xref: /freebsd/sys/dev/ti/if_ti.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/sockio.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/queue.h>
89 
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/ethernet.h>
93 #include <net/if_dl.h>
94 #include <net/if_media.h>
95 #include <net/if_types.h>
96 #include <net/if_vlan_var.h>
97 
98 #include <net/bpf.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 
104 #include <vm/vm.h>              /* for vtophys */
105 #include <vm/pmap.h>            /* for vtophys */
106 #include <machine/bus_memio.h>
107 #include <machine/bus.h>
108 #include <machine/resource.h>
109 #include <sys/bus.h>
110 #include <sys/rman.h>
111 
112 #include <pci/pcireg.h>
113 #include <pci/pcivar.h>
114 
115 #include <pci/if_tireg.h>
116 #include <pci/ti_fw.h>
117 #include <pci/ti_fw2.h>
118 
119 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
120 
121 #if !defined(lint)
122 static const char rcsid[] =
123   "$FreeBSD$";
124 #endif
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 
130 static struct ti_type ti_devs[] = {
131 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
132 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
133 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
134 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
135 	{ TC_VENDORID,	TC_DEVICEID_3C985,
136 		"3Com 3c985-SX Gigabit Ethernet" },
137 	{ NG_VENDORID, NG_DEVICEID_GA620,
138 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
139 	{ NG_VENDORID, NG_DEVICEID_GA620T,
140 		"Netgear GA620 1000baseT Gigabit Ethernet" },
141 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
142 		"Silicon Graphics Gigabit Ethernet" },
143 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
144 		"Farallon PN9000SX Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int ti_probe		__P((device_t));
149 static int ti_attach		__P((device_t));
150 static int ti_detach		__P((device_t));
151 static void ti_txeof		__P((struct ti_softc *));
152 static void ti_rxeof		__P((struct ti_softc *));
153 
154 static void ti_stats_update	__P((struct ti_softc *));
155 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
156 					u_int32_t *));
157 
158 static void ti_intr		__P((void *));
159 static void ti_start		__P((struct ifnet *));
160 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
161 static void ti_init		__P((void *));
162 static void ti_init2		__P((struct ti_softc *));
163 static void ti_stop		__P((struct ti_softc *));
164 static void ti_watchdog		__P((struct ifnet *));
165 static void ti_shutdown		__P((device_t));
166 static int ti_ifmedia_upd	__P((struct ifnet *));
167 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
168 
169 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
170 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
171 						int, u_int8_t *));
172 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
173 
174 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
175 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
176 static void ti_setmulti		__P((struct ti_softc *));
177 
178 static void ti_mem		__P((struct ti_softc *, u_int32_t,
179 					u_int32_t, caddr_t));
180 static void ti_loadfw		__P((struct ti_softc *));
181 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
182 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
183 					caddr_t, int));
184 static void ti_handle_events	__P((struct ti_softc *));
185 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
186 static void *ti_jalloc		__P((struct ti_softc *));
187 static void ti_jfree		__P((caddr_t, void *));
188 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
189 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
190 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
191 static int ti_init_rx_ring_std	__P((struct ti_softc *));
192 static void ti_free_rx_ring_std	__P((struct ti_softc *));
193 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
194 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
195 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
196 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
197 static void ti_free_tx_ring	__P((struct ti_softc *));
198 static int ti_init_tx_ring	__P((struct ti_softc *));
199 
200 static int ti_64bitslot_war	__P((struct ti_softc *));
201 static int ti_chipinit		__P((struct ti_softc *));
202 static int ti_gibinit		__P((struct ti_softc *));
203 
204 static device_method_t ti_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		ti_probe),
207 	DEVMETHOD(device_attach,	ti_attach),
208 	DEVMETHOD(device_detach,	ti_detach),
209 	DEVMETHOD(device_shutdown,	ti_shutdown),
210 	{ 0, 0 }
211 };
212 
213 static driver_t ti_driver = {
214 	"ti",
215 	ti_methods,
216 	sizeof(struct ti_softc)
217 };
218 
219 static devclass_t ti_devclass;
220 
221 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
222 
223 /*
224  * Send an instruction or address to the EEPROM, check for ACK.
225  */
226 static u_int32_t ti_eeprom_putbyte(sc, byte)
227 	struct ti_softc		*sc;
228 	int			byte;
229 {
230 	register int		i, ack = 0;
231 
232 	/*
233 	 * Make sure we're in TX mode.
234 	 */
235 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
236 
237 	/*
238 	 * Feed in each bit and stobe the clock.
239 	 */
240 	for (i = 0x80; i; i >>= 1) {
241 		if (byte & i) {
242 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243 		} else {
244 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
245 		}
246 		DELAY(1);
247 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248 		DELAY(1);
249 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250 	}
251 
252 	/*
253 	 * Turn off TX mode.
254 	 */
255 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
256 
257 	/*
258 	 * Check for ack.
259 	 */
260 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
262 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 
264 	return(ack);
265 }
266 
267 /*
268  * Read a byte of data stored in the EEPROM at address 'addr.'
269  * We have to send two address bytes since the EEPROM can hold
270  * more than 256 bytes of data.
271  */
272 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
273 	struct ti_softc		*sc;
274 	int			addr;
275 	u_int8_t		*dest;
276 {
277 	register int		i;
278 	u_int8_t		byte = 0;
279 
280 	EEPROM_START;
281 
282 	/*
283 	 * Send write control code to EEPROM.
284 	 */
285 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
286 		printf("ti%d: failed to send write command, status: %x\n",
287 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
288 		return(1);
289 	}
290 
291 	/*
292 	 * Send first byte of address of byte we want to read.
293 	 */
294 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
295 		printf("ti%d: failed to send address, status: %x\n",
296 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 		return(1);
298 	}
299 	/*
300 	 * Send second byte address of byte we want to read.
301 	 */
302 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
303 		printf("ti%d: failed to send address, status: %x\n",
304 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
305 		return(1);
306 	}
307 
308 	EEPROM_STOP;
309 	EEPROM_START;
310 	/*
311 	 * Send read control code to EEPROM.
312 	 */
313 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
314 		printf("ti%d: failed to send read command, status: %x\n",
315 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
316 		return(1);
317 	}
318 
319 	/*
320 	 * Start reading bits from EEPROM.
321 	 */
322 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323 	for (i = 0x80; i; i >>= 1) {
324 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
325 		DELAY(1);
326 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
327 			byte |= i;
328 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
329 		DELAY(1);
330 	}
331 
332 	EEPROM_STOP;
333 
334 	/*
335 	 * No ACK generated for read, so just return byte.
336 	 */
337 
338 	*dest = byte;
339 
340 	return(0);
341 }
342 
343 /*
344  * Read a sequence of bytes from the EEPROM.
345  */
346 static int ti_read_eeprom(sc, dest, off, cnt)
347 	struct ti_softc		*sc;
348 	caddr_t			dest;
349 	int			off;
350 	int			cnt;
351 {
352 	int			err = 0, i;
353 	u_int8_t		byte = 0;
354 
355 	for (i = 0; i < cnt; i++) {
356 		err = ti_eeprom_getbyte(sc, off + i, &byte);
357 		if (err)
358 			break;
359 		*(dest + i) = byte;
360 	}
361 
362 	return(err ? 1 : 0);
363 }
364 
365 /*
366  * NIC memory access function. Can be used to either clear a section
367  * of NIC local memory or (if buf is non-NULL) copy data into it.
368  */
369 static void ti_mem(sc, addr, len, buf)
370 	struct ti_softc		*sc;
371 	u_int32_t		addr, len;
372 	caddr_t			buf;
373 {
374 	int			segptr, segsize, cnt;
375 	caddr_t			ti_winbase, ptr;
376 
377 	segptr = addr;
378 	cnt = len;
379 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
380 	ptr = buf;
381 
382 	while(cnt) {
383 		if (cnt < TI_WINLEN)
384 			segsize = cnt;
385 		else
386 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
387 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
388 		if (buf == NULL)
389 			bzero((char *)ti_winbase + (segptr &
390 			    (TI_WINLEN - 1)), segsize);
391 		else {
392 			bcopy((char *)ptr, (char *)ti_winbase +
393 			    (segptr & (TI_WINLEN - 1)), segsize);
394 			ptr += segsize;
395 		}
396 		segptr += segsize;
397 		cnt -= segsize;
398 	}
399 
400 	return;
401 }
402 
403 /*
404  * Load firmware image into the NIC. Check that the firmware revision
405  * is acceptable and see if we want the firmware for the Tigon 1 or
406  * Tigon 2.
407  */
408 static void ti_loadfw(sc)
409 	struct ti_softc		*sc;
410 {
411 	switch(sc->ti_hwrev) {
412 	case TI_HWREV_TIGON:
413 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416 			printf("ti%d: firmware revision mismatch; want "
417 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
418 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420 			    tigonFwReleaseMinor, tigonFwReleaseFix);
421 			return;
422 		}
423 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
424 		    (caddr_t)tigonFwText);
425 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
426 		    (caddr_t)tigonFwData);
427 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
428 		    (caddr_t)tigonFwRodata);
429 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
430 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
431 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
432 		break;
433 	case TI_HWREV_TIGON_II:
434 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
435 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
436 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
437 			printf("ti%d: firmware revision mismatch; want "
438 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
439 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
440 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
441 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
442 			return;
443 		}
444 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
445 		    (caddr_t)tigon2FwText);
446 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
447 		    (caddr_t)tigon2FwData);
448 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
449 		    (caddr_t)tigon2FwRodata);
450 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
451 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
452 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
453 		break;
454 	default:
455 		printf("ti%d: can't load firmware: unknown hardware rev\n",
456 		    sc->ti_unit);
457 		break;
458 	}
459 
460 	return;
461 }
462 
463 /*
464  * Send the NIC a command via the command ring.
465  */
466 static void ti_cmd(sc, cmd)
467 	struct ti_softc		*sc;
468 	struct ti_cmd_desc	*cmd;
469 {
470 	u_int32_t		index;
471 
472 	if (sc->ti_rdata->ti_cmd_ring == NULL)
473 		return;
474 
475 	index = sc->ti_cmd_saved_prodidx;
476 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
477 	TI_INC(index, TI_CMD_RING_CNT);
478 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
479 	sc->ti_cmd_saved_prodidx = index;
480 
481 	return;
482 }
483 
484 /*
485  * Send the NIC an extended command. The 'len' parameter specifies the
486  * number of command slots to include after the initial command.
487  */
488 static void ti_cmd_ext(sc, cmd, arg, len)
489 	struct ti_softc		*sc;
490 	struct ti_cmd_desc	*cmd;
491 	caddr_t			arg;
492 	int			len;
493 {
494 	u_int32_t		index;
495 	register int		i;
496 
497 	if (sc->ti_rdata->ti_cmd_ring == NULL)
498 		return;
499 
500 	index = sc->ti_cmd_saved_prodidx;
501 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
502 	TI_INC(index, TI_CMD_RING_CNT);
503 	for (i = 0; i < len; i++) {
504 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
505 		    *(u_int32_t *)(&arg[i * 4]));
506 		TI_INC(index, TI_CMD_RING_CNT);
507 	}
508 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
509 	sc->ti_cmd_saved_prodidx = index;
510 
511 	return;
512 }
513 
514 /*
515  * Handle events that have triggered interrupts.
516  */
517 static void ti_handle_events(sc)
518 	struct ti_softc		*sc;
519 {
520 	struct ti_event_desc	*e;
521 
522 	if (sc->ti_rdata->ti_event_ring == NULL)
523 		return;
524 
525 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
526 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
527 		switch(e->ti_event) {
528 		case TI_EV_LINKSTAT_CHANGED:
529 			sc->ti_linkstat = e->ti_code;
530 			if (e->ti_code == TI_EV_CODE_LINK_UP)
531 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
532 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533 				printf("ti%d: gigabit link up\n", sc->ti_unit);
534 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
535 				printf("ti%d: link down\n", sc->ti_unit);
536 			break;
537 		case TI_EV_ERROR:
538 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
539 				printf("ti%d: invalid command\n", sc->ti_unit);
540 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
541 				printf("ti%d: unknown command\n", sc->ti_unit);
542 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
543 				printf("ti%d: bad config data\n", sc->ti_unit);
544 			break;
545 		case TI_EV_FIRMWARE_UP:
546 			ti_init2(sc);
547 			break;
548 		case TI_EV_STATS_UPDATED:
549 			ti_stats_update(sc);
550 			break;
551 		case TI_EV_RESET_JUMBO_RING:
552 		case TI_EV_MCAST_UPDATED:
553 			/* Who cares. */
554 			break;
555 		default:
556 			printf("ti%d: unknown event: %d\n",
557 			    sc->ti_unit, e->ti_event);
558 			break;
559 		}
560 		/* Advance the consumer index. */
561 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
562 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
563 	}
564 
565 	return;
566 }
567 
568 /*
569  * Memory management for the jumbo receive ring is a pain in the
570  * butt. We need to allocate at least 9018 bytes of space per frame,
571  * _and_ it has to be contiguous (unless you use the extended
572  * jumbo descriptor format). Using malloc() all the time won't
573  * work: malloc() allocates memory in powers of two, which means we
574  * would end up wasting a considerable amount of space by allocating
575  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
576  * to do our own memory management.
577  *
578  * The driver needs to allocate a contiguous chunk of memory at boot
579  * time. We then chop this up ourselves into 9K pieces and use them
580  * as external mbuf storage.
581  *
582  * One issue here is how much memory to allocate. The jumbo ring has
583  * 256 slots in it, but at 9K per slot than can consume over 2MB of
584  * RAM. This is a bit much, especially considering we also need
585  * RAM for the standard ring and mini ring (on the Tigon 2). To
586  * save space, we only actually allocate enough memory for 64 slots
587  * by default, which works out to between 500 and 600K. This can
588  * be tuned by changing a #define in if_tireg.h.
589  */
590 
591 static int ti_alloc_jumbo_mem(sc)
592 	struct ti_softc		*sc;
593 {
594 	caddr_t			ptr;
595 	register int		i;
596 	struct ti_jpool_entry   *entry;
597 
598 	/* Grab a big chunk o' storage. */
599 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
600 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
601 
602 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
603 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
604 		return(ENOBUFS);
605 	}
606 
607 	SLIST_INIT(&sc->ti_jfree_listhead);
608 	SLIST_INIT(&sc->ti_jinuse_listhead);
609 
610 	/*
611 	 * Now divide it up into 9K pieces and save the addresses
612 	 * in an array.
613 	 */
614 	ptr = sc->ti_cdata.ti_jumbo_buf;
615 	for (i = 0; i < TI_JSLOTS; i++) {
616 		sc->ti_cdata.ti_jslots[i] = ptr;
617 		ptr += TI_JLEN;
618 		entry = malloc(sizeof(struct ti_jpool_entry),
619 			       M_DEVBUF, M_NOWAIT);
620 		if (entry == NULL) {
621 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
622 			           M_DEVBUF);
623 			sc->ti_cdata.ti_jumbo_buf = NULL;
624 			printf("ti%d: no memory for jumbo "
625 			    "buffer queue!\n", sc->ti_unit);
626 			return(ENOBUFS);
627 		}
628 		entry->slot = i;
629 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
630 	}
631 
632 	return(0);
633 }
634 
635 /*
636  * Allocate a jumbo buffer.
637  */
638 static void *ti_jalloc(sc)
639 	struct ti_softc		*sc;
640 {
641 	struct ti_jpool_entry   *entry;
642 
643 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
644 
645 	if (entry == NULL) {
646 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
647 		return(NULL);
648 	}
649 
650 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
651 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
652 	return(sc->ti_cdata.ti_jslots[entry->slot]);
653 }
654 
655 /*
656  * Release a jumbo buffer.
657  */
658 static void ti_jfree(buf, args)
659 	caddr_t			buf;
660 	void			*args;
661 {
662 	struct ti_softc		*sc;
663 	int		        i;
664 	struct ti_jpool_entry   *entry;
665 
666 	/* Extract the softc struct pointer. */
667 	sc = (struct ti_softc *)args;
668 
669 	if (sc == NULL)
670 		panic("ti_jfree: didn't get softc pointer!");
671 
672 	/* calculate the slot this buffer belongs to */
673 	i = ((vm_offset_t)buf
674 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
675 
676 	if ((i < 0) || (i >= TI_JSLOTS))
677 		panic("ti_jfree: asked to free buffer that we don't manage!");
678 
679 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
680 	if (entry == NULL)
681 		panic("ti_jfree: buffer not in use!");
682 	entry->slot = i;
683 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
684 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
685 
686 	return;
687 }
688 
689 
690 /*
691  * Intialize a standard receive ring descriptor.
692  */
693 static int ti_newbuf_std(sc, i, m)
694 	struct ti_softc		*sc;
695 	int			i;
696 	struct mbuf		*m;
697 {
698 	struct mbuf		*m_new = NULL;
699 	struct ti_rx_desc	*r;
700 
701 	if (m == NULL) {
702 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
703 		if (m_new == NULL)
704 			return(ENOBUFS);
705 
706 		MCLGET(m_new, M_DONTWAIT);
707 		if (!(m_new->m_flags & M_EXT)) {
708 			m_freem(m_new);
709 			return(ENOBUFS);
710 		}
711 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
712 	} else {
713 		m_new = m;
714 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
715 		m_new->m_data = m_new->m_ext.ext_buf;
716 	}
717 
718 	m_adj(m_new, ETHER_ALIGN);
719 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
720 	r = &sc->ti_rdata->ti_rx_std_ring[i];
721 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
722 	r->ti_type = TI_BDTYPE_RECV_BD;
723 	r->ti_flags = 0;
724 	if (sc->arpcom.ac_if.if_hwassist)
725 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
726 	r->ti_len = m_new->m_len;
727 	r->ti_idx = i;
728 
729 	return(0);
730 }
731 
732 /*
733  * Intialize a mini receive ring descriptor. This only applies to
734  * the Tigon 2.
735  */
736 static int ti_newbuf_mini(sc, i, m)
737 	struct ti_softc		*sc;
738 	int			i;
739 	struct mbuf		*m;
740 {
741 	struct mbuf		*m_new = NULL;
742 	struct ti_rx_desc	*r;
743 
744 	if (m == NULL) {
745 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
746 		if (m_new == NULL) {
747 			return(ENOBUFS);
748 		}
749 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
750 	} else {
751 		m_new = m;
752 		m_new->m_data = m_new->m_pktdat;
753 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
754 	}
755 
756 	m_adj(m_new, ETHER_ALIGN);
757 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
758 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
759 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
760 	r->ti_type = TI_BDTYPE_RECV_BD;
761 	r->ti_flags = TI_BDFLAG_MINI_RING;
762 	if (sc->arpcom.ac_if.if_hwassist)
763 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
764 	r->ti_len = m_new->m_len;
765 	r->ti_idx = i;
766 
767 	return(0);
768 }
769 
770 /*
771  * Initialize a jumbo receive ring descriptor. This allocates
772  * a jumbo buffer from the pool managed internally by the driver.
773  */
774 static int ti_newbuf_jumbo(sc, i, m)
775 	struct ti_softc		*sc;
776 	int			i;
777 	struct mbuf		*m;
778 {
779 	struct mbuf		*m_new = NULL;
780 	struct ti_rx_desc	*r;
781 
782 	if (m == NULL) {
783 		caddr_t			*buf = NULL;
784 
785 		/* Allocate the mbuf. */
786 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
787 		if (m_new == NULL) {
788 			return(ENOBUFS);
789 		}
790 
791 		/* Allocate the jumbo buffer */
792 		buf = ti_jalloc(sc);
793 		if (buf == NULL) {
794 			m_freem(m_new);
795 			printf("ti%d: jumbo allocation failed "
796 			    "-- packet dropped!\n", sc->ti_unit);
797 			return(ENOBUFS);
798 		}
799 
800 		/* Attach the buffer to the mbuf. */
801 		m_new->m_data = (void *) buf;
802 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
803 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
804 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
805 	} else {
806 		m_new = m;
807 		m_new->m_data = m_new->m_ext.ext_buf;
808 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
809 	}
810 
811 	m_adj(m_new, ETHER_ALIGN);
812 	/* Set up the descriptor. */
813 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
814 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
815 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
816 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
817 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
818 	if (sc->arpcom.ac_if.if_hwassist)
819 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
820 	r->ti_len = m_new->m_len;
821 	r->ti_idx = i;
822 
823 	return(0);
824 }
825 
826 /*
827  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
828  * that's 1MB or memory, which is a lot. For now, we fill only the first
829  * 256 ring entries and hope that our CPU is fast enough to keep up with
830  * the NIC.
831  */
832 static int ti_init_rx_ring_std(sc)
833 	struct ti_softc		*sc;
834 {
835 	register int		i;
836 	struct ti_cmd_desc	cmd;
837 
838 	for (i = 0; i < TI_SSLOTS; i++) {
839 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
840 			return(ENOBUFS);
841 	};
842 
843 	TI_UPDATE_STDPROD(sc, i - 1);
844 	sc->ti_std = i - 1;
845 
846 	return(0);
847 }
848 
849 static void ti_free_rx_ring_std(sc)
850 	struct ti_softc		*sc;
851 {
852 	register int		i;
853 
854 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
855 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
856 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
857 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
858 		}
859 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
860 		    sizeof(struct ti_rx_desc));
861 	}
862 
863 	return;
864 }
865 
866 static int ti_init_rx_ring_jumbo(sc)
867 	struct ti_softc		*sc;
868 {
869 	register int		i;
870 	struct ti_cmd_desc	cmd;
871 
872 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
873 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
874 			return(ENOBUFS);
875 	};
876 
877 	TI_UPDATE_JUMBOPROD(sc, i - 1);
878 	sc->ti_jumbo = i - 1;
879 
880 	return(0);
881 }
882 
883 static void ti_free_rx_ring_jumbo(sc)
884 	struct ti_softc		*sc;
885 {
886 	register int		i;
887 
888 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
889 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
890 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
891 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
892 		}
893 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
894 		    sizeof(struct ti_rx_desc));
895 	}
896 
897 	return;
898 }
899 
900 static int ti_init_rx_ring_mini(sc)
901 	struct ti_softc		*sc;
902 {
903 	register int		i;
904 
905 	for (i = 0; i < TI_MSLOTS; i++) {
906 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
907 			return(ENOBUFS);
908 	};
909 
910 	TI_UPDATE_MINIPROD(sc, i - 1);
911 	sc->ti_mini = i - 1;
912 
913 	return(0);
914 }
915 
916 static void ti_free_rx_ring_mini(sc)
917 	struct ti_softc		*sc;
918 {
919 	register int		i;
920 
921 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
922 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
923 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
924 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
925 		}
926 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
927 		    sizeof(struct ti_rx_desc));
928 	}
929 
930 	return;
931 }
932 
933 static void ti_free_tx_ring(sc)
934 	struct ti_softc		*sc;
935 {
936 	register int		i;
937 
938 	if (sc->ti_rdata->ti_tx_ring == NULL)
939 		return;
940 
941 	for (i = 0; i < TI_TX_RING_CNT; i++) {
942 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
943 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
944 			sc->ti_cdata.ti_tx_chain[i] = NULL;
945 		}
946 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
947 		    sizeof(struct ti_tx_desc));
948 	}
949 
950 	return;
951 }
952 
953 static int ti_init_tx_ring(sc)
954 	struct ti_softc		*sc;
955 {
956 	sc->ti_txcnt = 0;
957 	sc->ti_tx_saved_considx = 0;
958 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
959 	return(0);
960 }
961 
962 /*
963  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
964  * but we have to support the old way too so that Tigon 1 cards will
965  * work.
966  */
967 void ti_add_mcast(sc, addr)
968 	struct ti_softc		*sc;
969 	struct ether_addr	*addr;
970 {
971 	struct ti_cmd_desc	cmd;
972 	u_int16_t		*m;
973 	u_int32_t		ext[2] = {0, 0};
974 
975 	m = (u_int16_t *)&addr->octet[0];
976 
977 	switch(sc->ti_hwrev) {
978 	case TI_HWREV_TIGON:
979 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
980 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
981 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
982 		break;
983 	case TI_HWREV_TIGON_II:
984 		ext[0] = htons(m[0]);
985 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
986 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
987 		break;
988 	default:
989 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
990 		break;
991 	}
992 
993 	return;
994 }
995 
996 void ti_del_mcast(sc, addr)
997 	struct ti_softc		*sc;
998 	struct ether_addr	*addr;
999 {
1000 	struct ti_cmd_desc	cmd;
1001 	u_int16_t		*m;
1002 	u_int32_t		ext[2] = {0, 0};
1003 
1004 	m = (u_int16_t *)&addr->octet[0];
1005 
1006 	switch(sc->ti_hwrev) {
1007 	case TI_HWREV_TIGON:
1008 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1009 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1010 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1011 		break;
1012 	case TI_HWREV_TIGON_II:
1013 		ext[0] = htons(m[0]);
1014 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1015 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1016 		break;
1017 	default:
1018 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1019 		break;
1020 	}
1021 
1022 	return;
1023 }
1024 
1025 /*
1026  * Configure the Tigon's multicast address filter.
1027  *
1028  * The actual multicast table management is a bit of a pain, thanks to
1029  * slight brain damage on the part of both Alteon and us. With our
1030  * multicast code, we are only alerted when the multicast address table
1031  * changes and at that point we only have the current list of addresses:
1032  * we only know the current state, not the previous state, so we don't
1033  * actually know what addresses were removed or added. The firmware has
1034  * state, but we can't get our grubby mits on it, and there is no 'delete
1035  * all multicast addresses' command. Hence, we have to maintain our own
1036  * state so we know what addresses have been programmed into the NIC at
1037  * any given time.
1038  */
1039 static void ti_setmulti(sc)
1040 	struct ti_softc		*sc;
1041 {
1042 	struct ifnet		*ifp;
1043 	struct ifmultiaddr	*ifma;
1044 	struct ti_cmd_desc	cmd;
1045 	struct ti_mc_entry	*mc;
1046 	u_int32_t		intrs;
1047 
1048 	ifp = &sc->arpcom.ac_if;
1049 
1050 	if (ifp->if_flags & IFF_ALLMULTI) {
1051 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1052 		return;
1053 	} else {
1054 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1055 	}
1056 
1057 	/* Disable interrupts. */
1058 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1059 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1060 
1061 	/* First, zot all the existing filters. */
1062 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1063 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1064 		ti_del_mcast(sc, &mc->mc_addr);
1065 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1066 		free(mc, M_DEVBUF);
1067 	}
1068 
1069 	/* Now program new ones. */
1070 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1071 		if (ifma->ifma_addr->sa_family != AF_LINK)
1072 			continue;
1073 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1074 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1075 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1076 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1077 		ti_add_mcast(sc, &mc->mc_addr);
1078 	}
1079 
1080 	/* Re-enable interrupts. */
1081 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1082 
1083 	return;
1084 }
1085 
1086 /*
1087  * Check to see if the BIOS has configured us for a 64 bit slot when
1088  * we aren't actually in one. If we detect this condition, we can work
1089  * around it on the Tigon 2 by setting a bit in the PCI state register,
1090  * but for the Tigon 1 we must give up and abort the interface attach.
1091  */
1092 static int ti_64bitslot_war(sc)
1093 	struct ti_softc		*sc;
1094 {
1095 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1096 		CSR_WRITE_4(sc, 0x600, 0);
1097 		CSR_WRITE_4(sc, 0x604, 0);
1098 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1099 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1100 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1101 				return(EINVAL);
1102 			else {
1103 				TI_SETBIT(sc, TI_PCI_STATE,
1104 				    TI_PCISTATE_32BIT_BUS);
1105 				return(0);
1106 			}
1107 		}
1108 	}
1109 
1110 	return(0);
1111 }
1112 
1113 /*
1114  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1115  * self-test results.
1116  */
1117 static int ti_chipinit(sc)
1118 	struct ti_softc		*sc;
1119 {
1120 	u_int32_t		cacheline;
1121 	u_int32_t		pci_writemax = 0;
1122 
1123 	/* Initialize link to down state. */
1124 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1125 
1126 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1127 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1128 	else
1129 		sc->arpcom.ac_if.if_hwassist = 0;
1130 
1131 	/* Set endianness before we access any non-PCI registers. */
1132 #if BYTE_ORDER == BIG_ENDIAN
1133 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1134 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1135 #else
1136 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1137 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1138 #endif
1139 
1140 	/* Check the ROM failed bit to see if self-tests passed. */
1141 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1142 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1143 		return(ENODEV);
1144 	}
1145 
1146 	/* Halt the CPU. */
1147 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1148 
1149 	/* Figure out the hardware revision. */
1150 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1151 	case TI_REV_TIGON_I:
1152 		sc->ti_hwrev = TI_HWREV_TIGON;
1153 		break;
1154 	case TI_REV_TIGON_II:
1155 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1156 		break;
1157 	default:
1158 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1159 		return(ENODEV);
1160 	}
1161 
1162 	/* Do special setup for Tigon 2. */
1163 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1164 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1165 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1166 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1167 	}
1168 
1169 	/* Set up the PCI state register. */
1170 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1171 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1172 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1173 	}
1174 
1175 	/* Clear the read/write max DMA parameters. */
1176 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1177 	    TI_PCISTATE_READ_MAXDMA));
1178 
1179 	/* Get cache line size. */
1180 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1181 
1182 	/*
1183 	 * If the system has set enabled the PCI memory write
1184 	 * and invalidate command in the command register, set
1185 	 * the write max parameter accordingly. This is necessary
1186 	 * to use MWI with the Tigon 2.
1187 	 */
1188 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1189 		switch(cacheline) {
1190 		case 1:
1191 		case 4:
1192 		case 8:
1193 		case 16:
1194 		case 32:
1195 		case 64:
1196 			break;
1197 		default:
1198 		/* Disable PCI memory write and invalidate. */
1199 			if (bootverbose)
1200 				printf("ti%d: cache line size %d not "
1201 				    "supported; disabling PCI MWI\n",
1202 				    sc->ti_unit, cacheline);
1203 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1204 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1205 			break;
1206 		}
1207 	}
1208 
1209 #ifdef __brokenalpha__
1210 	/*
1211 	 * From the Alteon sample driver:
1212 	 * Must insure that we do not cross an 8K (bytes) boundary
1213 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1214 	 * restriction on some ALPHA platforms with early revision
1215 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1216 	 */
1217 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1218 #else
1219 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1220 #endif
1221 
1222 	/* This sets the min dma param all the way up (0xff). */
1223 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1224 
1225 	/* Configure DMA variables. */
1226 #if BYTE_ORDER == BIG_ENDIAN
1227 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1228 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1229 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1230 	    TI_OPMODE_DONT_FRAG_JUMBO);
1231 #else
1232 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1233 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1234 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1235 #endif
1236 
1237 	/*
1238 	 * Only allow 1 DMA channel to be active at a time.
1239 	 * I don't think this is a good idea, but without it
1240 	 * the firmware racks up lots of nicDmaReadRingFull
1241 	 * errors.  This is not compatible with hardware checksums.
1242 	 */
1243 	if (sc->arpcom.ac_if.if_hwassist == 0)
1244 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1245 
1246 	/* Recommended settings from Tigon manual. */
1247 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1248 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1249 
1250 	if (ti_64bitslot_war(sc)) {
1251 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1252 		    "but we aren't", sc->ti_unit);
1253 		return(EINVAL);
1254 	}
1255 
1256 	return(0);
1257 }
1258 
1259 /*
1260  * Initialize the general information block and firmware, and
1261  * start the CPU(s) running.
1262  */
1263 static int ti_gibinit(sc)
1264 	struct ti_softc		*sc;
1265 {
1266 	struct ti_rcb		*rcb;
1267 	int			i;
1268 	struct ifnet		*ifp;
1269 
1270 	ifp = &sc->arpcom.ac_if;
1271 
1272 	/* Disable interrupts for now. */
1273 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1274 
1275 	/* Tell the chip where to find the general information block. */
1276 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1277 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1278 
1279 	/* Load the firmware into SRAM. */
1280 	ti_loadfw(sc);
1281 
1282 	/* Set up the contents of the general info and ring control blocks. */
1283 
1284 	/* Set up the event ring and producer pointer. */
1285 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1286 
1287 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1288 	rcb->ti_flags = 0;
1289 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1290 	    vtophys(&sc->ti_ev_prodidx);
1291 	sc->ti_ev_prodidx.ti_idx = 0;
1292 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1293 	sc->ti_ev_saved_considx = 0;
1294 
1295 	/* Set up the command ring and producer mailbox. */
1296 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1297 
1298 	sc->ti_rdata->ti_cmd_ring =
1299 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1300 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1301 	rcb->ti_flags = 0;
1302 	rcb->ti_max_len = 0;
1303 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1304 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1305 	}
1306 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1307 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1308 	sc->ti_cmd_saved_prodidx = 0;
1309 
1310 	/*
1311 	 * Assign the address of the stats refresh buffer.
1312 	 * We re-use the current stats buffer for this to
1313 	 * conserve memory.
1314 	 */
1315 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1316 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1317 
1318 	/* Set up the standard receive ring. */
1319 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1320 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1321 	rcb->ti_max_len = TI_FRAMELEN;
1322 	rcb->ti_flags = 0;
1323 	if (sc->arpcom.ac_if.if_hwassist)
1324 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1325 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1326 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1327 
1328 	/* Set up the jumbo receive ring. */
1329 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1330 	TI_HOSTADDR(rcb->ti_hostaddr) =
1331 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1332 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1333 	rcb->ti_flags = 0;
1334 	if (sc->arpcom.ac_if.if_hwassist)
1335 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1336 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1337 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1338 
1339 	/*
1340 	 * Set up the mini ring. Only activated on the
1341 	 * Tigon 2 but the slot in the config block is
1342 	 * still there on the Tigon 1.
1343 	 */
1344 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1345 	TI_HOSTADDR(rcb->ti_hostaddr) =
1346 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1347 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1348 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1349 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1350 	else
1351 		rcb->ti_flags = 0;
1352 	if (sc->arpcom.ac_if.if_hwassist)
1353 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1354 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1355 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1356 
1357 	/*
1358 	 * Set up the receive return ring.
1359 	 */
1360 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1361 	TI_HOSTADDR(rcb->ti_hostaddr) =
1362 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1363 	rcb->ti_flags = 0;
1364 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1365 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1366 	    vtophys(&sc->ti_return_prodidx);
1367 
1368 	/*
1369 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1370 	 * of putting the transmit ring in the host's address space and
1371 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1372 	 * memory and accessing it through the shared memory region. We
1373 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1374 	 * so we have to revert to the shared memory scheme if we detect
1375 	 * a Tigon 1 chip.
1376 	 */
1377 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1378 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1379 		sc->ti_rdata->ti_tx_ring_nic =
1380 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1381 	}
1382 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1383 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1384 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1385 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1386 		rcb->ti_flags = 0;
1387 	else
1388 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1389 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1390 	if (sc->arpcom.ac_if.if_hwassist)
1391 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1392 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1393 	rcb->ti_max_len = TI_TX_RING_CNT;
1394 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1395 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1396 	else
1397 		TI_HOSTADDR(rcb->ti_hostaddr) =
1398 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1399 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1400 	    vtophys(&sc->ti_tx_considx);
1401 
1402 	/* Set up tuneables */
1403 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1404 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1405 		    (sc->ti_rx_coal_ticks / 10));
1406 	else
1407 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1408 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1409 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1410 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1411 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1412 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1413 
1414 	/* Turn interrupts on. */
1415 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1416 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1417 
1418 	/* Start CPU. */
1419 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1420 
1421 	return(0);
1422 }
1423 
1424 /*
1425  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1426  * against our list and return its name if we find a match.
1427  */
1428 static int ti_probe(dev)
1429 	device_t		dev;
1430 {
1431 	struct ti_type		*t;
1432 
1433 	t = ti_devs;
1434 
1435 	while(t->ti_name != NULL) {
1436 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1437 		    (pci_get_device(dev) == t->ti_did)) {
1438 			device_set_desc(dev, t->ti_name);
1439 			return(0);
1440 		}
1441 		t++;
1442 	}
1443 
1444 	return(ENXIO);
1445 }
1446 
1447 static int ti_attach(dev)
1448 	device_t		dev;
1449 {
1450 	u_int32_t		command;
1451 	struct ifnet		*ifp;
1452 	struct ti_softc		*sc;
1453 	int			unit, error = 0, rid;
1454 
1455 	sc = device_get_softc(dev);
1456 	unit = device_get_unit(dev);
1457 	bzero(sc, sizeof(struct ti_softc));
1458 
1459 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1460 	TI_LOCK(sc);
1461 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1462 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1463 
1464 	/*
1465 	 * Map control/status registers.
1466 	 */
1467 	pci_enable_busmaster(dev);
1468 	pci_enable_io(dev, SYS_RES_MEMORY);
1469 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1470 
1471 	if (!(command & PCIM_CMD_MEMEN)) {
1472 		printf("ti%d: failed to enable memory mapping!\n", unit);
1473 		error = ENXIO;
1474 		goto fail;
1475 	}
1476 
1477 	rid = TI_PCI_LOMEM;
1478 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1479 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1480 
1481 	if (sc->ti_res == NULL) {
1482 		printf ("ti%d: couldn't map memory\n", unit);
1483 		error = ENXIO;
1484 		goto fail;
1485 	}
1486 
1487 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1488 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1489 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1490 
1491 	/* Allocate interrupt */
1492 	rid = 0;
1493 
1494 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1495 	    RF_SHAREABLE | RF_ACTIVE);
1496 
1497 	if (sc->ti_irq == NULL) {
1498 		printf("ti%d: couldn't map interrupt\n", unit);
1499 		error = ENXIO;
1500 		goto fail;
1501 	}
1502 
1503 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1504 	   ti_intr, sc, &sc->ti_intrhand);
1505 
1506 	if (error) {
1507 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1508 		bus_release_resource(dev, SYS_RES_MEMORY,
1509 		    TI_PCI_LOMEM, sc->ti_res);
1510 		printf("ti%d: couldn't set up irq\n", unit);
1511 		goto fail;
1512 	}
1513 
1514 	sc->ti_unit = unit;
1515 
1516 	if (ti_chipinit(sc)) {
1517 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1518 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1519 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1520 		bus_release_resource(dev, SYS_RES_MEMORY,
1521 		    TI_PCI_LOMEM, sc->ti_res);
1522 		error = ENXIO;
1523 		goto fail;
1524 	}
1525 
1526 	/* Zero out the NIC's on-board SRAM. */
1527 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1528 
1529 	/* Init again -- zeroing memory may have clobbered some registers. */
1530 	if (ti_chipinit(sc)) {
1531 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1532 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1533 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1534 		bus_release_resource(dev, SYS_RES_MEMORY,
1535 		    TI_PCI_LOMEM, sc->ti_res);
1536 		error = ENXIO;
1537 		goto fail;
1538 	}
1539 
1540 	/*
1541 	 * Get station address from the EEPROM. Note: the manual states
1542 	 * that the MAC address is at offset 0x8c, however the data is
1543 	 * stored as two longwords (since that's how it's loaded into
1544 	 * the NIC). This means the MAC address is actually preceded
1545 	 * by two zero bytes. We need to skip over those.
1546 	 */
1547 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1548 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1549 		printf("ti%d: failed to read station address\n", unit);
1550 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1551 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1552 		bus_release_resource(dev, SYS_RES_MEMORY,
1553 		    TI_PCI_LOMEM, sc->ti_res);
1554 		error = ENXIO;
1555 		goto fail;
1556 	}
1557 
1558 	/*
1559 	 * A Tigon chip was detected. Inform the world.
1560 	 */
1561 	printf("ti%d: Ethernet address: %6D\n", unit,
1562 				sc->arpcom.ac_enaddr, ":");
1563 
1564 	/* Allocate the general information block and ring buffers. */
1565 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1566 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1567 
1568 	if (sc->ti_rdata == NULL) {
1569 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1570 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1571 		bus_release_resource(dev, SYS_RES_MEMORY,
1572 		    TI_PCI_LOMEM, sc->ti_res);
1573 		error = ENXIO;
1574 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1575 		goto fail;
1576 	}
1577 
1578 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1579 
1580 	/* Try to allocate memory for jumbo buffers. */
1581 	if (ti_alloc_jumbo_mem(sc)) {
1582 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1583 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1584 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1585 		bus_release_resource(dev, SYS_RES_MEMORY,
1586 		    TI_PCI_LOMEM, sc->ti_res);
1587 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1588 		    M_DEVBUF);
1589 		error = ENXIO;
1590 		goto fail;
1591 	}
1592 
1593 	/*
1594 	 * We really need a better way to tell a 1000baseTX card
1595 	 * from a 1000baseSX one, since in theory there could be
1596 	 * OEMed 1000baseTX cards from lame vendors who aren't
1597 	 * clever enough to change the PCI ID. For the moment
1598 	 * though, the AceNIC is the only copper card available.
1599 	 */
1600 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1601 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1602 		sc->ti_copper = 1;
1603 	/* Ok, it's not the only copper card available. */
1604 	if (pci_get_vendor(dev) == NG_VENDORID &&
1605 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1606 		sc->ti_copper = 1;
1607 
1608 	/* Set default tuneable values. */
1609 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1610 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1611 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1612 	sc->ti_rx_max_coal_bds = 64;
1613 	sc->ti_tx_max_coal_bds = 128;
1614 	sc->ti_tx_buf_ratio = 21;
1615 
1616 	/* Set up ifnet structure */
1617 	ifp = &sc->arpcom.ac_if;
1618 	ifp->if_softc = sc;
1619 	ifp->if_unit = sc->ti_unit;
1620 	ifp->if_name = "ti";
1621 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1622 	ifp->if_ioctl = ti_ioctl;
1623 	ifp->if_output = ether_output;
1624 	ifp->if_start = ti_start;
1625 	ifp->if_watchdog = ti_watchdog;
1626 	ifp->if_init = ti_init;
1627 	ifp->if_mtu = ETHERMTU;
1628 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1629 
1630 	/* Set up ifmedia support. */
1631 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1632 	if (sc->ti_copper) {
1633 		/*
1634 		 * Copper cards allow manual 10/100 mode selection,
1635 		 * but not manual 1000baseTX mode selection. Why?
1636 		 * Becuase currently there's no way to specify the
1637 		 * master/slave setting through the firmware interface,
1638 		 * so Alteon decided to just bag it and handle it
1639 		 * via autonegotiation.
1640 		 */
1641 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1642 		ifmedia_add(&sc->ifmedia,
1643 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1644 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1645 		ifmedia_add(&sc->ifmedia,
1646 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1647 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1648 		ifmedia_add(&sc->ifmedia,
1649 		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1650 	} else {
1651 		/* Fiber cards don't support 10/100 modes. */
1652 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1653 		ifmedia_add(&sc->ifmedia,
1654 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1655 	}
1656 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1657 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1658 
1659 	/*
1660 	 * Call MI attach routine.
1661 	 */
1662 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1663 	TI_UNLOCK(sc);
1664 	return(0);
1665 
1666 fail:
1667 	TI_UNLOCK(sc);
1668 	mtx_destroy(&sc->ti_mtx);
1669 	return(error);
1670 }
1671 
1672 static int ti_detach(dev)
1673 	device_t		dev;
1674 {
1675 	struct ti_softc		*sc;
1676 	struct ifnet		*ifp;
1677 
1678 
1679 	sc = device_get_softc(dev);
1680 	TI_LOCK(sc);
1681 	ifp = &sc->arpcom.ac_if;
1682 
1683 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1684 	ti_stop(sc);
1685 
1686 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1687 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1688 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1689 
1690 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1691 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1692 	ifmedia_removeall(&sc->ifmedia);
1693 
1694 	TI_UNLOCK(sc);
1695 	mtx_destroy(&sc->ti_mtx);
1696 
1697 	return(0);
1698 }
1699 
1700 /*
1701  * Frame reception handling. This is called if there's a frame
1702  * on the receive return list.
1703  *
1704  * Note: we have to be able to handle three possibilities here:
1705  * 1) the frame is from the mini receive ring (can only happen)
1706  *    on Tigon 2 boards)
1707  * 2) the frame is from the jumbo recieve ring
1708  * 3) the frame is from the standard receive ring
1709  */
1710 
1711 static void ti_rxeof(sc)
1712 	struct ti_softc		*sc;
1713 {
1714 	struct ifnet		*ifp;
1715 	struct ti_cmd_desc	cmd;
1716 
1717 	ifp = &sc->arpcom.ac_if;
1718 
1719 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1720 		struct ti_rx_desc	*cur_rx;
1721 		u_int32_t		rxidx;
1722 		struct ether_header	*eh;
1723 		struct mbuf		*m = NULL;
1724 		u_int16_t		vlan_tag = 0;
1725 		int			have_tag = 0;
1726 
1727 		cur_rx =
1728 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1729 		rxidx = cur_rx->ti_idx;
1730 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1731 
1732 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1733 			have_tag = 1;
1734 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1735 		}
1736 
1737 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1738 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1739 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1740 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1741 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1742 				ifp->if_ierrors++;
1743 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1744 				continue;
1745 			}
1746 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1747 				ifp->if_ierrors++;
1748 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1749 				continue;
1750 			}
1751 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1752 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1753 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1754 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1755 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1756 				ifp->if_ierrors++;
1757 				ti_newbuf_mini(sc, sc->ti_mini, m);
1758 				continue;
1759 			}
1760 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1761 				ifp->if_ierrors++;
1762 				ti_newbuf_mini(sc, sc->ti_mini, m);
1763 				continue;
1764 			}
1765 		} else {
1766 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1767 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1768 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1769 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1770 				ifp->if_ierrors++;
1771 				ti_newbuf_std(sc, sc->ti_std, m);
1772 				continue;
1773 			}
1774 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1775 				ifp->if_ierrors++;
1776 				ti_newbuf_std(sc, sc->ti_std, m);
1777 				continue;
1778 			}
1779 		}
1780 
1781 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1782 		ifp->if_ipackets++;
1783 		eh = mtod(m, struct ether_header *);
1784 		m->m_pkthdr.rcvif = ifp;
1785 
1786 		/* Remove header from mbuf and pass it on. */
1787 		m_adj(m, sizeof(struct ether_header));
1788 
1789 		if (ifp->if_hwassist) {
1790 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1791 			    CSUM_DATA_VALID;
1792 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1793 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1794 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1795 		}
1796 
1797 		/*
1798 		 * If we received a packet with a vlan tag, pass it
1799 		 * to vlan_input() instead of ether_input().
1800 		 */
1801 		if (have_tag) {
1802 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1803 			have_tag = vlan_tag = 0;
1804 			continue;
1805 		}
1806 		ether_input(ifp, eh, m);
1807 	}
1808 
1809 	/* Only necessary on the Tigon 1. */
1810 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1811 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1812 		    sc->ti_rx_saved_considx);
1813 
1814 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1815 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1816 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1817 
1818 	return;
1819 }
1820 
1821 static void ti_txeof(sc)
1822 	struct ti_softc		*sc;
1823 {
1824 	struct ti_tx_desc	*cur_tx = NULL;
1825 	struct ifnet		*ifp;
1826 
1827 	ifp = &sc->arpcom.ac_if;
1828 
1829 	/*
1830 	 * Go through our tx ring and free mbufs for those
1831 	 * frames that have been sent.
1832 	 */
1833 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1834 		u_int32_t		idx = 0;
1835 
1836 		idx = sc->ti_tx_saved_considx;
1837 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1838 			if (idx > 383)
1839 				CSR_WRITE_4(sc, TI_WINBASE,
1840 				    TI_TX_RING_BASE + 6144);
1841 			else if (idx > 255)
1842 				CSR_WRITE_4(sc, TI_WINBASE,
1843 				    TI_TX_RING_BASE + 4096);
1844 			else if (idx > 127)
1845 				CSR_WRITE_4(sc, TI_WINBASE,
1846 				    TI_TX_RING_BASE + 2048);
1847 			else
1848 				CSR_WRITE_4(sc, TI_WINBASE,
1849 				    TI_TX_RING_BASE);
1850 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1851 		} else
1852 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1853 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1854 			ifp->if_opackets++;
1855 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1856 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1857 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1858 		}
1859 		sc->ti_txcnt--;
1860 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1861 		ifp->if_timer = 0;
1862 	}
1863 
1864 	if (cur_tx != NULL)
1865 		ifp->if_flags &= ~IFF_OACTIVE;
1866 
1867 	return;
1868 }
1869 
1870 static void ti_intr(xsc)
1871 	void			*xsc;
1872 {
1873 	struct ti_softc		*sc;
1874 	struct ifnet		*ifp;
1875 
1876 	sc = xsc;
1877 	TI_LOCK(sc);
1878 	ifp = &sc->arpcom.ac_if;
1879 
1880 #ifdef notdef
1881 	/* Avoid this for now -- checking this register is expensive. */
1882 	/* Make sure this is really our interrupt. */
1883 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1884 		TI_UNLOCK(sc);
1885 		return;
1886 	}
1887 #endif
1888 
1889 	/* Ack interrupt and stop others from occuring. */
1890 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1891 
1892 	if (ifp->if_flags & IFF_RUNNING) {
1893 		/* Check RX return ring producer/consumer */
1894 		ti_rxeof(sc);
1895 
1896 		/* Check TX ring producer/consumer */
1897 		ti_txeof(sc);
1898 	}
1899 
1900 	ti_handle_events(sc);
1901 
1902 	/* Re-enable interrupts. */
1903 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1904 
1905 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1906 		ti_start(ifp);
1907 
1908 	TI_UNLOCK(sc);
1909 
1910 	return;
1911 }
1912 
1913 static void ti_stats_update(sc)
1914 	struct ti_softc		*sc;
1915 {
1916 	struct ifnet		*ifp;
1917 
1918 	ifp = &sc->arpcom.ac_if;
1919 
1920 	ifp->if_collisions +=
1921 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1922 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1923 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1924 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1925 	   ifp->if_collisions;
1926 
1927 	return;
1928 }
1929 
1930 /*
1931  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1932  * pointers to descriptors.
1933  */
1934 static int ti_encap(sc, m_head, txidx)
1935 	struct ti_softc		*sc;
1936 	struct mbuf		*m_head;
1937 	u_int32_t		*txidx;
1938 {
1939 	struct ti_tx_desc	*f = NULL;
1940 	struct mbuf		*m;
1941 	u_int32_t		frag, cur, cnt = 0;
1942 	u_int16_t		csum_flags = 0;
1943 	struct ifvlan		*ifv = NULL;
1944 
1945 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1946 	    m_head->m_pkthdr.rcvif != NULL &&
1947 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1948 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1949 
1950 	m = m_head;
1951 	cur = frag = *txidx;
1952 
1953 	if (m_head->m_pkthdr.csum_flags) {
1954 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1955 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1956 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1957 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1958 		if (m_head->m_flags & M_LASTFRAG)
1959 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1960 		else if (m_head->m_flags & M_FRAG)
1961 			csum_flags |= TI_BDFLAG_IP_FRAG;
1962 	}
1963 	/*
1964  	 * Start packing the mbufs in this chain into
1965 	 * the fragment pointers. Stop when we run out
1966  	 * of fragments or hit the end of the mbuf chain.
1967 	 */
1968 	for (m = m_head; m != NULL; m = m->m_next) {
1969 		if (m->m_len != 0) {
1970 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1971 				if (frag > 383)
1972 					CSR_WRITE_4(sc, TI_WINBASE,
1973 					    TI_TX_RING_BASE + 6144);
1974 				else if (frag > 255)
1975 					CSR_WRITE_4(sc, TI_WINBASE,
1976 					    TI_TX_RING_BASE + 4096);
1977 				else if (frag > 127)
1978 					CSR_WRITE_4(sc, TI_WINBASE,
1979 					    TI_TX_RING_BASE + 2048);
1980 				else
1981 					CSR_WRITE_4(sc, TI_WINBASE,
1982 					    TI_TX_RING_BASE);
1983 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1984 			} else
1985 				f = &sc->ti_rdata->ti_tx_ring[frag];
1986 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1987 				break;
1988 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1989 			f->ti_len = m->m_len;
1990 			f->ti_flags = csum_flags;
1991 
1992 			if (ifv != NULL) {
1993 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1994 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1995 			} else {
1996 				f->ti_vlan_tag = 0;
1997 			}
1998 
1999 			/*
2000 			 * Sanity check: avoid coming within 16 descriptors
2001 			 * of the end of the ring.
2002 			 */
2003 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2004 				return(ENOBUFS);
2005 			cur = frag;
2006 			TI_INC(frag, TI_TX_RING_CNT);
2007 			cnt++;
2008 		}
2009 	}
2010 
2011 	if (m != NULL)
2012 		return(ENOBUFS);
2013 
2014 	if (frag == sc->ti_tx_saved_considx)
2015 		return(ENOBUFS);
2016 
2017 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2018 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2019 		    TI_BDFLAG_END;
2020 	else
2021 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2022 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2023 	sc->ti_txcnt += cnt;
2024 
2025 	*txidx = frag;
2026 
2027 	return(0);
2028 }
2029 
2030 /*
2031  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2032  * to the mbuf data regions directly in the transmit descriptors.
2033  */
2034 static void ti_start(ifp)
2035 	struct ifnet		*ifp;
2036 {
2037 	struct ti_softc		*sc;
2038 	struct mbuf		*m_head = NULL;
2039 	u_int32_t		prodidx = 0;
2040 
2041 	sc = ifp->if_softc;
2042 	TI_LOCK(sc);
2043 
2044 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2045 
2046 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2047 		IF_DEQUEUE(&ifp->if_snd, m_head);
2048 		if (m_head == NULL)
2049 			break;
2050 
2051 		/*
2052 		 * XXX
2053 		 * safety overkill.  If this is a fragmented packet chain
2054 		 * with delayed TCP/UDP checksums, then only encapsulate
2055 		 * it if we have enough descriptors to handle the entire
2056 		 * chain at once.
2057 		 * (paranoia -- may not actually be needed)
2058 		 */
2059 		if (m_head->m_flags & M_FIRSTFRAG &&
2060 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2061 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2062 			    m_head->m_pkthdr.csum_data + 16) {
2063 				IF_PREPEND(&ifp->if_snd, m_head);
2064 				ifp->if_flags |= IFF_OACTIVE;
2065 				break;
2066 			}
2067 		}
2068 
2069 		/*
2070 		 * Pack the data into the transmit ring. If we
2071 		 * don't have room, set the OACTIVE flag and wait
2072 		 * for the NIC to drain the ring.
2073 		 */
2074 		if (ti_encap(sc, m_head, &prodidx)) {
2075 			IF_PREPEND(&ifp->if_snd, m_head);
2076 			ifp->if_flags |= IFF_OACTIVE;
2077 			break;
2078 		}
2079 
2080 		/*
2081 		 * If there's a BPF listener, bounce a copy of this frame
2082 		 * to him.
2083 		 */
2084 		if (ifp->if_bpf)
2085 			bpf_mtap(ifp, m_head);
2086 	}
2087 
2088 	/* Transmit */
2089 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2090 
2091 	/*
2092 	 * Set a timeout in case the chip goes out to lunch.
2093 	 */
2094 	ifp->if_timer = 5;
2095 	TI_UNLOCK(sc);
2096 
2097 	return;
2098 }
2099 
2100 static void ti_init(xsc)
2101 	void			*xsc;
2102 {
2103 	struct ti_softc		*sc = xsc;
2104 
2105 	/* Cancel pending I/O and flush buffers. */
2106 	ti_stop(sc);
2107 
2108 	TI_LOCK(sc);
2109 	/* Init the gen info block, ring control blocks and firmware. */
2110 	if (ti_gibinit(sc)) {
2111 		printf("ti%d: initialization failure\n", sc->ti_unit);
2112 		TI_UNLOCK(sc);
2113 		return;
2114 	}
2115 
2116 	TI_UNLOCK(sc);
2117 
2118 	return;
2119 }
2120 
2121 static void ti_init2(sc)
2122 	struct ti_softc		*sc;
2123 {
2124 	struct ti_cmd_desc	cmd;
2125 	struct ifnet		*ifp;
2126 	u_int16_t		*m;
2127 	struct ifmedia		*ifm;
2128 	int			tmp;
2129 
2130 	ifp = &sc->arpcom.ac_if;
2131 
2132 	/* Specify MTU and interface index. */
2133 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2134 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2135 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2136 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2137 
2138 	/* Load our MAC address. */
2139 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2140 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2141 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2142 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2143 
2144 	/* Enable or disable promiscuous mode as needed. */
2145 	if (ifp->if_flags & IFF_PROMISC) {
2146 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2147 	} else {
2148 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2149 	}
2150 
2151 	/* Program multicast filter. */
2152 	ti_setmulti(sc);
2153 
2154 	/*
2155 	 * If this is a Tigon 1, we should tell the
2156 	 * firmware to use software packet filtering.
2157 	 */
2158 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2159 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2160 	}
2161 
2162 	/* Init RX ring. */
2163 	ti_init_rx_ring_std(sc);
2164 
2165 	/* Init jumbo RX ring. */
2166 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2167 		ti_init_rx_ring_jumbo(sc);
2168 
2169 	/*
2170 	 * If this is a Tigon 2, we can also configure the
2171 	 * mini ring.
2172 	 */
2173 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2174 		ti_init_rx_ring_mini(sc);
2175 
2176 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2177 	sc->ti_rx_saved_considx = 0;
2178 
2179 	/* Init TX ring. */
2180 	ti_init_tx_ring(sc);
2181 
2182 	/* Tell firmware we're alive. */
2183 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2184 
2185 	/* Enable host interrupts. */
2186 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2187 
2188 	ifp->if_flags |= IFF_RUNNING;
2189 	ifp->if_flags &= ~IFF_OACTIVE;
2190 
2191 	/*
2192 	 * Make sure to set media properly. We have to do this
2193 	 * here since we have to issue commands in order to set
2194 	 * the link negotiation and we can't issue commands until
2195 	 * the firmware is running.
2196 	 */
2197 	ifm = &sc->ifmedia;
2198 	tmp = ifm->ifm_media;
2199 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2200 	ti_ifmedia_upd(ifp);
2201 	ifm->ifm_media = tmp;
2202 
2203 	return;
2204 }
2205 
2206 /*
2207  * Set media options.
2208  */
2209 static int ti_ifmedia_upd(ifp)
2210 	struct ifnet		*ifp;
2211 {
2212 	struct ti_softc		*sc;
2213 	struct ifmedia		*ifm;
2214 	struct ti_cmd_desc	cmd;
2215 
2216 	sc = ifp->if_softc;
2217 	ifm = &sc->ifmedia;
2218 
2219 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2220 		return(EINVAL);
2221 
2222 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2223 	case IFM_AUTO:
2224 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2225 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2226 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2227 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2228 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2229 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2230 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2231 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2232 		break;
2233 	case IFM_1000_SX:
2234 	case IFM_1000_TX:
2235 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2236 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2237 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2238 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2239 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2240 		}
2241 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2242 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2243 		break;
2244 	case IFM_100_FX:
2245 	case IFM_10_FL:
2246 	case IFM_100_TX:
2247 	case IFM_10_T:
2248 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2249 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2250 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2251 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2252 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2253 		} else {
2254 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2255 		}
2256 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2257 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2258 		} else {
2259 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2260 		}
2261 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2262 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2263 		break;
2264 	}
2265 
2266 	return(0);
2267 }
2268 
2269 /*
2270  * Report current media status.
2271  */
2272 static void ti_ifmedia_sts(ifp, ifmr)
2273 	struct ifnet		*ifp;
2274 	struct ifmediareq	*ifmr;
2275 {
2276 	struct ti_softc		*sc;
2277 	u_int32_t		media = 0;
2278 
2279 	sc = ifp->if_softc;
2280 
2281 	ifmr->ifm_status = IFM_AVALID;
2282 	ifmr->ifm_active = IFM_ETHER;
2283 
2284 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2285 		return;
2286 
2287 	ifmr->ifm_status |= IFM_ACTIVE;
2288 
2289 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2290 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2291 		if (sc->ti_copper)
2292 			ifmr->ifm_active |= IFM_1000_TX;
2293 		else
2294 			ifmr->ifm_active |= IFM_1000_SX;
2295 		if (media & TI_GLNK_FULL_DUPLEX)
2296 			ifmr->ifm_active |= IFM_FDX;
2297 		else
2298 			ifmr->ifm_active |= IFM_HDX;
2299 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2300 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2301 		if (sc->ti_copper) {
2302 			if (media & TI_LNK_100MB)
2303 				ifmr->ifm_active |= IFM_100_TX;
2304 			if (media & TI_LNK_10MB)
2305 				ifmr->ifm_active |= IFM_10_T;
2306 		} else {
2307 			if (media & TI_LNK_100MB)
2308 				ifmr->ifm_active |= IFM_100_FX;
2309 			if (media & TI_LNK_10MB)
2310 				ifmr->ifm_active |= IFM_10_FL;
2311 		}
2312 		if (media & TI_LNK_FULL_DUPLEX)
2313 			ifmr->ifm_active |= IFM_FDX;
2314 		if (media & TI_LNK_HALF_DUPLEX)
2315 			ifmr->ifm_active |= IFM_HDX;
2316 	}
2317 
2318 	return;
2319 }
2320 
2321 static int ti_ioctl(ifp, command, data)
2322 	struct ifnet		*ifp;
2323 	u_long			command;
2324 	caddr_t			data;
2325 {
2326 	struct ti_softc		*sc = ifp->if_softc;
2327 	struct ifreq		*ifr = (struct ifreq *) data;
2328 	int			mask, error = 0;
2329 	struct ti_cmd_desc	cmd;
2330 
2331 	TI_LOCK(sc);
2332 
2333 	switch(command) {
2334 	case SIOCSIFADDR:
2335 	case SIOCGIFADDR:
2336 		error = ether_ioctl(ifp, command, data);
2337 		break;
2338 	case SIOCSIFMTU:
2339 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2340 			error = EINVAL;
2341 		else {
2342 			ifp->if_mtu = ifr->ifr_mtu;
2343 			ti_init(sc);
2344 		}
2345 		break;
2346 	case SIOCSIFFLAGS:
2347 		if (ifp->if_flags & IFF_UP) {
2348 			/*
2349 			 * If only the state of the PROMISC flag changed,
2350 			 * then just use the 'set promisc mode' command
2351 			 * instead of reinitializing the entire NIC. Doing
2352 			 * a full re-init means reloading the firmware and
2353 			 * waiting for it to start up, which may take a
2354 			 * second or two.
2355 			 */
2356 			if (ifp->if_flags & IFF_RUNNING &&
2357 			    ifp->if_flags & IFF_PROMISC &&
2358 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2359 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2360 				    TI_CMD_CODE_PROMISC_ENB, 0);
2361 			} else if (ifp->if_flags & IFF_RUNNING &&
2362 			    !(ifp->if_flags & IFF_PROMISC) &&
2363 			    sc->ti_if_flags & IFF_PROMISC) {
2364 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2365 				    TI_CMD_CODE_PROMISC_DIS, 0);
2366 			} else
2367 				ti_init(sc);
2368 		} else {
2369 			if (ifp->if_flags & IFF_RUNNING) {
2370 				ti_stop(sc);
2371 			}
2372 		}
2373 		sc->ti_if_flags = ifp->if_flags;
2374 		error = 0;
2375 		break;
2376 	case SIOCADDMULTI:
2377 	case SIOCDELMULTI:
2378 		if (ifp->if_flags & IFF_RUNNING) {
2379 			ti_setmulti(sc);
2380 			error = 0;
2381 		}
2382 		break;
2383 	case SIOCSIFMEDIA:
2384 	case SIOCGIFMEDIA:
2385 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2386 		break;
2387 	case SIOCSIFCAP:
2388 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2389 		if (mask & IFCAP_HWCSUM) {
2390 			if (IFCAP_HWCSUM & ifp->if_capenable)
2391 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2392                         else
2393                                 ifp->if_capenable |= IFCAP_HWCSUM;
2394 			if (ifp->if_flags & IFF_RUNNING)
2395 				ti_init(sc);
2396                 }
2397 		error = 0;
2398 		break;
2399 	default:
2400 		error = EINVAL;
2401 		break;
2402 	}
2403 
2404 	TI_UNLOCK(sc);
2405 
2406 	return(error);
2407 }
2408 
2409 static void ti_watchdog(ifp)
2410 	struct ifnet		*ifp;
2411 {
2412 	struct ti_softc		*sc;
2413 
2414 	sc = ifp->if_softc;
2415 	TI_LOCK(sc);
2416 
2417 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2418 	ti_stop(sc);
2419 	ti_init(sc);
2420 
2421 	ifp->if_oerrors++;
2422 	TI_UNLOCK(sc);
2423 
2424 	return;
2425 }
2426 
2427 /*
2428  * Stop the adapter and free any mbufs allocated to the
2429  * RX and TX lists.
2430  */
2431 static void ti_stop(sc)
2432 	struct ti_softc		*sc;
2433 {
2434 	struct ifnet		*ifp;
2435 	struct ti_cmd_desc	cmd;
2436 
2437 	TI_LOCK(sc);
2438 
2439 	ifp = &sc->arpcom.ac_if;
2440 
2441 	/* Disable host interrupts. */
2442 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2443 	/*
2444 	 * Tell firmware we're shutting down.
2445 	 */
2446 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2447 
2448 	/* Halt and reinitialize. */
2449 	ti_chipinit(sc);
2450 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2451 	ti_chipinit(sc);
2452 
2453 	/* Free the RX lists. */
2454 	ti_free_rx_ring_std(sc);
2455 
2456 	/* Free jumbo RX list. */
2457 	ti_free_rx_ring_jumbo(sc);
2458 
2459 	/* Free mini RX list. */
2460 	ti_free_rx_ring_mini(sc);
2461 
2462 	/* Free TX buffers. */
2463 	ti_free_tx_ring(sc);
2464 
2465 	sc->ti_ev_prodidx.ti_idx = 0;
2466 	sc->ti_return_prodidx.ti_idx = 0;
2467 	sc->ti_tx_considx.ti_idx = 0;
2468 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2469 
2470 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2471 	TI_UNLOCK(sc);
2472 
2473 	return;
2474 }
2475 
2476 /*
2477  * Stop all chip I/O so that the kernel's probe routines don't
2478  * get confused by errant DMAs when rebooting.
2479  */
2480 static void ti_shutdown(dev)
2481 	device_t		dev;
2482 {
2483 	struct ti_softc		*sc;
2484 
2485 	sc = device_get_softc(dev);
2486 	TI_LOCK(sc);
2487 	ti_chipinit(sc);
2488 	TI_UNLOCK(sc);
2489 
2490 	return;
2491 }
2492