xref: /freebsd/sys/dev/ti/if_ti.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include "vlan.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/queue.h>
91 
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 
98 #include <net/bpf.h>
99 
100 #if NVLAN > 0
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103 #endif
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/clock.h>      /* for DELAY */
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <pci/pcireg.h>
119 #include <pci/pcivar.h>
120 
121 #include <pci/if_tireg.h>
122 #include <pci/ti_fw.h>
123 #include <pci/ti_fw2.h>
124 
125 #ifdef M_HWCKSUM
126 /*#define TI_CSUM_OFFLOAD*/
127 #endif
128 
129 #if !defined(lint)
130 static const char rcsid[] =
131   "$FreeBSD$";
132 #endif
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 
138 static struct ti_type ti_devs[] = {
139 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
140 		"Alteon AceNIC Gigabit Ethernet" },
141 	{ TC_VENDORID,	TC_DEVICEID_3C985,
142 		"3Com 3c985-SX Gigabit Ethernet" },
143 	{ NG_VENDORID, NG_DEVICEID_GA620,
144 		"Netgear GA620 Gigabit Ethernet" },
145 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
146 		"Silicon Graphics Gigabit Ethernet" },
147 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
148 		"Farallon PN9000SX Gigabit Ethernet" },
149 	{ 0, 0, NULL }
150 };
151 
152 static int ti_probe		__P((device_t));
153 static int ti_attach		__P((device_t));
154 static int ti_detach		__P((device_t));
155 static void ti_txeof		__P((struct ti_softc *));
156 static void ti_rxeof		__P((struct ti_softc *));
157 
158 static void ti_stats_update	__P((struct ti_softc *));
159 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
160 					u_int32_t *));
161 
162 static void ti_intr		__P((void *));
163 static void ti_start		__P((struct ifnet *));
164 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
165 static void ti_init		__P((void *));
166 static void ti_init2		__P((struct ti_softc *));
167 static void ti_stop		__P((struct ti_softc *));
168 static void ti_watchdog		__P((struct ifnet *));
169 static void ti_shutdown		__P((device_t));
170 static int ti_ifmedia_upd	__P((struct ifnet *));
171 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
172 
173 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
174 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
175 						int, u_int8_t *));
176 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
177 
178 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
179 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
180 static void ti_setmulti		__P((struct ti_softc *));
181 
182 static void ti_mem		__P((struct ti_softc *, u_int32_t,
183 					u_int32_t, caddr_t));
184 static void ti_loadfw		__P((struct ti_softc *));
185 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
186 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
187 					caddr_t, int));
188 static void ti_handle_events	__P((struct ti_softc *));
189 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
190 static void *ti_jalloc		__P((struct ti_softc *));
191 static void ti_jfree		__P((caddr_t, u_int));
192 static void ti_jref		__P((caddr_t, u_int));
193 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196 static int ti_init_rx_ring_std	__P((struct ti_softc *));
197 static void ti_free_rx_ring_std	__P((struct ti_softc *));
198 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202 static void ti_free_tx_ring	__P((struct ti_softc *));
203 static int ti_init_tx_ring	__P((struct ti_softc *));
204 
205 static int ti_64bitslot_war	__P((struct ti_softc *));
206 static int ti_chipinit		__P((struct ti_softc *));
207 static int ti_gibinit		__P((struct ti_softc *));
208 
209 static device_method_t ti_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		ti_probe),
212 	DEVMETHOD(device_attach,	ti_attach),
213 	DEVMETHOD(device_detach,	ti_detach),
214 	DEVMETHOD(device_shutdown,	ti_shutdown),
215 	{ 0, 0 }
216 };
217 
218 static driver_t ti_driver = {
219 	"ti",
220 	ti_methods,
221 	sizeof(struct ti_softc)
222 };
223 
224 static devclass_t ti_devclass;
225 
226 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227 
228 /*
229  * Send an instruction or address to the EEPROM, check for ACK.
230  */
231 static u_int32_t ti_eeprom_putbyte(sc, byte)
232 	struct ti_softc		*sc;
233 	int			byte;
234 {
235 	register int		i, ack = 0;
236 
237 	/*
238 	 * Make sure we're in TX mode.
239 	 */
240 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241 
242 	/*
243 	 * Feed in each bit and stobe the clock.
244 	 */
245 	for (i = 0x80; i; i >>= 1) {
246 		if (byte & i) {
247 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 		} else {
249 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250 		}
251 		DELAY(1);
252 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 		DELAY(1);
254 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255 	}
256 
257 	/*
258 	 * Turn off TX mode.
259 	 */
260 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261 
262 	/*
263 	 * Check for ack.
264 	 */
265 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268 
269 	return(ack);
270 }
271 
272 /*
273  * Read a byte of data stored in the EEPROM at address 'addr.'
274  * We have to send two address bytes since the EEPROM can hold
275  * more than 256 bytes of data.
276  */
277 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278 	struct ti_softc		*sc;
279 	int			addr;
280 	u_int8_t		*dest;
281 {
282 	register int		i;
283 	u_int8_t		byte = 0;
284 
285 	EEPROM_START;
286 
287 	/*
288 	 * Send write control code to EEPROM.
289 	 */
290 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291 		printf("ti%d: failed to send write command, status: %x\n",
292 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293 		return(1);
294 	}
295 
296 	/*
297 	 * Send first byte of address of byte we want to read.
298 	 */
299 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300 		printf("ti%d: failed to send address, status: %x\n",
301 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 		return(1);
303 	}
304 	/*
305 	 * Send second byte address of byte we want to read.
306 	 */
307 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308 		printf("ti%d: failed to send address, status: %x\n",
309 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310 		return(1);
311 	}
312 
313 	EEPROM_STOP;
314 	EEPROM_START;
315 	/*
316 	 * Send read control code to EEPROM.
317 	 */
318 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319 		printf("ti%d: failed to send read command, status: %x\n",
320 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321 		return(1);
322 	}
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328 	for (i = 0x80; i; i >>= 1) {
329 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330 		DELAY(1);
331 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332 			byte |= i;
333 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334 		DELAY(1);
335 	}
336 
337 	EEPROM_STOP;
338 
339 	/*
340 	 * No ACK generated for read, so just return byte.
341 	 */
342 
343 	*dest = byte;
344 
345 	return(0);
346 }
347 
348 /*
349  * Read a sequence of bytes from the EEPROM.
350  */
351 static int ti_read_eeprom(sc, dest, off, cnt)
352 	struct ti_softc		*sc;
353 	caddr_t			dest;
354 	int			off;
355 	int			cnt;
356 {
357 	int			err = 0, i;
358 	u_int8_t		byte = 0;
359 
360 	for (i = 0; i < cnt; i++) {
361 		err = ti_eeprom_getbyte(sc, off + i, &byte);
362 		if (err)
363 			break;
364 		*(dest + i) = byte;
365 	}
366 
367 	return(err ? 1 : 0);
368 }
369 
370 /*
371  * NIC memory access function. Can be used to either clear a section
372  * of NIC local memory or (if buf is non-NULL) copy data into it.
373  */
374 static void ti_mem(sc, addr, len, buf)
375 	struct ti_softc		*sc;
376 	u_int32_t		addr, len;
377 	caddr_t			buf;
378 {
379 	int			segptr, segsize, cnt;
380 	caddr_t			ti_winbase, ptr;
381 
382 	segptr = addr;
383 	cnt = len;
384 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385 	ptr = buf;
386 
387 	while(cnt) {
388 		if (cnt < TI_WINLEN)
389 			segsize = cnt;
390 		else
391 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393 		if (buf == NULL)
394 			bzero((char *)ti_winbase + (segptr &
395 			    (TI_WINLEN - 1)), segsize);
396 		else {
397 			bcopy((char *)ptr, (char *)ti_winbase +
398 			    (segptr & (TI_WINLEN - 1)), segsize);
399 			ptr += segsize;
400 		}
401 		segptr += segsize;
402 		cnt -= segsize;
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Load firmware image into the NIC. Check that the firmware revision
410  * is acceptable and see if we want the firmware for the Tigon 1 or
411  * Tigon 2.
412  */
413 static void ti_loadfw(sc)
414 	struct ti_softc		*sc;
415 {
416 	switch(sc->ti_hwrev) {
417 	case TI_HWREV_TIGON:
418 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421 			printf("ti%d: firmware revision mismatch; want "
422 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425 			    tigonFwReleaseMinor, tigonFwReleaseFix);
426 			return;
427 		}
428 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429 		    (caddr_t)tigonFwText);
430 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431 		    (caddr_t)tigonFwData);
432 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433 		    (caddr_t)tigonFwRodata);
434 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437 		break;
438 	case TI_HWREV_TIGON_II:
439 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442 			printf("ti%d: firmware revision mismatch; want "
443 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447 			return;
448 		}
449 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450 		    (caddr_t)tigon2FwText);
451 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452 		    (caddr_t)tigon2FwData);
453 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454 		    (caddr_t)tigon2FwRodata);
455 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458 		break;
459 	default:
460 		printf("ti%d: can't load firmware: unknown hardware rev\n",
461 		    sc->ti_unit);
462 		break;
463 	}
464 
465 	return;
466 }
467 
468 /*
469  * Send the NIC a command via the command ring.
470  */
471 static void ti_cmd(sc, cmd)
472 	struct ti_softc		*sc;
473 	struct ti_cmd_desc	*cmd;
474 {
475 	u_int32_t		index;
476 
477 	if (sc->ti_rdata->ti_cmd_ring == NULL)
478 		return;
479 
480 	index = sc->ti_cmd_saved_prodidx;
481 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482 	TI_INC(index, TI_CMD_RING_CNT);
483 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484 	sc->ti_cmd_saved_prodidx = index;
485 
486 	return;
487 }
488 
489 /*
490  * Send the NIC an extended command. The 'len' parameter specifies the
491  * number of command slots to include after the initial command.
492  */
493 static void ti_cmd_ext(sc, cmd, arg, len)
494 	struct ti_softc		*sc;
495 	struct ti_cmd_desc	*cmd;
496 	caddr_t			arg;
497 	int			len;
498 {
499 	u_int32_t		index;
500 	register int		i;
501 
502 	if (sc->ti_rdata->ti_cmd_ring == NULL)
503 		return;
504 
505 	index = sc->ti_cmd_saved_prodidx;
506 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507 	TI_INC(index, TI_CMD_RING_CNT);
508 	for (i = 0; i < len; i++) {
509 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510 		    *(u_int32_t *)(&arg[i * 4]));
511 		TI_INC(index, TI_CMD_RING_CNT);
512 	}
513 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514 	sc->ti_cmd_saved_prodidx = index;
515 
516 	return;
517 }
518 
519 /*
520  * Handle events that have triggered interrupts.
521  */
522 static void ti_handle_events(sc)
523 	struct ti_softc		*sc;
524 {
525 	struct ti_event_desc	*e;
526 
527 	if (sc->ti_rdata->ti_event_ring == NULL)
528 		return;
529 
530 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532 		switch(e->ti_event) {
533 		case TI_EV_LINKSTAT_CHANGED:
534 			sc->ti_linkstat = e->ti_code;
535 			if (e->ti_code == TI_EV_CODE_LINK_UP)
536 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538 				printf("ti%d: gigabit link up\n", sc->ti_unit);
539 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540 				printf("ti%d: link down\n", sc->ti_unit);
541 			break;
542 		case TI_EV_ERROR:
543 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544 				printf("ti%d: invalid command\n", sc->ti_unit);
545 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546 				printf("ti%d: unknown command\n", sc->ti_unit);
547 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548 				printf("ti%d: bad config data\n", sc->ti_unit);
549 			break;
550 		case TI_EV_FIRMWARE_UP:
551 			ti_init2(sc);
552 			break;
553 		case TI_EV_STATS_UPDATED:
554 			ti_stats_update(sc);
555 			break;
556 		case TI_EV_RESET_JUMBO_RING:
557 		case TI_EV_MCAST_UPDATED:
558 			/* Who cares. */
559 			break;
560 		default:
561 			printf("ti%d: unknown event: %d\n",
562 			    sc->ti_unit, e->ti_event);
563 			break;
564 		}
565 		/* Advance the consumer index. */
566 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568 	}
569 
570 	return;
571 }
572 
573 /*
574  * Memory management for the jumbo receive ring is a pain in the
575  * butt. We need to allocate at least 9018 bytes of space per frame,
576  * _and_ it has to be contiguous (unless you use the extended
577  * jumbo descriptor format). Using malloc() all the time won't
578  * work: malloc() allocates memory in powers of two, which means we
579  * would end up wasting a considerable amount of space by allocating
580  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581  * to do our own memory management.
582  *
583  * The driver needs to allocate a contiguous chunk of memory at boot
584  * time. We then chop this up ourselves into 9K pieces and use them
585  * as external mbuf storage.
586  *
587  * One issue here is how much memory to allocate. The jumbo ring has
588  * 256 slots in it, but at 9K per slot than can consume over 2MB of
589  * RAM. This is a bit much, especially considering we also need
590  * RAM for the standard ring and mini ring (on the Tigon 2). To
591  * save space, we only actually allocate enough memory for 64 slots
592  * by default, which works out to between 500 and 600K. This can
593  * be tuned by changing a #define in if_tireg.h.
594  */
595 
596 static int ti_alloc_jumbo_mem(sc)
597 	struct ti_softc		*sc;
598 {
599 	caddr_t			ptr;
600 	register int		i;
601 	struct ti_jpool_entry   *entry;
602 
603 	/* Grab a big chunk o' storage. */
604 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606 
607 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609 		return(ENOBUFS);
610 	}
611 
612 	SLIST_INIT(&sc->ti_jfree_listhead);
613 	SLIST_INIT(&sc->ti_jinuse_listhead);
614 
615 	/*
616 	 * Now divide it up into 9K pieces and save the addresses
617 	 * in an array. Note that we play an evil trick here by using
618 	 * the first few bytes in the buffer to hold the the address
619 	 * of the softc structure for this interface. This is because
620 	 * ti_jfree() needs it, but it is called by the mbuf management
621 	 * code which will not pass it to us explicitly.
622 	 */
623 	ptr = sc->ti_cdata.ti_jumbo_buf;
624 	for (i = 0; i < TI_JSLOTS; i++) {
625 		u_int64_t		**aptr;
626 		aptr = (u_int64_t **)ptr;
627 		aptr[0] = (u_int64_t *)sc;
628 		ptr += sizeof(u_int64_t);
629 		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
630 		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
631 		ptr += (TI_JLEN - sizeof(u_int64_t));
632 		entry = malloc(sizeof(struct ti_jpool_entry),
633 			       M_DEVBUF, M_NOWAIT);
634 		if (entry == NULL) {
635 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
636 			sc->ti_cdata.ti_jumbo_buf = NULL;
637 			printf("ti%d: no memory for jumbo "
638 			    "buffer queue!\n", sc->ti_unit);
639 			return(ENOBUFS);
640 		}
641 		entry->slot = i;
642 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
643 	}
644 
645 	return(0);
646 }
647 
648 /*
649  * Allocate a jumbo buffer.
650  */
651 static void *ti_jalloc(sc)
652 	struct ti_softc		*sc;
653 {
654 	struct ti_jpool_entry   *entry;
655 
656 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
657 
658 	if (entry == NULL) {
659 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
660 		return(NULL);
661 	}
662 
663 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
664 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
665 	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
666 	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
667 }
668 
669 /*
670  * Adjust usage count on a jumbo buffer. In general this doesn't
671  * get used much because our jumbo buffers don't get passed around
672  * too much, but it's implemented for correctness.
673  */
674 static void ti_jref(buf, size)
675 	caddr_t			buf;
676 	u_int			size;
677 {
678 	struct ti_softc		*sc;
679 	u_int64_t		**aptr;
680 	register int		i;
681 
682 	/* Extract the softc struct pointer. */
683 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
684 	sc = (struct ti_softc *)(aptr[0]);
685 
686 	if (sc == NULL)
687 		panic("ti_jref: can't find softc pointer!");
688 
689 	if (size != TI_JUMBO_FRAMELEN)
690 		panic("ti_jref: adjusting refcount of buf of wrong size!");
691 
692 	/* calculate the slot this buffer belongs to */
693 
694 	i = ((vm_offset_t)aptr
695 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
696 
697 	if ((i < 0) || (i >= TI_JSLOTS))
698 		panic("ti_jref: asked to reference buffer "
699 		    "that we don't manage!");
700 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
701 		panic("ti_jref: buffer already free!");
702 	else
703 		sc->ti_cdata.ti_jslots[i].ti_inuse++;
704 
705 	return;
706 }
707 
708 /*
709  * Release a jumbo buffer.
710  */
711 static void ti_jfree(buf, size)
712 	caddr_t			buf;
713 	u_int			size;
714 {
715 	struct ti_softc		*sc;
716 	u_int64_t		**aptr;
717 	int		        i;
718 	struct ti_jpool_entry   *entry;
719 
720 	/* Extract the softc struct pointer. */
721 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
722 	sc = (struct ti_softc *)(aptr[0]);
723 
724 	if (sc == NULL)
725 		panic("ti_jfree: can't find softc pointer!");
726 
727 	if (size != TI_JUMBO_FRAMELEN)
728 		panic("ti_jfree: freeing buffer of wrong size!");
729 
730 	/* calculate the slot this buffer belongs to */
731 
732 	i = ((vm_offset_t)aptr
733 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
734 
735 	if ((i < 0) || (i >= TI_JSLOTS))
736 		panic("ti_jfree: asked to free buffer that we don't manage!");
737 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
738 		panic("ti_jfree: buffer already free!");
739 	else {
740 		sc->ti_cdata.ti_jslots[i].ti_inuse--;
741 		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
742 			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
743 			if (entry == NULL)
744 				panic("ti_jfree: buffer not in use!");
745 			entry->slot = i;
746 			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
747 					  jpool_entries);
748 			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
749 					  entry, jpool_entries);
750 		}
751 	}
752 
753 	return;
754 }
755 
756 
757 /*
758  * Intialize a standard receive ring descriptor.
759  */
760 static int ti_newbuf_std(sc, i, m)
761 	struct ti_softc		*sc;
762 	int			i;
763 	struct mbuf		*m;
764 {
765 	struct mbuf		*m_new = NULL;
766 	struct ti_rx_desc	*r;
767 
768 	if (m == NULL) {
769 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
770 		if (m_new == NULL) {
771 			printf("ti%d: mbuf allocation failed "
772 			    "-- packet dropped!\n", sc->ti_unit);
773 			return(ENOBUFS);
774 		}
775 
776 		MCLGET(m_new, M_DONTWAIT);
777 		if (!(m_new->m_flags & M_EXT)) {
778 			printf("ti%d: cluster allocation failed "
779 			    "-- packet dropped!\n", sc->ti_unit);
780 			m_freem(m_new);
781 			return(ENOBUFS);
782 		}
783 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
784 	} else {
785 		m_new = m;
786 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
787 		m_new->m_data = m_new->m_ext.ext_buf;
788 	}
789 
790 	m_adj(m_new, ETHER_ALIGN);
791 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
792 	r = &sc->ti_rdata->ti_rx_std_ring[i];
793 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
794 	r->ti_type = TI_BDTYPE_RECV_BD;
795 #ifdef TI_CSUM_OFFLOAD
796 	r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
797 #else
798 	r->ti_flags = 0;
799 #endif
800 	r->ti_len = m_new->m_len;
801 	r->ti_idx = i;
802 
803 	return(0);
804 }
805 
806 /*
807  * Intialize a mini receive ring descriptor. This only applies to
808  * the Tigon 2.
809  */
810 static int ti_newbuf_mini(sc, i, m)
811 	struct ti_softc		*sc;
812 	int			i;
813 	struct mbuf		*m;
814 {
815 	struct mbuf		*m_new = NULL;
816 	struct ti_rx_desc	*r;
817 
818 	if (m == NULL) {
819 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
820 		if (m_new == NULL) {
821 			printf("ti%d: mbuf allocation failed "
822 			    "-- packet dropped!\n", sc->ti_unit);
823 			return(ENOBUFS);
824 		}
825 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
826 	} else {
827 		m_new = m;
828 		m_new->m_data = m_new->m_pktdat;
829 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
830 	}
831 
832 	m_adj(m_new, ETHER_ALIGN);
833 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
834 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
835 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
836 	r->ti_type = TI_BDTYPE_RECV_BD;
837 	r->ti_flags = TI_BDFLAG_MINI_RING;
838 #ifdef TI_CSUM_OFFLOAD
839 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
840 #endif
841 	r->ti_len = m_new->m_len;
842 	r->ti_idx = i;
843 
844 	return(0);
845 }
846 
847 /*
848  * Initialize a jumbo receive ring descriptor. This allocates
849  * a jumbo buffer from the pool managed internally by the driver.
850  */
851 static int ti_newbuf_jumbo(sc, i, m)
852 	struct ti_softc		*sc;
853 	int			i;
854 	struct mbuf		*m;
855 {
856 	struct mbuf		*m_new = NULL;
857 	struct ti_rx_desc	*r;
858 
859 	if (m == NULL) {
860 		caddr_t			*buf = NULL;
861 
862 		/* Allocate the mbuf. */
863 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
864 		if (m_new == NULL) {
865 			printf("ti%d: mbuf allocation failed "
866 			    "-- packet dropped!\n", sc->ti_unit);
867 			return(ENOBUFS);
868 		}
869 
870 		/* Allocate the jumbo buffer */
871 		buf = ti_jalloc(sc);
872 		if (buf == NULL) {
873 			m_freem(m_new);
874 			printf("ti%d: jumbo allocation failed "
875 			    "-- packet dropped!\n", sc->ti_unit);
876 			return(ENOBUFS);
877 		}
878 
879 		/* Attach the buffer to the mbuf. */
880 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
881 		m_new->m_flags |= M_EXT;
882 		m_new->m_len = m_new->m_pkthdr.len =
883 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
884 		m_new->m_ext.ext_free = ti_jfree;
885 		m_new->m_ext.ext_ref = ti_jref;
886 	} else {
887 		m_new = m;
888 		m_new->m_data = m_new->m_ext.ext_buf;
889 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
890 	}
891 
892 	m_adj(m_new, ETHER_ALIGN);
893 	/* Set up the descriptor. */
894 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
895 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
896 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
897 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
898 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
899 #ifdef TI_CSUM_OFFLOAD
900 	r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
901 #endif
902 	r->ti_len = m_new->m_len;
903 	r->ti_idx = i;
904 
905 	return(0);
906 }
907 
908 /*
909  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
910  * that's 1MB or memory, which is a lot. For now, we fill only the first
911  * 256 ring entries and hope that our CPU is fast enough to keep up with
912  * the NIC.
913  */
914 static int ti_init_rx_ring_std(sc)
915 	struct ti_softc		*sc;
916 {
917 	register int		i;
918 	struct ti_cmd_desc	cmd;
919 
920 	for (i = 0; i < TI_SSLOTS; i++) {
921 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
922 			return(ENOBUFS);
923 	};
924 
925 	TI_UPDATE_STDPROD(sc, i - 1);
926 	sc->ti_std = i - 1;
927 
928 	return(0);
929 }
930 
931 static void ti_free_rx_ring_std(sc)
932 	struct ti_softc		*sc;
933 {
934 	register int		i;
935 
936 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
937 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
938 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
939 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
940 		}
941 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
942 		    sizeof(struct ti_rx_desc));
943 	}
944 
945 	return;
946 }
947 
948 static int ti_init_rx_ring_jumbo(sc)
949 	struct ti_softc		*sc;
950 {
951 	register int		i;
952 	struct ti_cmd_desc	cmd;
953 
954 	for (i = 0; i < (TI_JSLOTS - 20); i++) {
955 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
956 			return(ENOBUFS);
957 	};
958 
959 	TI_UPDATE_JUMBOPROD(sc, i - 1);
960 	sc->ti_jumbo = i - 1;
961 
962 	return(0);
963 }
964 
965 static void ti_free_rx_ring_jumbo(sc)
966 	struct ti_softc		*sc;
967 {
968 	register int		i;
969 
970 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
971 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
972 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
973 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
974 		}
975 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
976 		    sizeof(struct ti_rx_desc));
977 	}
978 
979 	return;
980 }
981 
982 static int ti_init_rx_ring_mini(sc)
983 	struct ti_softc		*sc;
984 {
985 	register int		i;
986 
987 	for (i = 0; i < TI_MSLOTS; i++) {
988 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
989 			return(ENOBUFS);
990 	};
991 
992 	TI_UPDATE_MINIPROD(sc, i - 1);
993 	sc->ti_mini = i - 1;
994 
995 	return(0);
996 }
997 
998 static void ti_free_rx_ring_mini(sc)
999 	struct ti_softc		*sc;
1000 {
1001 	register int		i;
1002 
1003 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1004 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1005 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1006 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1007 		}
1008 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1009 		    sizeof(struct ti_rx_desc));
1010 	}
1011 
1012 	return;
1013 }
1014 
1015 static void ti_free_tx_ring(sc)
1016 	struct ti_softc		*sc;
1017 {
1018 	register int		i;
1019 
1020 	if (sc->ti_rdata->ti_tx_ring == NULL)
1021 		return;
1022 
1023 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1024 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1025 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1026 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1027 		}
1028 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1029 		    sizeof(struct ti_tx_desc));
1030 	}
1031 
1032 	return;
1033 }
1034 
1035 static int ti_init_tx_ring(sc)
1036 	struct ti_softc		*sc;
1037 {
1038 	sc->ti_txcnt = 0;
1039 	sc->ti_tx_saved_considx = 0;
1040 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1041 	return(0);
1042 }
1043 
1044 /*
1045  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1046  * but we have to support the old way too so that Tigon 1 cards will
1047  * work.
1048  */
1049 void ti_add_mcast(sc, addr)
1050 	struct ti_softc		*sc;
1051 	struct ether_addr	*addr;
1052 {
1053 	struct ti_cmd_desc	cmd;
1054 	u_int16_t		*m;
1055 	u_int32_t		ext[2] = {0, 0};
1056 
1057 	m = (u_int16_t *)&addr->octet[0];
1058 
1059 	switch(sc->ti_hwrev) {
1060 	case TI_HWREV_TIGON:
1061 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1062 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1063 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1064 		break;
1065 	case TI_HWREV_TIGON_II:
1066 		ext[0] = htons(m[0]);
1067 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1068 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1069 		break;
1070 	default:
1071 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1072 		break;
1073 	}
1074 
1075 	return;
1076 }
1077 
1078 void ti_del_mcast(sc, addr)
1079 	struct ti_softc		*sc;
1080 	struct ether_addr	*addr;
1081 {
1082 	struct ti_cmd_desc	cmd;
1083 	u_int16_t		*m;
1084 	u_int32_t		ext[2] = {0, 0};
1085 
1086 	m = (u_int16_t *)&addr->octet[0];
1087 
1088 	switch(sc->ti_hwrev) {
1089 	case TI_HWREV_TIGON:
1090 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1091 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1092 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1093 		break;
1094 	case TI_HWREV_TIGON_II:
1095 		ext[0] = htons(m[0]);
1096 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1097 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1098 		break;
1099 	default:
1100 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1101 		break;
1102 	}
1103 
1104 	return;
1105 }
1106 
1107 /*
1108  * Configure the Tigon's multicast address filter.
1109  *
1110  * The actual multicast table management is a bit of a pain, thanks to
1111  * slight brain damage on the part of both Alteon and us. With our
1112  * multicast code, we are only alerted when the multicast address table
1113  * changes and at that point we only have the current list of addresses:
1114  * we only know the current state, not the previous state, so we don't
1115  * actually know what addresses were removed or added. The firmware has
1116  * state, but we can't get our grubby mits on it, and there is no 'delete
1117  * all multicast addresses' command. Hence, we have to maintain our own
1118  * state so we know what addresses have been programmed into the NIC at
1119  * any given time.
1120  */
1121 static void ti_setmulti(sc)
1122 	struct ti_softc		*sc;
1123 {
1124 	struct ifnet		*ifp;
1125 	struct ifmultiaddr	*ifma;
1126 	struct ti_cmd_desc	cmd;
1127 	struct ti_mc_entry	*mc;
1128 	u_int32_t		intrs;
1129 
1130 	ifp = &sc->arpcom.ac_if;
1131 
1132 	if (ifp->if_flags & IFF_ALLMULTI) {
1133 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1134 		return;
1135 	} else {
1136 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1137 	}
1138 
1139 	/* Disable interrupts. */
1140 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1141 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1142 
1143 	/* First, zot all the existing filters. */
1144 	while (sc->ti_mc_listhead.slh_first != NULL) {
1145 		mc = sc->ti_mc_listhead.slh_first;
1146 		ti_del_mcast(sc, &mc->mc_addr);
1147 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1148 		free(mc, M_DEVBUF);
1149 	}
1150 
1151 	/* Now program new ones. */
1152 	for (ifma = ifp->if_multiaddrs.lh_first;
1153 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1154 		if (ifma->ifma_addr->sa_family != AF_LINK)
1155 			continue;
1156 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1157 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1158 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1159 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1160 		ti_add_mcast(sc, &mc->mc_addr);
1161 	}
1162 
1163 	/* Re-enable interrupts. */
1164 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1165 
1166 	return;
1167 }
1168 
1169 /*
1170  * Check to see if the BIOS has configured us for a 64 bit slot when
1171  * we aren't actually in one. If we detect this condition, we can work
1172  * around it on the Tigon 2 by setting a bit in the PCI state register,
1173  * but for the Tigon 1 we must give up and abort the interface attach.
1174  */
1175 static int ti_64bitslot_war(sc)
1176 	struct ti_softc		*sc;
1177 {
1178 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1179 		CSR_WRITE_4(sc, 0x600, 0);
1180 		CSR_WRITE_4(sc, 0x604, 0);
1181 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1182 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1183 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1184 				return(EINVAL);
1185 			else {
1186 				TI_SETBIT(sc, TI_PCI_STATE,
1187 				    TI_PCISTATE_32BIT_BUS);
1188 				return(0);
1189 			}
1190 		}
1191 	}
1192 
1193 	return(0);
1194 }
1195 
1196 /*
1197  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1198  * self-test results.
1199  */
1200 static int ti_chipinit(sc)
1201 	struct ti_softc		*sc;
1202 {
1203 	u_int32_t		cacheline;
1204 	u_int32_t		pci_writemax = 0;
1205 
1206 	/* Initialize link to down state. */
1207 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1208 
1209 	/* Set endianness before we access any non-PCI registers. */
1210 #if BYTE_ORDER == BIG_ENDIAN
1211 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1212 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1213 #else
1214 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1215 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1216 #endif
1217 
1218 	/* Check the ROM failed bit to see if self-tests passed. */
1219 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1220 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1221 		return(ENODEV);
1222 	}
1223 
1224 	/* Halt the CPU. */
1225 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1226 
1227 	/* Figure out the hardware revision. */
1228 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1229 	case TI_REV_TIGON_I:
1230 		sc->ti_hwrev = TI_HWREV_TIGON;
1231 		break;
1232 	case TI_REV_TIGON_II:
1233 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1234 		break;
1235 	default:
1236 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1237 		return(ENODEV);
1238 	}
1239 
1240 	/* Do special setup for Tigon 2. */
1241 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1242 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1243 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1244 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1245 	}
1246 
1247 	/* Set up the PCI state register. */
1248 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1249 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1250 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1251 	}
1252 
1253 	/* Clear the read/write max DMA parameters. */
1254 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1255 	    TI_PCISTATE_READ_MAXDMA));
1256 
1257 	/* Get cache line size. */
1258 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1259 
1260 	/*
1261 	 * If the system has set enabled the PCI memory write
1262 	 * and invalidate command in the command register, set
1263 	 * the write max parameter accordingly. This is necessary
1264 	 * to use MWI with the Tigon 2.
1265 	 */
1266 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1267 		switch(cacheline) {
1268 		case 1:
1269 		case 4:
1270 		case 8:
1271 		case 16:
1272 		case 32:
1273 		case 64:
1274 			break;
1275 		default:
1276 		/* Disable PCI memory write and invalidate. */
1277 			if (bootverbose)
1278 				printf("ti%d: cache line size %d not "
1279 				    "supported; disabling PCI MWI\n",
1280 				    sc->ti_unit, cacheline);
1281 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1282 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1283 			break;
1284 		}
1285 	}
1286 
1287 #ifdef __brokenalpha__
1288 	/*
1289 	 * From the Alteon sample driver:
1290 	 * Must insure that we do not cross an 8K (bytes) boundary
1291 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1292 	 * restriction on some ALPHA platforms with early revision
1293 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1294 	 */
1295 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1296 #else
1297 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1298 #endif
1299 
1300 	/* This sets the min dma param all the way up (0xff). */
1301 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1302 
1303 	/* Configure DMA variables. */
1304 #if BYTE_ORDER == BIG_ENDIAN
1305 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1306 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1307 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1308 	    TI_OPMODE_DONT_FRAG_JUMBO);
1309 #else
1310 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1311 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1312 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1313 #endif
1314 
1315 	/*
1316 	 * Only allow 1 DMA channel to be active at a time.
1317 	 * I don't think this is a good idea, but without it
1318 	 * the firmware racks up lots of nicDmaReadRingFull
1319 	 * errors.
1320 	 */
1321 #ifndef TI_CSUM_OFFLOAD
1322 	TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1323 #endif
1324 
1325 	/* Recommended settings from Tigon manual. */
1326 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1327 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1328 
1329 	if (ti_64bitslot_war(sc)) {
1330 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1331 		    "but we aren't", sc->ti_unit);
1332 		return(EINVAL);
1333 	}
1334 
1335 	return(0);
1336 }
1337 
1338 /*
1339  * Initialize the general information block and firmware, and
1340  * start the CPU(s) running.
1341  */
1342 static int ti_gibinit(sc)
1343 	struct ti_softc		*sc;
1344 {
1345 	struct ti_rcb		*rcb;
1346 	int			i;
1347 	struct ifnet		*ifp;
1348 
1349 	ifp = &sc->arpcom.ac_if;
1350 
1351 	/* Disable interrupts for now. */
1352 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1353 
1354 	/* Tell the chip where to find the general information block. */
1355 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1356 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1357 
1358 	/* Load the firmware into SRAM. */
1359 	ti_loadfw(sc);
1360 
1361 	/* Set up the contents of the general info and ring control blocks. */
1362 
1363 	/* Set up the event ring and producer pointer. */
1364 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1365 
1366 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1367 	rcb->ti_flags = 0;
1368 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1369 	    vtophys(&sc->ti_ev_prodidx);
1370 	sc->ti_ev_prodidx.ti_idx = 0;
1371 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1372 	sc->ti_ev_saved_considx = 0;
1373 
1374 	/* Set up the command ring and producer mailbox. */
1375 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1376 
1377 	sc->ti_rdata->ti_cmd_ring =
1378 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1379 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1380 	rcb->ti_flags = 0;
1381 	rcb->ti_max_len = 0;
1382 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1383 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1384 	}
1385 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1386 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1387 	sc->ti_cmd_saved_prodidx = 0;
1388 
1389 	/*
1390 	 * Assign the address of the stats refresh buffer.
1391 	 * We re-use the current stats buffer for this to
1392 	 * conserve memory.
1393 	 */
1394 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1395 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1396 
1397 	/* Set up the standard receive ring. */
1398 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1399 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1400 	rcb->ti_max_len = TI_FRAMELEN;
1401 	rcb->ti_flags = 0;
1402 #ifdef TI_CSUM_OFFLOAD
1403 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1404 #endif
1405 #if NVLAN > 0
1406 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1407 #endif
1408 
1409 	/* Set up the jumbo receive ring. */
1410 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1411 	TI_HOSTADDR(rcb->ti_hostaddr) =
1412 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1413 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1414 	rcb->ti_flags = 0;
1415 #ifdef TI_CSUM_OFFLOAD
1416 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1417 #endif
1418 #if NVLAN > 0
1419 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1420 #endif
1421 
1422 	/*
1423 	 * Set up the mini ring. Only activated on the
1424 	 * Tigon 2 but the slot in the config block is
1425 	 * still there on the Tigon 1.
1426 	 */
1427 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1428 	TI_HOSTADDR(rcb->ti_hostaddr) =
1429 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1430 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1431 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1432 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1433 	else
1434 		rcb->ti_flags = 0;
1435 #ifdef TI_CSUM_OFFLOAD
1436 	rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1437 #endif
1438 #if NVLAN > 0
1439 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1440 #endif
1441 
1442 	/*
1443 	 * Set up the receive return ring.
1444 	 */
1445 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1446 	TI_HOSTADDR(rcb->ti_hostaddr) =
1447 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1448 	rcb->ti_flags = 0;
1449 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1450 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1451 	    vtophys(&sc->ti_return_prodidx);
1452 
1453 	/*
1454 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1455 	 * of putting the transmit ring in the host's address space and
1456 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1457 	 * memory and accessing it through the shared memory region. We
1458 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1459 	 * so we have to revert to the shared memory scheme if we detect
1460 	 * a Tigon 1 chip.
1461 	 */
1462 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1463 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1464 		sc->ti_rdata->ti_tx_ring_nic =
1465 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1466 	}
1467 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1468 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1469 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1470 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1471 		rcb->ti_flags = 0;
1472 	else
1473 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1474 #if NVLAN > 0
1475 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1476 #endif
1477 	rcb->ti_max_len = TI_TX_RING_CNT;
1478 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1479 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1480 	else
1481 		TI_HOSTADDR(rcb->ti_hostaddr) =
1482 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1483 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1484 	    vtophys(&sc->ti_tx_considx);
1485 
1486 	/* Set up tuneables */
1487 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1488 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1489 		    (sc->ti_rx_coal_ticks / 10));
1490 	else
1491 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1492 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1493 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1494 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1495 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1496 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1497 
1498 	/* Turn interrupts on. */
1499 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1500 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1501 
1502 	/* Start CPU. */
1503 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1504 
1505 	return(0);
1506 }
1507 
1508 /*
1509  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1510  * against our list and return its name if we find a match.
1511  */
1512 static int ti_probe(dev)
1513 	device_t		dev;
1514 {
1515 	struct ti_type		*t;
1516 
1517 	t = ti_devs;
1518 
1519 	while(t->ti_name != NULL) {
1520 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1521 		    (pci_get_device(dev) == t->ti_did)) {
1522 			device_set_desc(dev, t->ti_name);
1523 			return(0);
1524 		}
1525 		t++;
1526 	}
1527 
1528 	return(ENXIO);
1529 }
1530 
1531 static int ti_attach(dev)
1532 	device_t		dev;
1533 {
1534 	int			s;
1535 	u_int32_t		command;
1536 	struct ifnet		*ifp;
1537 	struct ti_softc		*sc;
1538 	int			unit, error = 0, rid;
1539 
1540 	s = splimp();
1541 
1542 	sc = device_get_softc(dev);
1543 	unit = device_get_unit(dev);
1544 	bzero(sc, sizeof(struct ti_softc));
1545 
1546 	/*
1547 	 * Map control/status registers.
1548 	 */
1549 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1550 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1551 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1552 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1553 
1554 	if (!(command & PCIM_CMD_MEMEN)) {
1555 		printf("ti%d: failed to enable memory mapping!\n", unit);
1556 		error = ENXIO;
1557 		goto fail;
1558 	}
1559 
1560 	rid = TI_PCI_LOMEM;
1561 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1562 	    0, ~0, 1, RF_ACTIVE);
1563 
1564 	if (sc->ti_res == NULL) {
1565 		printf ("ti%d: couldn't map memory\n", unit);
1566 		error = ENXIO;
1567 		goto fail;
1568 	}
1569 
1570 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1571 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1572 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1573 
1574 	/*
1575 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1576 	 * broken and returns a physical address instead of a kernel
1577 	 * virtual address. Consequently, we need to do a little
1578 	 * extra mangling of the vhandle on the alpha. This should
1579 	 * eventually be fixed! The whole idea here is to get rid
1580 	 * of platform dependencies.
1581 	 */
1582 #ifdef __alpha__
1583 	if (pci_cvt_to_bwx(sc->ti_vhandle))
1584 		sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle);
1585 	else
1586 		sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle);
1587 	sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle);
1588 #endif
1589 
1590 	/* Allocate interrupt */
1591 	rid = 0;
1592 
1593 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1594 	    RF_SHAREABLE | RF_ACTIVE);
1595 
1596 	if (sc->ti_irq == NULL) {
1597 		printf("ti%d: couldn't map interrupt\n", unit);
1598 		error = ENXIO;
1599 		goto fail;
1600 	}
1601 
1602 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1603 	   ti_intr, sc, &sc->ti_intrhand);
1604 
1605 	if (error) {
1606 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1607 		bus_release_resource(dev, SYS_RES_MEMORY,
1608 		    TI_PCI_LOMEM, sc->ti_res);
1609 		printf("ti%d: couldn't set up irq\n", unit);
1610 		goto fail;
1611 	}
1612 
1613 	sc->ti_unit = unit;
1614 
1615 	if (ti_chipinit(sc)) {
1616 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1617 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1618 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1619 		bus_release_resource(dev, SYS_RES_MEMORY,
1620 		    TI_PCI_LOMEM, sc->ti_res);
1621 		error = ENXIO;
1622 		goto fail;
1623 	}
1624 
1625 	/* Zero out the NIC's on-board SRAM. */
1626 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1627 
1628 	/* Init again -- zeroing memory may have clobbered some registers. */
1629 	if (ti_chipinit(sc)) {
1630 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1631 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1632 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1633 		bus_release_resource(dev, SYS_RES_MEMORY,
1634 		    TI_PCI_LOMEM, sc->ti_res);
1635 		error = ENXIO;
1636 		goto fail;
1637 	}
1638 
1639 	/*
1640 	 * Get station address from the EEPROM. Note: the manual states
1641 	 * that the MAC address is at offset 0x8c, however the data is
1642 	 * stored as two longwords (since that's how it's loaded into
1643 	 * the NIC). This means the MAC address is actually preceeded
1644 	 * by two zero bytes. We need to skip over those.
1645 	 */
1646 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1647 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1648 		printf("ti%d: failed to read station address\n", unit);
1649 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1650 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1651 		bus_release_resource(dev, SYS_RES_MEMORY,
1652 		    TI_PCI_LOMEM, sc->ti_res);
1653 		error = ENXIO;
1654 		goto fail;
1655 	}
1656 
1657 	/*
1658 	 * A Tigon chip was detected. Inform the world.
1659 	 */
1660 	printf("ti%d: Ethernet address: %6D\n", unit,
1661 				sc->arpcom.ac_enaddr, ":");
1662 
1663 	/* Allocate the general information block and ring buffers. */
1664 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1665 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1666 
1667 	if (sc->ti_rdata == NULL) {
1668 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1669 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1670 		bus_release_resource(dev, SYS_RES_MEMORY,
1671 		    TI_PCI_LOMEM, sc->ti_res);
1672 		error = ENXIO;
1673 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1674 		goto fail;
1675 	}
1676 
1677 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1678 
1679 	/* Try to allocate memory for jumbo buffers. */
1680 	if (ti_alloc_jumbo_mem(sc)) {
1681 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1682 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1683 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1684 		bus_release_resource(dev, SYS_RES_MEMORY,
1685 		    TI_PCI_LOMEM, sc->ti_res);
1686 		free(sc->ti_rdata, M_DEVBUF);
1687 		error = ENXIO;
1688 		goto fail;
1689 	}
1690 
1691 	/* Set default tuneable values. */
1692 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1693 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1694 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1695 	sc->ti_rx_max_coal_bds = 64;
1696 	sc->ti_tx_max_coal_bds = 128;
1697 	sc->ti_tx_buf_ratio = 21;
1698 
1699 	/* Set up ifnet structure */
1700 	ifp = &sc->arpcom.ac_if;
1701 	ifp->if_softc = sc;
1702 	ifp->if_unit = sc->ti_unit;
1703 	ifp->if_name = "ti";
1704 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1705 	ifp->if_ioctl = ti_ioctl;
1706 	ifp->if_output = ether_output;
1707 	ifp->if_start = ti_start;
1708 	ifp->if_watchdog = ti_watchdog;
1709 	ifp->if_init = ti_init;
1710 	ifp->if_mtu = ETHERMTU;
1711 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1712 
1713 	/* Set up ifmedia support. */
1714 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1715 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1716 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1717 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1718 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1719 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1720 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1721 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1722 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1723 
1724 	/*
1725 	 * Call MI attach routines.
1726 	 */
1727 	if_attach(ifp);
1728 	ether_ifattach(ifp);
1729 
1730 	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1731 
1732 fail:
1733 	splx(s);
1734 
1735 	return(error);
1736 }
1737 
1738 static int ti_detach(dev)
1739 	device_t		dev;
1740 {
1741 	struct ti_softc		*sc;
1742 	struct ifnet		*ifp;
1743 	int			s;
1744 
1745 	s = splimp();
1746 
1747 	sc = device_get_softc(dev);
1748 	ifp = &sc->arpcom.ac_if;
1749 
1750 	if_detach(ifp);
1751 	ti_stop(sc);
1752 
1753 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1754 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1755 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1756 
1757 	free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1758 	free(sc->ti_rdata, M_DEVBUF);
1759 	ifmedia_removeall(&sc->ifmedia);
1760 
1761 	splx(s);
1762 
1763 	return(0);
1764 }
1765 
1766 /*
1767  * Frame reception handling. This is called if there's a frame
1768  * on the receive return list.
1769  *
1770  * Note: we have to be able to handle three possibilities here:
1771  * 1) the frame is from the mini receive ring (can only happen)
1772  *    on Tigon 2 boards)
1773  * 2) the frame is from the jumbo recieve ring
1774  * 3) the frame is from the standard receive ring
1775  */
1776 
1777 static void ti_rxeof(sc)
1778 	struct ti_softc		*sc;
1779 {
1780 	struct ifnet		*ifp;
1781 	struct ti_cmd_desc	cmd;
1782 
1783 	ifp = &sc->arpcom.ac_if;
1784 
1785 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1786 		struct ti_rx_desc	*cur_rx;
1787 		u_int32_t		rxidx;
1788 		struct ether_header	*eh;
1789 		struct mbuf		*m = NULL;
1790 #if NVLAN > 0
1791 		u_int16_t		vlan_tag = 0;
1792 		int			have_tag = 0;
1793 #endif
1794 #ifdef TI_CSUM_OFFLOAD
1795 		struct ip		*ip;
1796 #endif
1797 
1798 		cur_rx =
1799 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1800 		rxidx = cur_rx->ti_idx;
1801 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1802 
1803 #if NVLAN > 0
1804 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1805 			have_tag = 1;
1806 			vlan_tag = cur_rx->ti_vlan_tag;
1807 		}
1808 #endif
1809 
1810 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1811 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1812 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1813 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1814 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1815 				ifp->if_ierrors++;
1816 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1817 				continue;
1818 			}
1819 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1820 				ifp->if_ierrors++;
1821 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1822 				continue;
1823 			}
1824 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1825 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1826 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1827 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1828 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1829 				ifp->if_ierrors++;
1830 				ti_newbuf_mini(sc, sc->ti_mini, m);
1831 				continue;
1832 			}
1833 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1834 				ifp->if_ierrors++;
1835 				ti_newbuf_mini(sc, sc->ti_mini, m);
1836 				continue;
1837 			}
1838 		} else {
1839 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1840 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1841 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1842 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1843 				ifp->if_ierrors++;
1844 				ti_newbuf_std(sc, sc->ti_std, m);
1845 				continue;
1846 			}
1847 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1848 				ifp->if_ierrors++;
1849 				ti_newbuf_std(sc, sc->ti_std, m);
1850 				continue;
1851 			}
1852 		}
1853 
1854 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1855 		ifp->if_ipackets++;
1856 		eh = mtod(m, struct ether_header *);
1857 		m->m_pkthdr.rcvif = ifp;
1858 
1859 		/*
1860 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1861 	 	 * don't pass it up to the ether_input() layer unless it's
1862 	 	 * a broadcast packet, multicast packet, matches our ethernet
1863 	 	 * address or the interface is in promiscuous mode.
1864 	 	 */
1865 		if (ifp->if_bpf) {
1866 			bpf_mtap(ifp, m);
1867 			if (ifp->if_flags & IFF_PROMISC &&
1868 				(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1869 		 			ETHER_ADDR_LEN) &&
1870 					(eh->ether_dhost[0] & 1) == 0)) {
1871 				m_freem(m);
1872 				continue;
1873 			}
1874 		}
1875 
1876 		/* Remove header from mbuf and pass it on. */
1877 		m_adj(m, sizeof(struct ether_header));
1878 
1879 #ifdef TI_CSUM_OFFLOAD
1880 		ip = mtod(m, struct ip *);
1881 		if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1882 		    !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1883 			m->m_flags |= M_HWCKSUM;
1884 #endif
1885 
1886 #if NVLAN > 0
1887 		/*
1888 		 * If we received a packet with a vlan tag, pass it
1889 		 * to vlan_input() instead of ether_input().
1890 		 */
1891 		if (have_tag) {
1892 			vlan_input_tag(eh, m, vlan_tag);
1893 			have_tag = vlan_tag = 0;
1894 			continue;
1895 		}
1896 #endif
1897 		ether_input(ifp, eh, m);
1898 	}
1899 
1900 	/* Only necessary on the Tigon 1. */
1901 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1902 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1903 		    sc->ti_rx_saved_considx);
1904 
1905 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1906 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1907 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1908 
1909 	return;
1910 }
1911 
1912 static void ti_txeof(sc)
1913 	struct ti_softc		*sc;
1914 {
1915 	struct ti_tx_desc	*cur_tx = NULL;
1916 	struct ifnet		*ifp;
1917 
1918 	ifp = &sc->arpcom.ac_if;
1919 
1920 	/*
1921 	 * Go through our tx ring and free mbufs for those
1922 	 * frames that have been sent.
1923 	 */
1924 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1925 		u_int32_t		idx = 0;
1926 
1927 		idx = sc->ti_tx_saved_considx;
1928 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1929 			if (idx > 383)
1930 				CSR_WRITE_4(sc, TI_WINBASE,
1931 				    TI_TX_RING_BASE + 6144);
1932 			else if (idx > 255)
1933 				CSR_WRITE_4(sc, TI_WINBASE,
1934 				    TI_TX_RING_BASE + 4096);
1935 			else if (idx > 127)
1936 				CSR_WRITE_4(sc, TI_WINBASE,
1937 				    TI_TX_RING_BASE + 2048);
1938 			else
1939 				CSR_WRITE_4(sc, TI_WINBASE,
1940 				    TI_TX_RING_BASE);
1941 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1942 		} else
1943 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1944 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1945 			ifp->if_opackets++;
1946 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1947 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1948 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1949 		}
1950 		sc->ti_txcnt--;
1951 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1952 		ifp->if_timer = 0;
1953 	}
1954 
1955 	if (cur_tx != NULL)
1956 		ifp->if_flags &= ~IFF_OACTIVE;
1957 
1958 	return;
1959 }
1960 
1961 static void ti_intr(xsc)
1962 	void			*xsc;
1963 {
1964 	struct ti_softc		*sc;
1965 	struct ifnet		*ifp;
1966 
1967 	sc = xsc;
1968 	ifp = &sc->arpcom.ac_if;
1969 
1970 #ifdef notdef
1971 	/* Avoid this for now -- checking this register is expensive. */
1972 	/* Make sure this is really our interrupt. */
1973 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1974 		return;
1975 #endif
1976 
1977 	/* Ack interrupt and stop others from occuring. */
1978 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1979 
1980 	if (ifp->if_flags & IFF_RUNNING) {
1981 		/* Check RX return ring producer/consumer */
1982 		ti_rxeof(sc);
1983 
1984 		/* Check TX ring producer/consumer */
1985 		ti_txeof(sc);
1986 	}
1987 
1988 	ti_handle_events(sc);
1989 
1990 	/* Re-enable interrupts. */
1991 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1992 
1993 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1994 		ti_start(ifp);
1995 
1996 	return;
1997 }
1998 
1999 static void ti_stats_update(sc)
2000 	struct ti_softc		*sc;
2001 {
2002 	struct ifnet		*ifp;
2003 
2004 	ifp = &sc->arpcom.ac_if;
2005 
2006 	ifp->if_collisions +=
2007 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2008 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2009 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2010 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2011 	   ifp->if_collisions;
2012 
2013 	return;
2014 }
2015 
2016 /*
2017  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2018  * pointers to descriptors.
2019  */
2020 static int ti_encap(sc, m_head, txidx)
2021 	struct ti_softc		*sc;
2022 	struct mbuf		*m_head;
2023 	u_int32_t		*txidx;
2024 {
2025 	struct ti_tx_desc	*f = NULL;
2026 	struct mbuf		*m;
2027 	u_int32_t		frag, cur, cnt = 0;
2028 #if NVLAN > 0
2029 	struct ifvlan		*ifv = NULL;
2030 
2031 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2032 	    m_head->m_pkthdr.rcvif != NULL &&
2033 	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2034 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2035 #endif
2036 
2037 	m = m_head;
2038 	cur = frag = *txidx;
2039 
2040 	/*
2041  	 * Start packing the mbufs in this chain into
2042 	 * the fragment pointers. Stop when we run out
2043  	 * of fragments or hit the end of the mbuf chain.
2044 	 */
2045 	for (m = m_head; m != NULL; m = m->m_next) {
2046 		if (m->m_len != 0) {
2047 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2048 				if (frag > 383)
2049 					CSR_WRITE_4(sc, TI_WINBASE,
2050 					    TI_TX_RING_BASE + 6144);
2051 				else if (frag > 255)
2052 					CSR_WRITE_4(sc, TI_WINBASE,
2053 					    TI_TX_RING_BASE + 4096);
2054 				else if (frag > 127)
2055 					CSR_WRITE_4(sc, TI_WINBASE,
2056 					    TI_TX_RING_BASE + 2048);
2057 				else
2058 					CSR_WRITE_4(sc, TI_WINBASE,
2059 					    TI_TX_RING_BASE);
2060 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2061 			} else
2062 				f = &sc->ti_rdata->ti_tx_ring[frag];
2063 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2064 				break;
2065 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2066 			f->ti_len = m->m_len;
2067 			f->ti_flags = 0;
2068 #if NVLAN > 0
2069 			if (ifv != NULL) {
2070 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2071 				f->ti_vlan_tag = ifv->ifv_tag;
2072 			} else {
2073 				f->ti_vlan_tag = 0;
2074 			}
2075 #endif
2076 			/*
2077 			 * Sanity check: avoid coming within 16 descriptors
2078 			 * of the end of the ring.
2079 			 */
2080 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2081 				return(ENOBUFS);
2082 			cur = frag;
2083 			TI_INC(frag, TI_TX_RING_CNT);
2084 			cnt++;
2085 		}
2086 	}
2087 
2088 	if (m != NULL)
2089 		return(ENOBUFS);
2090 
2091 	if (frag == sc->ti_tx_saved_considx)
2092 		return(ENOBUFS);
2093 
2094 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2095 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2096 		    TI_BDFLAG_END;
2097 	else
2098 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2099 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2100 	sc->ti_txcnt += cnt;
2101 
2102 	*txidx = frag;
2103 
2104 	return(0);
2105 }
2106 
2107 /*
2108  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2109  * to the mbuf data regions directly in the transmit descriptors.
2110  */
2111 static void ti_start(ifp)
2112 	struct ifnet		*ifp;
2113 {
2114 	struct ti_softc		*sc;
2115 	struct mbuf		*m_head = NULL;
2116 	u_int32_t		prodidx = 0;
2117 
2118 	sc = ifp->if_softc;
2119 
2120 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2121 
2122 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2123 		IF_DEQUEUE(&ifp->if_snd, m_head);
2124 		if (m_head == NULL)
2125 			break;
2126 
2127 		/*
2128 		 * Pack the data into the transmit ring. If we
2129 		 * don't have room, set the OACTIVE flag and wait
2130 		 * for the NIC to drain the ring.
2131 		 */
2132 		if (ti_encap(sc, m_head, &prodidx)) {
2133 			IF_PREPEND(&ifp->if_snd, m_head);
2134 			ifp->if_flags |= IFF_OACTIVE;
2135 			break;
2136 		}
2137 
2138 		/*
2139 		 * If there's a BPF listener, bounce a copy of this frame
2140 		 * to him.
2141 		 */
2142 		if (ifp->if_bpf)
2143 			bpf_mtap(ifp, m_head);
2144 	}
2145 
2146 	/* Transmit */
2147 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2148 
2149 	/*
2150 	 * Set a timeout in case the chip goes out to lunch.
2151 	 */
2152 	ifp->if_timer = 5;
2153 
2154 	return;
2155 }
2156 
2157 static void ti_init(xsc)
2158 	void			*xsc;
2159 {
2160 	struct ti_softc		*sc = xsc;
2161         int			s;
2162 
2163 	s = splimp();
2164 
2165 	/* Cancel pending I/O and flush buffers. */
2166 	ti_stop(sc);
2167 
2168 	/* Init the gen info block, ring control blocks and firmware. */
2169 	if (ti_gibinit(sc)) {
2170 		printf("ti%d: initialization failure\n", sc->ti_unit);
2171 		splx(s);
2172 		return;
2173 	}
2174 
2175 	splx(s);
2176 
2177 	return;
2178 }
2179 
2180 static void ti_init2(sc)
2181 	struct ti_softc		*sc;
2182 {
2183 	struct ti_cmd_desc	cmd;
2184 	struct ifnet		*ifp;
2185 	u_int16_t		*m;
2186 	struct ifmedia		*ifm;
2187 	int			tmp;
2188 
2189 	ifp = &sc->arpcom.ac_if;
2190 
2191 	/* Specify MTU and interface index. */
2192 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2193 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2194 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2195 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2196 
2197 	/* Load our MAC address. */
2198 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2199 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2200 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2201 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2202 
2203 	/* Enable or disable promiscuous mode as needed. */
2204 	if (ifp->if_flags & IFF_PROMISC) {
2205 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2206 	} else {
2207 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2208 	}
2209 
2210 	/* Program multicast filter. */
2211 	ti_setmulti(sc);
2212 
2213 	/*
2214 	 * If this is a Tigon 1, we should tell the
2215 	 * firmware to use software packet filtering.
2216 	 */
2217 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2218 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2219 	}
2220 
2221 	/* Init RX ring. */
2222 	ti_init_rx_ring_std(sc);
2223 
2224 	/* Init jumbo RX ring. */
2225 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2226 		ti_init_rx_ring_jumbo(sc);
2227 
2228 	/*
2229 	 * If this is a Tigon 2, we can also configure the
2230 	 * mini ring.
2231 	 */
2232 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2233 		ti_init_rx_ring_mini(sc);
2234 
2235 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2236 	sc->ti_rx_saved_considx = 0;
2237 
2238 	/* Init TX ring. */
2239 	ti_init_tx_ring(sc);
2240 
2241 	/* Tell firmware we're alive. */
2242 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2243 
2244 	/* Enable host interrupts. */
2245 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2246 
2247 	ifp->if_flags |= IFF_RUNNING;
2248 	ifp->if_flags &= ~IFF_OACTIVE;
2249 
2250 	/*
2251 	 * Make sure to set media properly. We have to do this
2252 	 * here since we have to issue commands in order to set
2253 	 * the link negotiation and we can't issue commands until
2254 	 * the firmware is running.
2255 	 */
2256 	ifm = &sc->ifmedia;
2257 	tmp = ifm->ifm_media;
2258 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2259 	ti_ifmedia_upd(ifp);
2260 	ifm->ifm_media = tmp;
2261 
2262 	return;
2263 }
2264 
2265 /*
2266  * Set media options.
2267  */
2268 static int ti_ifmedia_upd(ifp)
2269 	struct ifnet		*ifp;
2270 {
2271 	struct ti_softc		*sc;
2272 	struct ifmedia		*ifm;
2273 	struct ti_cmd_desc	cmd;
2274 
2275 	sc = ifp->if_softc;
2276 	ifm = &sc->ifmedia;
2277 
2278 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2279 		return(EINVAL);
2280 
2281 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2282 	case IFM_AUTO:
2283 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2284 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2285 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2286 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2287 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2288 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2289 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2290 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2291 		break;
2292 	case IFM_1000_SX:
2293 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2294 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2295 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2296 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2297 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2298 		break;
2299 	case IFM_100_FX:
2300 	case IFM_10_FL:
2301 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2302 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2303 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2304 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2305 		} else {
2306 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2307 		}
2308 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2309 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2310 		} else {
2311 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2312 		}
2313 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2314 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2315 		break;
2316 	}
2317 
2318 	return(0);
2319 }
2320 
2321 /*
2322  * Report current media status.
2323  */
2324 static void ti_ifmedia_sts(ifp, ifmr)
2325 	struct ifnet		*ifp;
2326 	struct ifmediareq	*ifmr;
2327 {
2328 	struct ti_softc		*sc;
2329 
2330 	sc = ifp->if_softc;
2331 
2332 	ifmr->ifm_status = IFM_AVALID;
2333 	ifmr->ifm_active = IFM_ETHER;
2334 
2335 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2336 		return;
2337 
2338 	ifmr->ifm_status |= IFM_ACTIVE;
2339 
2340 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2341 		ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2342 	else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2343 		u_int32_t		media;
2344 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2345 		if (media & TI_LNK_100MB)
2346 			ifmr->ifm_active |= IFM_100_FX;
2347 		if (media & TI_LNK_10MB)
2348 			ifmr->ifm_active |= IFM_10_FL;
2349 		if (media & TI_LNK_FULL_DUPLEX)
2350 			ifmr->ifm_active |= IFM_FDX;
2351 		if (media & TI_LNK_HALF_DUPLEX)
2352 			ifmr->ifm_active |= IFM_HDX;
2353 	}
2354 
2355 	return;
2356 }
2357 
2358 static int ti_ioctl(ifp, command, data)
2359 	struct ifnet		*ifp;
2360 	u_long			command;
2361 	caddr_t			data;
2362 {
2363 	struct ti_softc		*sc = ifp->if_softc;
2364 	struct ifreq		*ifr = (struct ifreq *) data;
2365 	int			s, error = 0;
2366 	struct ti_cmd_desc	cmd;
2367 
2368 	s = splimp();
2369 
2370 	switch(command) {
2371 	case SIOCSIFADDR:
2372 	case SIOCGIFADDR:
2373 		error = ether_ioctl(ifp, command, data);
2374 		break;
2375 	case SIOCSIFMTU:
2376 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2377 			error = EINVAL;
2378 		else {
2379 			ifp->if_mtu = ifr->ifr_mtu;
2380 			ti_init(sc);
2381 		}
2382 		break;
2383 	case SIOCSIFFLAGS:
2384 		if (ifp->if_flags & IFF_UP) {
2385 			/*
2386 			 * If only the state of the PROMISC flag changed,
2387 			 * then just use the 'set promisc mode' command
2388 			 * instead of reinitializing the entire NIC. Doing
2389 			 * a full re-init means reloading the firmware and
2390 			 * waiting for it to start up, which may take a
2391 			 * second or two.
2392 			 */
2393 			if (ifp->if_flags & IFF_RUNNING &&
2394 			    ifp->if_flags & IFF_PROMISC &&
2395 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2396 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2397 				    TI_CMD_CODE_PROMISC_ENB, 0);
2398 			} else if (ifp->if_flags & IFF_RUNNING &&
2399 			    !(ifp->if_flags & IFF_PROMISC) &&
2400 			    sc->ti_if_flags & IFF_PROMISC) {
2401 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2402 				    TI_CMD_CODE_PROMISC_DIS, 0);
2403 			} else
2404 				ti_init(sc);
2405 		} else {
2406 			if (ifp->if_flags & IFF_RUNNING) {
2407 				ti_stop(sc);
2408 			}
2409 		}
2410 		sc->ti_if_flags = ifp->if_flags;
2411 		error = 0;
2412 		break;
2413 	case SIOCADDMULTI:
2414 	case SIOCDELMULTI:
2415 		if (ifp->if_flags & IFF_RUNNING) {
2416 			ti_setmulti(sc);
2417 			error = 0;
2418 		}
2419 		break;
2420 	case SIOCSIFMEDIA:
2421 	case SIOCGIFMEDIA:
2422 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2423 		break;
2424 	default:
2425 		error = EINVAL;
2426 		break;
2427 	}
2428 
2429 	(void)splx(s);
2430 
2431 	return(error);
2432 }
2433 
2434 static void ti_watchdog(ifp)
2435 	struct ifnet		*ifp;
2436 {
2437 	struct ti_softc		*sc;
2438 
2439 	sc = ifp->if_softc;
2440 
2441 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2442 	ti_stop(sc);
2443 	ti_init(sc);
2444 
2445 	ifp->if_oerrors++;
2446 
2447 	return;
2448 }
2449 
2450 /*
2451  * Stop the adapter and free any mbufs allocated to the
2452  * RX and TX lists.
2453  */
2454 static void ti_stop(sc)
2455 	struct ti_softc		*sc;
2456 {
2457 	struct ifnet		*ifp;
2458 	struct ti_cmd_desc	cmd;
2459 
2460 	ifp = &sc->arpcom.ac_if;
2461 
2462 	/* Disable host interrupts. */
2463 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2464 	/*
2465 	 * Tell firmware we're shutting down.
2466 	 */
2467 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2468 
2469 	/* Halt and reinitialize. */
2470 	ti_chipinit(sc);
2471 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2472 	ti_chipinit(sc);
2473 
2474 	/* Free the RX lists. */
2475 	ti_free_rx_ring_std(sc);
2476 
2477 	/* Free jumbo RX list. */
2478 	ti_free_rx_ring_jumbo(sc);
2479 
2480 	/* Free mini RX list. */
2481 	ti_free_rx_ring_mini(sc);
2482 
2483 	/* Free TX buffers. */
2484 	ti_free_tx_ring(sc);
2485 
2486 	sc->ti_ev_prodidx.ti_idx = 0;
2487 	sc->ti_return_prodidx.ti_idx = 0;
2488 	sc->ti_tx_considx.ti_idx = 0;
2489 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2490 
2491 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2492 
2493 	return;
2494 }
2495 
2496 /*
2497  * Stop all chip I/O so that the kernel's probe routines don't
2498  * get confused by errant DMAs when rebooting.
2499  */
2500 static void ti_shutdown(dev)
2501 	device_t		dev;
2502 {
2503 	struct ti_softc		*sc;
2504 
2505 	sc = device_get_softc(dev);
2506 
2507 	ti_chipinit(sc);
2508 
2509 	return;
2510 }
2511