xref: /freebsd/sys/dev/ti/if_ti.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/ethernet.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_types.h>
101 #include <net/if_vlan_var.h>
102 
103 #include <net/bpf.h>
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>		/* for vtophys */
110 #include <vm/pmap.h>		/* for vtophys */
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 /* #define TI_PRIVATE_JUMBOS */
117 
118 #if !defined(TI_PRIVATE_JUMBOS)
119 #include <sys/sockio.h>
120 #include <sys/uio.h>
121 #include <sys/lock.h>
122 #include <sys/sf_buf.h>
123 #include <vm/vm_extern.h>
124 #include <vm/pmap.h>
125 #include <vm/vm_map.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_param.h>
128 #include <vm/vm_pageout.h>
129 #include <sys/vmmeter.h>
130 #include <vm/vm_page.h>
131 #include <vm/vm_object.h>
132 #include <vm/vm_kern.h>
133 #include <sys/proc.h>
134 #endif /* !TI_PRIVATE_JUMBOS */
135 
136 #include <dev/pci/pcireg.h>
137 #include <dev/pci/pcivar.h>
138 
139 #include <sys/tiio.h>
140 #include <pci/if_tireg.h>
141 #include <pci/ti_fw.h>
142 #include <pci/ti_fw2.h>
143 
144 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145 /*
146  * We can only turn on header splitting if we're using extended receive
147  * BDs.
148  */
149 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152 
153 struct ti_softc *tis[8];
154 
155 typedef enum {
156 	TI_SWAP_HTON,
157 	TI_SWAP_NTOH
158 } ti_swap_type;
159 
160 
161 /*
162  * Various supported device vendors/types and their names.
163  */
164 
165 static struct ti_type ti_devs[] = {
166 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
167 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
168 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
169 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
170 	{ TC_VENDORID,	TC_DEVICEID_3C985,
171 		"3Com 3c985-SX Gigabit Ethernet" },
172 	{ NG_VENDORID, NG_DEVICEID_GA620,
173 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
174 	{ NG_VENDORID, NG_DEVICEID_GA620T,
175 		"Netgear GA620 1000baseT Gigabit Ethernet" },
176 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
177 		"Silicon Graphics Gigabit Ethernet" },
178 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
179 		"Farallon PN9000SX Gigabit Ethernet" },
180 	{ 0, 0, NULL }
181 };
182 
183 
184 static	d_open_t	ti_open;
185 static	d_close_t	ti_close;
186 static	d_ioctl_t	ti_ioctl2;
187 
188 static struct cdevsw ti_cdevsw = {
189 	.d_version =	D_VERSION,
190 	.d_flags =	D_NEEDGIANT,
191 	.d_open =	ti_open,
192 	.d_close =	ti_close,
193 	.d_ioctl =	ti_ioctl2,
194 	.d_name =	"ti",
195 };
196 
197 static int ti_probe(device_t);
198 static int ti_attach(device_t);
199 static int ti_detach(device_t);
200 static void ti_txeof(struct ti_softc *);
201 static void ti_rxeof(struct ti_softc *);
202 
203 static void ti_stats_update(struct ti_softc *);
204 static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
205 
206 static void ti_intr(void *);
207 static void ti_start(struct ifnet *);
208 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
209 static void ti_init(void *);
210 static void ti_init2(struct ti_softc *);
211 static void ti_stop(struct ti_softc *);
212 static void ti_watchdog(struct ifnet *);
213 static void ti_shutdown(device_t);
214 static int ti_ifmedia_upd(struct ifnet *);
215 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 
217 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
218 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
219 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
220 
221 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
222 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
223 static void ti_setmulti(struct ti_softc *);
224 
225 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
226 static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
227 static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
228 		int, int, int);
229 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
230 static void ti_loadfw(struct ti_softc *);
231 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
232 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
233 static void ti_handle_events(struct ti_softc *);
234 #ifdef TI_PRIVATE_JUMBOS
235 static int ti_alloc_jumbo_mem(struct ti_softc *);
236 static void *ti_jalloc(struct ti_softc *);
237 static void ti_jfree(void *, void *);
238 #endif /* TI_PRIVATE_JUMBOS */
239 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
240 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
241 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
242 static int ti_init_rx_ring_std(struct ti_softc *);
243 static void ti_free_rx_ring_std(struct ti_softc *);
244 static int ti_init_rx_ring_jumbo(struct ti_softc *);
245 static void ti_free_rx_ring_jumbo(struct ti_softc *);
246 static int ti_init_rx_ring_mini(struct ti_softc *);
247 static void ti_free_rx_ring_mini(struct ti_softc *);
248 static void ti_free_tx_ring(struct ti_softc *);
249 static int ti_init_tx_ring(struct ti_softc *);
250 
251 static int ti_64bitslot_war(struct ti_softc *);
252 static int ti_chipinit(struct ti_softc *);
253 static int ti_gibinit(struct ti_softc *);
254 
255 #ifdef TI_JUMBO_HDRSPLIT
256 static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
257 					     int pkt_len, int idx);
258 #endif /* TI_JUMBO_HDRSPLIT */
259 
260 static device_method_t ti_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		ti_probe),
263 	DEVMETHOD(device_attach,	ti_attach),
264 	DEVMETHOD(device_detach,	ti_detach),
265 	DEVMETHOD(device_shutdown,	ti_shutdown),
266 	{ 0, 0 }
267 };
268 
269 static driver_t ti_driver = {
270 	"ti",
271 	ti_methods,
272 	sizeof(struct ti_softc)
273 };
274 
275 static devclass_t ti_devclass;
276 
277 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
278 MODULE_DEPEND(ti, pci, 1, 1, 1);
279 MODULE_DEPEND(ti, ether, 1, 1, 1);
280 
281 /*
282  * Send an instruction or address to the EEPROM, check for ACK.
283  */
284 static u_int32_t ti_eeprom_putbyte(sc, byte)
285 	struct ti_softc		*sc;
286 	int			byte;
287 {
288 	register int		i, ack = 0;
289 
290 	/*
291 	 * Make sure we're in TX mode.
292 	 */
293 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
294 
295 	/*
296 	 * Feed in each bit and stobe the clock.
297 	 */
298 	for (i = 0x80; i; i >>= 1) {
299 		if (byte & i) {
300 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301 		} else {
302 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
303 		}
304 		DELAY(1);
305 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 		DELAY(1);
307 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308 	}
309 
310 	/*
311 	 * Turn off TX mode.
312 	 */
313 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
314 
315 	/*
316 	 * Check for ack.
317 	 */
318 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
320 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321 
322 	return (ack);
323 }
324 
325 /*
326  * Read a byte of data stored in the EEPROM at address 'addr.'
327  * We have to send two address bytes since the EEPROM can hold
328  * more than 256 bytes of data.
329  */
330 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
331 	struct ti_softc		*sc;
332 	int			addr;
333 	u_int8_t		*dest;
334 {
335 	register int		i;
336 	u_int8_t		byte = 0;
337 
338 	EEPROM_START;
339 
340 	/*
341 	 * Send write control code to EEPROM.
342 	 */
343 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
344 		printf("ti%d: failed to send write command, status: %x\n",
345 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
346 		return (1);
347 	}
348 
349 	/*
350 	 * Send first byte of address of byte we want to read.
351 	 */
352 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
353 		printf("ti%d: failed to send address, status: %x\n",
354 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
355 		return (1);
356 	}
357 	/*
358 	 * Send second byte address of byte we want to read.
359 	 */
360 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
361 		printf("ti%d: failed to send address, status: %x\n",
362 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
363 		return (1);
364 	}
365 
366 	EEPROM_STOP;
367 	EEPROM_START;
368 	/*
369 	 * Send read control code to EEPROM.
370 	 */
371 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
372 		printf("ti%d: failed to send read command, status: %x\n",
373 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
374 		return (1);
375 	}
376 
377 	/*
378 	 * Start reading bits from EEPROM.
379 	 */
380 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
381 	for (i = 0x80; i; i >>= 1) {
382 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
383 		DELAY(1);
384 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
385 			byte |= i;
386 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
387 		DELAY(1);
388 	}
389 
390 	EEPROM_STOP;
391 
392 	/*
393 	 * No ACK generated for read, so just return byte.
394 	 */
395 
396 	*dest = byte;
397 
398 	return (0);
399 }
400 
401 /*
402  * Read a sequence of bytes from the EEPROM.
403  */
404 static int
405 ti_read_eeprom(sc, dest, off, cnt)
406 	struct ti_softc		*sc;
407 	caddr_t			dest;
408 	int			off;
409 	int			cnt;
410 {
411 	int			err = 0, i;
412 	u_int8_t		byte = 0;
413 
414 	for (i = 0; i < cnt; i++) {
415 		err = ti_eeprom_getbyte(sc, off + i, &byte);
416 		if (err)
417 			break;
418 		*(dest + i) = byte;
419 	}
420 
421 	return (err ? 1 : 0);
422 }
423 
424 /*
425  * NIC memory access function. Can be used to either clear a section
426  * of NIC local memory or (if buf is non-NULL) copy data into it.
427  */
428 static void
429 ti_mem(sc, addr, len, buf)
430 	struct ti_softc		*sc;
431 	u_int32_t		addr, len;
432 	caddr_t			buf;
433 {
434 	int			segptr, segsize, cnt;
435 	caddr_t			ti_winbase, ptr;
436 
437 	segptr = addr;
438 	cnt = len;
439 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
440 	ptr = buf;
441 
442 	while (cnt) {
443 		if (cnt < TI_WINLEN)
444 			segsize = cnt;
445 		else
446 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
447 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
448 		if (buf == NULL)
449 			bzero((char *)ti_winbase + (segptr &
450 			    (TI_WINLEN - 1)), segsize);
451 		else {
452 			bcopy((char *)ptr, (char *)ti_winbase +
453 			    (segptr & (TI_WINLEN - 1)), segsize);
454 			ptr += segsize;
455 		}
456 		segptr += segsize;
457 		cnt -= segsize;
458 	}
459 }
460 
461 static int
462 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
463 	struct ti_softc		*sc;
464 	u_int32_t		tigon_addr, len;
465 	caddr_t			buf;
466 	int			useraddr, readdata;
467 {
468 	int		segptr, segsize, cnt;
469 	caddr_t		ptr;
470 	u_int32_t	origwin;
471 	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
472 	int		resid, segresid;
473 	int		first_pass;
474 
475 	/*
476 	 * At the moment, we don't handle non-aligned cases, we just bail.
477 	 * If this proves to be a problem, it will be fixed.
478 	 */
479 	if ((readdata == 0)
480 	 && (tigon_addr & 0x3)) {
481 		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
482 		       "word-aligned\n", sc->ti_unit, tigon_addr);
483 		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
484 		       "supported\n", sc->ti_unit);
485 		return (EINVAL);
486 	}
487 
488 	segptr = tigon_addr & ~0x3;
489 	segresid = tigon_addr - segptr;
490 
491 	/*
492 	 * This is the non-aligned amount left over that we'll need to
493 	 * copy.
494 	 */
495 	resid = len & 0x3;
496 
497 	/* Add in the left over amount at the front of the buffer */
498 	resid += segresid;
499 
500 	cnt = len & ~0x3;
501 	/*
502 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
503 	 * decrease the residual by that much.
504 	 */
505 	cnt += resid & ~0x3;
506 	resid -= resid & ~0x3;
507 
508 	ptr = buf;
509 
510 	first_pass = 1;
511 
512 	/*
513 	 * Make sure we aren't interrupted while we're changing the window
514 	 * pointer.
515 	 */
516 	TI_LOCK(sc);
517 
518 	/*
519 	 * Save the old window base value.
520 	 */
521 	origwin = CSR_READ_4(sc, TI_WINBASE);
522 
523 	while (cnt) {
524 		bus_size_t ti_offset;
525 
526 		if (cnt < TI_WINLEN)
527 			segsize = cnt;
528 		else
529 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
530 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
531 
532 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
533 
534 		if (readdata) {
535 
536 			bus_space_read_region_4(sc->ti_btag,
537 						sc->ti_bhandle, ti_offset,
538 						(u_int32_t *)tmparray,
539 						segsize >> 2);
540 			if (useraddr) {
541 				/*
542 				 * Yeah, this is a little on the kludgy
543 				 * side, but at least this code is only
544 				 * used for debugging.
545 				 */
546 				ti_bcopy_swap(tmparray, tmparray2, segsize,
547 					      TI_SWAP_NTOH);
548 
549 				if (first_pass) {
550 					copyout(&tmparray2[segresid], ptr,
551 						segsize - segresid);
552 					first_pass = 0;
553 				} else
554 					copyout(tmparray2, ptr, segsize);
555 			} else {
556 				if (first_pass) {
557 
558 					ti_bcopy_swap(tmparray, tmparray2,
559 						      segsize, TI_SWAP_NTOH);
560 					bcopy(&tmparray2[segresid], ptr,
561 					      segsize - segresid);
562 					first_pass = 0;
563 				} else
564 					ti_bcopy_swap(tmparray, ptr, segsize,
565 						      TI_SWAP_NTOH);
566 			}
567 
568 		} else {
569 			if (useraddr) {
570 				copyin(ptr, tmparray2, segsize);
571 				ti_bcopy_swap(tmparray2, tmparray, segsize,
572 					      TI_SWAP_HTON);
573 			} else
574 				ti_bcopy_swap(ptr, tmparray, segsize,
575 					      TI_SWAP_HTON);
576 
577 			bus_space_write_region_4(sc->ti_btag,
578 						 sc->ti_bhandle, ti_offset,
579 						 (u_int32_t *)tmparray,
580 						 segsize >> 2);
581 		}
582 		segptr += segsize;
583 		ptr += segsize;
584 		cnt -= segsize;
585 	}
586 
587 	/*
588 	 * Handle leftover, non-word-aligned bytes.
589 	 */
590 	if (resid != 0) {
591 		u_int32_t	tmpval, tmpval2;
592 		bus_size_t	ti_offset;
593 
594 		/*
595 		 * Set the segment pointer.
596 		 */
597 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
598 
599 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
600 
601 		/*
602 		 * First, grab whatever is in our source/destination.
603 		 * We'll obviously need this for reads, but also for
604 		 * writes, since we'll be doing read/modify/write.
605 		 */
606 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
607 					ti_offset, &tmpval, 1);
608 
609 		/*
610 		 * Next, translate this from little-endian to big-endian
611 		 * (at least on i386 boxes).
612 		 */
613 		tmpval2 = ntohl(tmpval);
614 
615 		if (readdata) {
616 			/*
617 			 * If we're reading, just copy the leftover number
618 			 * of bytes from the host byte order buffer to
619 			 * the user's buffer.
620 			 */
621 			if (useraddr)
622 				copyout(&tmpval2, ptr, resid);
623 			else
624 				bcopy(&tmpval2, ptr, resid);
625 		} else {
626 			/*
627 			 * If we're writing, first copy the bytes to be
628 			 * written into the network byte order buffer,
629 			 * leaving the rest of the buffer with whatever was
630 			 * originally in there.  Then, swap the bytes
631 			 * around into host order and write them out.
632 			 *
633 			 * XXX KDM the read side of this has been verified
634 			 * to work, but the write side of it has not been
635 			 * verified.  So user beware.
636 			 */
637 			if (useraddr)
638 				copyin(ptr, &tmpval2, resid);
639 			else
640 				bcopy(ptr, &tmpval2, resid);
641 
642 			tmpval = htonl(tmpval2);
643 
644 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
645 						 ti_offset, &tmpval, 1);
646 		}
647 	}
648 
649 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
650 
651 	TI_UNLOCK(sc);
652 
653 	return (0);
654 }
655 
656 static int
657 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
658 	struct ti_softc		*sc;
659 	u_int32_t		tigon_addr, len;
660 	caddr_t			buf;
661 	int			useraddr, readdata;
662 	int			cpu;
663 {
664 	u_int32_t	segptr;
665 	int		cnt;
666 	u_int32_t	tmpval, tmpval2;
667 	caddr_t		ptr;
668 
669 	/*
670 	 * At the moment, we don't handle non-aligned cases, we just bail.
671 	 * If this proves to be a problem, it will be fixed.
672 	 */
673 	if (tigon_addr & 0x3) {
674 		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
675 		       "word-aligned\n", sc->ti_unit, tigon_addr);
676 		return (EINVAL);
677 	}
678 
679 	if (len & 0x3) {
680 		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
681 		       "word-aligned\n", sc->ti_unit, len);
682 		return (EINVAL);
683 	}
684 
685 	segptr = tigon_addr;
686 	cnt = len;
687 	ptr = buf;
688 
689 	TI_LOCK(sc);
690 
691 	while (cnt) {
692 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
693 
694 		if (readdata) {
695 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
696 
697 			tmpval = ntohl(tmpval2);
698 
699 			/*
700 			 * Note:  I've used this debugging interface
701 			 * extensively with Alteon's 12.3.15 firmware,
702 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
703 			 *
704 			 * When you compile the firmware without
705 			 * optimization, which is necessary sometimes in
706 			 * order to properly step through it, you sometimes
707 			 * read out a bogus value of 0xc0017c instead of
708 			 * whatever was supposed to be in that scratchpad
709 			 * location.  That value is on the stack somewhere,
710 			 * but I've never been able to figure out what was
711 			 * causing the problem.
712 			 *
713 			 * The address seems to pop up in random places,
714 			 * often not in the same place on two subsequent
715 			 * reads.
716 			 *
717 			 * In any case, the underlying data doesn't seem
718 			 * to be affected, just the value read out.
719 			 *
720 			 * KDM, 3/7/2000
721 			 */
722 
723 			if (tmpval2 == 0xc0017c)
724 				printf("ti%d: found 0xc0017c at %#x "
725 				       "(tmpval2)\n", sc->ti_unit, segptr);
726 
727 			if (tmpval == 0xc0017c)
728 				printf("ti%d: found 0xc0017c at %#x "
729 				       "(tmpval)\n", sc->ti_unit, segptr);
730 
731 			if (useraddr)
732 				copyout(&tmpval, ptr, 4);
733 			else
734 				bcopy(&tmpval, ptr, 4);
735 		} else {
736 			if (useraddr)
737 				copyin(ptr, &tmpval2, 4);
738 			else
739 				bcopy(ptr, &tmpval2, 4);
740 
741 			tmpval = htonl(tmpval2);
742 
743 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
744 		}
745 
746 		cnt -= 4;
747 		segptr += 4;
748 		ptr += 4;
749 	}
750 
751 	TI_UNLOCK(sc);
752 
753 	return (0);
754 }
755 
756 static int
757 ti_bcopy_swap(src, dst, len, swap_type)
758 	const void	*src;
759 	void		*dst;
760 	size_t		len;
761 	ti_swap_type	swap_type;
762 {
763 	const u_int8_t *tmpsrc;
764 	u_int8_t *tmpdst;
765 	size_t tmplen;
766 
767 	if (len & 0x3) {
768 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
769 		       len);
770 		return (-1);
771 	}
772 
773 	tmpsrc = src;
774 	tmpdst = dst;
775 	tmplen = len;
776 
777 	while (tmplen) {
778 		if (swap_type == TI_SWAP_NTOH)
779 			*(u_int32_t *)tmpdst =
780 				ntohl(*(const u_int32_t *)tmpsrc);
781 		else
782 			*(u_int32_t *)tmpdst =
783 				htonl(*(const u_int32_t *)tmpsrc);
784 
785 		tmpsrc += 4;
786 		tmpdst += 4;
787 		tmplen -= 4;
788 	}
789 
790 	return (0);
791 }
792 
793 /*
794  * Load firmware image into the NIC. Check that the firmware revision
795  * is acceptable and see if we want the firmware for the Tigon 1 or
796  * Tigon 2.
797  */
798 static void
799 ti_loadfw(sc)
800 	struct ti_softc		*sc;
801 {
802 	switch (sc->ti_hwrev) {
803 	case TI_HWREV_TIGON:
804 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
805 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
806 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
807 			printf("ti%d: firmware revision mismatch; want "
808 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
809 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
810 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
811 			    tigonFwReleaseMinor, tigonFwReleaseFix);
812 			return;
813 		}
814 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
815 		    (caddr_t)tigonFwText);
816 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
817 		    (caddr_t)tigonFwData);
818 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
819 		    (caddr_t)tigonFwRodata);
820 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
821 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
822 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
823 		break;
824 	case TI_HWREV_TIGON_II:
825 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
826 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
827 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
828 			printf("ti%d: firmware revision mismatch; want "
829 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
830 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
831 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
832 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
833 			return;
834 		}
835 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
836 		    (caddr_t)tigon2FwText);
837 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
838 		    (caddr_t)tigon2FwData);
839 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
840 		    (caddr_t)tigon2FwRodata);
841 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
842 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
843 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
844 		break;
845 	default:
846 		printf("ti%d: can't load firmware: unknown hardware rev\n",
847 		    sc->ti_unit);
848 		break;
849 	}
850 }
851 
852 /*
853  * Send the NIC a command via the command ring.
854  */
855 static void
856 ti_cmd(sc, cmd)
857 	struct ti_softc		*sc;
858 	struct ti_cmd_desc	*cmd;
859 {
860 	u_int32_t		index;
861 
862 	if (sc->ti_rdata->ti_cmd_ring == NULL)
863 		return;
864 
865 	index = sc->ti_cmd_saved_prodidx;
866 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
867 	TI_INC(index, TI_CMD_RING_CNT);
868 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
869 	sc->ti_cmd_saved_prodidx = index;
870 }
871 
872 /*
873  * Send the NIC an extended command. The 'len' parameter specifies the
874  * number of command slots to include after the initial command.
875  */
876 static void
877 ti_cmd_ext(sc, cmd, arg, len)
878 	struct ti_softc		*sc;
879 	struct ti_cmd_desc	*cmd;
880 	caddr_t			arg;
881 	int			len;
882 {
883 	u_int32_t		index;
884 	register int		i;
885 
886 	if (sc->ti_rdata->ti_cmd_ring == NULL)
887 		return;
888 
889 	index = sc->ti_cmd_saved_prodidx;
890 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
891 	TI_INC(index, TI_CMD_RING_CNT);
892 	for (i = 0; i < len; i++) {
893 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
894 		    *(u_int32_t *)(&arg[i * 4]));
895 		TI_INC(index, TI_CMD_RING_CNT);
896 	}
897 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
898 	sc->ti_cmd_saved_prodidx = index;
899 }
900 
901 /*
902  * Handle events that have triggered interrupts.
903  */
904 static void
905 ti_handle_events(sc)
906 	struct ti_softc		*sc;
907 {
908 	struct ti_event_desc	*e;
909 
910 	if (sc->ti_rdata->ti_event_ring == NULL)
911 		return;
912 
913 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
914 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
915 		switch (e->ti_event) {
916 		case TI_EV_LINKSTAT_CHANGED:
917 			sc->ti_linkstat = e->ti_code;
918 			if (e->ti_code == TI_EV_CODE_LINK_UP)
919 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
920 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
921 				printf("ti%d: gigabit link up\n", sc->ti_unit);
922 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
923 				printf("ti%d: link down\n", sc->ti_unit);
924 			break;
925 		case TI_EV_ERROR:
926 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
927 				printf("ti%d: invalid command\n", sc->ti_unit);
928 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
929 				printf("ti%d: unknown command\n", sc->ti_unit);
930 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
931 				printf("ti%d: bad config data\n", sc->ti_unit);
932 			break;
933 		case TI_EV_FIRMWARE_UP:
934 			ti_init2(sc);
935 			break;
936 		case TI_EV_STATS_UPDATED:
937 			ti_stats_update(sc);
938 			break;
939 		case TI_EV_RESET_JUMBO_RING:
940 		case TI_EV_MCAST_UPDATED:
941 			/* Who cares. */
942 			break;
943 		default:
944 			printf("ti%d: unknown event: %d\n",
945 			    sc->ti_unit, e->ti_event);
946 			break;
947 		}
948 		/* Advance the consumer index. */
949 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
950 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
951 	}
952 }
953 
954 #ifdef TI_PRIVATE_JUMBOS
955 
956 /*
957  * Memory management for the jumbo receive ring is a pain in the
958  * butt. We need to allocate at least 9018 bytes of space per frame,
959  * _and_ it has to be contiguous (unless you use the extended
960  * jumbo descriptor format). Using malloc() all the time won't
961  * work: malloc() allocates memory in powers of two, which means we
962  * would end up wasting a considerable amount of space by allocating
963  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
964  * to do our own memory management.
965  *
966  * The driver needs to allocate a contiguous chunk of memory at boot
967  * time. We then chop this up ourselves into 9K pieces and use them
968  * as external mbuf storage.
969  *
970  * One issue here is how much memory to allocate. The jumbo ring has
971  * 256 slots in it, but at 9K per slot than can consume over 2MB of
972  * RAM. This is a bit much, especially considering we also need
973  * RAM for the standard ring and mini ring (on the Tigon 2). To
974  * save space, we only actually allocate enough memory for 64 slots
975  * by default, which works out to between 500 and 600K. This can
976  * be tuned by changing a #define in if_tireg.h.
977  */
978 
979 static int
980 ti_alloc_jumbo_mem(sc)
981 	struct ti_softc		*sc;
982 {
983 	caddr_t			ptr;
984 	register int		i;
985 	struct ti_jpool_entry   *entry;
986 
987 	/* Grab a big chunk o' storage. */
988 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
989 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
990 
991 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
992 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
993 		return (ENOBUFS);
994 	}
995 
996 	SLIST_INIT(&sc->ti_jfree_listhead);
997 	SLIST_INIT(&sc->ti_jinuse_listhead);
998 
999 	/*
1000 	 * Now divide it up into 9K pieces and save the addresses
1001 	 * in an array.
1002 	 */
1003 	ptr = sc->ti_cdata.ti_jumbo_buf;
1004 	for (i = 0; i < TI_JSLOTS; i++) {
1005 		sc->ti_cdata.ti_jslots[i] = ptr;
1006 		ptr += TI_JLEN;
1007 		entry = malloc(sizeof(struct ti_jpool_entry),
1008 			       M_DEVBUF, M_NOWAIT);
1009 		if (entry == NULL) {
1010 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1011 			           M_DEVBUF);
1012 			sc->ti_cdata.ti_jumbo_buf = NULL;
1013 			printf("ti%d: no memory for jumbo "
1014 			    "buffer queue!\n", sc->ti_unit);
1015 			return (ENOBUFS);
1016 		}
1017 		entry->slot = i;
1018 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1019 	}
1020 
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Allocate a jumbo buffer.
1026  */
1027 static void *ti_jalloc(sc)
1028 	struct ti_softc		*sc;
1029 {
1030 	struct ti_jpool_entry	*entry;
1031 
1032 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1033 
1034 	if (entry == NULL) {
1035 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1036 		return (NULL);
1037 	}
1038 
1039 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1040 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1041 	return (sc->ti_cdata.ti_jslots[entry->slot]);
1042 }
1043 
1044 /*
1045  * Release a jumbo buffer.
1046  */
1047 static void
1048 ti_jfree(buf, args)
1049 	void			*buf;
1050 	void			*args;
1051 {
1052 	struct ti_softc		*sc;
1053 	int			i;
1054 	struct ti_jpool_entry	*entry;
1055 
1056 	/* Extract the softc struct pointer. */
1057 	sc = (struct ti_softc *)args;
1058 
1059 	if (sc == NULL)
1060 		panic("ti_jfree: didn't get softc pointer!");
1061 
1062 	/* calculate the slot this buffer belongs to */
1063 	i = ((vm_offset_t)buf
1064 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1065 
1066 	if ((i < 0) || (i >= TI_JSLOTS))
1067 		panic("ti_jfree: asked to free buffer that we don't manage!");
1068 
1069 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1070 	if (entry == NULL)
1071 		panic("ti_jfree: buffer not in use!");
1072 	entry->slot = i;
1073 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1074 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1075 }
1076 
1077 #endif /* TI_PRIVATE_JUMBOS */
1078 
1079 /*
1080  * Intialize a standard receive ring descriptor.
1081  */
1082 static int
1083 ti_newbuf_std(sc, i, m)
1084 	struct ti_softc		*sc;
1085 	int			i;
1086 	struct mbuf		*m;
1087 {
1088 	struct mbuf		*m_new = NULL;
1089 	struct ti_rx_desc	*r;
1090 
1091 	if (m == NULL) {
1092 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1093 		if (m_new == NULL)
1094 			return (ENOBUFS);
1095 
1096 		MCLGET(m_new, M_DONTWAIT);
1097 		if (!(m_new->m_flags & M_EXT)) {
1098 			m_freem(m_new);
1099 			return (ENOBUFS);
1100 		}
1101 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1102 	} else {
1103 		m_new = m;
1104 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1105 		m_new->m_data = m_new->m_ext.ext_buf;
1106 	}
1107 
1108 	m_adj(m_new, ETHER_ALIGN);
1109 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1110 	r = &sc->ti_rdata->ti_rx_std_ring[i];
1111 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1112 	r->ti_type = TI_BDTYPE_RECV_BD;
1113 	r->ti_flags = 0;
1114 	if (sc->ti_ifp->if_hwassist)
1115 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1116 	r->ti_len = m_new->m_len;
1117 	r->ti_idx = i;
1118 
1119 	return (0);
1120 }
1121 
1122 /*
1123  * Intialize a mini receive ring descriptor. This only applies to
1124  * the Tigon 2.
1125  */
1126 static int
1127 ti_newbuf_mini(sc, i, m)
1128 	struct ti_softc		*sc;
1129 	int			i;
1130 	struct mbuf		*m;
1131 {
1132 	struct mbuf		*m_new = NULL;
1133 	struct ti_rx_desc	*r;
1134 
1135 	if (m == NULL) {
1136 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1137 		if (m_new == NULL) {
1138 			return (ENOBUFS);
1139 		}
1140 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1141 	} else {
1142 		m_new = m;
1143 		m_new->m_data = m_new->m_pktdat;
1144 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1145 	}
1146 
1147 	m_adj(m_new, ETHER_ALIGN);
1148 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1149 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1150 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1151 	r->ti_type = TI_BDTYPE_RECV_BD;
1152 	r->ti_flags = TI_BDFLAG_MINI_RING;
1153 	if (sc->ti_ifp->if_hwassist)
1154 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1155 	r->ti_len = m_new->m_len;
1156 	r->ti_idx = i;
1157 
1158 	return (0);
1159 }
1160 
1161 #ifdef TI_PRIVATE_JUMBOS
1162 
1163 /*
1164  * Initialize a jumbo receive ring descriptor. This allocates
1165  * a jumbo buffer from the pool managed internally by the driver.
1166  */
1167 static int
1168 ti_newbuf_jumbo(sc, i, m)
1169 	struct ti_softc		*sc;
1170 	int			i;
1171 	struct mbuf		*m;
1172 {
1173 	struct mbuf		*m_new = NULL;
1174 	struct ti_rx_desc	*r;
1175 
1176 	if (m == NULL) {
1177 		caddr_t			*buf = NULL;
1178 
1179 		/* Allocate the mbuf. */
1180 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1181 		if (m_new == NULL) {
1182 			return (ENOBUFS);
1183 		}
1184 
1185 		/* Allocate the jumbo buffer */
1186 		buf = ti_jalloc(sc);
1187 		if (buf == NULL) {
1188 			m_freem(m_new);
1189 			printf("ti%d: jumbo allocation failed "
1190 			    "-- packet dropped!\n", sc->ti_unit);
1191 			return (ENOBUFS);
1192 		}
1193 
1194 		/* Attach the buffer to the mbuf. */
1195 		m_new->m_data = (void *) buf;
1196 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1197 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1198 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1199 	} else {
1200 		m_new = m;
1201 		m_new->m_data = m_new->m_ext.ext_buf;
1202 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1203 	}
1204 
1205 	m_adj(m_new, ETHER_ALIGN);
1206 	/* Set up the descriptor. */
1207 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1208 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1209 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1210 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1211 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1212 	if (sc->ti_ifp->if_hwassist)
1213 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1214 	r->ti_len = m_new->m_len;
1215 	r->ti_idx = i;
1216 
1217 	return (0);
1218 }
1219 
1220 #else
1221 #include <vm/vm_page.h>
1222 
1223 #if (PAGE_SIZE == 4096)
1224 #define NPAYLOAD 2
1225 #else
1226 #define NPAYLOAD 1
1227 #endif
1228 
1229 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1230 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1231 #define NFS_HDR_LEN (UDP_HDR_LEN)
1232 static int HDR_LEN =  TCP_HDR_LEN;
1233 
1234 
1235 /*
1236  * Initialize a jumbo receive ring descriptor. This allocates
1237  * a jumbo buffer from the pool managed internally by the driver.
1238  */
1239 static int
1240 ti_newbuf_jumbo(sc, idx, m_old)
1241 	struct ti_softc		*sc;
1242 	int			idx;
1243 	struct mbuf		*m_old;
1244 {
1245 	struct mbuf		*cur, *m_new = NULL;
1246 	struct mbuf		*m[3] = {NULL, NULL, NULL};
1247 	struct ti_rx_desc_ext	*r;
1248 	vm_page_t		frame;
1249 	static int		color;
1250 				/* 1 extra buf to make nobufs easy*/
1251 	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1252 	int			i;
1253 
1254 	if (m_old != NULL) {
1255 		m_new = m_old;
1256 		cur = m_old->m_next;
1257 		for (i = 0; i <= NPAYLOAD; i++){
1258 			m[i] = cur;
1259 			cur = cur->m_next;
1260 		}
1261 	} else {
1262 		/* Allocate the mbufs. */
1263 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1264 		if (m_new == NULL) {
1265 			printf("ti%d: mbuf allocation failed "
1266 			       "-- packet dropped!\n", sc->ti_unit);
1267 			goto nobufs;
1268 		}
1269 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1270 		if (m[NPAYLOAD] == NULL) {
1271 			printf("ti%d: cluster mbuf allocation failed "
1272 			       "-- packet dropped!\n", sc->ti_unit);
1273 			goto nobufs;
1274 		}
1275 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1276 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1277 			printf("ti%d: mbuf allocation failed "
1278 			       "-- packet dropped!\n", sc->ti_unit);
1279 			goto nobufs;
1280 		}
1281 		m[NPAYLOAD]->m_len = MCLBYTES;
1282 
1283 		for (i = 0; i < NPAYLOAD; i++){
1284 			MGET(m[i], M_DONTWAIT, MT_DATA);
1285 			if (m[i] == NULL) {
1286 				printf("ti%d: mbuf allocation failed "
1287 				       "-- packet dropped!\n", sc->ti_unit);
1288 				goto nobufs;
1289 			}
1290 			frame = vm_page_alloc(NULL, color++,
1291 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1292 			    VM_ALLOC_WIRED);
1293 			if (frame == NULL) {
1294 				printf("ti%d: buffer allocation failed "
1295 				       "-- packet dropped!\n", sc->ti_unit);
1296 				printf("      index %d page %d\n", idx, i);
1297 				goto nobufs;
1298 			}
1299 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1300 			if (sf[i] == NULL) {
1301 				vm_page_lock_queues();
1302 				vm_page_unwire(frame, 0);
1303 				vm_page_free(frame);
1304 				vm_page_unlock_queues();
1305 				printf("ti%d: buffer allocation failed "
1306 				       "-- packet dropped!\n", sc->ti_unit);
1307 				printf("      index %d page %d\n", idx, i);
1308 				goto nobufs;
1309 			}
1310 		}
1311 		for (i = 0; i < NPAYLOAD; i++){
1312 		/* Attach the buffer to the mbuf. */
1313 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1314 			m[i]->m_len = PAGE_SIZE;
1315 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1316 			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1317 			m[i]->m_next = m[i+1];
1318 		}
1319 		/* link the buffers to the header */
1320 		m_new->m_next = m[0];
1321 		m_new->m_data += ETHER_ALIGN;
1322 		if (sc->ti_hdrsplit)
1323 			m_new->m_len = MHLEN - ETHER_ALIGN;
1324 		else
1325 			m_new->m_len = HDR_LEN;
1326 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1327 	}
1328 
1329 	/* Set up the descriptor. */
1330 	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1331 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1332 	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1333 	r->ti_len0 = m_new->m_len;
1334 
1335 	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1336 	r->ti_len1 = PAGE_SIZE;
1337 
1338 	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1339 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1340 
1341 	if (PAGE_SIZE == 4096) {
1342 		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1343 		r->ti_len3 = MCLBYTES;
1344 	} else {
1345 		r->ti_len3 = 0;
1346 	}
1347 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1348 
1349 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1350 
1351 	if (sc->ti_ifp->if_hwassist)
1352 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1353 
1354 	r->ti_idx = idx;
1355 
1356 	return (0);
1357 
1358 nobufs:
1359 
1360 	/*
1361 	 * Warning! :
1362 	 * This can only be called before the mbufs are strung together.
1363 	 * If the mbufs are strung together, m_freem() will free the chain,
1364 	 * so that the later mbufs will be freed multiple times.
1365 	 */
1366 	if (m_new)
1367 		m_freem(m_new);
1368 
1369 	for (i = 0; i < 3; i++) {
1370 		if (m[i])
1371 			m_freem(m[i]);
1372 		if (sf[i])
1373 			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1374 	}
1375 	return (ENOBUFS);
1376 }
1377 #endif
1378 
1379 
1380 
1381 /*
1382  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1383  * that's 1MB or memory, which is a lot. For now, we fill only the first
1384  * 256 ring entries and hope that our CPU is fast enough to keep up with
1385  * the NIC.
1386  */
1387 static int
1388 ti_init_rx_ring_std(sc)
1389 	struct ti_softc		*sc;
1390 {
1391 	register int		i;
1392 	struct ti_cmd_desc	cmd;
1393 
1394 	for (i = 0; i < TI_SSLOTS; i++) {
1395 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1396 			return (ENOBUFS);
1397 	};
1398 
1399 	TI_UPDATE_STDPROD(sc, i - 1);
1400 	sc->ti_std = i - 1;
1401 
1402 	return (0);
1403 }
1404 
1405 static void
1406 ti_free_rx_ring_std(sc)
1407 	struct ti_softc		*sc;
1408 {
1409 	register int		i;
1410 
1411 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1412 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1413 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1414 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1415 		}
1416 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1417 		    sizeof(struct ti_rx_desc));
1418 	}
1419 }
1420 
1421 static int
1422 ti_init_rx_ring_jumbo(sc)
1423 	struct ti_softc		*sc;
1424 {
1425 	register int		i;
1426 	struct ti_cmd_desc	cmd;
1427 
1428 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1429 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1430 			return (ENOBUFS);
1431 	};
1432 
1433 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1434 	sc->ti_jumbo = i - 1;
1435 
1436 	return (0);
1437 }
1438 
1439 static void
1440 ti_free_rx_ring_jumbo(sc)
1441 	struct ti_softc		*sc;
1442 {
1443 	register int		i;
1444 
1445 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1446 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1447 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1448 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1449 		}
1450 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1451 		    sizeof(struct ti_rx_desc));
1452 	}
1453 }
1454 
1455 static int
1456 ti_init_rx_ring_mini(sc)
1457 	struct ti_softc		*sc;
1458 {
1459 	register int		i;
1460 
1461 	for (i = 0; i < TI_MSLOTS; i++) {
1462 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1463 			return (ENOBUFS);
1464 	};
1465 
1466 	TI_UPDATE_MINIPROD(sc, i - 1);
1467 	sc->ti_mini = i - 1;
1468 
1469 	return (0);
1470 }
1471 
1472 static void
1473 ti_free_rx_ring_mini(sc)
1474 	struct ti_softc		*sc;
1475 {
1476 	register int		i;
1477 
1478 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1479 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1480 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1481 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1482 		}
1483 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1484 		    sizeof(struct ti_rx_desc));
1485 	}
1486 }
1487 
1488 static void
1489 ti_free_tx_ring(sc)
1490 	struct ti_softc		*sc;
1491 {
1492 	register int		i;
1493 
1494 	if (sc->ti_rdata->ti_tx_ring == NULL)
1495 		return;
1496 
1497 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1498 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1499 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1500 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1501 		}
1502 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1503 		    sizeof(struct ti_tx_desc));
1504 	}
1505 }
1506 
1507 static int
1508 ti_init_tx_ring(sc)
1509 	struct ti_softc		*sc;
1510 {
1511 	sc->ti_txcnt = 0;
1512 	sc->ti_tx_saved_considx = 0;
1513 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1514 	return (0);
1515 }
1516 
1517 /*
1518  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1519  * but we have to support the old way too so that Tigon 1 cards will
1520  * work.
1521  */
1522 static void
1523 ti_add_mcast(sc, addr)
1524 	struct ti_softc		*sc;
1525 	struct ether_addr	*addr;
1526 {
1527 	struct ti_cmd_desc	cmd;
1528 	u_int16_t		*m;
1529 	u_int32_t		ext[2] = {0, 0};
1530 
1531 	m = (u_int16_t *)&addr->octet[0];
1532 
1533 	switch (sc->ti_hwrev) {
1534 	case TI_HWREV_TIGON:
1535 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1536 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1537 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1538 		break;
1539 	case TI_HWREV_TIGON_II:
1540 		ext[0] = htons(m[0]);
1541 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1542 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1543 		break;
1544 	default:
1545 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1546 		break;
1547 	}
1548 }
1549 
1550 static void
1551 ti_del_mcast(sc, addr)
1552 	struct ti_softc		*sc;
1553 	struct ether_addr	*addr;
1554 {
1555 	struct ti_cmd_desc	cmd;
1556 	u_int16_t		*m;
1557 	u_int32_t		ext[2] = {0, 0};
1558 
1559 	m = (u_int16_t *)&addr->octet[0];
1560 
1561 	switch (sc->ti_hwrev) {
1562 	case TI_HWREV_TIGON:
1563 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1564 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1565 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1566 		break;
1567 	case TI_HWREV_TIGON_II:
1568 		ext[0] = htons(m[0]);
1569 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1570 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1571 		break;
1572 	default:
1573 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1574 		break;
1575 	}
1576 }
1577 
1578 /*
1579  * Configure the Tigon's multicast address filter.
1580  *
1581  * The actual multicast table management is a bit of a pain, thanks to
1582  * slight brain damage on the part of both Alteon and us. With our
1583  * multicast code, we are only alerted when the multicast address table
1584  * changes and at that point we only have the current list of addresses:
1585  * we only know the current state, not the previous state, so we don't
1586  * actually know what addresses were removed or added. The firmware has
1587  * state, but we can't get our grubby mits on it, and there is no 'delete
1588  * all multicast addresses' command. Hence, we have to maintain our own
1589  * state so we know what addresses have been programmed into the NIC at
1590  * any given time.
1591  */
1592 static void
1593 ti_setmulti(sc)
1594 	struct ti_softc		*sc;
1595 {
1596 	struct ifnet		*ifp;
1597 	struct ifmultiaddr	*ifma;
1598 	struct ti_cmd_desc	cmd;
1599 	struct ti_mc_entry	*mc;
1600 	u_int32_t		intrs;
1601 
1602 	ifp = sc->ti_ifp;
1603 
1604 	if (ifp->if_flags & IFF_ALLMULTI) {
1605 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1606 		return;
1607 	} else {
1608 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1609 	}
1610 
1611 	/* Disable interrupts. */
1612 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1613 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1614 
1615 	/* First, zot all the existing filters. */
1616 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1617 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1618 		ti_del_mcast(sc, &mc->mc_addr);
1619 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1620 		free(mc, M_DEVBUF);
1621 	}
1622 
1623 	/* Now program new ones. */
1624 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1625 		if (ifma->ifma_addr->sa_family != AF_LINK)
1626 			continue;
1627 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1628 		if (mc == NULL) {
1629 			if_printf(ifp, "no memory for mcast filter entry\n");
1630 			continue;
1631 		}
1632 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1633 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1634 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1635 		ti_add_mcast(sc, &mc->mc_addr);
1636 	}
1637 
1638 	/* Re-enable interrupts. */
1639 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1640 }
1641 
1642 /*
1643  * Check to see if the BIOS has configured us for a 64 bit slot when
1644  * we aren't actually in one. If we detect this condition, we can work
1645  * around it on the Tigon 2 by setting a bit in the PCI state register,
1646  * but for the Tigon 1 we must give up and abort the interface attach.
1647  */
1648 static int ti_64bitslot_war(sc)
1649 	struct ti_softc		*sc;
1650 {
1651 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1652 		CSR_WRITE_4(sc, 0x600, 0);
1653 		CSR_WRITE_4(sc, 0x604, 0);
1654 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1655 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1656 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1657 				return (EINVAL);
1658 			else {
1659 				TI_SETBIT(sc, TI_PCI_STATE,
1660 				    TI_PCISTATE_32BIT_BUS);
1661 				return (0);
1662 			}
1663 		}
1664 	}
1665 
1666 	return (0);
1667 }
1668 
1669 /*
1670  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1671  * self-test results.
1672  */
1673 static int
1674 ti_chipinit(sc)
1675 	struct ti_softc		*sc;
1676 {
1677 	u_int32_t		cacheline;
1678 	u_int32_t		pci_writemax = 0;
1679 	u_int32_t		hdrsplit;
1680 
1681 	/* Initialize link to down state. */
1682 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1683 
1684 	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1685 		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1686 	else
1687 		sc->ti_ifp->if_hwassist = 0;
1688 
1689 	/* Set endianness before we access any non-PCI registers. */
1690 #if BYTE_ORDER == BIG_ENDIAN
1691 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1692 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1693 #else
1694 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1695 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1696 #endif
1697 
1698 	/* Check the ROM failed bit to see if self-tests passed. */
1699 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1700 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1701 		return (ENODEV);
1702 	}
1703 
1704 	/* Halt the CPU. */
1705 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1706 
1707 	/* Figure out the hardware revision. */
1708 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1709 	case TI_REV_TIGON_I:
1710 		sc->ti_hwrev = TI_HWREV_TIGON;
1711 		break;
1712 	case TI_REV_TIGON_II:
1713 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1714 		break;
1715 	default:
1716 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1717 		return (ENODEV);
1718 	}
1719 
1720 	/* Do special setup for Tigon 2. */
1721 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1722 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1723 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1724 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1725 	}
1726 
1727 	/*
1728 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1729 	 * can't do header splitting.
1730 	 */
1731 #ifdef TI_JUMBO_HDRSPLIT
1732 	if (sc->ti_hwrev != TI_HWREV_TIGON)
1733 		sc->ti_hdrsplit = 1;
1734 	else
1735 		printf("ti%d: can't do header splitting on a Tigon I board\n",
1736 		       sc->ti_unit);
1737 #endif /* TI_JUMBO_HDRSPLIT */
1738 
1739 	/* Set up the PCI state register. */
1740 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1741 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1742 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1743 	}
1744 
1745 	/* Clear the read/write max DMA parameters. */
1746 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1747 	    TI_PCISTATE_READ_MAXDMA));
1748 
1749 	/* Get cache line size. */
1750 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1751 
1752 	/*
1753 	 * If the system has set enabled the PCI memory write
1754 	 * and invalidate command in the command register, set
1755 	 * the write max parameter accordingly. This is necessary
1756 	 * to use MWI with the Tigon 2.
1757 	 */
1758 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1759 		switch (cacheline) {
1760 		case 1:
1761 		case 4:
1762 		case 8:
1763 		case 16:
1764 		case 32:
1765 		case 64:
1766 			break;
1767 		default:
1768 		/* Disable PCI memory write and invalidate. */
1769 			if (bootverbose)
1770 				printf("ti%d: cache line size %d not "
1771 				    "supported; disabling PCI MWI\n",
1772 				    sc->ti_unit, cacheline);
1773 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1774 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1775 			break;
1776 		}
1777 	}
1778 
1779 #ifdef __brokenalpha__
1780 	/*
1781 	 * From the Alteon sample driver:
1782 	 * Must insure that we do not cross an 8K (bytes) boundary
1783 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1784 	 * restriction on some ALPHA platforms with early revision
1785 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1786 	 */
1787 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1788 #else
1789 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1790 #endif
1791 
1792 	/* This sets the min dma param all the way up (0xff). */
1793 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1794 
1795 	if (sc->ti_hdrsplit)
1796 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1797 	else
1798 		hdrsplit = 0;
1799 
1800 	/* Configure DMA variables. */
1801 #if BYTE_ORDER == BIG_ENDIAN
1802 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1803 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1804 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1805 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1806 #else /* BYTE_ORDER */
1807 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1808 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1809 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1810 #endif /* BYTE_ORDER */
1811 
1812 	/*
1813 	 * Only allow 1 DMA channel to be active at a time.
1814 	 * I don't think this is a good idea, but without it
1815 	 * the firmware racks up lots of nicDmaReadRingFull
1816 	 * errors.  This is not compatible with hardware checksums.
1817 	 */
1818 	if (sc->ti_ifp->if_hwassist == 0)
1819 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1820 
1821 	/* Recommended settings from Tigon manual. */
1822 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1823 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1824 
1825 	if (ti_64bitslot_war(sc)) {
1826 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1827 		    "but we aren't", sc->ti_unit);
1828 		return (EINVAL);
1829 	}
1830 
1831 	return (0);
1832 }
1833 
1834 #define	TI_RD_OFF(x)	offsetof(struct ti_ring_data, x)
1835 
1836 /*
1837  * Initialize the general information block and firmware, and
1838  * start the CPU(s) running.
1839  */
1840 static int
1841 ti_gibinit(sc)
1842 	struct ti_softc		*sc;
1843 {
1844 	struct ti_rcb		*rcb;
1845 	int			i;
1846 	struct ifnet		*ifp;
1847 	uint32_t		rdphys;
1848 
1849 	ifp = sc->ti_ifp;
1850 	rdphys = sc->ti_rdata_phys;
1851 
1852 	/* Disable interrupts for now. */
1853 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1854 
1855 	/*
1856 	 * Tell the chip where to find the general information block.
1857 	 * While this struct could go into >4GB memory, we allocate it in a
1858 	 * single slab with the other descriptors, and those don't seem to
1859 	 * support being located in a 64-bit region.
1860 	 */
1861 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1862 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
1863 
1864 	/* Load the firmware into SRAM. */
1865 	ti_loadfw(sc);
1866 
1867 	/* Set up the contents of the general info and ring control blocks. */
1868 
1869 	/* Set up the event ring and producer pointer. */
1870 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1871 
1872 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
1873 	rcb->ti_flags = 0;
1874 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1875 	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
1876 	sc->ti_ev_prodidx.ti_idx = 0;
1877 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1878 	sc->ti_ev_saved_considx = 0;
1879 
1880 	/* Set up the command ring and producer mailbox. */
1881 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1882 
1883 	sc->ti_rdata->ti_cmd_ring =
1884 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1885 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1886 	rcb->ti_flags = 0;
1887 	rcb->ti_max_len = 0;
1888 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1889 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1890 	}
1891 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1892 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1893 	sc->ti_cmd_saved_prodidx = 0;
1894 
1895 	/*
1896 	 * Assign the address of the stats refresh buffer.
1897 	 * We re-use the current stats buffer for this to
1898 	 * conserve memory.
1899 	 */
1900 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1901 	    rdphys + TI_RD_OFF(ti_info.ti_stats);
1902 
1903 	/* Set up the standard receive ring. */
1904 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1905 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
1906 	rcb->ti_max_len = TI_FRAMELEN;
1907 	rcb->ti_flags = 0;
1908 	if (sc->ti_ifp->if_hwassist)
1909 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1910 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1911 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1912 
1913 	/* Set up the jumbo receive ring. */
1914 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1915 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
1916 
1917 #ifdef TI_PRIVATE_JUMBOS
1918 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1919 	rcb->ti_flags = 0;
1920 #else
1921 	rcb->ti_max_len = PAGE_SIZE;
1922 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1923 #endif
1924 	if (sc->ti_ifp->if_hwassist)
1925 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1926 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1927 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1928 
1929 	/*
1930 	 * Set up the mini ring. Only activated on the
1931 	 * Tigon 2 but the slot in the config block is
1932 	 * still there on the Tigon 1.
1933 	 */
1934 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1935 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
1936 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1937 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1938 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1939 	else
1940 		rcb->ti_flags = 0;
1941 	if (sc->ti_ifp->if_hwassist)
1942 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1943 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1944 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1945 
1946 	/*
1947 	 * Set up the receive return ring.
1948 	 */
1949 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1950 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
1951 	rcb->ti_flags = 0;
1952 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1953 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1954 	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
1955 
1956 	/*
1957 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1958 	 * of putting the transmit ring in the host's address space and
1959 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1960 	 * memory and accessing it through the shared memory region. We
1961 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1962 	 * so we have to revert to the shared memory scheme if we detect
1963 	 * a Tigon 1 chip.
1964 	 */
1965 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1966 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1967 		sc->ti_rdata->ti_tx_ring_nic =
1968 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1969 	}
1970 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1971 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1972 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1973 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1974 		rcb->ti_flags = 0;
1975 	else
1976 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1977 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1978 	if (sc->ti_ifp->if_hwassist)
1979 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1980 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1981 	rcb->ti_max_len = TI_TX_RING_CNT;
1982 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1983 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1984 	else
1985 		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
1986 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1987 	    rdphys + TI_RD_OFF(ti_tx_considx_r);
1988 
1989 	/* Set up tuneables */
1990 #if 0
1991 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1992 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1993 		    (sc->ti_rx_coal_ticks / 10));
1994 	else
1995 #endif
1996 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1997 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1998 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1999 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2000 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2001 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2002 
2003 	/* Turn interrupts on. */
2004 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2005 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2006 
2007 	/* Start CPU. */
2008 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2009 
2010 	return (0);
2011 }
2012 
2013 static void
2014 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2015 {
2016 	struct ti_softc *sc;
2017 
2018 	sc = arg;
2019 	if (error || nseg != 1)
2020 		return;
2021 
2022 	/*
2023 	 * All of the Tigon data structures need to live at <4GB.  This
2024 	 * cast is fine since busdma was told about this constraint.
2025 	 */
2026 	sc->ti_rdata_phys = (uint32_t)segs[0].ds_addr;
2027 	return;
2028 }
2029 
2030 /*
2031  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2032  * against our list and return its name if we find a match.
2033  */
2034 static int
2035 ti_probe(dev)
2036 	device_t		dev;
2037 {
2038 	struct ti_type		*t;
2039 
2040 	t = ti_devs;
2041 
2042 	while (t->ti_name != NULL) {
2043 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2044 		    (pci_get_device(dev) == t->ti_did)) {
2045 			device_set_desc(dev, t->ti_name);
2046 			return (BUS_PROBE_DEFAULT);
2047 		}
2048 		t++;
2049 	}
2050 
2051 	return (ENXIO);
2052 }
2053 
2054 static int
2055 ti_attach(dev)
2056 	device_t		dev;
2057 {
2058 	struct ifnet		*ifp;
2059 	struct ti_softc		*sc;
2060 	int			unit, error = 0, rid;
2061 	u_char			eaddr[6];
2062 
2063 	sc = device_get_softc(dev);
2064 	unit = device_get_unit(dev);
2065 
2066 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2067 	    MTX_DEF | MTX_RECURSE);
2068 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2069 	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2070 	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2071 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2072 
2073 	/*
2074 	 * Map control/status registers.
2075 	 */
2076 	pci_enable_busmaster(dev);
2077 
2078 	rid = TI_PCI_LOMEM;
2079 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2080 	    RF_ACTIVE|PCI_RF_DENSE);
2081 
2082 	if (sc->ti_res == NULL) {
2083 		printf ("ti%d: couldn't map memory\n", unit);
2084 		error = ENXIO;
2085 		goto fail;
2086 	}
2087 
2088 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2089 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2090 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2091 
2092 	/* Allocate interrupt */
2093 	rid = 0;
2094 
2095 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2096 	    RF_SHAREABLE | RF_ACTIVE);
2097 
2098 	if (sc->ti_irq == NULL) {
2099 		printf("ti%d: couldn't map interrupt\n", unit);
2100 		error = ENXIO;
2101 		goto fail;
2102 	}
2103 
2104 	sc->ti_unit = unit;
2105 
2106 	if (ti_chipinit(sc)) {
2107 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2108 		error = ENXIO;
2109 		goto fail;
2110 	}
2111 
2112 	/* Zero out the NIC's on-board SRAM. */
2113 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2114 
2115 	/* Init again -- zeroing memory may have clobbered some registers. */
2116 	if (ti_chipinit(sc)) {
2117 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2118 		error = ENXIO;
2119 		goto fail;
2120 	}
2121 
2122 	/*
2123 	 * Get station address from the EEPROM. Note: the manual states
2124 	 * that the MAC address is at offset 0x8c, however the data is
2125 	 * stored as two longwords (since that's how it's loaded into
2126 	 * the NIC). This means the MAC address is actually preceded
2127 	 * by two zero bytes. We need to skip over those.
2128 	 */
2129 	if (ti_read_eeprom(sc, eaddr,
2130 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2131 		printf("ti%d: failed to read station address\n", unit);
2132 		error = ENXIO;
2133 		goto fail;
2134 	}
2135 
2136 	/* Allocate the general information block and ring buffers. */
2137 	if (bus_dma_tag_create(NULL,			/* parent */
2138 				1, 0,			/* algnmnt, boundary */
2139 				BUS_SPACE_MAXADDR,	/* lowaddr */
2140 				BUS_SPACE_MAXADDR,	/* highaddr */
2141 				NULL, NULL,		/* filter, filterarg */
2142 				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2143 				0,			/* nsegments */
2144 				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2145 				0,			/* flags */
2146 				NULL, NULL,		/* lockfunc, lockarg */
2147 				&sc->ti_parent_dmat) != 0) {
2148 		printf("ti%d: Failed to allocate parent dmat\n", sc->ti_unit);
2149 		error = ENOMEM;
2150 		goto fail;
2151 	}
2152 
2153 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2154 				PAGE_SIZE, 0,		/* algnmnt, boundary */
2155 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2156 				BUS_SPACE_MAXADDR,	/* highaddr */
2157 				NULL, NULL,		/* filter, filterarg */
2158 				sizeof(struct ti_ring_data),	/* maxsize */
2159 				1,			/* nsegments */
2160 				sizeof(struct ti_ring_data),	/* maxsegsize */
2161 				0,			/* flags */
2162 				NULL, NULL,		/* lockfunc, lockarg */
2163 				&sc->ti_rdata_dmat) != 0) {
2164 		printf("ti%d: Failed to allocate rdata dmat\n", sc->ti_unit);
2165 		error = ENOMEM;
2166 		goto fail;
2167 	}
2168 
2169 	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2170 			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2171 		printf("ti%d: Failed to allocate rdata memory\n", sc->ti_unit);
2172 		error = ENOMEM;
2173 		goto fail;
2174 	}
2175 
2176 	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2177 			    sc->ti_rdata, sizeof(struct ti_ring_data),
2178 			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2179 		printf("ti%d: Failed to load rdata segments\n", sc->ti_unit);
2180 		error = ENOMEM;
2181 		goto fail;
2182 	}
2183 
2184 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2185 
2186 	/* Try to allocate memory for jumbo buffers. */
2187 #ifdef TI_PRIVATE_JUMBOS
2188 	if (ti_alloc_jumbo_mem(sc)) {
2189 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2190 		error = ENXIO;
2191 		goto fail;
2192 	}
2193 #endif
2194 
2195 	/*
2196 	 * We really need a better way to tell a 1000baseTX card
2197 	 * from a 1000baseSX one, since in theory there could be
2198 	 * OEMed 1000baseTX cards from lame vendors who aren't
2199 	 * clever enough to change the PCI ID. For the moment
2200 	 * though, the AceNIC is the only copper card available.
2201 	 */
2202 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2203 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2204 		sc->ti_copper = 1;
2205 	/* Ok, it's not the only copper card available. */
2206 	if (pci_get_vendor(dev) == NG_VENDORID &&
2207 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2208 		sc->ti_copper = 1;
2209 
2210 	/* Set default tuneable values. */
2211 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2212 #if 0
2213 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2214 #endif
2215 	sc->ti_rx_coal_ticks = 170;
2216 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2217 	sc->ti_rx_max_coal_bds = 64;
2218 #if 0
2219 	sc->ti_tx_max_coal_bds = 128;
2220 #endif
2221 	sc->ti_tx_max_coal_bds = 32;
2222 	sc->ti_tx_buf_ratio = 21;
2223 
2224 	/* Set up ifnet structure */
2225 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2226 	if (ifp == NULL) {
2227 		printf("ti%d: can not if_alloc()\n", sc->ti_unit);
2228 		error = ENOSPC;
2229 		goto fail;
2230 	}
2231 	ifp->if_softc = sc;
2232 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2233 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2234 	    IFF_NEEDSGIANT;
2235 	tis[unit] = sc;
2236 	ifp->if_ioctl = ti_ioctl;
2237 	ifp->if_start = ti_start;
2238 	ifp->if_watchdog = ti_watchdog;
2239 	ifp->if_init = ti_init;
2240 	ifp->if_mtu = ETHERMTU;
2241 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2242 
2243 	/* Set up ifmedia support. */
2244 	if (sc->ti_copper) {
2245 		/*
2246 		 * Copper cards allow manual 10/100 mode selection,
2247 		 * but not manual 1000baseTX mode selection. Why?
2248 		 * Becuase currently there's no way to specify the
2249 		 * master/slave setting through the firmware interface,
2250 		 * so Alteon decided to just bag it and handle it
2251 		 * via autonegotiation.
2252 		 */
2253 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2254 		ifmedia_add(&sc->ifmedia,
2255 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2256 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2257 		ifmedia_add(&sc->ifmedia,
2258 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2259 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2260 		ifmedia_add(&sc->ifmedia,
2261 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2262 	} else {
2263 		/* Fiber cards don't support 10/100 modes. */
2264 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2265 		ifmedia_add(&sc->ifmedia,
2266 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2267 	}
2268 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2269 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2270 
2271 	/*
2272 	 * We're assuming here that card initialization is a sequential
2273 	 * thing.  If it isn't, multiple cards probing at the same time
2274 	 * could stomp on the list of softcs here.
2275 	 */
2276 
2277 	/* Register the device */
2278 	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2279 			   0600, "ti%d", sc->ti_unit);
2280 	sc->dev->si_drv1 = sc;
2281 
2282 	/*
2283 	 * Call MI attach routine.
2284 	 */
2285 	ether_ifattach(ifp, eaddr);
2286 
2287 	/* Hook interrupt last to avoid having to lock softc */
2288 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2289 	   ti_intr, sc, &sc->ti_intrhand);
2290 
2291 	if (error) {
2292 		printf("ti%d: couldn't set up irq\n", unit);
2293 		ether_ifdetach(ifp);
2294 		if_free(ifp);
2295 		goto fail;
2296 	}
2297 
2298 fail:
2299 	if (sc && error)
2300 		ti_detach(dev);
2301 
2302 	return (error);
2303 }
2304 
2305 /*
2306  * Shutdown hardware and free up resources. This can be called any
2307  * time after the mutex has been initialized. It is called in both
2308  * the error case in attach and the normal detach case so it needs
2309  * to be careful about only freeing resources that have actually been
2310  * allocated.
2311  */
2312 static int
2313 ti_detach(dev)
2314 	device_t		dev;
2315 {
2316 	struct ti_softc		*sc;
2317 	struct ifnet		*ifp;
2318 
2319 	sc = device_get_softc(dev);
2320 	if (sc->dev)
2321 		destroy_dev(sc->dev);
2322 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2323 	TI_LOCK(sc);
2324 	ifp = sc->ti_ifp;
2325 
2326 	/* These should only be active if attach succeeded */
2327 	if (device_is_attached(dev)) {
2328 		ti_stop(sc);
2329 		ether_ifdetach(ifp);
2330 		if_free(ifp);
2331 		bus_generic_detach(dev);
2332 	}
2333 	ifmedia_removeall(&sc->ifmedia);
2334 
2335 	if (sc->ti_rdata)
2336 		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2337 				sc->ti_rdata_dmamap);
2338 	if (sc->ti_rdata_dmat)
2339 		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2340 	if (sc->ti_parent_dmat)
2341 		bus_dma_tag_destroy(sc->ti_parent_dmat);
2342 	if (sc->ti_intrhand)
2343 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2344 	if (sc->ti_irq)
2345 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2346 	if (sc->ti_res) {
2347 		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2348 		    sc->ti_res);
2349 	}
2350 
2351 #ifdef TI_PRIVATE_JUMBOS
2352 	if (sc->ti_cdata.ti_jumbo_buf)
2353 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2354 #endif
2355 	if (sc->ti_rdata)
2356 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2357 
2358 	TI_UNLOCK(sc);
2359 	mtx_destroy(&sc->ti_mtx);
2360 
2361 	return (0);
2362 }
2363 
2364 #ifdef TI_JUMBO_HDRSPLIT
2365 /*
2366  * If hdr_len is 0, that means that header splitting wasn't done on
2367  * this packet for some reason.  The two most likely reasons are that
2368  * the protocol isn't a supported protocol for splitting, or this
2369  * packet had a fragment offset that wasn't 0.
2370  *
2371  * The header length, if it is non-zero, will always be the length of
2372  * the headers on the packet, but that length could be longer than the
2373  * first mbuf.  So we take the minimum of the two as the actual
2374  * length.
2375  */
2376 static __inline void
2377 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2378 {
2379 	int i = 0;
2380 	int lengths[4] = {0, 0, 0, 0};
2381 	struct mbuf *m, *mp;
2382 
2383 	if (hdr_len != 0)
2384 		top->m_len = min(hdr_len, top->m_len);
2385 	pkt_len -= top->m_len;
2386 	lengths[i++] = top->m_len;
2387 
2388 	mp = top;
2389 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2390 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2391 		pkt_len -= m->m_len;
2392 		lengths[i++] = m->m_len;
2393 		mp = m;
2394 	}
2395 
2396 #if 0
2397 	if (hdr_len != 0)
2398 		printf("got split packet: ");
2399 	else
2400 		printf("got non-split packet: ");
2401 
2402 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2403 	    lengths[1], lengths[2], lengths[3],
2404 	    lengths[0] + lengths[1] + lengths[2] +
2405 	    lengths[3]);
2406 #endif
2407 
2408 	if (pkt_len)
2409 		panic("header splitting didn't");
2410 
2411 	if (m) {
2412 		m_freem(m);
2413 		mp->m_next = NULL;
2414 
2415 	}
2416 	if (mp->m_next != NULL)
2417 		panic("ti_hdr_split: last mbuf in chain should be null");
2418 }
2419 #endif /* TI_JUMBO_HDRSPLIT */
2420 
2421 /*
2422  * Frame reception handling. This is called if there's a frame
2423  * on the receive return list.
2424  *
2425  * Note: we have to be able to handle three possibilities here:
2426  * 1) the frame is from the mini receive ring (can only happen)
2427  *    on Tigon 2 boards)
2428  * 2) the frame is from the jumbo recieve ring
2429  * 3) the frame is from the standard receive ring
2430  */
2431 
2432 static void
2433 ti_rxeof(sc)
2434 	struct ti_softc		*sc;
2435 {
2436 	struct ifnet		*ifp;
2437 	struct ti_cmd_desc	cmd;
2438 
2439 	TI_LOCK_ASSERT(sc);
2440 
2441 	ifp = sc->ti_ifp;
2442 
2443 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2444 		struct ti_rx_desc	*cur_rx;
2445 		u_int32_t		rxidx;
2446 		struct mbuf		*m = NULL;
2447 		u_int16_t		vlan_tag = 0;
2448 		int			have_tag = 0;
2449 
2450 		cur_rx =
2451 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2452 		rxidx = cur_rx->ti_idx;
2453 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2454 
2455 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2456 			have_tag = 1;
2457 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2458 		}
2459 
2460 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2461 
2462 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2463 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2464 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2465 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2466 				ifp->if_ierrors++;
2467 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2468 				continue;
2469 			}
2470 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2471 				ifp->if_ierrors++;
2472 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2473 				continue;
2474 			}
2475 #ifdef TI_PRIVATE_JUMBOS
2476 			m->m_len = cur_rx->ti_len;
2477 #else /* TI_PRIVATE_JUMBOS */
2478 #ifdef TI_JUMBO_HDRSPLIT
2479 			if (sc->ti_hdrsplit)
2480 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2481 					     cur_rx->ti_len, rxidx);
2482 			else
2483 #endif /* TI_JUMBO_HDRSPLIT */
2484 			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2485 #endif /* TI_PRIVATE_JUMBOS */
2486 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2487 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2488 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2489 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2490 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2491 				ifp->if_ierrors++;
2492 				ti_newbuf_mini(sc, sc->ti_mini, m);
2493 				continue;
2494 			}
2495 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2496 				ifp->if_ierrors++;
2497 				ti_newbuf_mini(sc, sc->ti_mini, m);
2498 				continue;
2499 			}
2500 			m->m_len = cur_rx->ti_len;
2501 		} else {
2502 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2503 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2504 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2505 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2506 				ifp->if_ierrors++;
2507 				ti_newbuf_std(sc, sc->ti_std, m);
2508 				continue;
2509 			}
2510 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2511 				ifp->if_ierrors++;
2512 				ti_newbuf_std(sc, sc->ti_std, m);
2513 				continue;
2514 			}
2515 			m->m_len = cur_rx->ti_len;
2516 		}
2517 
2518 		m->m_pkthdr.len = cur_rx->ti_len;
2519 		ifp->if_ipackets++;
2520 		m->m_pkthdr.rcvif = ifp;
2521 
2522 		if (ifp->if_hwassist) {
2523 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2524 			    CSUM_DATA_VALID;
2525 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2526 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2527 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2528 		}
2529 
2530 		/*
2531 		 * If we received a packet with a vlan tag,
2532 		 * tag it before passing the packet upward.
2533 		 */
2534 		if (have_tag)
2535 			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2536 		TI_UNLOCK(sc);
2537 		(*ifp->if_input)(ifp, m);
2538 		TI_LOCK(sc);
2539 	}
2540 
2541 	/* Only necessary on the Tigon 1. */
2542 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2543 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2544 		    sc->ti_rx_saved_considx);
2545 
2546 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2547 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2548 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2549 }
2550 
2551 static void
2552 ti_txeof(sc)
2553 	struct ti_softc		*sc;
2554 {
2555 	struct ti_tx_desc	*cur_tx = NULL;
2556 	struct ifnet		*ifp;
2557 
2558 	ifp = sc->ti_ifp;
2559 
2560 	/*
2561 	 * Go through our tx ring and free mbufs for those
2562 	 * frames that have been sent.
2563 	 */
2564 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2565 		u_int32_t		idx = 0;
2566 
2567 		idx = sc->ti_tx_saved_considx;
2568 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2569 			if (idx > 383)
2570 				CSR_WRITE_4(sc, TI_WINBASE,
2571 				    TI_TX_RING_BASE + 6144);
2572 			else if (idx > 255)
2573 				CSR_WRITE_4(sc, TI_WINBASE,
2574 				    TI_TX_RING_BASE + 4096);
2575 			else if (idx > 127)
2576 				CSR_WRITE_4(sc, TI_WINBASE,
2577 				    TI_TX_RING_BASE + 2048);
2578 			else
2579 				CSR_WRITE_4(sc, TI_WINBASE,
2580 				    TI_TX_RING_BASE);
2581 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2582 		} else
2583 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2584 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2585 			ifp->if_opackets++;
2586 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2587 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2588 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2589 		}
2590 		sc->ti_txcnt--;
2591 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2592 		ifp->if_timer = 0;
2593 	}
2594 
2595 	if (cur_tx != NULL)
2596 		ifp->if_flags &= ~IFF_OACTIVE;
2597 }
2598 
2599 static void
2600 ti_intr(xsc)
2601 	void			*xsc;
2602 {
2603 	struct ti_softc		*sc;
2604 	struct ifnet		*ifp;
2605 
2606 	sc = xsc;
2607 	TI_LOCK(sc);
2608 	ifp = sc->ti_ifp;
2609 
2610 /*#ifdef notdef*/
2611 	/* Avoid this for now -- checking this register is expensive. */
2612 	/* Make sure this is really our interrupt. */
2613 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2614 		TI_UNLOCK(sc);
2615 		return;
2616 	}
2617 /*#endif*/
2618 
2619 	/* Ack interrupt and stop others from occuring. */
2620 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2621 
2622 	if (ifp->if_flags & IFF_RUNNING) {
2623 		/* Check RX return ring producer/consumer */
2624 		ti_rxeof(sc);
2625 
2626 		/* Check TX ring producer/consumer */
2627 		ti_txeof(sc);
2628 	}
2629 
2630 	ti_handle_events(sc);
2631 
2632 	/* Re-enable interrupts. */
2633 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2634 
2635 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2636 		ti_start(ifp);
2637 
2638 	TI_UNLOCK(sc);
2639 }
2640 
2641 static void
2642 ti_stats_update(sc)
2643 	struct ti_softc		*sc;
2644 {
2645 	struct ifnet		*ifp;
2646 
2647 	ifp = sc->ti_ifp;
2648 
2649 	ifp->if_collisions +=
2650 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2651 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2652 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2653 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2654 	   ifp->if_collisions;
2655 }
2656 
2657 /*
2658  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2659  * pointers to descriptors.
2660  */
2661 static int
2662 ti_encap(sc, m_head, txidx)
2663 	struct ti_softc		*sc;
2664 	struct mbuf		*m_head;
2665 	u_int32_t		*txidx;
2666 {
2667 	struct ti_tx_desc	*f = NULL;
2668 	struct mbuf		*m;
2669 	u_int32_t		frag, cur, cnt = 0;
2670 	u_int16_t		csum_flags = 0;
2671 	struct m_tag		*mtag;
2672 
2673 	m = m_head;
2674 	cur = frag = *txidx;
2675 
2676 	if (m_head->m_pkthdr.csum_flags) {
2677 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2678 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2679 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2680 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2681 		if (m_head->m_flags & M_LASTFRAG)
2682 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2683 		else if (m_head->m_flags & M_FRAG)
2684 			csum_flags |= TI_BDFLAG_IP_FRAG;
2685 	}
2686 
2687 	mtag = VLAN_OUTPUT_TAG(sc->ti_ifp, m);
2688 
2689 	/*
2690 	 * Start packing the mbufs in this chain into
2691 	 * the fragment pointers. Stop when we run out
2692 	 * of fragments or hit the end of the mbuf chain.
2693 	 */
2694 	for (m = m_head; m != NULL; m = m->m_next) {
2695 		if (m->m_len != 0) {
2696 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2697 				if (frag > 383)
2698 					CSR_WRITE_4(sc, TI_WINBASE,
2699 					    TI_TX_RING_BASE + 6144);
2700 				else if (frag > 255)
2701 					CSR_WRITE_4(sc, TI_WINBASE,
2702 					    TI_TX_RING_BASE + 4096);
2703 				else if (frag > 127)
2704 					CSR_WRITE_4(sc, TI_WINBASE,
2705 					    TI_TX_RING_BASE + 2048);
2706 				else
2707 					CSR_WRITE_4(sc, TI_WINBASE,
2708 					    TI_TX_RING_BASE);
2709 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2710 			} else
2711 				f = &sc->ti_rdata->ti_tx_ring[frag];
2712 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2713 				break;
2714 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2715 			f->ti_len = m->m_len;
2716 			f->ti_flags = csum_flags;
2717 
2718 			if (mtag != NULL) {
2719 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2720 				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2721 			} else {
2722 				f->ti_vlan_tag = 0;
2723 			}
2724 
2725 			/*
2726 			 * Sanity check: avoid coming within 16 descriptors
2727 			 * of the end of the ring.
2728 			 */
2729 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2730 				return (ENOBUFS);
2731 			cur = frag;
2732 			TI_INC(frag, TI_TX_RING_CNT);
2733 			cnt++;
2734 		}
2735 	}
2736 
2737 	if (m != NULL)
2738 		return (ENOBUFS);
2739 
2740 	if (frag == sc->ti_tx_saved_considx)
2741 		return (ENOBUFS);
2742 
2743 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2744 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2745 	            TI_BDFLAG_END;
2746 	else
2747 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2748 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2749 	sc->ti_txcnt += cnt;
2750 
2751 	*txidx = frag;
2752 
2753 	return (0);
2754 }
2755 
2756 /*
2757  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2758  * to the mbuf data regions directly in the transmit descriptors.
2759  */
2760 static void
2761 ti_start(ifp)
2762 	struct ifnet		*ifp;
2763 {
2764 	struct ti_softc		*sc;
2765 	struct mbuf		*m_head = NULL;
2766 	u_int32_t		prodidx = 0;
2767 
2768 	sc = ifp->if_softc;
2769 	TI_LOCK(sc);
2770 
2771 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2772 
2773 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2774 		IF_DEQUEUE(&ifp->if_snd, m_head);
2775 		if (m_head == NULL)
2776 			break;
2777 
2778 		/*
2779 		 * XXX
2780 		 * safety overkill.  If this is a fragmented packet chain
2781 		 * with delayed TCP/UDP checksums, then only encapsulate
2782 		 * it if we have enough descriptors to handle the entire
2783 		 * chain at once.
2784 		 * (paranoia -- may not actually be needed)
2785 		 */
2786 		if (m_head->m_flags & M_FIRSTFRAG &&
2787 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2788 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2789 			    m_head->m_pkthdr.csum_data + 16) {
2790 				IF_PREPEND(&ifp->if_snd, m_head);
2791 				ifp->if_flags |= IFF_OACTIVE;
2792 				break;
2793 			}
2794 		}
2795 
2796 		/*
2797 		 * Pack the data into the transmit ring. If we
2798 		 * don't have room, set the OACTIVE flag and wait
2799 		 * for the NIC to drain the ring.
2800 		 */
2801 		if (ti_encap(sc, m_head, &prodidx)) {
2802 			IF_PREPEND(&ifp->if_snd, m_head);
2803 			ifp->if_flags |= IFF_OACTIVE;
2804 			break;
2805 		}
2806 
2807 		/*
2808 		 * If there's a BPF listener, bounce a copy of this frame
2809 		 * to him.
2810 		 */
2811 		BPF_MTAP(ifp, m_head);
2812 	}
2813 
2814 	/* Transmit */
2815 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2816 
2817 	/*
2818 	 * Set a timeout in case the chip goes out to lunch.
2819 	 */
2820 	ifp->if_timer = 5;
2821 	TI_UNLOCK(sc);
2822 }
2823 
2824 static void
2825 ti_init(xsc)
2826 	void			*xsc;
2827 {
2828 	struct ti_softc		*sc = xsc;
2829 
2830 	/* Cancel pending I/O and flush buffers. */
2831 	ti_stop(sc);
2832 
2833 	TI_LOCK(sc);
2834 	/* Init the gen info block, ring control blocks and firmware. */
2835 	if (ti_gibinit(sc)) {
2836 		printf("ti%d: initialization failure\n", sc->ti_unit);
2837 		TI_UNLOCK(sc);
2838 		return;
2839 	}
2840 
2841 	TI_UNLOCK(sc);
2842 }
2843 
2844 static void ti_init2(sc)
2845 	struct ti_softc		*sc;
2846 {
2847 	struct ti_cmd_desc	cmd;
2848 	struct ifnet		*ifp;
2849 	u_int16_t		*m;
2850 	struct ifmedia		*ifm;
2851 	int			tmp;
2852 
2853 	ifp = sc->ti_ifp;
2854 
2855 	/* Specify MTU and interface index. */
2856 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2857 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2858 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2859 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2860 
2861 	/* Load our MAC address. */
2862 	m = (u_int16_t *)&IFP2ENADDR(sc->ti_ifp)[0];
2863 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2864 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2865 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2866 
2867 	/* Enable or disable promiscuous mode as needed. */
2868 	if (ifp->if_flags & IFF_PROMISC) {
2869 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2870 	} else {
2871 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2872 	}
2873 
2874 	/* Program multicast filter. */
2875 	ti_setmulti(sc);
2876 
2877 	/*
2878 	 * If this is a Tigon 1, we should tell the
2879 	 * firmware to use software packet filtering.
2880 	 */
2881 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2882 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2883 	}
2884 
2885 	/* Init RX ring. */
2886 	ti_init_rx_ring_std(sc);
2887 
2888 	/* Init jumbo RX ring. */
2889 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2890 		ti_init_rx_ring_jumbo(sc);
2891 
2892 	/*
2893 	 * If this is a Tigon 2, we can also configure the
2894 	 * mini ring.
2895 	 */
2896 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2897 		ti_init_rx_ring_mini(sc);
2898 
2899 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2900 	sc->ti_rx_saved_considx = 0;
2901 
2902 	/* Init TX ring. */
2903 	ti_init_tx_ring(sc);
2904 
2905 	/* Tell firmware we're alive. */
2906 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2907 
2908 	/* Enable host interrupts. */
2909 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2910 
2911 	ifp->if_flags |= IFF_RUNNING;
2912 	ifp->if_flags &= ~IFF_OACTIVE;
2913 
2914 	/*
2915 	 * Make sure to set media properly. We have to do this
2916 	 * here since we have to issue commands in order to set
2917 	 * the link negotiation and we can't issue commands until
2918 	 * the firmware is running.
2919 	 */
2920 	ifm = &sc->ifmedia;
2921 	tmp = ifm->ifm_media;
2922 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2923 	ti_ifmedia_upd(ifp);
2924 	ifm->ifm_media = tmp;
2925 }
2926 
2927 /*
2928  * Set media options.
2929  */
2930 static int
2931 ti_ifmedia_upd(ifp)
2932 	struct ifnet		*ifp;
2933 {
2934 	struct ti_softc		*sc;
2935 	struct ifmedia		*ifm;
2936 	struct ti_cmd_desc	cmd;
2937 	u_int32_t		flowctl;
2938 
2939 	sc = ifp->if_softc;
2940 	ifm = &sc->ifmedia;
2941 
2942 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2943 		return (EINVAL);
2944 
2945 	flowctl = 0;
2946 
2947 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2948 	case IFM_AUTO:
2949 		/*
2950 		 * Transmit flow control doesn't work on the Tigon 1.
2951 		 */
2952 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2953 
2954 		/*
2955 		 * Transmit flow control can also cause problems on the
2956 		 * Tigon 2, apparantly with both the copper and fiber
2957 		 * boards.  The symptom is that the interface will just
2958 		 * hang.  This was reproduced with Alteon 180 switches.
2959 		 */
2960 #if 0
2961 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2962 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2963 #endif
2964 
2965 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2966 		    TI_GLNK_FULL_DUPLEX| flowctl |
2967 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2968 
2969 		flowctl = TI_LNK_RX_FLOWCTL_Y;
2970 #if 0
2971 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2972 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2973 #endif
2974 
2975 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2976 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2977 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2978 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2979 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2980 		break;
2981 	case IFM_1000_SX:
2982 	case IFM_1000_T:
2983 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2984 #if 0
2985 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2986 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2987 #endif
2988 
2989 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2990 		    flowctl |TI_GLNK_ENB);
2991 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2992 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2993 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2994 		}
2995 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2996 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2997 		break;
2998 	case IFM_100_FX:
2999 	case IFM_10_FL:
3000 	case IFM_100_TX:
3001 	case IFM_10_T:
3002 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3003 #if 0
3004 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3005 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3006 #endif
3007 
3008 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3009 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3010 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3011 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3012 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3013 		} else {
3014 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3015 		}
3016 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3017 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3018 		} else {
3019 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3020 		}
3021 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3022 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3023 		break;
3024 	}
3025 
3026 	return (0);
3027 }
3028 
3029 /*
3030  * Report current media status.
3031  */
3032 static void
3033 ti_ifmedia_sts(ifp, ifmr)
3034 	struct ifnet		*ifp;
3035 	struct ifmediareq	*ifmr;
3036 {
3037 	struct ti_softc		*sc;
3038 	u_int32_t		media = 0;
3039 
3040 	sc = ifp->if_softc;
3041 
3042 	ifmr->ifm_status = IFM_AVALID;
3043 	ifmr->ifm_active = IFM_ETHER;
3044 
3045 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3046 		return;
3047 
3048 	ifmr->ifm_status |= IFM_ACTIVE;
3049 
3050 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3051 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3052 		if (sc->ti_copper)
3053 			ifmr->ifm_active |= IFM_1000_T;
3054 		else
3055 			ifmr->ifm_active |= IFM_1000_SX;
3056 		if (media & TI_GLNK_FULL_DUPLEX)
3057 			ifmr->ifm_active |= IFM_FDX;
3058 		else
3059 			ifmr->ifm_active |= IFM_HDX;
3060 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3061 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3062 		if (sc->ti_copper) {
3063 			if (media & TI_LNK_100MB)
3064 				ifmr->ifm_active |= IFM_100_TX;
3065 			if (media & TI_LNK_10MB)
3066 				ifmr->ifm_active |= IFM_10_T;
3067 		} else {
3068 			if (media & TI_LNK_100MB)
3069 				ifmr->ifm_active |= IFM_100_FX;
3070 			if (media & TI_LNK_10MB)
3071 				ifmr->ifm_active |= IFM_10_FL;
3072 		}
3073 		if (media & TI_LNK_FULL_DUPLEX)
3074 			ifmr->ifm_active |= IFM_FDX;
3075 		if (media & TI_LNK_HALF_DUPLEX)
3076 			ifmr->ifm_active |= IFM_HDX;
3077 	}
3078 }
3079 
3080 static int
3081 ti_ioctl(ifp, command, data)
3082 	struct ifnet		*ifp;
3083 	u_long			command;
3084 	caddr_t			data;
3085 {
3086 	struct ti_softc		*sc = ifp->if_softc;
3087 	struct ifreq		*ifr = (struct ifreq *) data;
3088 	int			mask, error = 0;
3089 	struct ti_cmd_desc	cmd;
3090 
3091 	TI_LOCK(sc);
3092 
3093 	switch (command) {
3094 	case SIOCSIFMTU:
3095 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3096 			error = EINVAL;
3097 		else {
3098 			ifp->if_mtu = ifr->ifr_mtu;
3099 			ti_init(sc);
3100 		}
3101 		break;
3102 	case SIOCSIFFLAGS:
3103 		if (ifp->if_flags & IFF_UP) {
3104 			/*
3105 			 * If only the state of the PROMISC flag changed,
3106 			 * then just use the 'set promisc mode' command
3107 			 * instead of reinitializing the entire NIC. Doing
3108 			 * a full re-init means reloading the firmware and
3109 			 * waiting for it to start up, which may take a
3110 			 * second or two.
3111 			 */
3112 			if (ifp->if_flags & IFF_RUNNING &&
3113 			    ifp->if_flags & IFF_PROMISC &&
3114 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3115 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3116 				    TI_CMD_CODE_PROMISC_ENB, 0);
3117 			} else if (ifp->if_flags & IFF_RUNNING &&
3118 			    !(ifp->if_flags & IFF_PROMISC) &&
3119 			    sc->ti_if_flags & IFF_PROMISC) {
3120 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3121 				    TI_CMD_CODE_PROMISC_DIS, 0);
3122 			} else
3123 				ti_init(sc);
3124 		} else {
3125 			if (ifp->if_flags & IFF_RUNNING) {
3126 				ti_stop(sc);
3127 			}
3128 		}
3129 		sc->ti_if_flags = ifp->if_flags;
3130 		error = 0;
3131 		break;
3132 	case SIOCADDMULTI:
3133 	case SIOCDELMULTI:
3134 		if (ifp->if_flags & IFF_RUNNING) {
3135 			ti_setmulti(sc);
3136 			error = 0;
3137 		}
3138 		break;
3139 	case SIOCSIFMEDIA:
3140 	case SIOCGIFMEDIA:
3141 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3142 		break;
3143 	case SIOCSIFCAP:
3144 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3145 		if (mask & IFCAP_HWCSUM) {
3146 			if (IFCAP_HWCSUM & ifp->if_capenable)
3147 				ifp->if_capenable &= ~IFCAP_HWCSUM;
3148 			else
3149 				ifp->if_capenable |= IFCAP_HWCSUM;
3150 			if (ifp->if_flags & IFF_RUNNING)
3151 				ti_init(sc);
3152 		}
3153 		error = 0;
3154 		break;
3155 	default:
3156 		error = ether_ioctl(ifp, command, data);
3157 		break;
3158 	}
3159 
3160 	TI_UNLOCK(sc);
3161 
3162 	return (error);
3163 }
3164 
3165 static int
3166 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3167 {
3168 	struct ti_softc *sc;
3169 
3170 	sc = dev->si_drv1;
3171 	if (sc == NULL)
3172 		return (ENODEV);
3173 
3174 	TI_LOCK(sc);
3175 	sc->ti_flags |= TI_FLAG_DEBUGING;
3176 	TI_UNLOCK(sc);
3177 
3178 	return (0);
3179 }
3180 
3181 static int
3182 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3183 {
3184 	struct ti_softc *sc;
3185 
3186 	sc = dev->si_drv1;
3187 	if (sc == NULL)
3188 		return (ENODEV);
3189 
3190 	TI_LOCK(sc);
3191 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3192 	TI_UNLOCK(sc);
3193 
3194 	return (0);
3195 }
3196 
3197 /*
3198  * This ioctl routine goes along with the Tigon character device.
3199  */
3200 static int
3201 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3202 {
3203 	int error;
3204 	struct ti_softc *sc;
3205 
3206 	sc = dev->si_drv1;
3207 	if (sc == NULL)
3208 		return (ENODEV);
3209 
3210 	error = 0;
3211 
3212 	switch (cmd) {
3213 	case TIIOCGETSTATS:
3214 	{
3215 		struct ti_stats *outstats;
3216 
3217 		outstats = (struct ti_stats *)addr;
3218 
3219 		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3220 		      sizeof(struct ti_stats));
3221 		break;
3222 	}
3223 	case TIIOCGETPARAMS:
3224 	{
3225 		struct ti_params	*params;
3226 
3227 		params = (struct ti_params *)addr;
3228 
3229 		params->ti_stat_ticks = sc->ti_stat_ticks;
3230 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3231 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3232 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3233 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3234 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3235 		params->param_mask = TI_PARAM_ALL;
3236 
3237 		error = 0;
3238 
3239 		break;
3240 	}
3241 	case TIIOCSETPARAMS:
3242 	{
3243 		struct ti_params *params;
3244 
3245 		params = (struct ti_params *)addr;
3246 
3247 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3248 			sc->ti_stat_ticks = params->ti_stat_ticks;
3249 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3250 		}
3251 
3252 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3253 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3254 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3255 				    sc->ti_rx_coal_ticks);
3256 		}
3257 
3258 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3259 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3260 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3261 				    sc->ti_tx_coal_ticks);
3262 		}
3263 
3264 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3265 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3266 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3267 				    sc->ti_rx_max_coal_bds);
3268 		}
3269 
3270 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3271 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3272 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3273 				    sc->ti_tx_max_coal_bds);
3274 		}
3275 
3276 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3277 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3278 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3279 				    sc->ti_tx_buf_ratio);
3280 		}
3281 
3282 		error = 0;
3283 
3284 		break;
3285 	}
3286 	case TIIOCSETTRACE: {
3287 		ti_trace_type	trace_type;
3288 
3289 		trace_type = *(ti_trace_type *)addr;
3290 
3291 		/*
3292 		 * Set tracing to whatever the user asked for.  Setting
3293 		 * this register to 0 should have the effect of disabling
3294 		 * tracing.
3295 		 */
3296 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3297 
3298 		error = 0;
3299 
3300 		break;
3301 	}
3302 	case TIIOCGETTRACE: {
3303 		struct ti_trace_buf	*trace_buf;
3304 		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3305 
3306 		trace_buf = (struct ti_trace_buf *)addr;
3307 
3308 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3309 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3310 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3311 
3312 #if 0
3313 		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3314 		       "trace_len = %d\n", sc->ti_unit, trace_start,
3315 		       cur_trace_ptr, trace_len);
3316 		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3317 		       trace_buf->buf_len);
3318 #endif
3319 
3320 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3321 				    trace_buf->buf_len),
3322 				    (caddr_t)trace_buf->buf, 1, 1);
3323 
3324 		if (error == 0) {
3325 			trace_buf->fill_len = min(trace_len,
3326 						  trace_buf->buf_len);
3327 			if (cur_trace_ptr < trace_start)
3328 				trace_buf->cur_trace_ptr =
3329 					trace_start - cur_trace_ptr;
3330 			else
3331 				trace_buf->cur_trace_ptr =
3332 					cur_trace_ptr - trace_start;
3333 		} else
3334 			trace_buf->fill_len = 0;
3335 
3336 		break;
3337 	}
3338 
3339 	/*
3340 	 * For debugging, five ioctls are needed:
3341 	 * ALT_ATTACH
3342 	 * ALT_READ_TG_REG
3343 	 * ALT_WRITE_TG_REG
3344 	 * ALT_READ_TG_MEM
3345 	 * ALT_WRITE_TG_MEM
3346 	 */
3347 	case ALT_ATTACH:
3348 		/*
3349 		 * From what I can tell, Alteon's Solaris Tigon driver
3350 		 * only has one character device, so you have to attach
3351 		 * to the Tigon board you're interested in.  This seems
3352 		 * like a not-so-good way to do things, since unless you
3353 		 * subsequently specify the unit number of the device
3354 		 * you're interested in in every ioctl, you'll only be
3355 		 * able to debug one board at a time.
3356 		 */
3357 		error = 0;
3358 		break;
3359 	case ALT_READ_TG_MEM:
3360 	case ALT_WRITE_TG_MEM:
3361 	{
3362 		struct tg_mem *mem_param;
3363 		u_int32_t sram_end, scratch_end;
3364 
3365 		mem_param = (struct tg_mem *)addr;
3366 
3367 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3368 			sram_end = TI_END_SRAM_I;
3369 			scratch_end = TI_END_SCRATCH_I;
3370 		} else {
3371 			sram_end = TI_END_SRAM_II;
3372 			scratch_end = TI_END_SCRATCH_II;
3373 		}
3374 
3375 		/*
3376 		 * For now, we'll only handle accessing regular SRAM,
3377 		 * nothing else.
3378 		 */
3379 		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3380 		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3381 			/*
3382 			 * In this instance, we always copy to/from user
3383 			 * space, so the user space argument is set to 1.
3384 			 */
3385 			error = ti_copy_mem(sc, mem_param->tgAddr,
3386 					    mem_param->len,
3387 					    mem_param->userAddr, 1,
3388 					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3389 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3390 			&& (mem_param->tgAddr <= scratch_end)) {
3391 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3392 						mem_param->len,
3393 						mem_param->userAddr, 1,
3394 						(cmd == ALT_READ_TG_MEM) ?
3395 						1 : 0, TI_PROCESSOR_A);
3396 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3397 			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3398 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3399 				printf("ti%d:  invalid memory range for "
3400 				       "Tigon I\n", sc->ti_unit);
3401 				error = EINVAL;
3402 				break;
3403 			}
3404 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3405 						TI_SCRATCH_DEBUG_OFF,
3406 						mem_param->len,
3407 						mem_param->userAddr, 1,
3408 						(cmd == ALT_READ_TG_MEM) ?
3409 						1 : 0, TI_PROCESSOR_B);
3410 		} else {
3411 			printf("ti%d: memory address %#x len %d is out of "
3412 			       "supported range\n", sc->ti_unit,
3413 			        mem_param->tgAddr, mem_param->len);
3414 			error = EINVAL;
3415 		}
3416 
3417 		break;
3418 	}
3419 	case ALT_READ_TG_REG:
3420 	case ALT_WRITE_TG_REG:
3421 	{
3422 		struct tg_reg	*regs;
3423 		u_int32_t	tmpval;
3424 
3425 		regs = (struct tg_reg *)addr;
3426 
3427 		/*
3428 		 * Make sure the address in question isn't out of range.
3429 		 */
3430 		if (regs->addr > TI_REG_MAX) {
3431 			error = EINVAL;
3432 			break;
3433 		}
3434 		if (cmd == ALT_READ_TG_REG) {
3435 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3436 						regs->addr, &tmpval, 1);
3437 			regs->data = ntohl(tmpval);
3438 #if 0
3439 			if ((regs->addr == TI_CPU_STATE)
3440 			 || (regs->addr == TI_CPU_CTL_B)) {
3441 				printf("ti%d: register %#x = %#x\n",
3442 				       sc->ti_unit, regs->addr, tmpval);
3443 			}
3444 #endif
3445 		} else {
3446 			tmpval = htonl(regs->data);
3447 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3448 						 regs->addr, &tmpval, 1);
3449 		}
3450 
3451 		break;
3452 	}
3453 	default:
3454 		error = ENOTTY;
3455 		break;
3456 	}
3457 	return (error);
3458 }
3459 
3460 static void
3461 ti_watchdog(ifp)
3462 	struct ifnet		*ifp;
3463 {
3464 	struct ti_softc		*sc;
3465 
3466 	sc = ifp->if_softc;
3467 	TI_LOCK(sc);
3468 
3469 	/*
3470 	 * When we're debugging, the chip is often stopped for long periods
3471 	 * of time, and that would normally cause the watchdog timer to fire.
3472 	 * Since that impedes debugging, we don't want to do that.
3473 	 */
3474 	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3475 		TI_UNLOCK(sc);
3476 		return;
3477 	}
3478 
3479 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3480 	ti_stop(sc);
3481 	ti_init(sc);
3482 
3483 	ifp->if_oerrors++;
3484 	TI_UNLOCK(sc);
3485 }
3486 
3487 /*
3488  * Stop the adapter and free any mbufs allocated to the
3489  * RX and TX lists.
3490  */
3491 static void
3492 ti_stop(sc)
3493 	struct ti_softc		*sc;
3494 {
3495 	struct ifnet		*ifp;
3496 	struct ti_cmd_desc	cmd;
3497 
3498 	TI_LOCK(sc);
3499 
3500 	ifp = sc->ti_ifp;
3501 
3502 	/* Disable host interrupts. */
3503 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3504 	/*
3505 	 * Tell firmware we're shutting down.
3506 	 */
3507 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3508 
3509 	/* Halt and reinitialize. */
3510 	ti_chipinit(sc);
3511 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3512 	ti_chipinit(sc);
3513 
3514 	/* Free the RX lists. */
3515 	ti_free_rx_ring_std(sc);
3516 
3517 	/* Free jumbo RX list. */
3518 	ti_free_rx_ring_jumbo(sc);
3519 
3520 	/* Free mini RX list. */
3521 	ti_free_rx_ring_mini(sc);
3522 
3523 	/* Free TX buffers. */
3524 	ti_free_tx_ring(sc);
3525 
3526 	sc->ti_ev_prodidx.ti_idx = 0;
3527 	sc->ti_return_prodidx.ti_idx = 0;
3528 	sc->ti_tx_considx.ti_idx = 0;
3529 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3530 
3531 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3532 	TI_UNLOCK(sc);
3533 }
3534 
3535 /*
3536  * Stop all chip I/O so that the kernel's probe routines don't
3537  * get confused by errant DMAs when rebooting.
3538  */
3539 static void
3540 ti_shutdown(dev)
3541 	device_t		dev;
3542 {
3543 	struct ti_softc		*sc;
3544 
3545 	sc = device_get_softc(dev);
3546 	TI_LOCK(sc);
3547 	ti_chipinit(sc);
3548 	TI_UNLOCK(sc);
3549 }
3550