			ifp->if_mtu = ifr->ifr_mtu;
3518 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3519 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3520 				ti_init_locked(sc);
3521 			}
3522 		}
3523 		TI_UNLOCK(sc);
3524 		break;
3525 	case SIOCSIFFLAGS:
3526 		TI_LOCK(sc);
3527 		if (ifp->if_flags & IFF_UP) {
3528 			/*
3529 			 * If only the state of the PROMISC flag changed,
3530 			 * then just use the 'set promisc mode' command
3531 			 * instead of reinitializing the entire NIC. Doing
3532 			 * a full re-init means reloading the firmware and
3533 			 * waiting for it to start up, which may take a
3534 			 * second or two.
3535 			 */
3536 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3537 			    ifp->if_flags & IFF_PROMISC &&
3538 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3539 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3540 				    TI_CMD_CODE_PROMISC_ENB, 0);
3541 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3542 			    !(ifp->if_flags & IFF_PROMISC) &&
3543 			    sc->ti_if_flags & IFF_PROMISC) {
3544 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3545 				    TI_CMD_CODE_PROMISC_DIS, 0);
3546 			} else
3547 				ti_init_locked(sc);
3548 		} else {
3549 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3550 				ti_stop(sc);
3551 			}
3552 		}
3553 		sc->ti_if_flags = ifp->if_flags;
3554 		TI_UNLOCK(sc);
3555 		break;
3556 	case SIOCADDMULTI:
3557 	case SIOCDELMULTI:
3558 		TI_LOCK(sc);
3559 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3560 			ti_setmulti(sc);
3561 		TI_UNLOCK(sc);
3562 		break;
3563 	case SIOCSIFMEDIA:
3564 	case SIOCGIFMEDIA:
3565 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3566 		break;
3567 	case SIOCSIFCAP:
3568 		TI_LOCK(sc);
3569 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3570 		if ((mask & IFCAP_TXCSUM) != 0 &&
3571 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3572 			ifp->if_capenable ^= IFCAP_TXCSUM;
3573 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3574 				ifp->if_hwassist |= TI_CSUM_FEATURES;
3575                         else
3576 				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3577                 }
3578 		if ((mask & IFCAP_RXCSUM) != 0 &&
3579 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3580 			ifp->if_capenable ^= IFCAP_RXCSUM;
3581 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3582 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3583                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3584 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3585 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3586 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3587 		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3588 		    IFCAP_VLAN_HWTAGGING)) != 0) {
3589 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3590 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3591 				ti_init_locked(sc);
3592 			}
3593 		}
3594 		TI_UNLOCK(sc);
3595 		VLAN_CAPABILITIES(ifp);
3596 		break;
3597 	default:
3598 		error = ether_ioctl(ifp, command, data);
3599 		break;
3600 	}
3601 
3602 	return (error);
3603 }
3604 
3605 static int
3606 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3607 {
3608 	struct ti_softc *sc;
3609 
3610 	sc = dev->si_drv1;
3611 	if (sc == NULL)
3612 		return (ENODEV);
3613 
3614 	TI_LOCK(sc);
3615 	sc->ti_flags |= TI_FLAG_DEBUGING;
3616 	TI_UNLOCK(sc);
3617 
3618 	return (0);
3619 }
3620 
3621 static int
3622 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3623 {
3624 	struct ti_softc *sc;
3625 
3626 	sc = dev->si_drv1;
3627 	if (sc == NULL)
3628 		return (ENODEV);
3629 
3630 	TI_LOCK(sc);
3631 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3632 	TI_UNLOCK(sc);
3633 
3634 	return (0);
3635 }
3636 
3637 /*
3638  * This ioctl routine goes along with the Tigon character device.
3639  */
3640 static int
3641 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3642     struct thread *td)
3643 {
3644 	struct ti_softc *sc;
3645 	int error;
3646 
3647 	sc = dev->si_drv1;
3648 	if (sc == NULL)
3649 		return (ENODEV);
3650 
3651 	error = 0;
3652 
3653 	switch (cmd) {
3654 	case TIIOCGETSTATS:
3655 	{
3656 		struct ti_stats *outstats;
3657 
3658 		outstats = (struct ti_stats *)addr;
3659 
3660 		TI_LOCK(sc);
3661 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3662 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3663 		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3664 		    sizeof(struct ti_stats));
3665 		TI_UNLOCK(sc);
3666 		break;
3667 	}
3668 	case TIIOCGETPARAMS:
3669 	{
3670 		struct ti_params *params;
3671 
3672 		params = (struct ti_params *)addr;
3673 
3674 		TI_LOCK(sc);
3675 		params->ti_stat_ticks = sc->ti_stat_ticks;
3676 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3677 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3678 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3679 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3680 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3681 		params->param_mask = TI_PARAM_ALL;
3682 		TI_UNLOCK(sc);
3683 		break;
3684 	}
3685 	case TIIOCSETPARAMS:
3686 	{
3687 		struct ti_params *params;
3688 
3689 		params = (struct ti_params *)addr;
3690 
3691 		TI_LOCK(sc);
3692 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3693 			sc->ti_stat_ticks = params->ti_stat_ticks;
3694 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3695 		}
3696 
3697 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3698 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3699 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3700 				    sc->ti_rx_coal_ticks);
3701 		}
3702 
3703 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3704 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3705 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3706 				    sc->ti_tx_coal_ticks);
3707 		}
3708 
3709 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3710 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3711 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3712 				    sc->ti_rx_max_coal_bds);
3713 		}
3714 
3715 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3716 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3717 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3718 				    sc->ti_tx_max_coal_bds);
3719 		}
3720 
3721 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3722 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3723 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3724 				    sc->ti_tx_buf_ratio);
3725 		}
3726 		TI_UNLOCK(sc);
3727 		break;
3728 	}
3729 	case TIIOCSETTRACE: {
3730 		ti_trace_type trace_type;
3731 
3732 		trace_type = *(ti_trace_type *)addr;
3733 
3734 		/*
3735 		 * Set tracing to whatever the user asked for.  Setting
3736 		 * this register to 0 should have the effect of disabling
3737 		 * tracing.
3738 		 */
3739 		TI_LOCK(sc);
3740 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3741 		TI_UNLOCK(sc);
3742 		break;
3743 	}
3744 	case TIIOCGETTRACE: {
3745 		struct ti_trace_buf *trace_buf;
3746 		uint32_t trace_start, cur_trace_ptr, trace_len;
3747 
3748 		trace_buf = (struct ti_trace_buf *)addr;
3749 
3750 		TI_LOCK(sc);
3751 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3752 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3753 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3754 #if 0
3755 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3756 		       "trace_len = %d\n", trace_start,
3757 		       cur_trace_ptr, trace_len);
3758 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3759 		       trace_buf->buf_len);
3760 #endif
3761 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3762 		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3763 		if (error == 0) {
3764 			trace_buf->fill_len = min(trace_len,
3765 			    trace_buf->buf_len);
3766 			if (cur_trace_ptr < trace_start)
3767 				trace_buf->cur_trace_ptr =
3768 				    trace_start - cur_trace_ptr;
3769 			else
3770 				trace_buf->cur_trace_ptr =
3771 				    cur_trace_ptr - trace_start;
3772 		} else
3773 			trace_buf->fill_len = 0;
3774 		TI_UNLOCK(sc);
3775 		break;
3776 	}
3777 
3778 	/*
3779 	 * For debugging, five ioctls are needed:
3780 	 * ALT_ATTACH
3781 	 * ALT_READ_TG_REG
3782 	 * ALT_WRITE_TG_REG
3783 	 * ALT_READ_TG_MEM
3784 	 * ALT_WRITE_TG_MEM
3785 	 */
3786 	case ALT_ATTACH:
3787 		/*
3788 		 * From what I can tell, Alteon's Solaris Tigon driver
3789 		 * only has one character device, so you have to attach
3790 		 * to the Tigon board you're interested in.  This seems
3791 		 * like a not-so-good way to do things, since unless you
3792 		 * subsequently specify the unit number of the device
3793 		 * you're interested in every ioctl, you'll only be
3794 		 * able to debug one board at a time.
3795 		 */
3796 		break;
3797 	case ALT_READ_TG_MEM:
3798 	case ALT_WRITE_TG_MEM:
3799 	{
3800 		struct tg_mem *mem_param;
3801 		uint32_t sram_end, scratch_end;
3802 
3803 		mem_param = (struct tg_mem *)addr;
3804 
3805 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3806 			sram_end = TI_END_SRAM_I;
3807 			scratch_end = TI_END_SCRATCH_I;
3808 		} else {
3809 			sram_end = TI_END_SRAM_II;
3810 			scratch_end = TI_END_SCRATCH_II;
3811 		}
3812 
3813 		/*
3814 		 * For now, we'll only handle accessing regular SRAM,
3815 		 * nothing else.
3816 		 */
3817 		TI_LOCK(sc);
3818 		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3819 		    mem_param->tgAddr + mem_param->len <= sram_end) {
3820 			/*
3821 			 * In this instance, we always copy to/from user
3822 			 * space, so the user space argument is set to 1.
3823 			 */
3824 			error = ti_copy_mem(sc, mem_param->tgAddr,
3825 			    mem_param->len, mem_param->userAddr, 1,
3826 			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3827 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3828 		    mem_param->tgAddr <= scratch_end) {
3829 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3830 			    mem_param->len, mem_param->userAddr, 1,
3831 			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3832 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3833 		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3834 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3835 				if_printf(sc->ti_ifp,
3836 				    "invalid memory range for Tigon I\n");
3837 				error = EINVAL;
3838 				break;
3839 			}
3840 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3841 			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3842 			    mem_param->userAddr, 1,
3843 			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3844 		} else {
3845 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3846 			        "out of supported range\n",
3847 			        mem_param->tgAddr, mem_param->len);
3848 			error = EINVAL;
3849 		}
3850 		TI_UNLOCK(sc);
3851 		break;
3852 	}
3853 	case ALT_READ_TG_REG:
3854 	case ALT_WRITE_TG_REG:
3855 	{
3856 		struct tg_reg *regs;
3857 		uint32_t tmpval;
3858 
3859 		regs = (struct tg_reg *)addr;
3860 
3861 		/*
3862 		 * Make sure the address in question isn't out of range.
3863 		 */
3864 		if (regs->addr > TI_REG_MAX) {
3865 			error = EINVAL;
3866 			break;
3867 		}
3868 		TI_LOCK(sc);
3869 		if (cmd == ALT_READ_TG_REG) {
3870 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3871 			    regs->addr, &tmpval, 1);
3872 			regs->data = ntohl(tmpval);
3873 #if 0
3874 			if ((regs->addr == TI_CPU_STATE)
3875 			 || (regs->addr == TI_CPU_CTL_B)) {
3876 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3877 				       regs->addr, tmpval);
3878 			}
3879 #endif
3880 		} else {
3881 			tmpval = htonl(regs->data);
3882 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3883 			    regs->addr, &tmpval, 1);
3884 		}
3885 		TI_UNLOCK(sc);
3886 		break;
3887 	}
3888 	default:
3889 		error = ENOTTY;
3890 		break;
3891 	}
3892 	return (error);
3893 }
3894 
3895 static void
3896 ti_watchdog(void *arg)
3897 {
3898 	struct ti_softc *sc;
3899 	struct ifnet *ifp;
3900 
3901 	sc = arg;
3902 	TI_LOCK_ASSERT(sc);
3903 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3904 	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3905 		return;
3906 
3907 	/*
3908 	 * When we're debugging, the chip is often stopped for long periods
3909 	 * of time, and that would normally cause the watchdog timer to fire.
3910 	 * Since that impedes debugging, we don't want to do that.
3911 	 */
3912 	if (sc->ti_flags & TI_FLAG_DEBUGING)
3913 		return;
3914 
3915 	ifp = sc->ti_ifp;
3916 	if_printf(ifp, "watchdog timeout -- resetting\n");
3917 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3918 	ti_init_locked(sc);
3919 
3920 	ifp->if_oerrors++;
3921 }
3922 
3923 /*
3924  * Stop the adapter and free any mbufs allocated to the
3925  * RX and TX lists.
3926  */
3927 static void
3928 ti_stop(struct ti_softc *sc)
3929 {
3930 	struct ifnet *ifp;
3931 	struct ti_cmd_desc cmd;
3932 
3933 	TI_LOCK_ASSERT(sc);
3934 
3935 	ifp = sc->ti_ifp;
3936 
3937 	/* Disable host interrupts. */
3938 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3939 	/*
3940 	 * Tell firmware we're shutting down.
3941 	 */
3942 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3943 
3944 	/* Halt and reinitialize. */
3945 	if (ti_chipinit(sc) == 0) {
3946 		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3947 		/* XXX ignore init errors. */
3948 		ti_chipinit(sc);
3949 	}
3950 
3951 	/* Free the RX lists. */
3952 	ti_free_rx_ring_std(sc);
3953 
3954 	/* Free jumbo RX list. */
3955 	ti_free_rx_ring_jumbo(sc);
3956 
3957 	/* Free mini RX list. */
3958 	ti_free_rx_ring_mini(sc);
3959 
3960 	/* Free TX buffers. */
3961 	ti_free_tx_ring(sc);
3962 
3963 	sc->ti_ev_prodidx.ti_idx = 0;
3964 	sc->ti_return_prodidx.ti_idx = 0;
3965 	sc->ti_tx_considx.ti_idx = 0;
3966 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3967 
3968 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3969 	callout_stop(&sc->ti_watchdog);
3970 }
3971 
3972 /*
3973  * Stop all chip I/O so that the kernel's probe routines don't
3974  * get confused by errant DMAs when rebooting.
3975  */
3976 static int
3977 ti_shutdown(device_t dev)
3978 {
3979 	struct ti_softc *sc;
3980 
3981 	sc = device_get_softc(dev);
3982 	TI_LOCK(sc);
3983 	ti_chipinit(sc);
3984 	TI_UNLOCK(sc);
3985 
3986 	return (0);
3987 }
3988 
3989 static void
3990 ti_sysctl_node(struct ti_softc *sc)
3991 {
3992 	struct sysctl_ctx_list *ctx;
3993 	struct sysctl_oid_list *child;
3994 	char tname[32];
3995 
3996 	ctx = device_get_sysctl_ctx(sc->ti_dev);
3997 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
3998 
3999 	/* Use DAC */
4000 	sc->ti_dac = 1;
4001 	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4002 	    device_get_unit(sc->ti_dev));
4003 	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4004 
4005 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4006 	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4007 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4008 	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4009 
4010 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4011 	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4012 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4013 	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4014 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4015 	    &sc->ti_tx_buf_ratio, 0,
4016 	    "Ratio of NIC memory devoted to TX buffer");
4017 
4018 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4019 	    &sc->ti_stat_ticks, 0,
4020 	    "Number of clock ticks for statistics update interval");
4021 
4022 	/* Pull in device tunables. */
4023 	sc->ti_rx_coal_ticks = 170;
4024 	resource_int_value(device_get_name(sc->ti_dev),
4025 	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4026 	    &sc->ti_rx_coal_ticks);
4027 	sc->ti_rx_max_coal_bds = 64;
4028 	resource_int_value(device_get_name(sc->ti_dev),
4029 	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4030 	    &sc->ti_rx_max_coal_bds);
4031 
4032 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4033 	resource_int_value(device_get_name(sc->ti_dev),
4034 	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4035 	    &sc->ti_tx_coal_ticks);
4036 	sc->ti_tx_max_coal_bds = 32;
4037 	resource_int_value(device_get_name(sc->ti_dev),
4038 	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4039 	    &sc->ti_tx_max_coal_bds);
4040 	sc->ti_tx_buf_ratio = 21;
4041 	resource_int_value(device_get_name(sc->ti_dev),
4042 	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4043 	    &sc->ti_tx_buf_ratio);
4044 
4045 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4046 	resource_int_value(device_get_name(sc->ti_dev),
4047 	    device_get_unit(sc->ti_dev), "stat_ticks",
4048 	    &sc->ti_stat_ticks);
4049 }
4050