xref: /freebsd/sys/dev/ti/if_ti.c (revision ee41f1b1cf5e3d4f586cb85b46123b416275862c)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include "vlan.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/queue.h>
91 
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 
98 #include <net/bpf.h>
99 
100 #if NVLAN > 0
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103 #endif
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/bus_memio.h>
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 #include <pci/pcireg.h>
118 #include <pci/pcivar.h>
119 
120 #include <pci/if_tireg.h>
121 #include <pci/ti_fw.h>
122 #include <pci/ti_fw2.h>
123 
124 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
125 
126 #if !defined(lint)
127 static const char rcsid[] =
128   "$FreeBSD$";
129 #endif
130 
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 
135 static struct ti_type ti_devs[] = {
136 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
137 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
138 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
139 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
140 	{ TC_VENDORID,	TC_DEVICEID_3C985,
141 		"3Com 3c985-SX Gigabit Ethernet" },
142 	{ NG_VENDORID, NG_DEVICEID_GA620,
143 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
144 	{ NG_VENDORID, NG_DEVICEID_GA620T,
145 		"Netgear GA620 1000baseT Gigabit Ethernet" },
146 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
147 		"Silicon Graphics Gigabit Ethernet" },
148 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
149 		"Farallon PN9000SX Gigabit Ethernet" },
150 	{ 0, 0, NULL }
151 };
152 
153 static int ti_probe		__P((device_t));
154 static int ti_attach		__P((device_t));
155 static int ti_detach		__P((device_t));
156 static void ti_txeof		__P((struct ti_softc *));
157 static void ti_rxeof		__P((struct ti_softc *));
158 
159 static void ti_stats_update	__P((struct ti_softc *));
160 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
161 					u_int32_t *));
162 
163 static void ti_intr		__P((void *));
164 static void ti_start		__P((struct ifnet *));
165 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
166 static void ti_init		__P((void *));
167 static void ti_init2		__P((struct ti_softc *));
168 static void ti_stop		__P((struct ti_softc *));
169 static void ti_watchdog		__P((struct ifnet *));
170 static void ti_shutdown		__P((device_t));
171 static int ti_ifmedia_upd	__P((struct ifnet *));
172 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
173 
174 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
175 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
176 						int, u_int8_t *));
177 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
178 
179 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
180 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
181 static void ti_setmulti		__P((struct ti_softc *));
182 
183 static void ti_mem		__P((struct ti_softc *, u_int32_t,
184 					u_int32_t, caddr_t));
185 static void ti_loadfw		__P((struct ti_softc *));
186 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
187 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
188 					caddr_t, int));
189 static void ti_handle_events	__P((struct ti_softc *));
190 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
191 static void *ti_jalloc		__P((struct ti_softc *));
192 static void ti_jfree		__P((caddr_t, void *));
193 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196 static int ti_init_rx_ring_std	__P((struct ti_softc *));
197 static void ti_free_rx_ring_std	__P((struct ti_softc *));
198 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202 static void ti_free_tx_ring	__P((struct ti_softc *));
203 static int ti_init_tx_ring	__P((struct ti_softc *));
204 
205 static int ti_64bitslot_war	__P((struct ti_softc *));
206 static int ti_chipinit		__P((struct ti_softc *));
207 static int ti_gibinit		__P((struct ti_softc *));
208 
209 static device_method_t ti_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		ti_probe),
212 	DEVMETHOD(device_attach,	ti_attach),
213 	DEVMETHOD(device_detach,	ti_detach),
214 	DEVMETHOD(device_shutdown,	ti_shutdown),
215 	{ 0, 0 }
216 };
217 
218 static driver_t ti_driver = {
219 	"ti",
220 	ti_methods,
221 	sizeof(struct ti_softc)
222 };
223 
224 static devclass_t ti_devclass;
225 
226 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227 
228 /*
229  * Send an instruction or address to the EEPROM, check for ACK.
230  */
231 static u_int32_t ti_eeprom_putbyte(sc, byte)
232 	struct ti_softc		*sc;
233 	int			byte;
234 {
235 	register int		i, ack = 0;
236 
237 	/*
238 	 * Make sure we're in TX mode.
239 	 */
240 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241 
242 	/*
243 	 * Feed in each bit and stobe the clock.
244 	 */
245 	for (i = 0x80; i; i >>= 1) {
246 		if (byte & i) {
247 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 		} else {
249 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250 		}
251 		DELAY(1);
252 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 		DELAY(1);
254 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255 	}
256 
257 	/*
258 	 * Turn off TX mode.
259 	 */
260 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261 
262 	/*
263 	 * Check for ack.
264 	 */
265 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268 
269 	return(ack);
270 }
271 
272 /*
273  * Read a byte of data stored in the EEPROM at address 'addr.'
274  * We have to send two address bytes since the EEPROM can hold
275  * more than 256 bytes of data.
276  */
277 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278 	struct ti_softc		*sc;
279 	int			addr;
280 	u_int8_t		*dest;
281 {
282 	register int		i;
283 	u_int8_t		byte = 0;
284 
285 	EEPROM_START;
286 
287 	/*
288 	 * Send write control code to EEPROM.
289 	 */
290 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291 		printf("ti%d: failed to send write command, status: %x\n",
292 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293 		return(1);
294 	}
295 
296 	/*
297 	 * Send first byte of address of byte we want to read.
298 	 */
299 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300 		printf("ti%d: failed to send address, status: %x\n",
301 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 		return(1);
303 	}
304 	/*
305 	 * Send second byte address of byte we want to read.
306 	 */
307 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308 		printf("ti%d: failed to send address, status: %x\n",
309 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310 		return(1);
311 	}
312 
313 	EEPROM_STOP;
314 	EEPROM_START;
315 	/*
316 	 * Send read control code to EEPROM.
317 	 */
318 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319 		printf("ti%d: failed to send read command, status: %x\n",
320 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321 		return(1);
322 	}
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328 	for (i = 0x80; i; i >>= 1) {
329 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330 		DELAY(1);
331 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332 			byte |= i;
333 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334 		DELAY(1);
335 	}
336 
337 	EEPROM_STOP;
338 
339 	/*
340 	 * No ACK generated for read, so just return byte.
341 	 */
342 
343 	*dest = byte;
344 
345 	return(0);
346 }
347 
348 /*
349  * Read a sequence of bytes from the EEPROM.
350  */
351 static int ti_read_eeprom(sc, dest, off, cnt)
352 	struct ti_softc		*sc;
353 	caddr_t			dest;
354 	int			off;
355 	int			cnt;
356 {
357 	int			err = 0, i;
358 	u_int8_t		byte = 0;
359 
360 	for (i = 0; i < cnt; i++) {
361 		err = ti_eeprom_getbyte(sc, off + i, &byte);
362 		if (err)
363 			break;
364 		*(dest + i) = byte;
365 	}
366 
367 	return(err ? 1 : 0);
368 }
369 
370 /*
371  * NIC memory access function. Can be used to either clear a section
372  * of NIC local memory or (if buf is non-NULL) copy data into it.
373  */
374 static void ti_mem(sc, addr, len, buf)
375 	struct ti_softc		*sc;
376 	u_int32_t		addr, len;
377 	caddr_t			buf;
378 {
379 	int			segptr, segsize, cnt;
380 	caddr_t			ti_winbase, ptr;
381 
382 	segptr = addr;
383 	cnt = len;
384 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385 	ptr = buf;
386 
387 	while(cnt) {
388 		if (cnt < TI_WINLEN)
389 			segsize = cnt;
390 		else
391 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393 		if (buf == NULL)
394 			bzero((char *)ti_winbase + (segptr &
395 			    (TI_WINLEN - 1)), segsize);
396 		else {
397 			bcopy((char *)ptr, (char *)ti_winbase +
398 			    (segptr & (TI_WINLEN - 1)), segsize);
399 			ptr += segsize;
400 		}
401 		segptr += segsize;
402 		cnt -= segsize;
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Load firmware image into the NIC. Check that the firmware revision
410  * is acceptable and see if we want the firmware for the Tigon 1 or
411  * Tigon 2.
412  */
413 static void ti_loadfw(sc)
414 	struct ti_softc		*sc;
415 {
416 	switch(sc->ti_hwrev) {
417 	case TI_HWREV_TIGON:
418 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421 			printf("ti%d: firmware revision mismatch; want "
422 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425 			    tigonFwReleaseMinor, tigonFwReleaseFix);
426 			return;
427 		}
428 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429 		    (caddr_t)tigonFwText);
430 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431 		    (caddr_t)tigonFwData);
432 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433 		    (caddr_t)tigonFwRodata);
434 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437 		break;
438 	case TI_HWREV_TIGON_II:
439 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442 			printf("ti%d: firmware revision mismatch; want "
443 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447 			return;
448 		}
449 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450 		    (caddr_t)tigon2FwText);
451 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452 		    (caddr_t)tigon2FwData);
453 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454 		    (caddr_t)tigon2FwRodata);
455 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458 		break;
459 	default:
460 		printf("ti%d: can't load firmware: unknown hardware rev\n",
461 		    sc->ti_unit);
462 		break;
463 	}
464 
465 	return;
466 }
467 
468 /*
469  * Send the NIC a command via the command ring.
470  */
471 static void ti_cmd(sc, cmd)
472 	struct ti_softc		*sc;
473 	struct ti_cmd_desc	*cmd;
474 {
475 	u_int32_t		index;
476 
477 	if (sc->ti_rdata->ti_cmd_ring == NULL)
478 		return;
479 
480 	index = sc->ti_cmd_saved_prodidx;
481 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482 	TI_INC(index, TI_CMD_RING_CNT);
483 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484 	sc->ti_cmd_saved_prodidx = index;
485 
486 	return;
487 }
488 
489 /*
490  * Send the NIC an extended command. The 'len' parameter specifies the
491  * number of command slots to include after the initial command.
492  */
493 static void ti_cmd_ext(sc, cmd, arg, len)
494 	struct ti_softc		*sc;
495 	struct ti_cmd_desc	*cmd;
496 	caddr_t			arg;
497 	int			len;
498 {
499 	u_int32_t		index;
500 	register int		i;
501 
502 	if (sc->ti_rdata->ti_cmd_ring == NULL)
503 		return;
504 
505 	index = sc->ti_cmd_saved_prodidx;
506 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507 	TI_INC(index, TI_CMD_RING_CNT);
508 	for (i = 0; i < len; i++) {
509 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510 		    *(u_int32_t *)(&arg[i * 4]));
511 		TI_INC(index, TI_CMD_RING_CNT);
512 	}
513 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514 	sc->ti_cmd_saved_prodidx = index;
515 
516 	return;
517 }
518 
519 /*
520  * Handle events that have triggered interrupts.
521  */
522 static void ti_handle_events(sc)
523 	struct ti_softc		*sc;
524 {
525 	struct ti_event_desc	*e;
526 
527 	if (sc->ti_rdata->ti_event_ring == NULL)
528 		return;
529 
530 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532 		switch(e->ti_event) {
533 		case TI_EV_LINKSTAT_CHANGED:
534 			sc->ti_linkstat = e->ti_code;
535 			if (e->ti_code == TI_EV_CODE_LINK_UP)
536 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538 				printf("ti%d: gigabit link up\n", sc->ti_unit);
539 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540 				printf("ti%d: link down\n", sc->ti_unit);
541 			break;
542 		case TI_EV_ERROR:
543 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544 				printf("ti%d: invalid command\n", sc->ti_unit);
545 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546 				printf("ti%d: unknown command\n", sc->ti_unit);
547 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548 				printf("ti%d: bad config data\n", sc->ti_unit);
549 			break;
550 		case TI_EV_FIRMWARE_UP:
551 			ti_init2(sc);
552 			break;
553 		case TI_EV_STATS_UPDATED:
554 			ti_stats_update(sc);
555 			break;
556 		case TI_EV_RESET_JUMBO_RING:
557 		case TI_EV_MCAST_UPDATED:
558 			/* Who cares. */
559 			break;
560 		default:
561 			printf("ti%d: unknown event: %d\n",
562 			    sc->ti_unit, e->ti_event);
563 			break;
564 		}
565 		/* Advance the consumer index. */
566 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568 	}
569 
570 	return;
571 }
572 
573 /*
574  * Memory management for the jumbo receive ring is a pain in the
575  * butt. We need to allocate at least 9018 bytes of space per frame,
576  * _and_ it has to be contiguous (unless you use the extended
577  * jumbo descriptor format). Using malloc() all the time won't
578  * work: malloc() allocates memory in powers of two, which means we
579  * would end up wasting a considerable amount of space by allocating
580  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581  * to do our own memory management.
582  *
583  * The driver needs to allocate a contiguous chunk of memory at boot
584  * time. We then chop this up ourselves into 9K pieces and use them
585  * as external mbuf storage.
586  *
587  * One issue here is how much memory to allocate. The jumbo ring has
588  * 256 slots in it, but at 9K per slot than can consume over 2MB of
589  * RAM. This is a bit much, especially considering we also need
590  * RAM for the standard ring and mini ring (on the Tigon 2). To
591  * save space, we only actually allocate enough memory for 64 slots
592  * by default, which works out to between 500 and 600K. This can
593  * be tuned by changing a #define in if_tireg.h.
594  */
595 
596 static int ti_alloc_jumbo_mem(sc)
597 	struct ti_softc		*sc;
598 {
599 	caddr_t			ptr;
600 	register int		i;
601 	struct ti_jpool_entry   *entry;
602 
603 	/* Grab a big chunk o' storage. */
604 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606 
607 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609 		return(ENOBUFS);
610 	}
611 
612 	SLIST_INIT(&sc->ti_jfree_listhead);
613 	SLIST_INIT(&sc->ti_jinuse_listhead);
614 
615 	/*
616 	 * Now divide it up into 9K pieces and save the addresses
617 	 * in an array.
618 	 */
619 	ptr = sc->ti_cdata.ti_jumbo_buf;
620 	for (i = 0; i < TI_JSLOTS; i++) {
621 		sc->ti_cdata.ti_jslots[i] = ptr;
622 		ptr += TI_JLEN;
623 		entry = malloc(sizeof(struct ti_jpool_entry),
624 			       M_DEVBUF, M_NOWAIT);
625 		if (entry == NULL) {
626 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
627 			           M_DEVBUF);
628 			sc->ti_cdata.ti_jumbo_buf = NULL;
629 			printf("ti%d: no memory for jumbo "
630 			    "buffer queue!\n", sc->ti_unit);
631 			return(ENOBUFS);
632 		}
633 		entry->slot = i;
634 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
635 	}
636 
637 	return(0);
638 }
639 
640 /*
641  * Allocate a jumbo buffer.
642  */
643 static void *ti_jalloc(sc)
644 	struct ti_softc		*sc;
645 {
646 	struct ti_jpool_entry   *entry;
647 
648 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
649 
650 	if (entry == NULL) {
651 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
652 		return(NULL);
653 	}
654 
655 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
656 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
657 	return(sc->ti_cdata.ti_jslots[entry->slot]);
658 }
659 
660 /*
661  * Release a jumbo buffer.
662  */
663 static void ti_jfree(buf, args)
664 	caddr_t			buf;
665 	void			*args;
666 {
667 	struct ti_softc		*sc;
668 	int		        i;
669 	struct ti_jpool_entry   *entry;
670 
671 	/* Extract the softc struct pointer. */
672 	sc = (struct ti_softc *)args;
673 
674 	if (sc == NULL)
675 		panic("ti_jfree: didn't get softc pointer!");
676 
677 	/* calculate the slot this buffer belongs to */
678 	i = ((vm_offset_t)buf
679 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
680 
681 	if ((i < 0) || (i >= TI_JSLOTS))
682 		panic("ti_jfree: asked to free buffer that we don't manage!");
683 
684 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
685 	if (entry == NULL)
686 		panic("ti_jfree: buffer not in use!");
687 	entry->slot = i;
688 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
689 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
690 
691 	return;
692 }
693 
694 
695 /*
696  * Intialize a standard receive ring descriptor.
697  */
698 static int ti_newbuf_std(sc, i, m)
699 	struct ti_softc		*sc;
700 	int			i;
701 	struct mbuf		*m;
702 {
703 	struct mbuf		*m_new = NULL;
704 	struct ti_rx_desc	*r;
705 
706 	if (m == NULL) {
707 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
708 		if (m_new == NULL) {
709 			printf("ti%d: mbuf allocation failed "
710 			    "-- packet dropped!\n", sc->ti_unit);
711 			return(ENOBUFS);
712 		}
713 
714 		MCLGET(m_new, M_DONTWAIT);
715 		if (!(m_new->m_flags & M_EXT)) {
716 			printf("ti%d: cluster allocation failed "
717 			    "-- packet dropped!\n", sc->ti_unit);
718 			m_freem(m_new);
719 			return(ENOBUFS);
720 		}
721 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
722 	} else {
723 		m_new = m;
724 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
725 		m_new->m_data = m_new->m_ext.ext_buf;
726 	}
727 
728 	m_adj(m_new, ETHER_ALIGN);
729 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
730 	r = &sc->ti_rdata->ti_rx_std_ring[i];
731 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
732 	r->ti_type = TI_BDTYPE_RECV_BD;
733 	r->ti_flags = 0;
734 	if (sc->arpcom.ac_if.if_hwassist)
735 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
736 	r->ti_len = m_new->m_len;
737 	r->ti_idx = i;
738 
739 	return(0);
740 }
741 
742 /*
743  * Intialize a mini receive ring descriptor. This only applies to
744  * the Tigon 2.
745  */
746 static int ti_newbuf_mini(sc, i, m)
747 	struct ti_softc		*sc;
748 	int			i;
749 	struct mbuf		*m;
750 {
751 	struct mbuf		*m_new = NULL;
752 	struct ti_rx_desc	*r;
753 
754 	if (m == NULL) {
755 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
756 		if (m_new == NULL) {
757 			printf("ti%d: mbuf allocation failed "
758 			    "-- packet dropped!\n", sc->ti_unit);
759 			return(ENOBUFS);
760 		}
761 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
762 	} else {
763 		m_new = m;
764 		m_new->m_data = m_new->m_pktdat;
765 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
766 	}
767 
768 	m_adj(m_new, ETHER_ALIGN);
769 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
770 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
771 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
772 	r->ti_type = TI_BDTYPE_RECV_BD;
773 	r->ti_flags = TI_BDFLAG_MINI_RING;
774 	if (sc->arpcom.ac_if.if_hwassist)
775 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
776 	r->ti_len = m_new->m_len;
777 	r->ti_idx = i;
778 
779 	return(0);
780 }
781 
782 /*
783  * Initialize a jumbo receive ring descriptor. This allocates
784  * a jumbo buffer from the pool managed internally by the driver.
785  */
786 static int ti_newbuf_jumbo(sc, i, m)
787 	struct ti_softc		*sc;
788 	int			i;
789 	struct mbuf		*m;
790 {
791 	struct mbuf		*m_new = NULL;
792 	struct ti_rx_desc	*r;
793 
794 	if (m == NULL) {
795 		caddr_t			*buf = NULL;
796 
797 		/* Allocate the mbuf. */
798 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
799 		if (m_new == NULL) {
800 			printf("ti%d: mbuf allocation failed "
801 			    "-- packet dropped!\n", sc->ti_unit);
802 			return(ENOBUFS);
803 		}
804 
805 		/* Allocate the jumbo buffer */
806 		buf = ti_jalloc(sc);
807 		if (buf == NULL) {
808 			m_freem(m_new);
809 			printf("ti%d: jumbo allocation failed "
810 			    "-- packet dropped!\n", sc->ti_unit);
811 			return(ENOBUFS);
812 		}
813 
814 		/* Attach the buffer to the mbuf. */
815 		m_new->m_data = (void *) buf;
816 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
817 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
818 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
819 	} else {
820 		m_new = m;
821 		m_new->m_data = m_new->m_ext.ext_buf;
822 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
823 	}
824 
825 	m_adj(m_new, ETHER_ALIGN);
826 	/* Set up the descriptor. */
827 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
828 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
829 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
830 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
831 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
832 	if (sc->arpcom.ac_if.if_hwassist)
833 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
834 	r->ti_len = m_new->m_len;
835 	r->ti_idx = i;
836 
837 	return(0);
838 }
839 
840 /*
841  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
842  * that's 1MB or memory, which is a lot. For now, we fill only the first
843  * 256 ring entries and hope that our CPU is fast enough to keep up with
844  * the NIC.
845  */
846 static int ti_init_rx_ring_std(sc)
847 	struct ti_softc		*sc;
848 {
849 	register int		i;
850 	struct ti_cmd_desc	cmd;
851 
852 	for (i = 0; i < TI_SSLOTS; i++) {
853 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
854 			return(ENOBUFS);
855 	};
856 
857 	TI_UPDATE_STDPROD(sc, i - 1);
858 	sc->ti_std = i - 1;
859 
860 	return(0);
861 }
862 
863 static void ti_free_rx_ring_std(sc)
864 	struct ti_softc		*sc;
865 {
866 	register int		i;
867 
868 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
869 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
870 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
871 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
872 		}
873 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
874 		    sizeof(struct ti_rx_desc));
875 	}
876 
877 	return;
878 }
879 
880 static int ti_init_rx_ring_jumbo(sc)
881 	struct ti_softc		*sc;
882 {
883 	register int		i;
884 	struct ti_cmd_desc	cmd;
885 
886 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
887 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
888 			return(ENOBUFS);
889 	};
890 
891 	TI_UPDATE_JUMBOPROD(sc, i - 1);
892 	sc->ti_jumbo = i - 1;
893 
894 	return(0);
895 }
896 
897 static void ti_free_rx_ring_jumbo(sc)
898 	struct ti_softc		*sc;
899 {
900 	register int		i;
901 
902 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
903 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
904 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
905 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
906 		}
907 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
908 		    sizeof(struct ti_rx_desc));
909 	}
910 
911 	return;
912 }
913 
914 static int ti_init_rx_ring_mini(sc)
915 	struct ti_softc		*sc;
916 {
917 	register int		i;
918 
919 	for (i = 0; i < TI_MSLOTS; i++) {
920 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
921 			return(ENOBUFS);
922 	};
923 
924 	TI_UPDATE_MINIPROD(sc, i - 1);
925 	sc->ti_mini = i - 1;
926 
927 	return(0);
928 }
929 
930 static void ti_free_rx_ring_mini(sc)
931 	struct ti_softc		*sc;
932 {
933 	register int		i;
934 
935 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
936 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
937 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
938 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
939 		}
940 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
941 		    sizeof(struct ti_rx_desc));
942 	}
943 
944 	return;
945 }
946 
947 static void ti_free_tx_ring(sc)
948 	struct ti_softc		*sc;
949 {
950 	register int		i;
951 
952 	if (sc->ti_rdata->ti_tx_ring == NULL)
953 		return;
954 
955 	for (i = 0; i < TI_TX_RING_CNT; i++) {
956 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
957 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
958 			sc->ti_cdata.ti_tx_chain[i] = NULL;
959 		}
960 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
961 		    sizeof(struct ti_tx_desc));
962 	}
963 
964 	return;
965 }
966 
967 static int ti_init_tx_ring(sc)
968 	struct ti_softc		*sc;
969 {
970 	sc->ti_txcnt = 0;
971 	sc->ti_tx_saved_considx = 0;
972 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
973 	return(0);
974 }
975 
976 /*
977  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
978  * but we have to support the old way too so that Tigon 1 cards will
979  * work.
980  */
981 void ti_add_mcast(sc, addr)
982 	struct ti_softc		*sc;
983 	struct ether_addr	*addr;
984 {
985 	struct ti_cmd_desc	cmd;
986 	u_int16_t		*m;
987 	u_int32_t		ext[2] = {0, 0};
988 
989 	m = (u_int16_t *)&addr->octet[0];
990 
991 	switch(sc->ti_hwrev) {
992 	case TI_HWREV_TIGON:
993 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
994 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
995 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
996 		break;
997 	case TI_HWREV_TIGON_II:
998 		ext[0] = htons(m[0]);
999 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1000 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1001 		break;
1002 	default:
1003 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1004 		break;
1005 	}
1006 
1007 	return;
1008 }
1009 
1010 void ti_del_mcast(sc, addr)
1011 	struct ti_softc		*sc;
1012 	struct ether_addr	*addr;
1013 {
1014 	struct ti_cmd_desc	cmd;
1015 	u_int16_t		*m;
1016 	u_int32_t		ext[2] = {0, 0};
1017 
1018 	m = (u_int16_t *)&addr->octet[0];
1019 
1020 	switch(sc->ti_hwrev) {
1021 	case TI_HWREV_TIGON:
1022 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1023 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1024 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1025 		break;
1026 	case TI_HWREV_TIGON_II:
1027 		ext[0] = htons(m[0]);
1028 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1029 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1030 		break;
1031 	default:
1032 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1033 		break;
1034 	}
1035 
1036 	return;
1037 }
1038 
1039 /*
1040  * Configure the Tigon's multicast address filter.
1041  *
1042  * The actual multicast table management is a bit of a pain, thanks to
1043  * slight brain damage on the part of both Alteon and us. With our
1044  * multicast code, we are only alerted when the multicast address table
1045  * changes and at that point we only have the current list of addresses:
1046  * we only know the current state, not the previous state, so we don't
1047  * actually know what addresses were removed or added. The firmware has
1048  * state, but we can't get our grubby mits on it, and there is no 'delete
1049  * all multicast addresses' command. Hence, we have to maintain our own
1050  * state so we know what addresses have been programmed into the NIC at
1051  * any given time.
1052  */
1053 static void ti_setmulti(sc)
1054 	struct ti_softc		*sc;
1055 {
1056 	struct ifnet		*ifp;
1057 	struct ifmultiaddr	*ifma;
1058 	struct ti_cmd_desc	cmd;
1059 	struct ti_mc_entry	*mc;
1060 	u_int32_t		intrs;
1061 
1062 	ifp = &sc->arpcom.ac_if;
1063 
1064 	if (ifp->if_flags & IFF_ALLMULTI) {
1065 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1066 		return;
1067 	} else {
1068 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1069 	}
1070 
1071 	/* Disable interrupts. */
1072 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1073 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1074 
1075 	/* First, zot all the existing filters. */
1076 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1077 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1078 		ti_del_mcast(sc, &mc->mc_addr);
1079 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1080 		free(mc, M_DEVBUF);
1081 	}
1082 
1083 	/* Now program new ones. */
1084 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1085 		if (ifma->ifma_addr->sa_family != AF_LINK)
1086 			continue;
1087 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1088 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1089 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1090 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1091 		ti_add_mcast(sc, &mc->mc_addr);
1092 	}
1093 
1094 	/* Re-enable interrupts. */
1095 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1096 
1097 	return;
1098 }
1099 
1100 /*
1101  * Check to see if the BIOS has configured us for a 64 bit slot when
1102  * we aren't actually in one. If we detect this condition, we can work
1103  * around it on the Tigon 2 by setting a bit in the PCI state register,
1104  * but for the Tigon 1 we must give up and abort the interface attach.
1105  */
1106 static int ti_64bitslot_war(sc)
1107 	struct ti_softc		*sc;
1108 {
1109 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1110 		CSR_WRITE_4(sc, 0x600, 0);
1111 		CSR_WRITE_4(sc, 0x604, 0);
1112 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1113 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1114 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1115 				return(EINVAL);
1116 			else {
1117 				TI_SETBIT(sc, TI_PCI_STATE,
1118 				    TI_PCISTATE_32BIT_BUS);
1119 				return(0);
1120 			}
1121 		}
1122 	}
1123 
1124 	return(0);
1125 }
1126 
1127 /*
1128  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1129  * self-test results.
1130  */
1131 static int ti_chipinit(sc)
1132 	struct ti_softc		*sc;
1133 {
1134 	u_int32_t		cacheline;
1135 	u_int32_t		pci_writemax = 0;
1136 
1137 	/* Initialize link to down state. */
1138 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1139 
1140 	sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1141 
1142 	/* Set endianness before we access any non-PCI registers. */
1143 #if BYTE_ORDER == BIG_ENDIAN
1144 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1145 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1146 #else
1147 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1148 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1149 #endif
1150 
1151 	/* Check the ROM failed bit to see if self-tests passed. */
1152 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1153 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1154 		return(ENODEV);
1155 	}
1156 
1157 	/* Halt the CPU. */
1158 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1159 
1160 	/* Figure out the hardware revision. */
1161 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1162 	case TI_REV_TIGON_I:
1163 		sc->ti_hwrev = TI_HWREV_TIGON;
1164 		break;
1165 	case TI_REV_TIGON_II:
1166 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1167 		break;
1168 	default:
1169 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1170 		return(ENODEV);
1171 	}
1172 
1173 	/* Do special setup for Tigon 2. */
1174 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1175 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1176 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1177 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1178 	}
1179 
1180 	/* Set up the PCI state register. */
1181 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1182 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1183 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1184 	}
1185 
1186 	/* Clear the read/write max DMA parameters. */
1187 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1188 	    TI_PCISTATE_READ_MAXDMA));
1189 
1190 	/* Get cache line size. */
1191 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1192 
1193 	/*
1194 	 * If the system has set enabled the PCI memory write
1195 	 * and invalidate command in the command register, set
1196 	 * the write max parameter accordingly. This is necessary
1197 	 * to use MWI with the Tigon 2.
1198 	 */
1199 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1200 		switch(cacheline) {
1201 		case 1:
1202 		case 4:
1203 		case 8:
1204 		case 16:
1205 		case 32:
1206 		case 64:
1207 			break;
1208 		default:
1209 		/* Disable PCI memory write and invalidate. */
1210 			if (bootverbose)
1211 				printf("ti%d: cache line size %d not "
1212 				    "supported; disabling PCI MWI\n",
1213 				    sc->ti_unit, cacheline);
1214 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1215 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1216 			break;
1217 		}
1218 	}
1219 
1220 #ifdef __brokenalpha__
1221 	/*
1222 	 * From the Alteon sample driver:
1223 	 * Must insure that we do not cross an 8K (bytes) boundary
1224 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1225 	 * restriction on some ALPHA platforms with early revision
1226 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1227 	 */
1228 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1229 #else
1230 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1231 #endif
1232 
1233 	/* This sets the min dma param all the way up (0xff). */
1234 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1235 
1236 	/* Configure DMA variables. */
1237 #if BYTE_ORDER == BIG_ENDIAN
1238 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1239 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1240 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1241 	    TI_OPMODE_DONT_FRAG_JUMBO);
1242 #else
1243 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1244 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1245 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1246 #endif
1247 
1248 	/*
1249 	 * Only allow 1 DMA channel to be active at a time.
1250 	 * I don't think this is a good idea, but without it
1251 	 * the firmware racks up lots of nicDmaReadRingFull
1252 	 * errors.  This is not compatible with hardware checksums.
1253 	 */
1254 	if (sc->arpcom.ac_if.if_hwassist == 0)
1255 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1256 
1257 	/* Recommended settings from Tigon manual. */
1258 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1259 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1260 
1261 	if (ti_64bitslot_war(sc)) {
1262 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1263 		    "but we aren't", sc->ti_unit);
1264 		return(EINVAL);
1265 	}
1266 
1267 	return(0);
1268 }
1269 
1270 /*
1271  * Initialize the general information block and firmware, and
1272  * start the CPU(s) running.
1273  */
1274 static int ti_gibinit(sc)
1275 	struct ti_softc		*sc;
1276 {
1277 	struct ti_rcb		*rcb;
1278 	int			i;
1279 	struct ifnet		*ifp;
1280 
1281 	ifp = &sc->arpcom.ac_if;
1282 
1283 	/* Disable interrupts for now. */
1284 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1285 
1286 	/* Tell the chip where to find the general information block. */
1287 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1288 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1289 
1290 	/* Load the firmware into SRAM. */
1291 	ti_loadfw(sc);
1292 
1293 	/* Set up the contents of the general info and ring control blocks. */
1294 
1295 	/* Set up the event ring and producer pointer. */
1296 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1297 
1298 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1299 	rcb->ti_flags = 0;
1300 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1301 	    vtophys(&sc->ti_ev_prodidx);
1302 	sc->ti_ev_prodidx.ti_idx = 0;
1303 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1304 	sc->ti_ev_saved_considx = 0;
1305 
1306 	/* Set up the command ring and producer mailbox. */
1307 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1308 
1309 	sc->ti_rdata->ti_cmd_ring =
1310 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1311 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1312 	rcb->ti_flags = 0;
1313 	rcb->ti_max_len = 0;
1314 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1315 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1316 	}
1317 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1318 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1319 	sc->ti_cmd_saved_prodidx = 0;
1320 
1321 	/*
1322 	 * Assign the address of the stats refresh buffer.
1323 	 * We re-use the current stats buffer for this to
1324 	 * conserve memory.
1325 	 */
1326 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1327 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1328 
1329 	/* Set up the standard receive ring. */
1330 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1331 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1332 	rcb->ti_max_len = TI_FRAMELEN;
1333 	rcb->ti_flags = 0;
1334 	if (sc->arpcom.ac_if.if_hwassist)
1335 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1336 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1337 #if NVLAN > 0
1338 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1339 #endif
1340 
1341 	/* Set up the jumbo receive ring. */
1342 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1343 	TI_HOSTADDR(rcb->ti_hostaddr) =
1344 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1345 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1346 	rcb->ti_flags = 0;
1347 	if (sc->arpcom.ac_if.if_hwassist)
1348 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1349 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1350 #if NVLAN > 0
1351 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1352 #endif
1353 
1354 	/*
1355 	 * Set up the mini ring. Only activated on the
1356 	 * Tigon 2 but the slot in the config block is
1357 	 * still there on the Tigon 1.
1358 	 */
1359 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1360 	TI_HOSTADDR(rcb->ti_hostaddr) =
1361 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1362 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1363 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1364 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1365 	else
1366 		rcb->ti_flags = 0;
1367 	if (sc->arpcom.ac_if.if_hwassist)
1368 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1369 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1370 #if NVLAN > 0
1371 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1372 #endif
1373 
1374 	/*
1375 	 * Set up the receive return ring.
1376 	 */
1377 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1378 	TI_HOSTADDR(rcb->ti_hostaddr) =
1379 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1380 	rcb->ti_flags = 0;
1381 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1382 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1383 	    vtophys(&sc->ti_return_prodidx);
1384 
1385 	/*
1386 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1387 	 * of putting the transmit ring in the host's address space and
1388 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1389 	 * memory and accessing it through the shared memory region. We
1390 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1391 	 * so we have to revert to the shared memory scheme if we detect
1392 	 * a Tigon 1 chip.
1393 	 */
1394 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1395 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1396 		sc->ti_rdata->ti_tx_ring_nic =
1397 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1398 	}
1399 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1400 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1401 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1402 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1403 		rcb->ti_flags = 0;
1404 	else
1405 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1406 #if NVLAN > 0
1407 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1408 #endif
1409 	if (sc->arpcom.ac_if.if_hwassist)
1410 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1411 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1412 	rcb->ti_max_len = TI_TX_RING_CNT;
1413 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1414 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1415 	else
1416 		TI_HOSTADDR(rcb->ti_hostaddr) =
1417 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1418 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1419 	    vtophys(&sc->ti_tx_considx);
1420 
1421 	/* Set up tuneables */
1422 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1423 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1424 		    (sc->ti_rx_coal_ticks / 10));
1425 	else
1426 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1427 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1428 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1429 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1430 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1431 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1432 
1433 	/* Turn interrupts on. */
1434 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1435 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1436 
1437 	/* Start CPU. */
1438 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1439 
1440 	return(0);
1441 }
1442 
1443 /*
1444  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1445  * against our list and return its name if we find a match.
1446  */
1447 static int ti_probe(dev)
1448 	device_t		dev;
1449 {
1450 	struct ti_type		*t;
1451 
1452 	t = ti_devs;
1453 
1454 	while(t->ti_name != NULL) {
1455 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1456 		    (pci_get_device(dev) == t->ti_did)) {
1457 			device_set_desc(dev, t->ti_name);
1458 			return(0);
1459 		}
1460 		t++;
1461 	}
1462 
1463 	return(ENXIO);
1464 }
1465 
1466 static int ti_attach(dev)
1467 	device_t		dev;
1468 {
1469 	u_int32_t		command;
1470 	struct ifnet		*ifp;
1471 	struct ti_softc		*sc;
1472 	int			unit, error = 0, rid;
1473 
1474 	sc = device_get_softc(dev);
1475 	unit = device_get_unit(dev);
1476 	bzero(sc, sizeof(struct ti_softc));
1477 
1478 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1479 	TI_LOCK(sc);
1480 
1481 	/*
1482 	 * Map control/status registers.
1483 	 */
1484 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1485 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1486 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1487 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1488 
1489 	if (!(command & PCIM_CMD_MEMEN)) {
1490 		printf("ti%d: failed to enable memory mapping!\n", unit);
1491 		error = ENXIO;
1492 		goto fail;
1493 	}
1494 
1495 	rid = TI_PCI_LOMEM;
1496 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1497 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1498 
1499 	if (sc->ti_res == NULL) {
1500 		printf ("ti%d: couldn't map memory\n", unit);
1501 		error = ENXIO;
1502 		goto fail;
1503 	}
1504 
1505 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1506 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1507 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1508 
1509 	/* Allocate interrupt */
1510 	rid = 0;
1511 
1512 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1513 	    RF_SHAREABLE | RF_ACTIVE);
1514 
1515 	if (sc->ti_irq == NULL) {
1516 		printf("ti%d: couldn't map interrupt\n", unit);
1517 		error = ENXIO;
1518 		goto fail;
1519 	}
1520 
1521 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1522 	   ti_intr, sc, &sc->ti_intrhand);
1523 
1524 	if (error) {
1525 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1526 		bus_release_resource(dev, SYS_RES_MEMORY,
1527 		    TI_PCI_LOMEM, sc->ti_res);
1528 		printf("ti%d: couldn't set up irq\n", unit);
1529 		goto fail;
1530 	}
1531 
1532 	sc->ti_unit = unit;
1533 
1534 	if (ti_chipinit(sc)) {
1535 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1536 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1537 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1538 		bus_release_resource(dev, SYS_RES_MEMORY,
1539 		    TI_PCI_LOMEM, sc->ti_res);
1540 		error = ENXIO;
1541 		goto fail;
1542 	}
1543 
1544 	/* Zero out the NIC's on-board SRAM. */
1545 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1546 
1547 	/* Init again -- zeroing memory may have clobbered some registers. */
1548 	if (ti_chipinit(sc)) {
1549 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1550 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1551 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1552 		bus_release_resource(dev, SYS_RES_MEMORY,
1553 		    TI_PCI_LOMEM, sc->ti_res);
1554 		error = ENXIO;
1555 		goto fail;
1556 	}
1557 
1558 	/*
1559 	 * Get station address from the EEPROM. Note: the manual states
1560 	 * that the MAC address is at offset 0x8c, however the data is
1561 	 * stored as two longwords (since that's how it's loaded into
1562 	 * the NIC). This means the MAC address is actually preceeded
1563 	 * by two zero bytes. We need to skip over those.
1564 	 */
1565 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1566 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1567 		printf("ti%d: failed to read station address\n", unit);
1568 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1569 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1570 		bus_release_resource(dev, SYS_RES_MEMORY,
1571 		    TI_PCI_LOMEM, sc->ti_res);
1572 		error = ENXIO;
1573 		goto fail;
1574 	}
1575 
1576 	/*
1577 	 * A Tigon chip was detected. Inform the world.
1578 	 */
1579 	printf("ti%d: Ethernet address: %6D\n", unit,
1580 				sc->arpcom.ac_enaddr, ":");
1581 
1582 	/* Allocate the general information block and ring buffers. */
1583 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1584 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1585 
1586 	if (sc->ti_rdata == NULL) {
1587 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1588 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1589 		bus_release_resource(dev, SYS_RES_MEMORY,
1590 		    TI_PCI_LOMEM, sc->ti_res);
1591 		error = ENXIO;
1592 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1593 		goto fail;
1594 	}
1595 
1596 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1597 
1598 	/* Try to allocate memory for jumbo buffers. */
1599 	if (ti_alloc_jumbo_mem(sc)) {
1600 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1601 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1602 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1603 		bus_release_resource(dev, SYS_RES_MEMORY,
1604 		    TI_PCI_LOMEM, sc->ti_res);
1605 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1606 		    M_DEVBUF);
1607 		error = ENXIO;
1608 		goto fail;
1609 	}
1610 
1611 	/*
1612 	 * We really need a better way to tell a 1000baseTX card
1613 	 * from a 1000baseSX one, since in theory there could be
1614 	 * OEMed 1000baseTX cards from lame vendors who aren't
1615 	 * clever enough to change the PCI ID. For the moment
1616 	 * though, the AceNIC is the only copper card available.
1617 	 */
1618 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1619 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1620 		sc->ti_copper = 1;
1621 	/* Ok, it's not the only copper card available. */
1622 	if (pci_get_vendor(dev) == NG_VENDORID &&
1623 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1624 		sc->ti_copper = 1;
1625 
1626 	/* Set default tuneable values. */
1627 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1628 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1629 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1630 	sc->ti_rx_max_coal_bds = 64;
1631 	sc->ti_tx_max_coal_bds = 128;
1632 	sc->ti_tx_buf_ratio = 21;
1633 
1634 	/* Set up ifnet structure */
1635 	ifp = &sc->arpcom.ac_if;
1636 	ifp->if_softc = sc;
1637 	ifp->if_unit = sc->ti_unit;
1638 	ifp->if_name = "ti";
1639 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1640 	ifp->if_ioctl = ti_ioctl;
1641 	ifp->if_output = ether_output;
1642 	ifp->if_start = ti_start;
1643 	ifp->if_watchdog = ti_watchdog;
1644 	ifp->if_init = ti_init;
1645 	ifp->if_mtu = ETHERMTU;
1646 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1647 
1648 	/* Set up ifmedia support. */
1649 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1650 	if (sc->ti_copper) {
1651 		/*
1652 		 * Copper cards allow manual 10/100 mode selection,
1653 		 * but not manual 1000baseTX mode selection. Why?
1654 		 * Becuase currently there's no way to specify the
1655 		 * master/slave setting through the firmware interface,
1656 		 * so Alteon decided to just bag it and handle it
1657 		 * via autonegotiation.
1658 		 */
1659 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1660 		ifmedia_add(&sc->ifmedia,
1661 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1662 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1663 		ifmedia_add(&sc->ifmedia,
1664 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1665 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1666 		ifmedia_add(&sc->ifmedia,
1667 		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1668 	} else {
1669 		/* Fiber cards don't support 10/100 modes. */
1670 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1671 		ifmedia_add(&sc->ifmedia,
1672 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1673 	}
1674 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1675 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1676 
1677 	/*
1678 	 * Call MI attach routine.
1679 	 */
1680 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1681 	TI_UNLOCK(sc);
1682 	return(0);
1683 
1684 fail:
1685 	TI_UNLOCK(sc);
1686 	mtx_destroy(&sc->ti_mtx);
1687 	return(error);
1688 }
1689 
1690 static int ti_detach(dev)
1691 	device_t		dev;
1692 {
1693 	struct ti_softc		*sc;
1694 	struct ifnet		*ifp;
1695 
1696 
1697 	sc = device_get_softc(dev);
1698 	TI_LOCK(sc);
1699 	ifp = &sc->arpcom.ac_if;
1700 
1701 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1702 	ti_stop(sc);
1703 
1704 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1705 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1706 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1707 
1708 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1709 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1710 	ifmedia_removeall(&sc->ifmedia);
1711 
1712 	TI_UNLOCK(sc);
1713 	mtx_destroy(&sc->ti_mtx);
1714 
1715 	return(0);
1716 }
1717 
1718 /*
1719  * Frame reception handling. This is called if there's a frame
1720  * on the receive return list.
1721  *
1722  * Note: we have to be able to handle three possibilities here:
1723  * 1) the frame is from the mini receive ring (can only happen)
1724  *    on Tigon 2 boards)
1725  * 2) the frame is from the jumbo recieve ring
1726  * 3) the frame is from the standard receive ring
1727  */
1728 
1729 static void ti_rxeof(sc)
1730 	struct ti_softc		*sc;
1731 {
1732 	struct ifnet		*ifp;
1733 	struct ti_cmd_desc	cmd;
1734 
1735 	ifp = &sc->arpcom.ac_if;
1736 
1737 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1738 		struct ti_rx_desc	*cur_rx;
1739 		u_int32_t		rxidx;
1740 		struct ether_header	*eh;
1741 		struct mbuf		*m = NULL;
1742 #if NVLAN > 0
1743 		u_int16_t		vlan_tag = 0;
1744 		int			have_tag = 0;
1745 #endif
1746 
1747 		cur_rx =
1748 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1749 		rxidx = cur_rx->ti_idx;
1750 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1751 
1752 #if NVLAN > 0
1753 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1754 			have_tag = 1;
1755 			vlan_tag = cur_rx->ti_vlan_tag;
1756 		}
1757 #endif
1758 
1759 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1760 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1761 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1762 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1763 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1764 				ifp->if_ierrors++;
1765 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1766 				continue;
1767 			}
1768 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1769 				ifp->if_ierrors++;
1770 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1771 				continue;
1772 			}
1773 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1774 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1775 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1776 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1777 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1778 				ifp->if_ierrors++;
1779 				ti_newbuf_mini(sc, sc->ti_mini, m);
1780 				continue;
1781 			}
1782 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1783 				ifp->if_ierrors++;
1784 				ti_newbuf_mini(sc, sc->ti_mini, m);
1785 				continue;
1786 			}
1787 		} else {
1788 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1789 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1790 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1791 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1792 				ifp->if_ierrors++;
1793 				ti_newbuf_std(sc, sc->ti_std, m);
1794 				continue;
1795 			}
1796 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1797 				ifp->if_ierrors++;
1798 				ti_newbuf_std(sc, sc->ti_std, m);
1799 				continue;
1800 			}
1801 		}
1802 
1803 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1804 		ifp->if_ipackets++;
1805 		eh = mtod(m, struct ether_header *);
1806 		m->m_pkthdr.rcvif = ifp;
1807 
1808 		/* Remove header from mbuf and pass it on. */
1809 		m_adj(m, sizeof(struct ether_header));
1810 
1811 		if (ifp->if_hwassist) {
1812 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1813 			    CSUM_DATA_VALID;
1814 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1815 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1816 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1817 		}
1818 
1819 #if NVLAN > 0
1820 		/*
1821 		 * If we received a packet with a vlan tag, pass it
1822 		 * to vlan_input() instead of ether_input().
1823 		 */
1824 		if (have_tag) {
1825 			vlan_input_tag(eh, m, vlan_tag);
1826 			have_tag = vlan_tag = 0;
1827 			continue;
1828 		}
1829 #endif
1830 		ether_input(ifp, eh, m);
1831 	}
1832 
1833 	/* Only necessary on the Tigon 1. */
1834 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1835 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1836 		    sc->ti_rx_saved_considx);
1837 
1838 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1839 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1840 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1841 
1842 	return;
1843 }
1844 
1845 static void ti_txeof(sc)
1846 	struct ti_softc		*sc;
1847 {
1848 	struct ti_tx_desc	*cur_tx = NULL;
1849 	struct ifnet		*ifp;
1850 
1851 	ifp = &sc->arpcom.ac_if;
1852 
1853 	/*
1854 	 * Go through our tx ring and free mbufs for those
1855 	 * frames that have been sent.
1856 	 */
1857 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1858 		u_int32_t		idx = 0;
1859 
1860 		idx = sc->ti_tx_saved_considx;
1861 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1862 			if (idx > 383)
1863 				CSR_WRITE_4(sc, TI_WINBASE,
1864 				    TI_TX_RING_BASE + 6144);
1865 			else if (idx > 255)
1866 				CSR_WRITE_4(sc, TI_WINBASE,
1867 				    TI_TX_RING_BASE + 4096);
1868 			else if (idx > 127)
1869 				CSR_WRITE_4(sc, TI_WINBASE,
1870 				    TI_TX_RING_BASE + 2048);
1871 			else
1872 				CSR_WRITE_4(sc, TI_WINBASE,
1873 				    TI_TX_RING_BASE);
1874 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1875 		} else
1876 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1877 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1878 			ifp->if_opackets++;
1879 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1880 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1881 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1882 		}
1883 		sc->ti_txcnt--;
1884 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1885 		ifp->if_timer = 0;
1886 	}
1887 
1888 	if (cur_tx != NULL)
1889 		ifp->if_flags &= ~IFF_OACTIVE;
1890 
1891 	return;
1892 }
1893 
1894 static void ti_intr(xsc)
1895 	void			*xsc;
1896 {
1897 	struct ti_softc		*sc;
1898 	struct ifnet		*ifp;
1899 
1900 	sc = xsc;
1901 	TI_LOCK(sc);
1902 	ifp = &sc->arpcom.ac_if;
1903 
1904 #ifdef notdef
1905 	/* Avoid this for now -- checking this register is expensive. */
1906 	/* Make sure this is really our interrupt. */
1907 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1908 		TI_UNLOCK(sc);
1909 		return;
1910 	}
1911 #endif
1912 
1913 	/* Ack interrupt and stop others from occuring. */
1914 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1915 
1916 	if (ifp->if_flags & IFF_RUNNING) {
1917 		/* Check RX return ring producer/consumer */
1918 		ti_rxeof(sc);
1919 
1920 		/* Check TX ring producer/consumer */
1921 		ti_txeof(sc);
1922 	}
1923 
1924 	ti_handle_events(sc);
1925 
1926 	/* Re-enable interrupts. */
1927 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1928 
1929 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1930 		ti_start(ifp);
1931 
1932 	TI_UNLOCK(sc);
1933 
1934 	return;
1935 }
1936 
1937 static void ti_stats_update(sc)
1938 	struct ti_softc		*sc;
1939 {
1940 	struct ifnet		*ifp;
1941 
1942 	ifp = &sc->arpcom.ac_if;
1943 
1944 	ifp->if_collisions +=
1945 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1946 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1947 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1948 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1949 	   ifp->if_collisions;
1950 
1951 	return;
1952 }
1953 
1954 /*
1955  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1956  * pointers to descriptors.
1957  */
1958 static int ti_encap(sc, m_head, txidx)
1959 	struct ti_softc		*sc;
1960 	struct mbuf		*m_head;
1961 	u_int32_t		*txidx;
1962 {
1963 	struct ti_tx_desc	*f = NULL;
1964 	struct mbuf		*m;
1965 	u_int32_t		frag, cur, cnt = 0;
1966 	u_int16_t		csum_flags = 0;
1967 #if NVLAN > 0
1968 	struct ifvlan		*ifv = NULL;
1969 
1970 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1971 	    m_head->m_pkthdr.rcvif != NULL &&
1972 	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
1973 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1974 #endif
1975 
1976 	m = m_head;
1977 	cur = frag = *txidx;
1978 
1979 	if (m_head->m_pkthdr.csum_flags) {
1980 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1981 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1982 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1983 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1984 		if (m_head->m_flags & M_LASTFRAG)
1985 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1986 		else if (m_head->m_flags & M_FRAG)
1987 			csum_flags |= TI_BDFLAG_IP_FRAG;
1988 	}
1989 	/*
1990  	 * Start packing the mbufs in this chain into
1991 	 * the fragment pointers. Stop when we run out
1992  	 * of fragments or hit the end of the mbuf chain.
1993 	 */
1994 	for (m = m_head; m != NULL; m = m->m_next) {
1995 		if (m->m_len != 0) {
1996 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1997 				if (frag > 383)
1998 					CSR_WRITE_4(sc, TI_WINBASE,
1999 					    TI_TX_RING_BASE + 6144);
2000 				else if (frag > 255)
2001 					CSR_WRITE_4(sc, TI_WINBASE,
2002 					    TI_TX_RING_BASE + 4096);
2003 				else if (frag > 127)
2004 					CSR_WRITE_4(sc, TI_WINBASE,
2005 					    TI_TX_RING_BASE + 2048);
2006 				else
2007 					CSR_WRITE_4(sc, TI_WINBASE,
2008 					    TI_TX_RING_BASE);
2009 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2010 			} else
2011 				f = &sc->ti_rdata->ti_tx_ring[frag];
2012 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2013 				break;
2014 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2015 			f->ti_len = m->m_len;
2016 			f->ti_flags = csum_flags;
2017 #if NVLAN > 0
2018 			if (ifv != NULL) {
2019 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2020 				f->ti_vlan_tag = ifv->ifv_tag;
2021 			} else {
2022 				f->ti_vlan_tag = 0;
2023 			}
2024 #endif
2025 			/*
2026 			 * Sanity check: avoid coming within 16 descriptors
2027 			 * of the end of the ring.
2028 			 */
2029 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2030 				return(ENOBUFS);
2031 			cur = frag;
2032 			TI_INC(frag, TI_TX_RING_CNT);
2033 			cnt++;
2034 		}
2035 	}
2036 
2037 	if (m != NULL)
2038 		return(ENOBUFS);
2039 
2040 	if (frag == sc->ti_tx_saved_considx)
2041 		return(ENOBUFS);
2042 
2043 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2044 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2045 		    TI_BDFLAG_END;
2046 	else
2047 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2048 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2049 	sc->ti_txcnt += cnt;
2050 
2051 	*txidx = frag;
2052 
2053 	return(0);
2054 }
2055 
2056 /*
2057  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2058  * to the mbuf data regions directly in the transmit descriptors.
2059  */
2060 static void ti_start(ifp)
2061 	struct ifnet		*ifp;
2062 {
2063 	struct ti_softc		*sc;
2064 	struct mbuf		*m_head = NULL;
2065 	u_int32_t		prodidx = 0;
2066 
2067 	sc = ifp->if_softc;
2068 	TI_LOCK(sc);
2069 
2070 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2071 
2072 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2073 		IF_DEQUEUE(&ifp->if_snd, m_head);
2074 		if (m_head == NULL)
2075 			break;
2076 
2077 		/*
2078 		 * XXX
2079 		 * safety overkill.  If this is a fragmented packet chain
2080 		 * with delayed TCP/UDP checksums, then only encapsulate
2081 		 * it if we have enough descriptors to handle the entire
2082 		 * chain at once.
2083 		 * (paranoia -- may not actually be needed)
2084 		 */
2085 		if (m_head->m_flags & M_FIRSTFRAG &&
2086 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2087 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2088 			    m_head->m_pkthdr.csum_data + 16) {
2089 				IF_PREPEND(&ifp->if_snd, m_head);
2090 				ifp->if_flags |= IFF_OACTIVE;
2091 				break;
2092 			}
2093 		}
2094 
2095 		/*
2096 		 * Pack the data into the transmit ring. If we
2097 		 * don't have room, set the OACTIVE flag and wait
2098 		 * for the NIC to drain the ring.
2099 		 */
2100 		if (ti_encap(sc, m_head, &prodidx)) {
2101 			IF_PREPEND(&ifp->if_snd, m_head);
2102 			ifp->if_flags |= IFF_OACTIVE;
2103 			break;
2104 		}
2105 
2106 		/*
2107 		 * If there's a BPF listener, bounce a copy of this frame
2108 		 * to him.
2109 		 */
2110 		if (ifp->if_bpf)
2111 			bpf_mtap(ifp, m_head);
2112 	}
2113 
2114 	/* Transmit */
2115 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2116 
2117 	/*
2118 	 * Set a timeout in case the chip goes out to lunch.
2119 	 */
2120 	ifp->if_timer = 5;
2121 	TI_UNLOCK(sc);
2122 
2123 	return;
2124 }
2125 
2126 static void ti_init(xsc)
2127 	void			*xsc;
2128 {
2129 	struct ti_softc		*sc = xsc;
2130 
2131 	/* Cancel pending I/O and flush buffers. */
2132 	ti_stop(sc);
2133 
2134 	TI_LOCK(sc);
2135 	/* Init the gen info block, ring control blocks and firmware. */
2136 	if (ti_gibinit(sc)) {
2137 		printf("ti%d: initialization failure\n", sc->ti_unit);
2138 		TI_UNLOCK(sc);
2139 		return;
2140 	}
2141 
2142 	TI_UNLOCK(sc);
2143 
2144 	return;
2145 }
2146 
2147 static void ti_init2(sc)
2148 	struct ti_softc		*sc;
2149 {
2150 	struct ti_cmd_desc	cmd;
2151 	struct ifnet		*ifp;
2152 	u_int16_t		*m;
2153 	struct ifmedia		*ifm;
2154 	int			tmp;
2155 
2156 	ifp = &sc->arpcom.ac_if;
2157 
2158 	/* Specify MTU and interface index. */
2159 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2160 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2161 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2162 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2163 
2164 	/* Load our MAC address. */
2165 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2166 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2167 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2168 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2169 
2170 	/* Enable or disable promiscuous mode as needed. */
2171 	if (ifp->if_flags & IFF_PROMISC) {
2172 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2173 	} else {
2174 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2175 	}
2176 
2177 	/* Program multicast filter. */
2178 	ti_setmulti(sc);
2179 
2180 	/*
2181 	 * If this is a Tigon 1, we should tell the
2182 	 * firmware to use software packet filtering.
2183 	 */
2184 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2185 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2186 	}
2187 
2188 	/* Init RX ring. */
2189 	ti_init_rx_ring_std(sc);
2190 
2191 	/* Init jumbo RX ring. */
2192 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2193 		ti_init_rx_ring_jumbo(sc);
2194 
2195 	/*
2196 	 * If this is a Tigon 2, we can also configure the
2197 	 * mini ring.
2198 	 */
2199 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2200 		ti_init_rx_ring_mini(sc);
2201 
2202 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2203 	sc->ti_rx_saved_considx = 0;
2204 
2205 	/* Init TX ring. */
2206 	ti_init_tx_ring(sc);
2207 
2208 	/* Tell firmware we're alive. */
2209 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2210 
2211 	/* Enable host interrupts. */
2212 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2213 
2214 	ifp->if_flags |= IFF_RUNNING;
2215 	ifp->if_flags &= ~IFF_OACTIVE;
2216 
2217 	/*
2218 	 * Make sure to set media properly. We have to do this
2219 	 * here since we have to issue commands in order to set
2220 	 * the link negotiation and we can't issue commands until
2221 	 * the firmware is running.
2222 	 */
2223 	ifm = &sc->ifmedia;
2224 	tmp = ifm->ifm_media;
2225 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2226 	ti_ifmedia_upd(ifp);
2227 	ifm->ifm_media = tmp;
2228 
2229 	return;
2230 }
2231 
2232 /*
2233  * Set media options.
2234  */
2235 static int ti_ifmedia_upd(ifp)
2236 	struct ifnet		*ifp;
2237 {
2238 	struct ti_softc		*sc;
2239 	struct ifmedia		*ifm;
2240 	struct ti_cmd_desc	cmd;
2241 
2242 	sc = ifp->if_softc;
2243 	ifm = &sc->ifmedia;
2244 
2245 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2246 		return(EINVAL);
2247 
2248 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2249 	case IFM_AUTO:
2250 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2251 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2252 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2253 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2254 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2255 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2256 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2257 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2258 		break;
2259 	case IFM_1000_SX:
2260 	case IFM_1000_TX:
2261 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2262 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2263 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2264 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2265 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2266 		}
2267 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2268 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2269 		break;
2270 	case IFM_100_FX:
2271 	case IFM_10_FL:
2272 	case IFM_100_TX:
2273 	case IFM_10_T:
2274 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2275 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2276 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2277 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2278 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2279 		} else {
2280 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2281 		}
2282 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2283 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2284 		} else {
2285 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2286 		}
2287 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2288 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2289 		break;
2290 	}
2291 
2292 	return(0);
2293 }
2294 
2295 /*
2296  * Report current media status.
2297  */
2298 static void ti_ifmedia_sts(ifp, ifmr)
2299 	struct ifnet		*ifp;
2300 	struct ifmediareq	*ifmr;
2301 {
2302 	struct ti_softc		*sc;
2303 	u_int32_t		media = 0;
2304 
2305 	sc = ifp->if_softc;
2306 
2307 	ifmr->ifm_status = IFM_AVALID;
2308 	ifmr->ifm_active = IFM_ETHER;
2309 
2310 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2311 		return;
2312 
2313 	ifmr->ifm_status |= IFM_ACTIVE;
2314 
2315 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2316 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2317 		if (sc->ti_copper)
2318 			ifmr->ifm_active |= IFM_1000_TX;
2319 		else
2320 			ifmr->ifm_active |= IFM_1000_SX;
2321 		if (media & TI_GLNK_FULL_DUPLEX)
2322 			ifmr->ifm_active |= IFM_FDX;
2323 		else
2324 			ifmr->ifm_active |= IFM_HDX;
2325 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2326 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2327 		if (sc->ti_copper) {
2328 			if (media & TI_LNK_100MB)
2329 				ifmr->ifm_active |= IFM_100_TX;
2330 			if (media & TI_LNK_10MB)
2331 				ifmr->ifm_active |= IFM_10_T;
2332 		} else {
2333 			if (media & TI_LNK_100MB)
2334 				ifmr->ifm_active |= IFM_100_FX;
2335 			if (media & TI_LNK_10MB)
2336 				ifmr->ifm_active |= IFM_10_FL;
2337 		}
2338 		if (media & TI_LNK_FULL_DUPLEX)
2339 			ifmr->ifm_active |= IFM_FDX;
2340 		if (media & TI_LNK_HALF_DUPLEX)
2341 			ifmr->ifm_active |= IFM_HDX;
2342 	}
2343 
2344 	return;
2345 }
2346 
2347 static int ti_ioctl(ifp, command, data)
2348 	struct ifnet		*ifp;
2349 	u_long			command;
2350 	caddr_t			data;
2351 {
2352 	struct ti_softc		*sc = ifp->if_softc;
2353 	struct ifreq		*ifr = (struct ifreq *) data;
2354 	int			error = 0;
2355 	struct ti_cmd_desc	cmd;
2356 
2357 	TI_LOCK(sc);
2358 
2359 	switch(command) {
2360 	case SIOCSIFADDR:
2361 	case SIOCGIFADDR:
2362 		error = ether_ioctl(ifp, command, data);
2363 		break;
2364 	case SIOCSIFMTU:
2365 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2366 			error = EINVAL;
2367 		else {
2368 			ifp->if_mtu = ifr->ifr_mtu;
2369 			ti_init(sc);
2370 		}
2371 		break;
2372 	case SIOCSIFFLAGS:
2373 		if (ifp->if_flags & IFF_UP) {
2374 			/*
2375 			 * If only the state of the PROMISC flag changed,
2376 			 * then just use the 'set promisc mode' command
2377 			 * instead of reinitializing the entire NIC. Doing
2378 			 * a full re-init means reloading the firmware and
2379 			 * waiting for it to start up, which may take a
2380 			 * second or two.
2381 			 */
2382 			if (ifp->if_flags & IFF_RUNNING &&
2383 			    ifp->if_flags & IFF_PROMISC &&
2384 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2385 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2386 				    TI_CMD_CODE_PROMISC_ENB, 0);
2387 			} else if (ifp->if_flags & IFF_RUNNING &&
2388 			    !(ifp->if_flags & IFF_PROMISC) &&
2389 			    sc->ti_if_flags & IFF_PROMISC) {
2390 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2391 				    TI_CMD_CODE_PROMISC_DIS, 0);
2392 			} else
2393 				ti_init(sc);
2394 		} else {
2395 			if (ifp->if_flags & IFF_RUNNING) {
2396 				ti_stop(sc);
2397 			}
2398 		}
2399 		sc->ti_if_flags = ifp->if_flags;
2400 		error = 0;
2401 		break;
2402 	case SIOCADDMULTI:
2403 	case SIOCDELMULTI:
2404 		if (ifp->if_flags & IFF_RUNNING) {
2405 			ti_setmulti(sc);
2406 			error = 0;
2407 		}
2408 		break;
2409 	case SIOCSIFMEDIA:
2410 	case SIOCGIFMEDIA:
2411 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2412 		break;
2413 	default:
2414 		error = EINVAL;
2415 		break;
2416 	}
2417 
2418 	TI_UNLOCK(sc);
2419 
2420 	return(error);
2421 }
2422 
2423 static void ti_watchdog(ifp)
2424 	struct ifnet		*ifp;
2425 {
2426 	struct ti_softc		*sc;
2427 
2428 	sc = ifp->if_softc;
2429 	TI_LOCK(sc);
2430 
2431 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2432 	ti_stop(sc);
2433 	ti_init(sc);
2434 
2435 	ifp->if_oerrors++;
2436 	TI_UNLOCK(sc);
2437 
2438 	return;
2439 }
2440 
2441 /*
2442  * Stop the adapter and free any mbufs allocated to the
2443  * RX and TX lists.
2444  */
2445 static void ti_stop(sc)
2446 	struct ti_softc		*sc;
2447 {
2448 	struct ifnet		*ifp;
2449 	struct ti_cmd_desc	cmd;
2450 
2451 	TI_LOCK(sc);
2452 
2453 	ifp = &sc->arpcom.ac_if;
2454 
2455 	/* Disable host interrupts. */
2456 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2457 	/*
2458 	 * Tell firmware we're shutting down.
2459 	 */
2460 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2461 
2462 	/* Halt and reinitialize. */
2463 	ti_chipinit(sc);
2464 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2465 	ti_chipinit(sc);
2466 
2467 	/* Free the RX lists. */
2468 	ti_free_rx_ring_std(sc);
2469 
2470 	/* Free jumbo RX list. */
2471 	ti_free_rx_ring_jumbo(sc);
2472 
2473 	/* Free mini RX list. */
2474 	ti_free_rx_ring_mini(sc);
2475 
2476 	/* Free TX buffers. */
2477 	ti_free_tx_ring(sc);
2478 
2479 	sc->ti_ev_prodidx.ti_idx = 0;
2480 	sc->ti_return_prodidx.ti_idx = 0;
2481 	sc->ti_tx_considx.ti_idx = 0;
2482 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2483 
2484 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2485 	TI_UNLOCK(sc);
2486 
2487 	return;
2488 }
2489 
2490 /*
2491  * Stop all chip I/O so that the kernel's probe routines don't
2492  * get confused by errant DMAs when rebooting.
2493  */
2494 static void ti_shutdown(dev)
2495 	device_t		dev;
2496 {
2497 	struct ti_softc		*sc;
2498 
2499 	sc = device_get_softc(dev);
2500 	TI_LOCK(sc);
2501 	ti_chipinit(sc);
2502 	TI_UNLOCK(sc);
2503 
2504 	return;
2505 }
2506