xref: /freebsd/sys/dev/ti/if_ti.c (revision e796cc77c586c2955b2f3940dbf4991b31e8d289)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include <sys/cdefs.h>
82 __FBSDID("$FreeBSD$");
83 
84 #include "opt_ti.h"
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/sockio.h>
89 #include <sys/mbuf.h>
90 #include <sys/malloc.h>
91 #include <sys/kernel.h>
92 #include <sys/module.h>
93 #include <sys/socket.h>
94 #include <sys/queue.h>
95 #include <sys/conf.h>
96 #include <sys/sf_buf.h>
97 
98 #include <net/if.h>
99 #include <net/if_var.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_types.h>
105 #include <net/if_vlan_var.h>
106 
107 #include <net/bpf.h>
108 
109 #include <netinet/in_systm.h>
110 #include <netinet/in.h>
111 #include <netinet/ip.h>
112 
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #ifdef TI_SF_BUF_JUMBO
119 #include <vm/vm.h>
120 #include <vm/vm_page.h>
121 #endif
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 
126 #include <sys/tiio.h>
127 #include <dev/ti/if_tireg.h>
128 #include <dev/ti/ti_fw.h>
129 #include <dev/ti/ti_fw2.h>
130 
131 #include <sys/sysctl.h>
132 
133 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
134 /*
135  * We can only turn on header splitting if we're using extended receive
136  * BDs.
137  */
138 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
139 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
140 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
141 
142 typedef enum {
143 	TI_SWAP_HTON,
144 	TI_SWAP_NTOH
145 } ti_swap_type;
146 
147 /*
148  * Various supported device vendors/types and their names.
149  */
150 
151 static const struct ti_type ti_devs[] = {
152 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
153 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
154 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
155 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
156 	{ TC_VENDORID,	TC_DEVICEID_3C985,
157 		"3Com 3c985-SX Gigabit Ethernet" },
158 	{ NG_VENDORID, NG_DEVICEID_GA620,
159 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
160 	{ NG_VENDORID, NG_DEVICEID_GA620T,
161 		"Netgear GA620 1000baseT Gigabit Ethernet" },
162 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
163 		"Silicon Graphics Gigabit Ethernet" },
164 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
165 		"Farallon PN9000SX Gigabit Ethernet" },
166 	{ 0, 0, NULL }
167 };
168 
169 
170 static	d_open_t	ti_open;
171 static	d_close_t	ti_close;
172 static	d_ioctl_t	ti_ioctl2;
173 
174 static struct cdevsw ti_cdevsw = {
175 	.d_version =	D_VERSION,
176 	.d_flags =	0,
177 	.d_open =	ti_open,
178 	.d_close =	ti_close,
179 	.d_ioctl =	ti_ioctl2,
180 	.d_name =	"ti",
181 };
182 
183 static int ti_probe(device_t);
184 static int ti_attach(device_t);
185 static int ti_detach(device_t);
186 static void ti_txeof(struct ti_softc *);
187 static void ti_rxeof(struct ti_softc *);
188 
189 static int ti_encap(struct ti_softc *, struct mbuf **);
190 
191 static void ti_intr(void *);
192 static void ti_start(struct ifnet *);
193 static void ti_start_locked(struct ifnet *);
194 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
195 static uint64_t ti_get_counter(struct ifnet *, ift_counter);
196 static void ti_init(void *);
197 static void ti_init_locked(void *);
198 static void ti_init2(struct ti_softc *);
199 static void ti_stop(struct ti_softc *);
200 static void ti_watchdog(void *);
201 static int ti_shutdown(device_t);
202 static int ti_ifmedia_upd(struct ifnet *);
203 static int ti_ifmedia_upd_locked(struct ti_softc *);
204 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
205 
206 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
207 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
208 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
209 
210 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
211 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
212 static void ti_setmulti(struct ti_softc *);
213 
214 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
215 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
216 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
217 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
218     int);
219 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
220     int, int, int);
221 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
222 static void ti_loadfw(struct ti_softc *);
223 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
224 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
225 static void ti_handle_events(struct ti_softc *);
226 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
227 static int ti_dma_alloc(struct ti_softc *);
228 static void ti_dma_free(struct ti_softc *);
229 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
230     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
231 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
232     bus_dmamap_t, bus_addr_t *);
233 static int ti_newbuf_std(struct ti_softc *, int);
234 static int ti_newbuf_mini(struct ti_softc *, int);
235 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
236 static int ti_init_rx_ring_std(struct ti_softc *);
237 static void ti_free_rx_ring_std(struct ti_softc *);
238 static int ti_init_rx_ring_jumbo(struct ti_softc *);
239 static void ti_free_rx_ring_jumbo(struct ti_softc *);
240 static int ti_init_rx_ring_mini(struct ti_softc *);
241 static void ti_free_rx_ring_mini(struct ti_softc *);
242 static void ti_free_tx_ring(struct ti_softc *);
243 static int ti_init_tx_ring(struct ti_softc *);
244 static void ti_discard_std(struct ti_softc *, int);
245 #ifndef TI_SF_BUF_JUMBO
246 static void ti_discard_jumbo(struct ti_softc *, int);
247 #endif
248 static void ti_discard_mini(struct ti_softc *, int);
249 
250 static int ti_64bitslot_war(struct ti_softc *);
251 static int ti_chipinit(struct ti_softc *);
252 static int ti_gibinit(struct ti_softc *);
253 
254 #ifdef TI_JUMBO_HDRSPLIT
255 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
256     int idx);
257 #endif /* TI_JUMBO_HDRSPLIT */
258 
259 static void ti_sysctl_node(struct ti_softc *);
260 
261 static device_method_t ti_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		ti_probe),
264 	DEVMETHOD(device_attach,	ti_attach),
265 	DEVMETHOD(device_detach,	ti_detach),
266 	DEVMETHOD(device_shutdown,	ti_shutdown),
267 	{ 0, 0 }
268 };
269 
270 static driver_t ti_driver = {
271 	"ti",
272 	ti_methods,
273 	sizeof(struct ti_softc)
274 };
275 
276 static devclass_t ti_devclass;
277 
278 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
279 MODULE_DEPEND(ti, pci, 1, 1, 1);
280 MODULE_DEPEND(ti, ether, 1, 1, 1);
281 
282 /*
283  * Send an instruction or address to the EEPROM, check for ACK.
284  */
285 static uint32_t
286 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
287 {
288 	int i, ack = 0;
289 
290 	/*
291 	 * Make sure we're in TX mode.
292 	 */
293 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
294 
295 	/*
296 	 * Feed in each bit and stobe the clock.
297 	 */
298 	for (i = 0x80; i; i >>= 1) {
299 		if (byte & i) {
300 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301 		} else {
302 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
303 		}
304 		DELAY(1);
305 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 		DELAY(1);
307 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308 	}
309 
310 	/*
311 	 * Turn off TX mode.
312 	 */
313 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
314 
315 	/*
316 	 * Check for ack.
317 	 */
318 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
320 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321 
322 	return (ack);
323 }
324 
325 /*
326  * Read a byte of data stored in the EEPROM at address 'addr.'
327  * We have to send two address bytes since the EEPROM can hold
328  * more than 256 bytes of data.
329  */
330 static uint8_t
331 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
332 {
333 	int i;
334 	uint8_t byte = 0;
335 
336 	EEPROM_START;
337 
338 	/*
339 	 * Send write control code to EEPROM.
340 	 */
341 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
342 		device_printf(sc->ti_dev,
343 		    "failed to send write command, status: %x\n",
344 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345 		return (1);
346 	}
347 
348 	/*
349 	 * Send first byte of address of byte we want to read.
350 	 */
351 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
352 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
353 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
354 		return (1);
355 	}
356 	/*
357 	 * Send second byte address of byte we want to read.
358 	 */
359 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
360 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
361 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
362 		return (1);
363 	}
364 
365 	EEPROM_STOP;
366 	EEPROM_START;
367 	/*
368 	 * Send read control code to EEPROM.
369 	 */
370 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
371 		device_printf(sc->ti_dev,
372 		    "failed to send read command, status: %x\n",
373 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
374 		return (1);
375 	}
376 
377 	/*
378 	 * Start reading bits from EEPROM.
379 	 */
380 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
381 	for (i = 0x80; i; i >>= 1) {
382 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
383 		DELAY(1);
384 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
385 			byte |= i;
386 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
387 		DELAY(1);
388 	}
389 
390 	EEPROM_STOP;
391 
392 	/*
393 	 * No ACK generated for read, so just return byte.
394 	 */
395 
396 	*dest = byte;
397 
398 	return (0);
399 }
400 
401 /*
402  * Read a sequence of bytes from the EEPROM.
403  */
404 static int
405 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
406 {
407 	int err = 0, i;
408 	uint8_t byte = 0;
409 
410 	for (i = 0; i < cnt; i++) {
411 		err = ti_eeprom_getbyte(sc, off + i, &byte);
412 		if (err)
413 			break;
414 		*(dest + i) = byte;
415 	}
416 
417 	return (err ? 1 : 0);
418 }
419 
420 /*
421  * NIC memory read function.
422  * Can be used to copy data from NIC local memory.
423  */
424 static void
425 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
426 {
427 	int segptr, segsize, cnt;
428 	char *ptr;
429 
430 	segptr = addr;
431 	cnt = len;
432 	ptr = buf;
433 
434 	while (cnt) {
435 		if (cnt < TI_WINLEN)
436 			segsize = cnt;
437 		else
438 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
439 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
440 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
441 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
442 		    segsize / 4);
443 		ptr += segsize;
444 		segptr += segsize;
445 		cnt -= segsize;
446 	}
447 }
448 
449 
450 /*
451  * NIC memory write function.
452  * Can be used to copy data into NIC local memory.
453  */
454 static void
455 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
456 {
457 	int segptr, segsize, cnt;
458 	char *ptr;
459 
460 	segptr = addr;
461 	cnt = len;
462 	ptr = buf;
463 
464 	while (cnt) {
465 		if (cnt < TI_WINLEN)
466 			segsize = cnt;
467 		else
468 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
469 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
470 		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
471 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
472 		    segsize / 4);
473 		ptr += segsize;
474 		segptr += segsize;
475 		cnt -= segsize;
476 	}
477 }
478 
479 /*
480  * NIC memory read function.
481  * Can be used to clear a section of NIC local memory.
482  */
483 static void
484 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
485 {
486 	int segptr, segsize, cnt;
487 
488 	segptr = addr;
489 	cnt = len;
490 
491 	while (cnt) {
492 		if (cnt < TI_WINLEN)
493 			segsize = cnt;
494 		else
495 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
496 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
497 		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
498 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
499 		segptr += segsize;
500 		cnt -= segsize;
501 	}
502 }
503 
504 static int
505 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
506     caddr_t buf, int useraddr, int readdata)
507 {
508 	int segptr, segsize, cnt;
509 	caddr_t ptr;
510 	uint32_t origwin;
511 	int resid, segresid;
512 	int first_pass;
513 
514 	TI_LOCK_ASSERT(sc);
515 
516 	/*
517 	 * At the moment, we don't handle non-aligned cases, we just bail.
518 	 * If this proves to be a problem, it will be fixed.
519 	 */
520 	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
521 		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
522 		    "word-aligned\n", __func__, tigon_addr);
523 		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
524 		    "yet supported\n", __func__);
525 		return (EINVAL);
526 	}
527 
528 	segptr = tigon_addr & ~0x3;
529 	segresid = tigon_addr - segptr;
530 
531 	/*
532 	 * This is the non-aligned amount left over that we'll need to
533 	 * copy.
534 	 */
535 	resid = len & 0x3;
536 
537 	/* Add in the left over amount at the front of the buffer */
538 	resid += segresid;
539 
540 	cnt = len & ~0x3;
541 	/*
542 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
543 	 * decrease the residual by that much.
544 	 */
545 	cnt += resid & ~0x3;
546 	resid -= resid & ~0x3;
547 
548 	ptr = buf;
549 
550 	first_pass = 1;
551 
552 	/*
553 	 * Save the old window base value.
554 	 */
555 	origwin = CSR_READ_4(sc, TI_WINBASE);
556 
557 	while (cnt) {
558 		bus_size_t ti_offset;
559 
560 		if (cnt < TI_WINLEN)
561 			segsize = cnt;
562 		else
563 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
564 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
565 
566 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
567 
568 		if (readdata) {
569 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
570 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
571 			if (useraddr) {
572 				/*
573 				 * Yeah, this is a little on the kludgy
574 				 * side, but at least this code is only
575 				 * used for debugging.
576 				 */
577 				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
578 				    segsize, TI_SWAP_NTOH);
579 
580 				TI_UNLOCK(sc);
581 				if (first_pass) {
582 					copyout(&sc->ti_membuf2[segresid], ptr,
583 					    segsize - segresid);
584 					first_pass = 0;
585 				} else
586 					copyout(sc->ti_membuf2, ptr, segsize);
587 				TI_LOCK(sc);
588 			} else {
589 				if (first_pass) {
590 
591 					ti_bcopy_swap(sc->ti_membuf,
592 					    sc->ti_membuf2, segsize,
593 					    TI_SWAP_NTOH);
594 					TI_UNLOCK(sc);
595 					bcopy(&sc->ti_membuf2[segresid], ptr,
596 					    segsize - segresid);
597 					TI_LOCK(sc);
598 					first_pass = 0;
599 				} else
600 					ti_bcopy_swap(sc->ti_membuf, ptr,
601 					    segsize, TI_SWAP_NTOH);
602 			}
603 
604 		} else {
605 			if (useraddr) {
606 				TI_UNLOCK(sc);
607 				copyin(ptr, sc->ti_membuf2, segsize);
608 				TI_LOCK(sc);
609 				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
610 				    segsize, TI_SWAP_HTON);
611 			} else
612 				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
613 				    TI_SWAP_HTON);
614 
615 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
616 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
617 		}
618 		segptr += segsize;
619 		ptr += segsize;
620 		cnt -= segsize;
621 	}
622 
623 	/*
624 	 * Handle leftover, non-word-aligned bytes.
625 	 */
626 	if (resid != 0) {
627 		uint32_t tmpval, tmpval2;
628 		bus_size_t ti_offset;
629 
630 		/*
631 		 * Set the segment pointer.
632 		 */
633 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
634 
635 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
636 
637 		/*
638 		 * First, grab whatever is in our source/destination.
639 		 * We'll obviously need this for reads, but also for
640 		 * writes, since we'll be doing read/modify/write.
641 		 */
642 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
643 		    ti_offset, &tmpval, 1);
644 
645 		/*
646 		 * Next, translate this from little-endian to big-endian
647 		 * (at least on i386 boxes).
648 		 */
649 		tmpval2 = ntohl(tmpval);
650 
651 		if (readdata) {
652 			/*
653 			 * If we're reading, just copy the leftover number
654 			 * of bytes from the host byte order buffer to
655 			 * the user's buffer.
656 			 */
657 			if (useraddr) {
658 				TI_UNLOCK(sc);
659 				copyout(&tmpval2, ptr, resid);
660 				TI_LOCK(sc);
661 			} else
662 				bcopy(&tmpval2, ptr, resid);
663 		} else {
664 			/*
665 			 * If we're writing, first copy the bytes to be
666 			 * written into the network byte order buffer,
667 			 * leaving the rest of the buffer with whatever was
668 			 * originally in there.  Then, swap the bytes
669 			 * around into host order and write them out.
670 			 *
671 			 * XXX KDM the read side of this has been verified
672 			 * to work, but the write side of it has not been
673 			 * verified.  So user beware.
674 			 */
675 			if (useraddr) {
676 				TI_UNLOCK(sc);
677 				copyin(ptr, &tmpval2, resid);
678 				TI_LOCK(sc);
679 			} else
680 				bcopy(ptr, &tmpval2, resid);
681 
682 			tmpval = htonl(tmpval2);
683 
684 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
685 			    ti_offset, &tmpval, 1);
686 		}
687 	}
688 
689 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
690 
691 	return (0);
692 }
693 
694 static int
695 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
696     caddr_t buf, int useraddr, int readdata, int cpu)
697 {
698 	uint32_t segptr;
699 	int cnt;
700 	uint32_t tmpval, tmpval2;
701 	caddr_t ptr;
702 
703 	TI_LOCK_ASSERT(sc);
704 
705 	/*
706 	 * At the moment, we don't handle non-aligned cases, we just bail.
707 	 * If this proves to be a problem, it will be fixed.
708 	 */
709 	if (tigon_addr & 0x3) {
710 		device_printf(sc->ti_dev, "%s: tigon address %#x "
711 		    "isn't word-aligned\n", __func__, tigon_addr);
712 		return (EINVAL);
713 	}
714 
715 	if (len & 0x3) {
716 		device_printf(sc->ti_dev, "%s: transfer length %d "
717 		    "isn't word-aligned\n", __func__, len);
718 		return (EINVAL);
719 	}
720 
721 	segptr = tigon_addr;
722 	cnt = len;
723 	ptr = buf;
724 
725 	while (cnt) {
726 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
727 
728 		if (readdata) {
729 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
730 
731 			tmpval = ntohl(tmpval2);
732 
733 			/*
734 			 * Note:  I've used this debugging interface
735 			 * extensively with Alteon's 12.3.15 firmware,
736 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
737 			 *
738 			 * When you compile the firmware without
739 			 * optimization, which is necessary sometimes in
740 			 * order to properly step through it, you sometimes
741 			 * read out a bogus value of 0xc0017c instead of
742 			 * whatever was supposed to be in that scratchpad
743 			 * location.  That value is on the stack somewhere,
744 			 * but I've never been able to figure out what was
745 			 * causing the problem.
746 			 *
747 			 * The address seems to pop up in random places,
748 			 * often not in the same place on two subsequent
749 			 * reads.
750 			 *
751 			 * In any case, the underlying data doesn't seem
752 			 * to be affected, just the value read out.
753 			 *
754 			 * KDM, 3/7/2000
755 			 */
756 
757 			if (tmpval2 == 0xc0017c)
758 				device_printf(sc->ti_dev, "found 0xc0017c at "
759 				    "%#x (tmpval2)\n", segptr);
760 
761 			if (tmpval == 0xc0017c)
762 				device_printf(sc->ti_dev, "found 0xc0017c at "
763 				    "%#x (tmpval)\n", segptr);
764 
765 			if (useraddr)
766 				copyout(&tmpval, ptr, 4);
767 			else
768 				bcopy(&tmpval, ptr, 4);
769 		} else {
770 			if (useraddr)
771 				copyin(ptr, &tmpval2, 4);
772 			else
773 				bcopy(ptr, &tmpval2, 4);
774 
775 			tmpval = htonl(tmpval2);
776 
777 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
778 		}
779 
780 		cnt -= 4;
781 		segptr += 4;
782 		ptr += 4;
783 	}
784 
785 	return (0);
786 }
787 
788 static int
789 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
790 {
791 	const uint8_t *tmpsrc;
792 	uint8_t *tmpdst;
793 	size_t tmplen;
794 
795 	if (len & 0x3) {
796 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
797 		return (-1);
798 	}
799 
800 	tmpsrc = src;
801 	tmpdst = dst;
802 	tmplen = len;
803 
804 	while (tmplen) {
805 		if (swap_type == TI_SWAP_NTOH)
806 			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
807 		else
808 			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
809 		tmpsrc += 4;
810 		tmpdst += 4;
811 		tmplen -= 4;
812 	}
813 
814 	return (0);
815 }
816 
817 /*
818  * Load firmware image into the NIC. Check that the firmware revision
819  * is acceptable and see if we want the firmware for the Tigon 1 or
820  * Tigon 2.
821  */
822 static void
823 ti_loadfw(struct ti_softc *sc)
824 {
825 
826 	TI_LOCK_ASSERT(sc);
827 
828 	switch (sc->ti_hwrev) {
829 	case TI_HWREV_TIGON:
830 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
831 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
832 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
833 			device_printf(sc->ti_dev, "firmware revision mismatch; "
834 			    "want %d.%d.%d, got %d.%d.%d\n",
835 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
836 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
837 			    tigonFwReleaseMinor, tigonFwReleaseFix);
838 			return;
839 		}
840 		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
841 		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
842 		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
843 		    tigonFwRodata);
844 		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
845 		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
846 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
847 		break;
848 	case TI_HWREV_TIGON_II:
849 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
850 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
851 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
852 			device_printf(sc->ti_dev, "firmware revision mismatch; "
853 			    "want %d.%d.%d, got %d.%d.%d\n",
854 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
855 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
856 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
857 			return;
858 		}
859 		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
860 		    tigon2FwText);
861 		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
862 		    tigon2FwData);
863 		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
864 		    tigon2FwRodata);
865 		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
866 		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
867 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
868 		break;
869 	default:
870 		device_printf(sc->ti_dev,
871 		    "can't load firmware: unknown hardware rev\n");
872 		break;
873 	}
874 }
875 
876 /*
877  * Send the NIC a command via the command ring.
878  */
879 static void
880 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
881 {
882 	int index;
883 
884 	index = sc->ti_cmd_saved_prodidx;
885 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
886 	TI_INC(index, TI_CMD_RING_CNT);
887 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
888 	sc->ti_cmd_saved_prodidx = index;
889 }
890 
891 /*
892  * Send the NIC an extended command. The 'len' parameter specifies the
893  * number of command slots to include after the initial command.
894  */
895 static void
896 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
897 {
898 	int index;
899 	int i;
900 
901 	index = sc->ti_cmd_saved_prodidx;
902 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
903 	TI_INC(index, TI_CMD_RING_CNT);
904 	for (i = 0; i < len; i++) {
905 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
906 		    *(uint32_t *)(&arg[i * 4]));
907 		TI_INC(index, TI_CMD_RING_CNT);
908 	}
909 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
910 	sc->ti_cmd_saved_prodidx = index;
911 }
912 
913 /*
914  * Handle events that have triggered interrupts.
915  */
916 static void
917 ti_handle_events(struct ti_softc *sc)
918 {
919 	struct ti_event_desc *e;
920 
921 	if (sc->ti_rdata.ti_event_ring == NULL)
922 		return;
923 
924 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
925 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
926 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
927 		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
928 		switch (TI_EVENT_EVENT(e)) {
929 		case TI_EV_LINKSTAT_CHANGED:
930 			sc->ti_linkstat = TI_EVENT_CODE(e);
931 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
932 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
933 				sc->ti_ifp->if_baudrate = IF_Mbps(100);
934 				if (bootverbose)
935 					device_printf(sc->ti_dev,
936 					    "10/100 link up\n");
937 			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
938 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
939 				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
940 				if (bootverbose)
941 					device_printf(sc->ti_dev,
942 					    "gigabit link up\n");
943 			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
944 				if_link_state_change(sc->ti_ifp,
945 				    LINK_STATE_DOWN);
946 				sc->ti_ifp->if_baudrate = 0;
947 				if (bootverbose)
948 					device_printf(sc->ti_dev,
949 					    "link down\n");
950 			}
951 			break;
952 		case TI_EV_ERROR:
953 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
954 				device_printf(sc->ti_dev, "invalid command\n");
955 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
956 				device_printf(sc->ti_dev, "unknown command\n");
957 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
958 				device_printf(sc->ti_dev, "bad config data\n");
959 			break;
960 		case TI_EV_FIRMWARE_UP:
961 			ti_init2(sc);
962 			break;
963 		case TI_EV_STATS_UPDATED:
964 		case TI_EV_RESET_JUMBO_RING:
965 		case TI_EV_MCAST_UPDATED:
966 			/* Who cares. */
967 			break;
968 		default:
969 			device_printf(sc->ti_dev, "unknown event: %d\n",
970 			    TI_EVENT_EVENT(e));
971 			break;
972 		}
973 		/* Advance the consumer index. */
974 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
975 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
976 	}
977 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
978 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
979 }
980 
981 struct ti_dmamap_arg {
982 	bus_addr_t	ti_busaddr;
983 };
984 
985 static void
986 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
987 {
988 	struct ti_dmamap_arg *ctx;
989 
990 	if (error)
991 		return;
992 
993 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
994 
995 	ctx = arg;
996 	ctx->ti_busaddr = segs->ds_addr;
997 }
998 
999 static int
1000 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1001     bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1002     const char *msg)
1003 {
1004 	struct ti_dmamap_arg ctx;
1005 	int error;
1006 
1007 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1008 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1009 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1010 	if (error != 0) {
1011 		device_printf(sc->ti_dev,
1012 		    "could not create %s dma tag\n", msg);
1013 		return (error);
1014 	}
1015 	/* Allocate DMA'able memory for ring. */
1016 	error = bus_dmamem_alloc(*tag, (void **)ring,
1017 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1018 	if (error != 0) {
1019 		device_printf(sc->ti_dev,
1020 		    "could not allocate DMA'able memory for %s\n", msg);
1021 		return (error);
1022 	}
1023 	/* Load the address of the ring. */
1024 	ctx.ti_busaddr = 0;
1025 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1026 	    &ctx, BUS_DMA_NOWAIT);
1027 	if (error != 0) {
1028 		device_printf(sc->ti_dev,
1029 		    "could not load DMA'able memory for %s\n", msg);
1030 		return (error);
1031 	}
1032 	*paddr = ctx.ti_busaddr;
1033 	return (0);
1034 }
1035 
1036 static void
1037 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1038     bus_dmamap_t map, bus_addr_t *paddr)
1039 {
1040 
1041 	if (*paddr != 0) {
1042 		bus_dmamap_unload(*tag, map);
1043 		*paddr = 0;
1044 	}
1045 	if (*ring != NULL) {
1046 		bus_dmamem_free(*tag, *ring, map);
1047 		*ring = NULL;
1048 	}
1049 	if (*tag) {
1050 		bus_dma_tag_destroy(*tag);
1051 		*tag = NULL;
1052 	}
1053 }
1054 
1055 static int
1056 ti_dma_alloc(struct ti_softc *sc)
1057 {
1058 	bus_addr_t lowaddr;
1059 	int i, error;
1060 
1061 	lowaddr = BUS_SPACE_MAXADDR;
1062 	if (sc->ti_dac == 0)
1063 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1064 
1065 	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1066 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1067 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1068 	    &sc->ti_cdata.ti_parent_tag);
1069 	if (error != 0) {
1070 		device_printf(sc->ti_dev,
1071 		    "could not allocate parent dma tag\n");
1072 		return (ENOMEM);
1073 	}
1074 
1075 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1076 	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1077 	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1078 	if (error)
1079 		return (error);
1080 
1081 	/* Producer/consumer status */
1082 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1083 	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1084 	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1085 	    "event ring");
1086 	if (error)
1087 		return (error);
1088 
1089 	/* Event ring */
1090 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1091 	    &sc->ti_cdata.ti_event_ring_tag,
1092 	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1093 	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1094 	    "event ring");
1095 	if (error)
1096 		return (error);
1097 
1098 	/* Command ring lives in shared memory so no need to create DMA area. */
1099 
1100 	/* Standard RX ring */
1101 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1102 	    &sc->ti_cdata.ti_rx_std_ring_tag,
1103 	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1104 	    &sc->ti_cdata.ti_rx_std_ring_map,
1105 	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1106 	if (error)
1107 		return (error);
1108 
1109 	/* Jumbo RX ring */
1110 	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1111 	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1112 	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1113 	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1114 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1115 	if (error)
1116 		return (error);
1117 
1118 	/* RX return ring */
1119 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1120 	    &sc->ti_cdata.ti_rx_return_ring_tag,
1121 	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1122 	    &sc->ti_cdata.ti_rx_return_ring_map,
1123 	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1124 	if (error)
1125 		return (error);
1126 
1127 	/* Create DMA tag for standard RX mbufs. */
1128 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1129 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1130 	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1131 	if (error) {
1132 		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1133 		return (error);
1134 	}
1135 
1136 	/* Create DMA tag for jumbo RX mbufs. */
1137 #ifdef TI_SF_BUF_JUMBO
1138 	/*
1139 	 * The VM system will take care of providing aligned pages.  Alignment
1140 	 * is set to 1 here so that busdma resources won't be wasted.
1141 	 */
1142 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1143 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1144 	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1145 #else
1146 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1147 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1148 	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1149 #endif
1150 	if (error) {
1151 		device_printf(sc->ti_dev,
1152 		    "could not allocate jumbo RX dma tag\n");
1153 		return (error);
1154 	}
1155 
1156 	/* Create DMA tag for TX mbufs. */
1157 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1158 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1159 	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1160 	    &sc->ti_cdata.ti_tx_tag);
1161 	if (error) {
1162 		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1163 		return (ENOMEM);
1164 	}
1165 
1166 	/* Create DMA maps for RX buffers. */
1167 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1168 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1169 		    &sc->ti_cdata.ti_rx_std_maps[i]);
1170 		if (error) {
1171 			device_printf(sc->ti_dev,
1172 			    "could not create DMA map for RX\n");
1173 			return (error);
1174 		}
1175 	}
1176 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1177 	    &sc->ti_cdata.ti_rx_std_sparemap);
1178 	if (error) {
1179 		device_printf(sc->ti_dev,
1180 		    "could not create spare DMA map for RX\n");
1181 		return (error);
1182 	}
1183 
1184 	/* Create DMA maps for jumbo RX buffers. */
1185 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1186 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1187 		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1188 		if (error) {
1189 			device_printf(sc->ti_dev,
1190 			    "could not create DMA map for jumbo RX\n");
1191 			return (error);
1192 		}
1193 	}
1194 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1195 	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1196 	if (error) {
1197 		device_printf(sc->ti_dev,
1198 		    "could not create spare DMA map for jumbo RX\n");
1199 		return (error);
1200 	}
1201 
1202 	/* Create DMA maps for TX buffers. */
1203 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1204 		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1205 		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1206 		if (error) {
1207 			device_printf(sc->ti_dev,
1208 			    "could not create DMA map for TX\n");
1209 			return (ENOMEM);
1210 		}
1211 	}
1212 
1213 	/* Mini ring and TX ring is not available on Tigon 1. */
1214 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1215 		return (0);
1216 
1217 	/* TX ring */
1218 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1219 	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1220 	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1221 	    "TX ring");
1222 	if (error)
1223 		return (error);
1224 
1225 	/* Mini RX ring */
1226 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1227 	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1228 	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1229 	    &sc->ti_cdata.ti_rx_mini_ring_map,
1230 	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1231 	if (error)
1232 		return (error);
1233 
1234 	/* Create DMA tag for mini RX mbufs. */
1235 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1236 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1237 	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1238 	if (error) {
1239 		device_printf(sc->ti_dev,
1240 		    "could not allocate mini RX dma tag\n");
1241 		return (error);
1242 	}
1243 
1244 	/* Create DMA maps for mini RX buffers. */
1245 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1246 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1247 		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1248 		if (error) {
1249 			device_printf(sc->ti_dev,
1250 			    "could not create DMA map for mini RX\n");
1251 			return (error);
1252 		}
1253 	}
1254 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1255 	    &sc->ti_cdata.ti_rx_mini_sparemap);
1256 	if (error) {
1257 		device_printf(sc->ti_dev,
1258 		    "could not create spare DMA map for mini RX\n");
1259 		return (error);
1260 	}
1261 
1262 	return (0);
1263 }
1264 
1265 static void
1266 ti_dma_free(struct ti_softc *sc)
1267 {
1268 	int i;
1269 
1270 	/* Destroy DMA maps for RX buffers. */
1271 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1272 		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1273 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1274 			    sc->ti_cdata.ti_rx_std_maps[i]);
1275 			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1276 		}
1277 	}
1278 	if (sc->ti_cdata.ti_rx_std_sparemap) {
1279 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1280 		    sc->ti_cdata.ti_rx_std_sparemap);
1281 		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1282 	}
1283 	if (sc->ti_cdata.ti_rx_std_tag) {
1284 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1285 		sc->ti_cdata.ti_rx_std_tag = NULL;
1286 	}
1287 
1288 	/* Destroy DMA maps for jumbo RX buffers. */
1289 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1290 		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1291 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1292 			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1293 			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1294 		}
1295 	}
1296 	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1297 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1298 		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1299 		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1300 	}
1301 	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1302 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1303 		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1304 	}
1305 
1306 	/* Destroy DMA maps for mini RX buffers. */
1307 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1308 		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1309 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1310 			    sc->ti_cdata.ti_rx_mini_maps[i]);
1311 			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1312 		}
1313 	}
1314 	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1315 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1316 		    sc->ti_cdata.ti_rx_mini_sparemap);
1317 		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1318 	}
1319 	if (sc->ti_cdata.ti_rx_mini_tag) {
1320 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1321 		sc->ti_cdata.ti_rx_mini_tag = NULL;
1322 	}
1323 
1324 	/* Destroy DMA maps for TX buffers. */
1325 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1326 		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1327 			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1328 			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1329 			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1330 		}
1331 	}
1332 	if (sc->ti_cdata.ti_tx_tag) {
1333 		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1334 		sc->ti_cdata.ti_tx_tag = NULL;
1335 	}
1336 
1337 	/* Destroy standard RX ring. */
1338 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1339 	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1340 	    sc->ti_cdata.ti_rx_std_ring_map,
1341 	    &sc->ti_rdata.ti_rx_std_ring_paddr);
1342 	/* Destroy jumbo RX ring. */
1343 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1344 	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1345 	    sc->ti_cdata.ti_rx_jumbo_ring_map,
1346 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
1347 	/* Destroy mini RX ring. */
1348 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1349 	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1350 	    sc->ti_cdata.ti_rx_mini_ring_map,
1351 	    &sc->ti_rdata.ti_rx_mini_ring_paddr);
1352 	/* Destroy RX return ring. */
1353 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1354 	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1355 	    sc->ti_cdata.ti_rx_return_ring_map,
1356 	    &sc->ti_rdata.ti_rx_return_ring_paddr);
1357 	/* Destroy TX ring. */
1358 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1359 	    (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
1360 	    &sc->ti_rdata.ti_tx_ring_paddr);
1361 	/* Destroy status block. */
1362 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1363 	    (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
1364 	    &sc->ti_rdata.ti_status_paddr);
1365 	/* Destroy event ring. */
1366 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1367 	    (void *)&sc->ti_rdata.ti_event_ring,
1368 	    sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
1369 	/* Destroy GIB */
1370 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1371 	    (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
1372 	    &sc->ti_rdata.ti_info_paddr);
1373 
1374 	/* Destroy the parent tag. */
1375 	if (sc->ti_cdata.ti_parent_tag) {
1376 		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1377 		sc->ti_cdata.ti_parent_tag = NULL;
1378 	}
1379 }
1380 
1381 /*
1382  * Intialize a standard receive ring descriptor.
1383  */
1384 static int
1385 ti_newbuf_std(struct ti_softc *sc, int i)
1386 {
1387 	bus_dmamap_t map;
1388 	bus_dma_segment_t segs[1];
1389 	struct mbuf *m;
1390 	struct ti_rx_desc *r;
1391 	int error, nsegs;
1392 
1393 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1394 	if (m == NULL)
1395 		return (ENOBUFS);
1396 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1397 	m_adj(m, ETHER_ALIGN);
1398 
1399 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1400 	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1401 	if (error != 0) {
1402 		m_freem(m);
1403 		return (error);
1404         }
1405 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1406 
1407 	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1408 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1409 		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1410 		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1411 		    sc->ti_cdata.ti_rx_std_maps[i]);
1412 	}
1413 
1414 	map = sc->ti_cdata.ti_rx_std_maps[i];
1415 	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1416 	sc->ti_cdata.ti_rx_std_sparemap = map;
1417 	sc->ti_cdata.ti_rx_std_chain[i] = m;
1418 
1419 	r = &sc->ti_rdata.ti_rx_std_ring[i];
1420 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1421 	r->ti_len = segs[0].ds_len;
1422 	r->ti_type = TI_BDTYPE_RECV_BD;
1423 	r->ti_flags = 0;
1424 	r->ti_vlan_tag = 0;
1425 	r->ti_tcp_udp_cksum = 0;
1426 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1427 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1428 	r->ti_idx = i;
1429 
1430 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1431 	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1432 	return (0);
1433 }
1434 
1435 /*
1436  * Intialize a mini receive ring descriptor. This only applies to
1437  * the Tigon 2.
1438  */
1439 static int
1440 ti_newbuf_mini(struct ti_softc *sc, int i)
1441 {
1442 	bus_dmamap_t map;
1443 	bus_dma_segment_t segs[1];
1444 	struct mbuf *m;
1445 	struct ti_rx_desc *r;
1446 	int error, nsegs;
1447 
1448 	MGETHDR(m, M_NOWAIT, MT_DATA);
1449 	if (m == NULL)
1450 		return (ENOBUFS);
1451 	m->m_len = m->m_pkthdr.len = MHLEN;
1452 	m_adj(m, ETHER_ALIGN);
1453 
1454 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1455 	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1456 	if (error != 0) {
1457 		m_freem(m);
1458 		return (error);
1459         }
1460 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1461 
1462 	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1463 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1464 		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1465 		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1466 		    sc->ti_cdata.ti_rx_mini_maps[i]);
1467 	}
1468 
1469 	map = sc->ti_cdata.ti_rx_mini_maps[i];
1470 	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1471 	sc->ti_cdata.ti_rx_mini_sparemap = map;
1472 	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1473 
1474 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1475 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1476 	r->ti_len = segs[0].ds_len;
1477 	r->ti_type = TI_BDTYPE_RECV_BD;
1478 	r->ti_flags = TI_BDFLAG_MINI_RING;
1479 	r->ti_vlan_tag = 0;
1480 	r->ti_tcp_udp_cksum = 0;
1481 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1482 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1483 	r->ti_idx = i;
1484 
1485 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1486 	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1487 	return (0);
1488 }
1489 
1490 #ifndef TI_SF_BUF_JUMBO
1491 
1492 /*
1493  * Initialize a jumbo receive ring descriptor. This allocates
1494  * a jumbo buffer from the pool managed internally by the driver.
1495  */
1496 static int
1497 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1498 {
1499 	bus_dmamap_t map;
1500 	bus_dma_segment_t segs[1];
1501 	struct mbuf *m;
1502 	struct ti_rx_desc *r;
1503 	int error, nsegs;
1504 
1505 	(void)dummy;
1506 
1507 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1508 	if (m == NULL)
1509 		return (ENOBUFS);
1510 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1511 	m_adj(m, ETHER_ALIGN);
1512 
1513 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1514 	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1515 	if (error != 0) {
1516 		m_freem(m);
1517 		return (error);
1518         }
1519 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1520 
1521 	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1522 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1523 		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1524 		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1525 		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1526 	}
1527 
1528 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1529 	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1530 	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1531 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1532 
1533 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1534 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1535 	r->ti_len = segs[0].ds_len;
1536 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1537 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1538 	r->ti_vlan_tag = 0;
1539 	r->ti_tcp_udp_cksum = 0;
1540 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1541 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1542 	r->ti_idx = i;
1543 
1544 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1545 	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1546 	return (0);
1547 }
1548 
1549 #else
1550 
1551 #if (PAGE_SIZE == 4096)
1552 #define NPAYLOAD 2
1553 #else
1554 #define NPAYLOAD 1
1555 #endif
1556 
1557 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1558 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1559 #define NFS_HDR_LEN (UDP_HDR_LEN)
1560 static int HDR_LEN = TCP_HDR_LEN;
1561 
1562 /*
1563  * Initialize a jumbo receive ring descriptor. This allocates
1564  * a jumbo buffer from the pool managed internally by the driver.
1565  */
1566 static int
1567 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1568 {
1569 	bus_dmamap_t map;
1570 	struct mbuf *cur, *m_new = NULL;
1571 	struct mbuf *m[3] = {NULL, NULL, NULL};
1572 	struct ti_rx_desc_ext *r;
1573 	vm_page_t frame;
1574 	/* 1 extra buf to make nobufs easy*/
1575 	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1576 	int i;
1577 	bus_dma_segment_t segs[4];
1578 	int nsegs;
1579 
1580 	if (m_old != NULL) {
1581 		m_new = m_old;
1582 		cur = m_old->m_next;
1583 		for (i = 0; i <= NPAYLOAD; i++){
1584 			m[i] = cur;
1585 			cur = cur->m_next;
1586 		}
1587 	} else {
1588 		/* Allocate the mbufs. */
1589 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1590 		if (m_new == NULL) {
1591 			device_printf(sc->ti_dev, "mbuf allocation failed "
1592 			    "-- packet dropped!\n");
1593 			goto nobufs;
1594 		}
1595 		MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
1596 		if (m[NPAYLOAD] == NULL) {
1597 			device_printf(sc->ti_dev, "cluster mbuf allocation "
1598 			    "failed -- packet dropped!\n");
1599 			goto nobufs;
1600 		}
1601 		if (!(MCLGET(m[NPAYLOAD], M_NOWAIT))) {
1602 			device_printf(sc->ti_dev, "mbuf allocation failed "
1603 			    "-- packet dropped!\n");
1604 			goto nobufs;
1605 		}
1606 		m[NPAYLOAD]->m_len = MCLBYTES;
1607 
1608 		for (i = 0; i < NPAYLOAD; i++){
1609 			MGET(m[i], M_NOWAIT, MT_DATA);
1610 			if (m[i] == NULL) {
1611 				device_printf(sc->ti_dev, "mbuf allocation "
1612 				    "failed -- packet dropped!\n");
1613 				goto nobufs;
1614 			}
1615 			frame = vm_page_alloc(NULL, 0,
1616 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1617 			    VM_ALLOC_WIRED);
1618 			if (frame == NULL) {
1619 				device_printf(sc->ti_dev, "buffer allocation "
1620 				    "failed -- packet dropped!\n");
1621 				printf("      index %d page %d\n", idx, i);
1622 				goto nobufs;
1623 			}
1624 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1625 			if (sf[i] == NULL) {
1626 				vm_page_unwire(frame, PQ_NONE);
1627 				vm_page_free(frame);
1628 				device_printf(sc->ti_dev, "buffer allocation "
1629 				    "failed -- packet dropped!\n");
1630 				printf("      index %d page %d\n", idx, i);
1631 				goto nobufs;
1632 			}
1633 		}
1634 		for (i = 0; i < NPAYLOAD; i++){
1635 		/* Attach the buffer to the mbuf. */
1636 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1637 			m[i]->m_len = PAGE_SIZE;
1638 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1639 			    sf_mext_free, (void*)sf_buf_kva(sf[i]), sf[i],
1640 			    0, EXT_DISPOSABLE);
1641 			m[i]->m_next = m[i+1];
1642 		}
1643 		/* link the buffers to the header */
1644 		m_new->m_next = m[0];
1645 		m_new->m_data += ETHER_ALIGN;
1646 		if (sc->ti_hdrsplit)
1647 			m_new->m_len = MHLEN - ETHER_ALIGN;
1648 		else
1649 			m_new->m_len = HDR_LEN;
1650 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1651 	}
1652 
1653 	/* Set up the descriptor. */
1654 	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1655 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1656 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1657 	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1658 	    segs, &nsegs, 0))
1659 		return (ENOBUFS);
1660 	if ((nsegs < 1) || (nsegs > 4))
1661 		return (ENOBUFS);
1662 	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1663 	r->ti_len0 = m_new->m_len;
1664 
1665 	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1666 	r->ti_len1 = PAGE_SIZE;
1667 
1668 	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1669 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1670 
1671 	if (PAGE_SIZE == 4096) {
1672 		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1673 		r->ti_len3 = MCLBYTES;
1674 	} else {
1675 		r->ti_len3 = 0;
1676 	}
1677 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1678 
1679 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1680 
1681 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1682 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1683 
1684 	r->ti_idx = idx;
1685 
1686 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1687 	return (0);
1688 
1689 nobufs:
1690 
1691 	/*
1692 	 * Warning! :
1693 	 * This can only be called before the mbufs are strung together.
1694 	 * If the mbufs are strung together, m_freem() will free the chain,
1695 	 * so that the later mbufs will be freed multiple times.
1696 	 */
1697 	if (m_new)
1698 		m_freem(m_new);
1699 
1700 	for (i = 0; i < 3; i++) {
1701 		if (m[i])
1702 			m_freem(m[i]);
1703 		if (sf[i])
1704 			sf_mext_free((void *)sf_buf_kva(sf[i]), sf[i]);
1705 	}
1706 	return (ENOBUFS);
1707 }
1708 #endif
1709 
1710 /*
1711  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1712  * that's 1MB or memory, which is a lot. For now, we fill only the first
1713  * 256 ring entries and hope that our CPU is fast enough to keep up with
1714  * the NIC.
1715  */
1716 static int
1717 ti_init_rx_ring_std(struct ti_softc *sc)
1718 {
1719 	int i;
1720 	struct ti_cmd_desc cmd;
1721 
1722 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1723 		if (ti_newbuf_std(sc, i) != 0)
1724 			return (ENOBUFS);
1725 	}
1726 
1727 	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1728 	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1729 
1730 	return (0);
1731 }
1732 
1733 static void
1734 ti_free_rx_ring_std(struct ti_softc *sc)
1735 {
1736 	bus_dmamap_t map;
1737 	int i;
1738 
1739 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1740 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1741 			map = sc->ti_cdata.ti_rx_std_maps[i];
1742 			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1743 			    BUS_DMASYNC_POSTREAD);
1744 			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1745 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1746 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1747 		}
1748 	}
1749 	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1750 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1751 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1752 }
1753 
1754 static int
1755 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1756 {
1757 	struct ti_cmd_desc cmd;
1758 	int i;
1759 
1760 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1761 		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1762 			return (ENOBUFS);
1763 	}
1764 
1765 	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1766 	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1767 
1768 	return (0);
1769 }
1770 
1771 static void
1772 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1773 {
1774 	bus_dmamap_t map;
1775 	int i;
1776 
1777 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1778 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1779 			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1780 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1781 			    BUS_DMASYNC_POSTREAD);
1782 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1783 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1784 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1785 		}
1786 	}
1787 	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1788 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1789 	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1790 }
1791 
1792 static int
1793 ti_init_rx_ring_mini(struct ti_softc *sc)
1794 {
1795 	int i;
1796 
1797 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1798 		if (ti_newbuf_mini(sc, i) != 0)
1799 			return (ENOBUFS);
1800 	}
1801 
1802 	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1803 	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1804 
1805 	return (0);
1806 }
1807 
1808 static void
1809 ti_free_rx_ring_mini(struct ti_softc *sc)
1810 {
1811 	bus_dmamap_t map;
1812 	int i;
1813 
1814 	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1815 		return;
1816 
1817 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1818 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1819 			map = sc->ti_cdata.ti_rx_mini_maps[i];
1820 			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1821 			    BUS_DMASYNC_POSTREAD);
1822 			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1823 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1824 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1825 		}
1826 	}
1827 	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1828 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1829 	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1830 }
1831 
1832 static void
1833 ti_free_tx_ring(struct ti_softc *sc)
1834 {
1835 	struct ti_txdesc *txd;
1836 	int i;
1837 
1838 	if (sc->ti_rdata.ti_tx_ring == NULL)
1839 		return;
1840 
1841 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1842 		txd = &sc->ti_cdata.ti_txdesc[i];
1843 		if (txd->tx_m != NULL) {
1844 			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1845 			    BUS_DMASYNC_POSTWRITE);
1846 			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1847 			    txd->tx_dmamap);
1848 			m_freem(txd->tx_m);
1849 			txd->tx_m = NULL;
1850 		}
1851 	}
1852 	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1853 	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1854 	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1855 }
1856 
1857 static int
1858 ti_init_tx_ring(struct ti_softc *sc)
1859 {
1860 	struct ti_txdesc *txd;
1861 	int i;
1862 
1863 	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1864 	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1865 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1866 		txd = &sc->ti_cdata.ti_txdesc[i];
1867 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1868 	}
1869 	sc->ti_txcnt = 0;
1870 	sc->ti_tx_saved_considx = 0;
1871 	sc->ti_tx_saved_prodidx = 0;
1872 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1873 	return (0);
1874 }
1875 
1876 /*
1877  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1878  * but we have to support the old way too so that Tigon 1 cards will
1879  * work.
1880  */
1881 static void
1882 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1883 {
1884 	struct ti_cmd_desc cmd;
1885 	uint16_t *m;
1886 	uint32_t ext[2] = {0, 0};
1887 
1888 	m = (uint16_t *)&addr->octet[0];
1889 
1890 	switch (sc->ti_hwrev) {
1891 	case TI_HWREV_TIGON:
1892 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1893 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1894 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1895 		break;
1896 	case TI_HWREV_TIGON_II:
1897 		ext[0] = htons(m[0]);
1898 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1899 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1900 		break;
1901 	default:
1902 		device_printf(sc->ti_dev, "unknown hwrev\n");
1903 		break;
1904 	}
1905 }
1906 
1907 static void
1908 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1909 {
1910 	struct ti_cmd_desc cmd;
1911 	uint16_t *m;
1912 	uint32_t ext[2] = {0, 0};
1913 
1914 	m = (uint16_t *)&addr->octet[0];
1915 
1916 	switch (sc->ti_hwrev) {
1917 	case TI_HWREV_TIGON:
1918 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1919 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1920 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1921 		break;
1922 	case TI_HWREV_TIGON_II:
1923 		ext[0] = htons(m[0]);
1924 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1925 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1926 		break;
1927 	default:
1928 		device_printf(sc->ti_dev, "unknown hwrev\n");
1929 		break;
1930 	}
1931 }
1932 
1933 /*
1934  * Configure the Tigon's multicast address filter.
1935  *
1936  * The actual multicast table management is a bit of a pain, thanks to
1937  * slight brain damage on the part of both Alteon and us. With our
1938  * multicast code, we are only alerted when the multicast address table
1939  * changes and at that point we only have the current list of addresses:
1940  * we only know the current state, not the previous state, so we don't
1941  * actually know what addresses were removed or added. The firmware has
1942  * state, but we can't get our grubby mits on it, and there is no 'delete
1943  * all multicast addresses' command. Hence, we have to maintain our own
1944  * state so we know what addresses have been programmed into the NIC at
1945  * any given time.
1946  */
1947 static void
1948 ti_setmulti(struct ti_softc *sc)
1949 {
1950 	struct ifnet *ifp;
1951 	struct ifmultiaddr *ifma;
1952 	struct ti_cmd_desc cmd;
1953 	struct ti_mc_entry *mc;
1954 	uint32_t intrs;
1955 
1956 	TI_LOCK_ASSERT(sc);
1957 
1958 	ifp = sc->ti_ifp;
1959 
1960 	if (ifp->if_flags & IFF_ALLMULTI) {
1961 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1962 		return;
1963 	} else {
1964 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1965 	}
1966 
1967 	/* Disable interrupts. */
1968 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1969 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1970 
1971 	/* First, zot all the existing filters. */
1972 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1973 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1974 		ti_del_mcast(sc, &mc->mc_addr);
1975 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1976 		free(mc, M_DEVBUF);
1977 	}
1978 
1979 	/* Now program new ones. */
1980 	if_maddr_rlock(ifp);
1981 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1982 		if (ifma->ifma_addr->sa_family != AF_LINK)
1983 			continue;
1984 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1985 		if (mc == NULL) {
1986 			device_printf(sc->ti_dev,
1987 			    "no memory for mcast filter entry\n");
1988 			continue;
1989 		}
1990 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1991 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1992 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1993 		ti_add_mcast(sc, &mc->mc_addr);
1994 	}
1995 	if_maddr_runlock(ifp);
1996 
1997 	/* Re-enable interrupts. */
1998 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1999 }
2000 
2001 /*
2002  * Check to see if the BIOS has configured us for a 64 bit slot when
2003  * we aren't actually in one. If we detect this condition, we can work
2004  * around it on the Tigon 2 by setting a bit in the PCI state register,
2005  * but for the Tigon 1 we must give up and abort the interface attach.
2006  */
2007 static int
2008 ti_64bitslot_war(struct ti_softc *sc)
2009 {
2010 
2011 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2012 		CSR_WRITE_4(sc, 0x600, 0);
2013 		CSR_WRITE_4(sc, 0x604, 0);
2014 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2015 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2016 			if (sc->ti_hwrev == TI_HWREV_TIGON)
2017 				return (EINVAL);
2018 			else {
2019 				TI_SETBIT(sc, TI_PCI_STATE,
2020 				    TI_PCISTATE_32BIT_BUS);
2021 				return (0);
2022 			}
2023 		}
2024 	}
2025 
2026 	return (0);
2027 }
2028 
2029 /*
2030  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2031  * self-test results.
2032  */
2033 static int
2034 ti_chipinit(struct ti_softc *sc)
2035 {
2036 	uint32_t cacheline;
2037 	uint32_t pci_writemax = 0;
2038 	uint32_t hdrsplit;
2039 
2040 	/* Initialize link to down state. */
2041 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2042 
2043 	/* Set endianness before we access any non-PCI registers. */
2044 #if 0 && BYTE_ORDER == BIG_ENDIAN
2045 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2046 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2047 #else
2048 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2049 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2050 #endif
2051 
2052 	/* Check the ROM failed bit to see if self-tests passed. */
2053 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2054 		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2055 		return (ENODEV);
2056 	}
2057 
2058 	/* Halt the CPU. */
2059 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2060 
2061 	/* Figure out the hardware revision. */
2062 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2063 	case TI_REV_TIGON_I:
2064 		sc->ti_hwrev = TI_HWREV_TIGON;
2065 		break;
2066 	case TI_REV_TIGON_II:
2067 		sc->ti_hwrev = TI_HWREV_TIGON_II;
2068 		break;
2069 	default:
2070 		device_printf(sc->ti_dev, "unsupported chip revision\n");
2071 		return (ENODEV);
2072 	}
2073 
2074 	/* Do special setup for Tigon 2. */
2075 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2076 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2077 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2078 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2079 	}
2080 
2081 	/*
2082 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2083 	 * can't do header splitting.
2084 	 */
2085 #ifdef TI_JUMBO_HDRSPLIT
2086 	if (sc->ti_hwrev != TI_HWREV_TIGON)
2087 		sc->ti_hdrsplit = 1;
2088 	else
2089 		device_printf(sc->ti_dev,
2090 		    "can't do header splitting on a Tigon I board\n");
2091 #endif /* TI_JUMBO_HDRSPLIT */
2092 
2093 	/* Set up the PCI state register. */
2094 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2095 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2096 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2097 	}
2098 
2099 	/* Clear the read/write max DMA parameters. */
2100 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2101 	    TI_PCISTATE_READ_MAXDMA));
2102 
2103 	/* Get cache line size. */
2104 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2105 
2106 	/*
2107 	 * If the system has set enabled the PCI memory write
2108 	 * and invalidate command in the command register, set
2109 	 * the write max parameter accordingly. This is necessary
2110 	 * to use MWI with the Tigon 2.
2111 	 */
2112 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2113 		switch (cacheline) {
2114 		case 1:
2115 		case 4:
2116 		case 8:
2117 		case 16:
2118 		case 32:
2119 		case 64:
2120 			break;
2121 		default:
2122 		/* Disable PCI memory write and invalidate. */
2123 			if (bootverbose)
2124 				device_printf(sc->ti_dev, "cache line size %d"
2125 				    " not supported; disabling PCI MWI\n",
2126 				    cacheline);
2127 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2128 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2129 			break;
2130 		}
2131 	}
2132 
2133 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2134 
2135 	/* This sets the min dma param all the way up (0xff). */
2136 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2137 
2138 	if (sc->ti_hdrsplit)
2139 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2140 	else
2141 		hdrsplit = 0;
2142 
2143 	/* Configure DMA variables. */
2144 #if BYTE_ORDER == BIG_ENDIAN
2145 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2146 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2147 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2148 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2149 #else /* BYTE_ORDER */
2150 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2151 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2152 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2153 #endif /* BYTE_ORDER */
2154 
2155 	/*
2156 	 * Only allow 1 DMA channel to be active at a time.
2157 	 * I don't think this is a good idea, but without it
2158 	 * the firmware racks up lots of nicDmaReadRingFull
2159 	 * errors.  This is not compatible with hardware checksums.
2160 	 */
2161 	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2162 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2163 
2164 	/* Recommended settings from Tigon manual. */
2165 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2166 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2167 
2168 	if (ti_64bitslot_war(sc)) {
2169 		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2170 		    "but we aren't");
2171 		return (EINVAL);
2172 	}
2173 
2174 	return (0);
2175 }
2176 
2177 /*
2178  * Initialize the general information block and firmware, and
2179  * start the CPU(s) running.
2180  */
2181 static int
2182 ti_gibinit(struct ti_softc *sc)
2183 {
2184 	struct ifnet *ifp;
2185 	struct ti_rcb *rcb;
2186 	int i;
2187 
2188 	TI_LOCK_ASSERT(sc);
2189 
2190 	ifp = sc->ti_ifp;
2191 
2192 	/* Disable interrupts for now. */
2193 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2194 
2195 	/* Tell the chip where to find the general information block. */
2196 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2197 	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2198 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2199 	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2200 
2201 	/* Load the firmware into SRAM. */
2202 	ti_loadfw(sc);
2203 
2204 	/* Set up the contents of the general info and ring control blocks. */
2205 
2206 	/* Set up the event ring and producer pointer. */
2207 	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2208 	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2209 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2210 	rcb->ti_flags = 0;
2211 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2212 	    sc->ti_rdata.ti_status_paddr +
2213 	    offsetof(struct ti_status, ti_ev_prodidx_r));
2214 	sc->ti_ev_prodidx.ti_idx = 0;
2215 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2216 	sc->ti_ev_saved_considx = 0;
2217 
2218 	/* Set up the command ring and producer mailbox. */
2219 	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2220 	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2221 	rcb->ti_flags = 0;
2222 	rcb->ti_max_len = 0;
2223 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2224 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2225 	}
2226 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2227 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2228 	sc->ti_cmd_saved_prodidx = 0;
2229 
2230 	/*
2231 	 * Assign the address of the stats refresh buffer.
2232 	 * We re-use the current stats buffer for this to
2233 	 * conserve memory.
2234 	 */
2235 	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2236 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2237 	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2238 
2239 	/* Set up the standard receive ring. */
2240 	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2241 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2242 	rcb->ti_max_len = TI_FRAMELEN;
2243 	rcb->ti_flags = 0;
2244 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2245 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2246 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2247 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2248 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2249 
2250 	/* Set up the jumbo receive ring. */
2251 	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2252 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2253 
2254 #ifndef TI_SF_BUF_JUMBO
2255 	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2256 	rcb->ti_flags = 0;
2257 #else
2258 	rcb->ti_max_len = PAGE_SIZE;
2259 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2260 #endif
2261 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2262 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2263 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2264 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2265 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2266 
2267 	/*
2268 	 * Set up the mini ring. Only activated on the
2269 	 * Tigon 2 but the slot in the config block is
2270 	 * still there on the Tigon 1.
2271 	 */
2272 	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2273 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2274 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2275 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2276 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2277 	else
2278 		rcb->ti_flags = 0;
2279 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2280 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2281 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2282 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2283 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2284 
2285 	/*
2286 	 * Set up the receive return ring.
2287 	 */
2288 	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2289 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2290 	rcb->ti_flags = 0;
2291 	rcb->ti_max_len = TI_RETURN_RING_CNT;
2292 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2293 	    sc->ti_rdata.ti_status_paddr +
2294 	    offsetof(struct ti_status, ti_return_prodidx_r));
2295 
2296 	/*
2297 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2298 	 * of putting the transmit ring in the host's address space and
2299 	 * letting the chip DMA it instead of leaving the ring in the NIC's
2300 	 * memory and accessing it through the shared memory region. We
2301 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2302 	 * so we have to revert to the shared memory scheme if we detect
2303 	 * a Tigon 1 chip.
2304 	 */
2305 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2306 	if (sc->ti_rdata.ti_tx_ring != NULL)
2307 		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2308 	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2309 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2310 		rcb->ti_flags = 0;
2311 	else
2312 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2313 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2314 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2315 	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2316 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2317 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2318 	rcb->ti_max_len = TI_TX_RING_CNT;
2319 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2320 		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2321 	else
2322 		ti_hostaddr64(&rcb->ti_hostaddr,
2323 		    sc->ti_rdata.ti_tx_ring_paddr);
2324 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2325 	    sc->ti_rdata.ti_status_paddr +
2326 	    offsetof(struct ti_status, ti_tx_considx_r));
2327 
2328 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2329 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2330 	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2331 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2332 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2333 	    sc->ti_cdata.ti_event_ring_map,
2334 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2335 	if (sc->ti_rdata.ti_tx_ring != NULL)
2336 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2337 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2338 
2339 	/* Set up tunables */
2340 #if 0
2341 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2342 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2343 		    (sc->ti_rx_coal_ticks / 10));
2344 	else
2345 #endif
2346 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2347 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2348 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2349 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2350 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2351 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2352 
2353 	/* Turn interrupts on. */
2354 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2355 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2356 
2357 	/* Start CPU. */
2358 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2359 
2360 	return (0);
2361 }
2362 
2363 /*
2364  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2365  * against our list and return its name if we find a match.
2366  */
2367 static int
2368 ti_probe(device_t dev)
2369 {
2370 	const struct ti_type *t;
2371 
2372 	t = ti_devs;
2373 
2374 	while (t->ti_name != NULL) {
2375 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2376 		    (pci_get_device(dev) == t->ti_did)) {
2377 			device_set_desc(dev, t->ti_name);
2378 			return (BUS_PROBE_DEFAULT);
2379 		}
2380 		t++;
2381 	}
2382 
2383 	return (ENXIO);
2384 }
2385 
2386 static int
2387 ti_attach(device_t dev)
2388 {
2389 	struct ifnet *ifp;
2390 	struct ti_softc *sc;
2391 	int error = 0, rid;
2392 	u_char eaddr[6];
2393 
2394 	sc = device_get_softc(dev);
2395 	sc->ti_dev = dev;
2396 
2397 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2398 	    MTX_DEF);
2399 	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2400 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2401 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2402 	if (ifp == NULL) {
2403 		device_printf(dev, "can not if_alloc()\n");
2404 		error = ENOSPC;
2405 		goto fail;
2406 	}
2407 	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2408 	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2409 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2410 
2411 	/*
2412 	 * Map control/status registers.
2413 	 */
2414 	pci_enable_busmaster(dev);
2415 
2416 	rid = PCIR_BAR(0);
2417 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2418 	    RF_ACTIVE);
2419 
2420 	if (sc->ti_res == NULL) {
2421 		device_printf(dev, "couldn't map memory\n");
2422 		error = ENXIO;
2423 		goto fail;
2424 	}
2425 
2426 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2427 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2428 
2429 	/* Allocate interrupt */
2430 	rid = 0;
2431 
2432 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2433 	    RF_SHAREABLE | RF_ACTIVE);
2434 
2435 	if (sc->ti_irq == NULL) {
2436 		device_printf(dev, "couldn't map interrupt\n");
2437 		error = ENXIO;
2438 		goto fail;
2439 	}
2440 
2441 	if (ti_chipinit(sc)) {
2442 		device_printf(dev, "chip initialization failed\n");
2443 		error = ENXIO;
2444 		goto fail;
2445 	}
2446 
2447 	/* Zero out the NIC's on-board SRAM. */
2448 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2449 
2450 	/* Init again -- zeroing memory may have clobbered some registers. */
2451 	if (ti_chipinit(sc)) {
2452 		device_printf(dev, "chip initialization failed\n");
2453 		error = ENXIO;
2454 		goto fail;
2455 	}
2456 
2457 	/*
2458 	 * Get station address from the EEPROM. Note: the manual states
2459 	 * that the MAC address is at offset 0x8c, however the data is
2460 	 * stored as two longwords (since that's how it's loaded into
2461 	 * the NIC). This means the MAC address is actually preceded
2462 	 * by two zero bytes. We need to skip over those.
2463 	 */
2464 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2465 		device_printf(dev, "failed to read station address\n");
2466 		error = ENXIO;
2467 		goto fail;
2468 	}
2469 
2470 	/* Allocate working area for memory dump. */
2471 	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2472 	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2473 	    M_NOWAIT);
2474 	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2475 		device_printf(dev, "cannot allocate memory buffer\n");
2476 		error = ENOMEM;
2477 		goto fail;
2478 	}
2479 	if ((error = ti_dma_alloc(sc)) != 0)
2480 		goto fail;
2481 
2482 	/*
2483 	 * We really need a better way to tell a 1000baseTX card
2484 	 * from a 1000baseSX one, since in theory there could be
2485 	 * OEMed 1000baseTX cards from lame vendors who aren't
2486 	 * clever enough to change the PCI ID. For the moment
2487 	 * though, the AceNIC is the only copper card available.
2488 	 */
2489 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2490 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2491 		sc->ti_copper = 1;
2492 	/* Ok, it's not the only copper card available. */
2493 	if (pci_get_vendor(dev) == NG_VENDORID &&
2494 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2495 		sc->ti_copper = 1;
2496 
2497 	/* Set default tunable values. */
2498 	ti_sysctl_node(sc);
2499 
2500 	/* Set up ifnet structure */
2501 	ifp->if_softc = sc;
2502 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2503 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2504 	ifp->if_ioctl = ti_ioctl;
2505 	ifp->if_start = ti_start;
2506 	ifp->if_init = ti_init;
2507 	ifp->if_get_counter = ti_get_counter;
2508 	ifp->if_baudrate = IF_Gbps(1UL);
2509 	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2510 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2511 	IFQ_SET_READY(&ifp->if_snd);
2512 
2513 	/* Set up ifmedia support. */
2514 	if (sc->ti_copper) {
2515 		/*
2516 		 * Copper cards allow manual 10/100 mode selection,
2517 		 * but not manual 1000baseTX mode selection. Why?
2518 		 * Because currently there's no way to specify the
2519 		 * master/slave setting through the firmware interface,
2520 		 * so Alteon decided to just bag it and handle it
2521 		 * via autonegotiation.
2522 		 */
2523 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2524 		ifmedia_add(&sc->ifmedia,
2525 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2526 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2527 		ifmedia_add(&sc->ifmedia,
2528 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2529 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2530 		ifmedia_add(&sc->ifmedia,
2531 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2532 	} else {
2533 		/* Fiber cards don't support 10/100 modes. */
2534 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2535 		ifmedia_add(&sc->ifmedia,
2536 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2537 	}
2538 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2539 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2540 
2541 	/*
2542 	 * We're assuming here that card initialization is a sequential
2543 	 * thing.  If it isn't, multiple cards probing at the same time
2544 	 * could stomp on the list of softcs here.
2545 	 */
2546 
2547 	/* Register the device */
2548 	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2549 	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2550 	sc->dev->si_drv1 = sc;
2551 
2552 	/*
2553 	 * Call MI attach routine.
2554 	 */
2555 	ether_ifattach(ifp, eaddr);
2556 
2557 	/* VLAN capability setup. */
2558 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2559 	    IFCAP_VLAN_HWTAGGING;
2560 	ifp->if_capenable = ifp->if_capabilities;
2561 	/* Tell the upper layer we support VLAN over-sized frames. */
2562 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2563 
2564 	/* Driver supports link state tracking. */
2565 	ifp->if_capabilities |= IFCAP_LINKSTATE;
2566 	ifp->if_capenable |= IFCAP_LINKSTATE;
2567 
2568 	/* Hook interrupt last to avoid having to lock softc */
2569 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2570 	   NULL, ti_intr, sc, &sc->ti_intrhand);
2571 
2572 	if (error) {
2573 		device_printf(dev, "couldn't set up irq\n");
2574 		goto fail;
2575 	}
2576 
2577 fail:
2578 	if (error)
2579 		ti_detach(dev);
2580 
2581 	return (error);
2582 }
2583 
2584 /*
2585  * Shutdown hardware and free up resources. This can be called any
2586  * time after the mutex has been initialized. It is called in both
2587  * the error case in attach and the normal detach case so it needs
2588  * to be careful about only freeing resources that have actually been
2589  * allocated.
2590  */
2591 static int
2592 ti_detach(device_t dev)
2593 {
2594 	struct ti_softc *sc;
2595 	struct ifnet *ifp;
2596 
2597 	sc = device_get_softc(dev);
2598 	if (sc->dev)
2599 		destroy_dev(sc->dev);
2600 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2601 	ifp = sc->ti_ifp;
2602 	if (device_is_attached(dev)) {
2603 		ether_ifdetach(ifp);
2604 		TI_LOCK(sc);
2605 		ti_stop(sc);
2606 		TI_UNLOCK(sc);
2607 	}
2608 
2609 	/* These should only be active if attach succeeded */
2610 	callout_drain(&sc->ti_watchdog);
2611 	bus_generic_detach(dev);
2612 	ti_dma_free(sc);
2613 	ifmedia_removeall(&sc->ifmedia);
2614 
2615 	if (sc->ti_intrhand)
2616 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2617 	if (sc->ti_irq)
2618 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2619 	if (sc->ti_res) {
2620 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2621 		    sc->ti_res);
2622 	}
2623 	if (ifp)
2624 		if_free(ifp);
2625 	if (sc->ti_membuf)
2626 		free(sc->ti_membuf, M_DEVBUF);
2627 	if (sc->ti_membuf2)
2628 		free(sc->ti_membuf2, M_DEVBUF);
2629 
2630 	mtx_destroy(&sc->ti_mtx);
2631 
2632 	return (0);
2633 }
2634 
2635 #ifdef TI_JUMBO_HDRSPLIT
2636 /*
2637  * If hdr_len is 0, that means that header splitting wasn't done on
2638  * this packet for some reason.  The two most likely reasons are that
2639  * the protocol isn't a supported protocol for splitting, or this
2640  * packet had a fragment offset that wasn't 0.
2641  *
2642  * The header length, if it is non-zero, will always be the length of
2643  * the headers on the packet, but that length could be longer than the
2644  * first mbuf.  So we take the minimum of the two as the actual
2645  * length.
2646  */
2647 static __inline void
2648 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2649 {
2650 	int i = 0;
2651 	int lengths[4] = {0, 0, 0, 0};
2652 	struct mbuf *m, *mp;
2653 
2654 	if (hdr_len != 0)
2655 		top->m_len = min(hdr_len, top->m_len);
2656 	pkt_len -= top->m_len;
2657 	lengths[i++] = top->m_len;
2658 
2659 	mp = top;
2660 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2661 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2662 		pkt_len -= m->m_len;
2663 		lengths[i++] = m->m_len;
2664 		mp = m;
2665 	}
2666 
2667 #if 0
2668 	if (hdr_len != 0)
2669 		printf("got split packet: ");
2670 	else
2671 		printf("got non-split packet: ");
2672 
2673 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2674 	    lengths[1], lengths[2], lengths[3],
2675 	    lengths[0] + lengths[1] + lengths[2] +
2676 	    lengths[3]);
2677 #endif
2678 
2679 	if (pkt_len)
2680 		panic("header splitting didn't");
2681 
2682 	if (m) {
2683 		m_freem(m);
2684 		mp->m_next = NULL;
2685 
2686 	}
2687 	if (mp->m_next != NULL)
2688 		panic("ti_hdr_split: last mbuf in chain should be null");
2689 }
2690 #endif /* TI_JUMBO_HDRSPLIT */
2691 
2692 static void
2693 ti_discard_std(struct ti_softc *sc, int i)
2694 {
2695 
2696 	struct ti_rx_desc *r;
2697 
2698 	r = &sc->ti_rdata.ti_rx_std_ring[i];
2699 	r->ti_len = MCLBYTES - ETHER_ALIGN;
2700 	r->ti_type = TI_BDTYPE_RECV_BD;
2701 	r->ti_flags = 0;
2702 	r->ti_vlan_tag = 0;
2703 	r->ti_tcp_udp_cksum = 0;
2704 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2705 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2706 	r->ti_idx = i;
2707 }
2708 
2709 static void
2710 ti_discard_mini(struct ti_softc *sc, int i)
2711 {
2712 
2713 	struct ti_rx_desc *r;
2714 
2715 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2716 	r->ti_len = MHLEN - ETHER_ALIGN;
2717 	r->ti_type = TI_BDTYPE_RECV_BD;
2718 	r->ti_flags = TI_BDFLAG_MINI_RING;
2719 	r->ti_vlan_tag = 0;
2720 	r->ti_tcp_udp_cksum = 0;
2721 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2722 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2723 	r->ti_idx = i;
2724 }
2725 
2726 #ifndef TI_SF_BUF_JUMBO
2727 static void
2728 ti_discard_jumbo(struct ti_softc *sc, int i)
2729 {
2730 
2731 	struct ti_rx_desc *r;
2732 
2733 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2734 	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2735 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2736 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2737 	r->ti_vlan_tag = 0;
2738 	r->ti_tcp_udp_cksum = 0;
2739 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2740 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2741 	r->ti_idx = i;
2742 }
2743 #endif
2744 
2745 /*
2746  * Frame reception handling. This is called if there's a frame
2747  * on the receive return list.
2748  *
2749  * Note: we have to be able to handle three possibilities here:
2750  * 1) the frame is from the mini receive ring (can only happen)
2751  *    on Tigon 2 boards)
2752  * 2) the frame is from the jumbo receive ring
2753  * 3) the frame is from the standard receive ring
2754  */
2755 
2756 static void
2757 ti_rxeof(struct ti_softc *sc)
2758 {
2759 	struct ifnet *ifp;
2760 #ifdef TI_SF_BUF_JUMBO
2761 	bus_dmamap_t map;
2762 #endif
2763 	struct ti_cmd_desc cmd;
2764 	int jumbocnt, minicnt, stdcnt, ti_len;
2765 
2766 	TI_LOCK_ASSERT(sc);
2767 
2768 	ifp = sc->ti_ifp;
2769 
2770 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2771 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2772 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2773 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2774 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2775 	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2776 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2777 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2778 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2779 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2780 
2781 	jumbocnt = minicnt = stdcnt = 0;
2782 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2783 		struct ti_rx_desc *cur_rx;
2784 		uint32_t rxidx;
2785 		struct mbuf *m = NULL;
2786 		uint16_t vlan_tag = 0;
2787 		int have_tag = 0;
2788 
2789 		cur_rx =
2790 		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2791 		rxidx = cur_rx->ti_idx;
2792 		ti_len = cur_rx->ti_len;
2793 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2794 
2795 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2796 			have_tag = 1;
2797 			vlan_tag = cur_rx->ti_vlan_tag;
2798 		}
2799 
2800 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2801 			jumbocnt++;
2802 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2803 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2804 #ifndef TI_SF_BUF_JUMBO
2805 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2806 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2807 				ti_discard_jumbo(sc, rxidx);
2808 				continue;
2809 			}
2810 			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2811 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2812 				ti_discard_jumbo(sc, rxidx);
2813 				continue;
2814 			}
2815 			m->m_len = ti_len;
2816 #else /* !TI_SF_BUF_JUMBO */
2817 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2818 			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2819 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2820 			    BUS_DMASYNC_POSTREAD);
2821 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2822 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2823 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2824 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2825 				continue;
2826 			}
2827 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2828 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2829 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2830 				continue;
2831 			}
2832 #ifdef TI_JUMBO_HDRSPLIT
2833 			if (sc->ti_hdrsplit)
2834 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2835 					     ti_len, rxidx);
2836 			else
2837 #endif /* TI_JUMBO_HDRSPLIT */
2838 			m_adj(m, ti_len - m->m_pkthdr.len);
2839 #endif /* TI_SF_BUF_JUMBO */
2840 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2841 			minicnt++;
2842 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2843 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2844 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2845 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2846 				ti_discard_mini(sc, rxidx);
2847 				continue;
2848 			}
2849 			if (ti_newbuf_mini(sc, rxidx) != 0) {
2850 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2851 				ti_discard_mini(sc, rxidx);
2852 				continue;
2853 			}
2854 			m->m_len = ti_len;
2855 		} else {
2856 			stdcnt++;
2857 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2858 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2859 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2860 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2861 				ti_discard_std(sc, rxidx);
2862 				continue;
2863 			}
2864 			if (ti_newbuf_std(sc, rxidx) != 0) {
2865 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2866 				ti_discard_std(sc, rxidx);
2867 				continue;
2868 			}
2869 			m->m_len = ti_len;
2870 		}
2871 
2872 		m->m_pkthdr.len = ti_len;
2873 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2874 		m->m_pkthdr.rcvif = ifp;
2875 
2876 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2877 			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2878 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2879 				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2880 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2881 			}
2882 			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2883 				m->m_pkthdr.csum_data =
2884 				    cur_rx->ti_tcp_udp_cksum;
2885 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2886 			}
2887 		}
2888 
2889 		/*
2890 		 * If we received a packet with a vlan tag,
2891 		 * tag it before passing the packet upward.
2892 		 */
2893 		if (have_tag) {
2894 			m->m_pkthdr.ether_vtag = vlan_tag;
2895 			m->m_flags |= M_VLANTAG;
2896 		}
2897 		TI_UNLOCK(sc);
2898 		(*ifp->if_input)(ifp, m);
2899 		TI_LOCK(sc);
2900 	}
2901 
2902 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2903 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2904 	/* Only necessary on the Tigon 1. */
2905 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2906 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2907 		    sc->ti_rx_saved_considx);
2908 
2909 	if (stdcnt > 0) {
2910 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2911 		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2912 		TI_UPDATE_STDPROD(sc, sc->ti_std);
2913 	}
2914 	if (minicnt > 0) {
2915 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2916 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2917 		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2918 	}
2919 	if (jumbocnt > 0) {
2920 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2921 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2922 		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2923 	}
2924 }
2925 
2926 static void
2927 ti_txeof(struct ti_softc *sc)
2928 {
2929 	struct ti_txdesc *txd;
2930 	struct ti_tx_desc txdesc;
2931 	struct ti_tx_desc *cur_tx = NULL;
2932 	struct ifnet *ifp;
2933 	int idx;
2934 
2935 	ifp = sc->ti_ifp;
2936 
2937 	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2938 	if (txd == NULL)
2939 		return;
2940 
2941 	if (sc->ti_rdata.ti_tx_ring != NULL)
2942 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2943 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2944 	/*
2945 	 * Go through our tx ring and free mbufs for those
2946 	 * frames that have been sent.
2947 	 */
2948 	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2949 	    TI_INC(idx, TI_TX_RING_CNT)) {
2950 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2951 			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2952 			    sizeof(txdesc), &txdesc);
2953 			cur_tx = &txdesc;
2954 		} else
2955 			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2956 		sc->ti_txcnt--;
2957 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2958 		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2959 			continue;
2960 		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2961 		    BUS_DMASYNC_POSTWRITE);
2962 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2963 
2964 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2965 		m_freem(txd->tx_m);
2966 		txd->tx_m = NULL;
2967 		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2968 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2969 		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2970 	}
2971 	sc->ti_tx_saved_considx = idx;
2972 	if (sc->ti_txcnt == 0)
2973 		sc->ti_timer = 0;
2974 }
2975 
2976 static void
2977 ti_intr(void *xsc)
2978 {
2979 	struct ti_softc *sc;
2980 	struct ifnet *ifp;
2981 
2982 	sc = xsc;
2983 	TI_LOCK(sc);
2984 	ifp = sc->ti_ifp;
2985 
2986 	/* Make sure this is really our interrupt. */
2987 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2988 		TI_UNLOCK(sc);
2989 		return;
2990 	}
2991 
2992 	/* Ack interrupt and stop others from occurring. */
2993 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2994 
2995 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2996 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2997 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2998 		/* Check RX return ring producer/consumer */
2999 		ti_rxeof(sc);
3000 
3001 		/* Check TX ring producer/consumer */
3002 		ti_txeof(sc);
3003 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
3004 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
3005 	}
3006 
3007 	ti_handle_events(sc);
3008 
3009 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3010 		/* Re-enable interrupts. */
3011 		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3012 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3013 			ti_start_locked(ifp);
3014 	}
3015 
3016 	TI_UNLOCK(sc);
3017 }
3018 
3019 static uint64_t
3020 ti_get_counter(struct ifnet *ifp, ift_counter cnt)
3021 {
3022 
3023 	switch (cnt) {
3024 	case IFCOUNTER_COLLISIONS:
3025 	    {
3026 		struct ti_softc *sc;
3027 		struct ti_stats *s;
3028 		uint64_t rv;
3029 
3030 		sc = if_getsoftc(ifp);
3031 		s = &sc->ti_rdata.ti_info->ti_stats;
3032 
3033 		TI_LOCK(sc);
3034 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3035 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3036 		rv = s->dot3StatsSingleCollisionFrames +
3037 		    s->dot3StatsMultipleCollisionFrames +
3038 		    s->dot3StatsExcessiveCollisions +
3039 		    s->dot3StatsLateCollisions;
3040 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3041 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3042 		TI_UNLOCK(sc);
3043 		return (rv);
3044 	    }
3045 	default:
3046 		return (if_get_counter_default(ifp, cnt));
3047 	}
3048 }
3049 
3050 /*
3051  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3052  * pointers to descriptors.
3053  */
3054 static int
3055 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3056 {
3057 	struct ti_txdesc *txd;
3058 	struct ti_tx_desc *f;
3059 	struct ti_tx_desc txdesc;
3060 	struct mbuf *m;
3061 	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3062 	uint16_t csum_flags;
3063 	int error, frag, i, nseg;
3064 
3065 	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3066 		return (ENOBUFS);
3067 
3068 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3069 	    *m_head, txsegs, &nseg, 0);
3070 	if (error == EFBIG) {
3071 		m = m_defrag(*m_head, M_NOWAIT);
3072 		if (m == NULL) {
3073 			m_freem(*m_head);
3074 			*m_head = NULL;
3075 			return (ENOMEM);
3076 		}
3077 		*m_head = m;
3078 		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3079 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3080 		if (error) {
3081 			m_freem(*m_head);
3082 			*m_head = NULL;
3083 			return (error);
3084 		}
3085 	} else if (error != 0)
3086 		return (error);
3087 	if (nseg == 0) {
3088 		m_freem(*m_head);
3089 		*m_head = NULL;
3090 		return (EIO);
3091 	}
3092 
3093 	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3094 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3095 		return (ENOBUFS);
3096 	}
3097 	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3098 	    BUS_DMASYNC_PREWRITE);
3099 
3100 	m = *m_head;
3101 	csum_flags = 0;
3102 	if (m->m_pkthdr.csum_flags & CSUM_IP)
3103 		csum_flags |= TI_BDFLAG_IP_CKSUM;
3104 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3105 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3106 
3107 	frag = sc->ti_tx_saved_prodidx;
3108 	for (i = 0; i < nseg; i++) {
3109 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3110 			bzero(&txdesc, sizeof(txdesc));
3111 			f = &txdesc;
3112 		} else
3113 			f = &sc->ti_rdata.ti_tx_ring[frag];
3114 		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3115 		f->ti_len = txsegs[i].ds_len;
3116 		f->ti_flags = csum_flags;
3117 		if (m->m_flags & M_VLANTAG) {
3118 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3119 			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3120 		} else {
3121 			f->ti_vlan_tag = 0;
3122 		}
3123 
3124 		if (sc->ti_hwrev == TI_HWREV_TIGON)
3125 			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3126 			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3127 		TI_INC(frag, TI_TX_RING_CNT);
3128 	}
3129 
3130 	sc->ti_tx_saved_prodidx = frag;
3131 	/* set TI_BDFLAG_END on the last descriptor */
3132 	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3133 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3134 		txdesc.ti_flags |= TI_BDFLAG_END;
3135 		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3136 		    sizeof(txdesc), &txdesc);
3137 	} else
3138 		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3139 
3140 	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3141 	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3142 	txd->tx_m = m;
3143 	sc->ti_txcnt += nseg;
3144 
3145 	return (0);
3146 }
3147 
3148 static void
3149 ti_start(struct ifnet *ifp)
3150 {
3151 	struct ti_softc *sc;
3152 
3153 	sc = ifp->if_softc;
3154 	TI_LOCK(sc);
3155 	ti_start_locked(ifp);
3156 	TI_UNLOCK(sc);
3157 }
3158 
3159 /*
3160  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3161  * to the mbuf data regions directly in the transmit descriptors.
3162  */
3163 static void
3164 ti_start_locked(struct ifnet *ifp)
3165 {
3166 	struct ti_softc *sc;
3167 	struct mbuf *m_head = NULL;
3168 	int enq = 0;
3169 
3170 	sc = ifp->if_softc;
3171 
3172 	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3173 	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3174 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3175 		if (m_head == NULL)
3176 			break;
3177 
3178 		/*
3179 		 * Pack the data into the transmit ring. If we
3180 		 * don't have room, set the OACTIVE flag and wait
3181 		 * for the NIC to drain the ring.
3182 		 */
3183 		if (ti_encap(sc, &m_head)) {
3184 			if (m_head == NULL)
3185 				break;
3186 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3187 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3188 			break;
3189 		}
3190 
3191 		enq++;
3192 		/*
3193 		 * If there's a BPF listener, bounce a copy of this frame
3194 		 * to him.
3195 		 */
3196 		ETHER_BPF_MTAP(ifp, m_head);
3197 	}
3198 
3199 	if (enq > 0) {
3200 		if (sc->ti_rdata.ti_tx_ring != NULL)
3201 			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3202 			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3203 		/* Transmit */
3204 		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3205 
3206 		/*
3207 		 * Set a timeout in case the chip goes out to lunch.
3208 		 */
3209 		sc->ti_timer = 5;
3210 	}
3211 }
3212 
3213 static void
3214 ti_init(void *xsc)
3215 {
3216 	struct ti_softc *sc;
3217 
3218 	sc = xsc;
3219 	TI_LOCK(sc);
3220 	ti_init_locked(sc);
3221 	TI_UNLOCK(sc);
3222 }
3223 
3224 static void
3225 ti_init_locked(void *xsc)
3226 {
3227 	struct ti_softc *sc = xsc;
3228 
3229 	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3230 		return;
3231 
3232 	/* Cancel pending I/O and flush buffers. */
3233 	ti_stop(sc);
3234 
3235 	/* Init the gen info block, ring control blocks and firmware. */
3236 	if (ti_gibinit(sc)) {
3237 		device_printf(sc->ti_dev, "initialization failure\n");
3238 		return;
3239 	}
3240 }
3241 
3242 static void ti_init2(struct ti_softc *sc)
3243 {
3244 	struct ti_cmd_desc cmd;
3245 	struct ifnet *ifp;
3246 	uint8_t *ea;
3247 	struct ifmedia *ifm;
3248 	int tmp;
3249 
3250 	TI_LOCK_ASSERT(sc);
3251 
3252 	ifp = sc->ti_ifp;
3253 
3254 	/* Specify MTU and interface index. */
3255 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3256 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3257 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3258 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3259 
3260 	/* Load our MAC address. */
3261 	ea = IF_LLADDR(sc->ti_ifp);
3262 	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3263 	CSR_WRITE_4(sc, TI_GCR_PAR1,
3264 	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3265 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3266 
3267 	/* Enable or disable promiscuous mode as needed. */
3268 	if (ifp->if_flags & IFF_PROMISC) {
3269 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3270 	} else {
3271 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3272 	}
3273 
3274 	/* Program multicast filter. */
3275 	ti_setmulti(sc);
3276 
3277 	/*
3278 	 * If this is a Tigon 1, we should tell the
3279 	 * firmware to use software packet filtering.
3280 	 */
3281 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3282 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3283 	}
3284 
3285 	/* Init RX ring. */
3286 	if (ti_init_rx_ring_std(sc) != 0) {
3287 		/* XXX */
3288 		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3289 		return;
3290 	}
3291 
3292 	/* Init jumbo RX ring. */
3293 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3294 		if (ti_init_rx_ring_jumbo(sc) != 0) {
3295 			/* XXX */
3296 			device_printf(sc->ti_dev,
3297 			    "no memory for jumbo Rx buffers.\n");
3298 			return;
3299 		}
3300 	}
3301 
3302 	/*
3303 	 * If this is a Tigon 2, we can also configure the
3304 	 * mini ring.
3305 	 */
3306 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3307 		if (ti_init_rx_ring_mini(sc) != 0) {
3308 			/* XXX */
3309 			device_printf(sc->ti_dev,
3310 			    "no memory for mini Rx buffers.\n");
3311 			return;
3312 		}
3313 	}
3314 
3315 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3316 	sc->ti_rx_saved_considx = 0;
3317 
3318 	/* Init TX ring. */
3319 	ti_init_tx_ring(sc);
3320 
3321 	/* Tell firmware we're alive. */
3322 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3323 
3324 	/* Enable host interrupts. */
3325 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3326 
3327 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3328 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3329 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3330 
3331 	/*
3332 	 * Make sure to set media properly. We have to do this
3333 	 * here since we have to issue commands in order to set
3334 	 * the link negotiation and we can't issue commands until
3335 	 * the firmware is running.
3336 	 */
3337 	ifm = &sc->ifmedia;
3338 	tmp = ifm->ifm_media;
3339 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3340 	ti_ifmedia_upd_locked(sc);
3341 	ifm->ifm_media = tmp;
3342 }
3343 
3344 /*
3345  * Set media options.
3346  */
3347 static int
3348 ti_ifmedia_upd(struct ifnet *ifp)
3349 {
3350 	struct ti_softc *sc;
3351 	int error;
3352 
3353 	sc = ifp->if_softc;
3354 	TI_LOCK(sc);
3355 	error = ti_ifmedia_upd_locked(sc);
3356 	TI_UNLOCK(sc);
3357 
3358 	return (error);
3359 }
3360 
3361 static int
3362 ti_ifmedia_upd_locked(struct ti_softc *sc)
3363 {
3364 	struct ifmedia *ifm;
3365 	struct ti_cmd_desc cmd;
3366 	uint32_t flowctl;
3367 
3368 	ifm = &sc->ifmedia;
3369 
3370 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3371 		return (EINVAL);
3372 
3373 	flowctl = 0;
3374 
3375 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3376 	case IFM_AUTO:
3377 		/*
3378 		 * Transmit flow control doesn't work on the Tigon 1.
3379 		 */
3380 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3381 
3382 		/*
3383 		 * Transmit flow control can also cause problems on the
3384 		 * Tigon 2, apparently with both the copper and fiber
3385 		 * boards.  The symptom is that the interface will just
3386 		 * hang.  This was reproduced with Alteon 180 switches.
3387 		 */
3388 #if 0
3389 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3390 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3391 #endif
3392 
3393 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3394 		    TI_GLNK_FULL_DUPLEX| flowctl |
3395 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3396 
3397 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3398 #if 0
3399 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3400 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3401 #endif
3402 
3403 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3404 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3405 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3406 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3407 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3408 		break;
3409 	case IFM_1000_SX:
3410 	case IFM_1000_T:
3411 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3412 #if 0
3413 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3414 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3415 #endif
3416 
3417 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3418 		    flowctl |TI_GLNK_ENB);
3419 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3420 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3421 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3422 		}
3423 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3424 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3425 		break;
3426 	case IFM_100_FX:
3427 	case IFM_10_FL:
3428 	case IFM_100_TX:
3429 	case IFM_10_T:
3430 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3431 #if 0
3432 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3433 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3434 #endif
3435 
3436 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3437 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3438 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3439 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3440 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3441 		} else {
3442 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3443 		}
3444 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3445 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3446 		} else {
3447 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3448 		}
3449 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3450 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3451 		break;
3452 	}
3453 
3454 	return (0);
3455 }
3456 
3457 /*
3458  * Report current media status.
3459  */
3460 static void
3461 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3462 {
3463 	struct ti_softc *sc;
3464 	uint32_t media = 0;
3465 
3466 	sc = ifp->if_softc;
3467 
3468 	TI_LOCK(sc);
3469 
3470 	ifmr->ifm_status = IFM_AVALID;
3471 	ifmr->ifm_active = IFM_ETHER;
3472 
3473 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3474 		TI_UNLOCK(sc);
3475 		return;
3476 	}
3477 
3478 	ifmr->ifm_status |= IFM_ACTIVE;
3479 
3480 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3481 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3482 		if (sc->ti_copper)
3483 			ifmr->ifm_active |= IFM_1000_T;
3484 		else
3485 			ifmr->ifm_active |= IFM_1000_SX;
3486 		if (media & TI_GLNK_FULL_DUPLEX)
3487 			ifmr->ifm_active |= IFM_FDX;
3488 		else
3489 			ifmr->ifm_active |= IFM_HDX;
3490 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3491 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3492 		if (sc->ti_copper) {
3493 			if (media & TI_LNK_100MB)
3494 				ifmr->ifm_active |= IFM_100_TX;
3495 			if (media & TI_LNK_10MB)
3496 				ifmr->ifm_active |= IFM_10_T;
3497 		} else {
3498 			if (media & TI_LNK_100MB)
3499 				ifmr->ifm_active |= IFM_100_FX;
3500 			if (media & TI_LNK_10MB)
3501 				ifmr->ifm_active |= IFM_10_FL;
3502 		}
3503 		if (media & TI_LNK_FULL_DUPLEX)
3504 			ifmr->ifm_active |= IFM_FDX;
3505 		if (media & TI_LNK_HALF_DUPLEX)
3506 			ifmr->ifm_active |= IFM_HDX;
3507 	}
3508 	TI_UNLOCK(sc);
3509 }
3510 
3511 static int
3512 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3513 {
3514 	struct ti_softc *sc = ifp->if_softc;
3515 	struct ifreq *ifr = (struct ifreq *) data;
3516 	struct ti_cmd_desc cmd;
3517 	int mask, error = 0;
3518 
3519 	switch (command) {
3520 	case SIOCSIFMTU:
3521 		TI_LOCK(sc);
3522 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3523 			error = EINVAL;
3524 		else {
3525 			ifp->if_mtu = ifr->ifr_mtu;
3526 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3527 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3528 				ti_init_locked(sc);
3529 			}
3530 		}
3531 		TI_UNLOCK(sc);
3532 		break;
3533 	case SIOCSIFFLAGS:
3534 		TI_LOCK(sc);
3535 		if (ifp->if_flags & IFF_UP) {
3536 			/*
3537 			 * If only the state of the PROMISC flag changed,
3538 			 * then just use the 'set promisc mode' command
3539 			 * instead of reinitializing the entire NIC. Doing
3540 			 * a full re-init means reloading the firmware and
3541 			 * waiting for it to start up, which may take a
3542 			 * second or two.
3543 			 */
3544 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3545 			    ifp->if_flags & IFF_PROMISC &&
3546 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3547 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3548 				    TI_CMD_CODE_PROMISC_ENB, 0);
3549 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3550 			    !(ifp->if_flags & IFF_PROMISC) &&
3551 			    sc->ti_if_flags & IFF_PROMISC) {
3552 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3553 				    TI_CMD_CODE_PROMISC_DIS, 0);
3554 			} else
3555 				ti_init_locked(sc);
3556 		} else {
3557 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3558 				ti_stop(sc);
3559 			}
3560 		}
3561 		sc->ti_if_flags = ifp->if_flags;
3562 		TI_UNLOCK(sc);
3563 		break;
3564 	case SIOCADDMULTI:
3565 	case SIOCDELMULTI:
3566 		TI_LOCK(sc);
3567 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3568 			ti_setmulti(sc);
3569 		TI_UNLOCK(sc);
3570 		break;
3571 	case SIOCSIFMEDIA:
3572 	case SIOCGIFMEDIA:
3573 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3574 		break;
3575 	case SIOCSIFCAP:
3576 		TI_LOCK(sc);
3577 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3578 		if ((mask & IFCAP_TXCSUM) != 0 &&
3579 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3580 			ifp->if_capenable ^= IFCAP_TXCSUM;
3581 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3582 				ifp->if_hwassist |= TI_CSUM_FEATURES;
3583                         else
3584 				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3585                 }
3586 		if ((mask & IFCAP_RXCSUM) != 0 &&
3587 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3588 			ifp->if_capenable ^= IFCAP_RXCSUM;
3589 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3590 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3591                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3592 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3593 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3594 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3595 		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3596 		    IFCAP_VLAN_HWTAGGING)) != 0) {
3597 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3598 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3599 				ti_init_locked(sc);
3600 			}
3601 		}
3602 		TI_UNLOCK(sc);
3603 		VLAN_CAPABILITIES(ifp);
3604 		break;
3605 	default:
3606 		error = ether_ioctl(ifp, command, data);
3607 		break;
3608 	}
3609 
3610 	return (error);
3611 }
3612 
3613 static int
3614 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3615 {
3616 	struct ti_softc *sc;
3617 
3618 	sc = dev->si_drv1;
3619 	if (sc == NULL)
3620 		return (ENODEV);
3621 
3622 	TI_LOCK(sc);
3623 	sc->ti_flags |= TI_FLAG_DEBUGING;
3624 	TI_UNLOCK(sc);
3625 
3626 	return (0);
3627 }
3628 
3629 static int
3630 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3631 {
3632 	struct ti_softc *sc;
3633 
3634 	sc = dev->si_drv1;
3635 	if (sc == NULL)
3636 		return (ENODEV);
3637 
3638 	TI_LOCK(sc);
3639 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3640 	TI_UNLOCK(sc);
3641 
3642 	return (0);
3643 }
3644 
3645 /*
3646  * This ioctl routine goes along with the Tigon character device.
3647  */
3648 static int
3649 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3650     struct thread *td)
3651 {
3652 	struct ti_softc *sc;
3653 	int error;
3654 
3655 	sc = dev->si_drv1;
3656 	if (sc == NULL)
3657 		return (ENODEV);
3658 
3659 	error = 0;
3660 
3661 	switch (cmd) {
3662 	case TIIOCGETSTATS:
3663 	{
3664 		struct ti_stats *outstats;
3665 
3666 		outstats = (struct ti_stats *)addr;
3667 
3668 		TI_LOCK(sc);
3669 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3670 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3671 		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3672 		    sizeof(struct ti_stats));
3673 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3674 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3675 		TI_UNLOCK(sc);
3676 		break;
3677 	}
3678 	case TIIOCGETPARAMS:
3679 	{
3680 		struct ti_params *params;
3681 
3682 		params = (struct ti_params *)addr;
3683 
3684 		TI_LOCK(sc);
3685 		params->ti_stat_ticks = sc->ti_stat_ticks;
3686 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3687 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3688 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3689 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3690 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3691 		params->param_mask = TI_PARAM_ALL;
3692 		TI_UNLOCK(sc);
3693 		break;
3694 	}
3695 	case TIIOCSETPARAMS:
3696 	{
3697 		struct ti_params *params;
3698 
3699 		params = (struct ti_params *)addr;
3700 
3701 		TI_LOCK(sc);
3702 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3703 			sc->ti_stat_ticks = params->ti_stat_ticks;
3704 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3705 		}
3706 
3707 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3708 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3709 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3710 				    sc->ti_rx_coal_ticks);
3711 		}
3712 
3713 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3714 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3715 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3716 				    sc->ti_tx_coal_ticks);
3717 		}
3718 
3719 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3720 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3721 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3722 				    sc->ti_rx_max_coal_bds);
3723 		}
3724 
3725 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3726 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3727 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3728 				    sc->ti_tx_max_coal_bds);
3729 		}
3730 
3731 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3732 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3733 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3734 				    sc->ti_tx_buf_ratio);
3735 		}
3736 		TI_UNLOCK(sc);
3737 		break;
3738 	}
3739 	case TIIOCSETTRACE: {
3740 		ti_trace_type trace_type;
3741 
3742 		trace_type = *(ti_trace_type *)addr;
3743 
3744 		/*
3745 		 * Set tracing to whatever the user asked for.  Setting
3746 		 * this register to 0 should have the effect of disabling
3747 		 * tracing.
3748 		 */
3749 		TI_LOCK(sc);
3750 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3751 		TI_UNLOCK(sc);
3752 		break;
3753 	}
3754 	case TIIOCGETTRACE: {
3755 		struct ti_trace_buf *trace_buf;
3756 		uint32_t trace_start, cur_trace_ptr, trace_len;
3757 
3758 		trace_buf = (struct ti_trace_buf *)addr;
3759 
3760 		TI_LOCK(sc);
3761 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3762 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3763 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3764 #if 0
3765 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3766 		       "trace_len = %d\n", trace_start,
3767 		       cur_trace_ptr, trace_len);
3768 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3769 		       trace_buf->buf_len);
3770 #endif
3771 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3772 		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3773 		if (error == 0) {
3774 			trace_buf->fill_len = min(trace_len,
3775 			    trace_buf->buf_len);
3776 			if (cur_trace_ptr < trace_start)
3777 				trace_buf->cur_trace_ptr =
3778 				    trace_start - cur_trace_ptr;
3779 			else
3780 				trace_buf->cur_trace_ptr =
3781 				    cur_trace_ptr - trace_start;
3782 		} else
3783 			trace_buf->fill_len = 0;
3784 		TI_UNLOCK(sc);
3785 		break;
3786 	}
3787 
3788 	/*
3789 	 * For debugging, five ioctls are needed:
3790 	 * ALT_ATTACH
3791 	 * ALT_READ_TG_REG
3792 	 * ALT_WRITE_TG_REG
3793 	 * ALT_READ_TG_MEM
3794 	 * ALT_WRITE_TG_MEM
3795 	 */
3796 	case ALT_ATTACH:
3797 		/*
3798 		 * From what I can tell, Alteon's Solaris Tigon driver
3799 		 * only has one character device, so you have to attach
3800 		 * to the Tigon board you're interested in.  This seems
3801 		 * like a not-so-good way to do things, since unless you
3802 		 * subsequently specify the unit number of the device
3803 		 * you're interested in every ioctl, you'll only be
3804 		 * able to debug one board at a time.
3805 		 */
3806 		break;
3807 	case ALT_READ_TG_MEM:
3808 	case ALT_WRITE_TG_MEM:
3809 	{
3810 		struct tg_mem *mem_param;
3811 		uint32_t sram_end, scratch_end;
3812 
3813 		mem_param = (struct tg_mem *)addr;
3814 
3815 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3816 			sram_end = TI_END_SRAM_I;
3817 			scratch_end = TI_END_SCRATCH_I;
3818 		} else {
3819 			sram_end = TI_END_SRAM_II;
3820 			scratch_end = TI_END_SCRATCH_II;
3821 		}
3822 
3823 		/*
3824 		 * For now, we'll only handle accessing regular SRAM,
3825 		 * nothing else.
3826 		 */
3827 		TI_LOCK(sc);
3828 		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3829 		    mem_param->tgAddr + mem_param->len <= sram_end) {
3830 			/*
3831 			 * In this instance, we always copy to/from user
3832 			 * space, so the user space argument is set to 1.
3833 			 */
3834 			error = ti_copy_mem(sc, mem_param->tgAddr,
3835 			    mem_param->len, mem_param->userAddr, 1,
3836 			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3837 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3838 		    mem_param->tgAddr <= scratch_end) {
3839 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3840 			    mem_param->len, mem_param->userAddr, 1,
3841 			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3842 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3843 		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3844 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3845 				if_printf(sc->ti_ifp,
3846 				    "invalid memory range for Tigon I\n");
3847 				error = EINVAL;
3848 				break;
3849 			}
3850 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3851 			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3852 			    mem_param->userAddr, 1,
3853 			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3854 		} else {
3855 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3856 			        "out of supported range\n",
3857 			        mem_param->tgAddr, mem_param->len);
3858 			error = EINVAL;
3859 		}
3860 		TI_UNLOCK(sc);
3861 		break;
3862 	}
3863 	case ALT_READ_TG_REG:
3864 	case ALT_WRITE_TG_REG:
3865 	{
3866 		struct tg_reg *regs;
3867 		uint32_t tmpval;
3868 
3869 		regs = (struct tg_reg *)addr;
3870 
3871 		/*
3872 		 * Make sure the address in question isn't out of range.
3873 		 */
3874 		if (regs->addr > TI_REG_MAX) {
3875 			error = EINVAL;
3876 			break;
3877 		}
3878 		TI_LOCK(sc);
3879 		if (cmd == ALT_READ_TG_REG) {
3880 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3881 			    regs->addr, &tmpval, 1);
3882 			regs->data = ntohl(tmpval);
3883 #if 0
3884 			if ((regs->addr == TI_CPU_STATE)
3885 			 || (regs->addr == TI_CPU_CTL_B)) {
3886 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3887 				       regs->addr, tmpval);
3888 			}
3889 #endif
3890 		} else {
3891 			tmpval = htonl(regs->data);
3892 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3893 			    regs->addr, &tmpval, 1);
3894 		}
3895 		TI_UNLOCK(sc);
3896 		break;
3897 	}
3898 	default:
3899 		error = ENOTTY;
3900 		break;
3901 	}
3902 	return (error);
3903 }
3904 
3905 static void
3906 ti_watchdog(void *arg)
3907 {
3908 	struct ti_softc *sc;
3909 	struct ifnet *ifp;
3910 
3911 	sc = arg;
3912 	TI_LOCK_ASSERT(sc);
3913 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3914 	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3915 		return;
3916 
3917 	/*
3918 	 * When we're debugging, the chip is often stopped for long periods
3919 	 * of time, and that would normally cause the watchdog timer to fire.
3920 	 * Since that impedes debugging, we don't want to do that.
3921 	 */
3922 	if (sc->ti_flags & TI_FLAG_DEBUGING)
3923 		return;
3924 
3925 	ifp = sc->ti_ifp;
3926 	if_printf(ifp, "watchdog timeout -- resetting\n");
3927 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3928 	ti_init_locked(sc);
3929 
3930 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3931 }
3932 
3933 /*
3934  * Stop the adapter and free any mbufs allocated to the
3935  * RX and TX lists.
3936  */
3937 static void
3938 ti_stop(struct ti_softc *sc)
3939 {
3940 	struct ifnet *ifp;
3941 	struct ti_cmd_desc cmd;
3942 
3943 	TI_LOCK_ASSERT(sc);
3944 
3945 	ifp = sc->ti_ifp;
3946 
3947 	/* Disable host interrupts. */
3948 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3949 	/*
3950 	 * Tell firmware we're shutting down.
3951 	 */
3952 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3953 
3954 	/* Halt and reinitialize. */
3955 	if (ti_chipinit(sc) == 0) {
3956 		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3957 		/* XXX ignore init errors. */
3958 		ti_chipinit(sc);
3959 	}
3960 
3961 	/* Free the RX lists. */
3962 	ti_free_rx_ring_std(sc);
3963 
3964 	/* Free jumbo RX list. */
3965 	ti_free_rx_ring_jumbo(sc);
3966 
3967 	/* Free mini RX list. */
3968 	ti_free_rx_ring_mini(sc);
3969 
3970 	/* Free TX buffers. */
3971 	ti_free_tx_ring(sc);
3972 
3973 	sc->ti_ev_prodidx.ti_idx = 0;
3974 	sc->ti_return_prodidx.ti_idx = 0;
3975 	sc->ti_tx_considx.ti_idx = 0;
3976 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3977 
3978 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3979 	callout_stop(&sc->ti_watchdog);
3980 }
3981 
3982 /*
3983  * Stop all chip I/O so that the kernel's probe routines don't
3984  * get confused by errant DMAs when rebooting.
3985  */
3986 static int
3987 ti_shutdown(device_t dev)
3988 {
3989 	struct ti_softc *sc;
3990 
3991 	sc = device_get_softc(dev);
3992 	TI_LOCK(sc);
3993 	ti_chipinit(sc);
3994 	TI_UNLOCK(sc);
3995 
3996 	return (0);
3997 }
3998 
3999 static void
4000 ti_sysctl_node(struct ti_softc *sc)
4001 {
4002 	struct sysctl_ctx_list *ctx;
4003 	struct sysctl_oid_list *child;
4004 	char tname[32];
4005 
4006 	ctx = device_get_sysctl_ctx(sc->ti_dev);
4007 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
4008 
4009 	/* Use DAC */
4010 	sc->ti_dac = 1;
4011 	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4012 	    device_get_unit(sc->ti_dev));
4013 	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4014 
4015 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4016 	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4017 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4018 	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4019 
4020 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4021 	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4022 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4023 	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4024 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4025 	    &sc->ti_tx_buf_ratio, 0,
4026 	    "Ratio of NIC memory devoted to TX buffer");
4027 
4028 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4029 	    &sc->ti_stat_ticks, 0,
4030 	    "Number of clock ticks for statistics update interval");
4031 
4032 	/* Pull in device tunables. */
4033 	sc->ti_rx_coal_ticks = 170;
4034 	resource_int_value(device_get_name(sc->ti_dev),
4035 	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4036 	    &sc->ti_rx_coal_ticks);
4037 	sc->ti_rx_max_coal_bds = 64;
4038 	resource_int_value(device_get_name(sc->ti_dev),
4039 	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4040 	    &sc->ti_rx_max_coal_bds);
4041 
4042 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4043 	resource_int_value(device_get_name(sc->ti_dev),
4044 	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4045 	    &sc->ti_tx_coal_ticks);
4046 	sc->ti_tx_max_coal_bds = 32;
4047 	resource_int_value(device_get_name(sc->ti_dev),
4048 	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4049 	    &sc->ti_tx_max_coal_bds);
4050 	sc->ti_tx_buf_ratio = 21;
4051 	resource_int_value(device_get_name(sc->ti_dev),
4052 	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4053 	    &sc->ti_tx_buf_ratio);
4054 
4055 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4056 	resource_int_value(device_get_name(sc->ti_dev),
4057 	    device_get_unit(sc->ti_dev), "stat_ticks",
4058 	    &sc->ti_stat_ticks);
4059 }
4060