xref: /freebsd/sys/dev/ti/if_ti.c (revision d37ea99837e6ad50837fd9fe1771ddf1c3ba6002)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/ethernet.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_types.h>
101 #include <net/if_vlan_var.h>
102 
103 #include <net/bpf.h>
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/bus_memio.h>
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 /* #define TI_PRIVATE_JUMBOS */
118 
119 #if !defined(TI_PRIVATE_JUMBOS)
120 #include <sys/sockio.h>
121 #include <sys/uio.h>
122 #include <sys/lock.h>
123 #include <vm/vm_extern.h>
124 #include <vm/pmap.h>
125 #include <vm/vm_map.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_param.h>
128 #include <vm/vm_pageout.h>
129 #include <sys/vmmeter.h>
130 #include <vm/vm_page.h>
131 #include <vm/vm_object.h>
132 #include <vm/vm_kern.h>
133 #include <sys/proc.h>
134 #include <sys/jumbo.h>
135 #endif /* !TI_PRIVATE_JUMBOS */
136 
137 #include <dev/pci/pcireg.h>
138 #include <dev/pci/pcivar.h>
139 
140 #include <sys/tiio.h>
141 #include <pci/if_tireg.h>
142 #include <pci/ti_fw.h>
143 #include <pci/ti_fw2.h>
144 
145 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
146 /*
147  * We can only turn on header splitting if we're using extended receive
148  * BDs.
149  */
150 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
151 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
152 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
153 
154 struct ti_softc *tis[8];
155 
156 typedef enum {
157 	TI_SWAP_HTON,
158 	TI_SWAP_NTOH
159 } ti_swap_type;
160 
161 
162 /*
163  * Various supported device vendors/types and their names.
164  */
165 
166 static struct ti_type ti_devs[] = {
167 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
168 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
169 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
170 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
171 	{ TC_VENDORID,	TC_DEVICEID_3C985,
172 		"3Com 3c985-SX Gigabit Ethernet" },
173 	{ NG_VENDORID, NG_DEVICEID_GA620,
174 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
175 	{ NG_VENDORID, NG_DEVICEID_GA620T,
176 		"Netgear GA620 1000baseT Gigabit Ethernet" },
177 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
178 		"Silicon Graphics Gigabit Ethernet" },
179 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
180 		"Farallon PN9000SX Gigabit Ethernet" },
181 	{ 0, 0, NULL }
182 };
183 
184 
185 static	d_open_t	ti_open;
186 static	d_close_t	ti_close;
187 static	d_ioctl_t	ti_ioctl2;
188 
189 static struct cdevsw ti_cdevsw = {
190 	.d_version =	D_VERSION,
191 	.d_flags =	D_NEEDGIANT,
192 	.d_open =	ti_open,
193 	.d_close =	ti_close,
194 	.d_ioctl =	ti_ioctl2,
195 	.d_name =	"ti",
196 };
197 
198 static int ti_probe		(device_t);
199 static int ti_attach		(device_t);
200 static int ti_detach		(device_t);
201 static void ti_txeof		(struct ti_softc *);
202 static void ti_rxeof		(struct ti_softc *);
203 
204 static void ti_stats_update	(struct ti_softc *);
205 static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
206 
207 static void ti_intr		(void *);
208 static void ti_start		(struct ifnet *);
209 static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
210 static void ti_init		(void *);
211 static void ti_init2		(struct ti_softc *);
212 static void ti_stop		(struct ti_softc *);
213 static void ti_watchdog		(struct ifnet *);
214 static void ti_shutdown		(device_t);
215 static int ti_ifmedia_upd	(struct ifnet *);
216 static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217 
218 static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
219 static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
220 static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
221 
222 static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
223 static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
224 static void ti_setmulti		(struct ti_softc *);
225 
226 static void ti_mem		(struct ti_softc *, u_int32_t,
227 					u_int32_t, caddr_t);
228 static int ti_copy_mem		(struct ti_softc *, u_int32_t,
229 					u_int32_t, caddr_t, int, int);
230 static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
231 					u_int32_t, caddr_t, int, int, int);
232 static int ti_bcopy_swap	(const void *, void *, size_t,
233 					ti_swap_type);
234 static void ti_loadfw		(struct ti_softc *);
235 static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
236 static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
237 					caddr_t, int);
238 static void ti_handle_events	(struct ti_softc *);
239 #ifdef TI_PRIVATE_JUMBOS
240 static int ti_alloc_jumbo_mem	(struct ti_softc *);
241 static void *ti_jalloc		(struct ti_softc *);
242 static void ti_jfree		(void *, void *);
243 #endif /* TI_PRIVATE_JUMBOS */
244 static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
245 static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
246 static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
247 static int ti_init_rx_ring_std	(struct ti_softc *);
248 static void ti_free_rx_ring_std	(struct ti_softc *);
249 static int ti_init_rx_ring_jumbo	(struct ti_softc *);
250 static void ti_free_rx_ring_jumbo	(struct ti_softc *);
251 static int ti_init_rx_ring_mini	(struct ti_softc *);
252 static void ti_free_rx_ring_mini	(struct ti_softc *);
253 static void ti_free_tx_ring	(struct ti_softc *);
254 static int ti_init_tx_ring	(struct ti_softc *);
255 
256 static int ti_64bitslot_war	(struct ti_softc *);
257 static int ti_chipinit		(struct ti_softc *);
258 static int ti_gibinit		(struct ti_softc *);
259 
260 #ifdef TI_JUMBO_HDRSPLIT
261 static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
262 					     int pkt_len, int idx);
263 #endif /* TI_JUMBO_HDRSPLIT */
264 
265 static device_method_t ti_methods[] = {
266 	/* Device interface */
267 	DEVMETHOD(device_probe,		ti_probe),
268 	DEVMETHOD(device_attach,	ti_attach),
269 	DEVMETHOD(device_detach,	ti_detach),
270 	DEVMETHOD(device_shutdown,	ti_shutdown),
271 	{ 0, 0 }
272 };
273 
274 static driver_t ti_driver = {
275 	"ti",
276 	ti_methods,
277 	sizeof(struct ti_softc)
278 };
279 
280 static devclass_t ti_devclass;
281 
282 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
283 MODULE_DEPEND(ti, pci, 1, 1, 1);
284 MODULE_DEPEND(ti, ether, 1, 1, 1);
285 
286 /*
287  * Send an instruction or address to the EEPROM, check for ACK.
288  */
289 static u_int32_t ti_eeprom_putbyte(sc, byte)
290 	struct ti_softc		*sc;
291 	int			byte;
292 {
293 	register int		i, ack = 0;
294 
295 	/*
296 	 * Make sure we're in TX mode.
297 	 */
298 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
299 
300 	/*
301 	 * Feed in each bit and stobe the clock.
302 	 */
303 	for (i = 0x80; i; i >>= 1) {
304 		if (byte & i) {
305 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
306 		} else {
307 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
308 		}
309 		DELAY(1);
310 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
311 		DELAY(1);
312 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
313 	}
314 
315 	/*
316 	 * Turn off TX mode.
317 	 */
318 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
319 
320 	/*
321 	 * Check for ack.
322 	 */
323 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
324 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
325 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 
327 	return(ack);
328 }
329 
330 /*
331  * Read a byte of data stored in the EEPROM at address 'addr.'
332  * We have to send two address bytes since the EEPROM can hold
333  * more than 256 bytes of data.
334  */
335 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
336 	struct ti_softc		*sc;
337 	int			addr;
338 	u_int8_t		*dest;
339 {
340 	register int		i;
341 	u_int8_t		byte = 0;
342 
343 	EEPROM_START;
344 
345 	/*
346 	 * Send write control code to EEPROM.
347 	 */
348 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
349 		printf("ti%d: failed to send write command, status: %x\n",
350 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351 		return(1);
352 	}
353 
354 	/*
355 	 * Send first byte of address of byte we want to read.
356 	 */
357 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
358 		printf("ti%d: failed to send address, status: %x\n",
359 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
360 		return(1);
361 	}
362 	/*
363 	 * Send second byte address of byte we want to read.
364 	 */
365 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
366 		printf("ti%d: failed to send address, status: %x\n",
367 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
368 		return(1);
369 	}
370 
371 	EEPROM_STOP;
372 	EEPROM_START;
373 	/*
374 	 * Send read control code to EEPROM.
375 	 */
376 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
377 		printf("ti%d: failed to send read command, status: %x\n",
378 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
379 		return(1);
380 	}
381 
382 	/*
383 	 * Start reading bits from EEPROM.
384 	 */
385 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
386 	for (i = 0x80; i; i >>= 1) {
387 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
388 		DELAY(1);
389 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
390 			byte |= i;
391 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
392 		DELAY(1);
393 	}
394 
395 	EEPROM_STOP;
396 
397 	/*
398 	 * No ACK generated for read, so just return byte.
399 	 */
400 
401 	*dest = byte;
402 
403 	return(0);
404 }
405 
406 /*
407  * Read a sequence of bytes from the EEPROM.
408  */
409 static int
410 ti_read_eeprom(sc, dest, off, cnt)
411 	struct ti_softc		*sc;
412 	caddr_t			dest;
413 	int			off;
414 	int			cnt;
415 {
416 	int			err = 0, i;
417 	u_int8_t		byte = 0;
418 
419 	for (i = 0; i < cnt; i++) {
420 		err = ti_eeprom_getbyte(sc, off + i, &byte);
421 		if (err)
422 			break;
423 		*(dest + i) = byte;
424 	}
425 
426 	return(err ? 1 : 0);
427 }
428 
429 /*
430  * NIC memory access function. Can be used to either clear a section
431  * of NIC local memory or (if buf is non-NULL) copy data into it.
432  */
433 static void
434 ti_mem(sc, addr, len, buf)
435 	struct ti_softc		*sc;
436 	u_int32_t		addr, len;
437 	caddr_t			buf;
438 {
439 	int			segptr, segsize, cnt;
440 	caddr_t			ti_winbase, ptr;
441 
442 	segptr = addr;
443 	cnt = len;
444 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
445 	ptr = buf;
446 
447 	while(cnt) {
448 		if (cnt < TI_WINLEN)
449 			segsize = cnt;
450 		else
451 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
452 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
453 		if (buf == NULL)
454 			bzero((char *)ti_winbase + (segptr &
455 			    (TI_WINLEN - 1)), segsize);
456 		else {
457 			bcopy((char *)ptr, (char *)ti_winbase +
458 			    (segptr & (TI_WINLEN - 1)), segsize);
459 			ptr += segsize;
460 		}
461 		segptr += segsize;
462 		cnt -= segsize;
463 	}
464 
465 	return;
466 }
467 
468 static int
469 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
470 	struct ti_softc		*sc;
471 	u_int32_t		tigon_addr, len;
472 	caddr_t			buf;
473 	int			useraddr, readdata;
474 {
475 	int		segptr, segsize, cnt;
476 	caddr_t		ptr;
477 	u_int32_t	origwin;
478 	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
479 	int		resid, segresid;
480 	int		first_pass;
481 
482 	/*
483 	 * At the moment, we don't handle non-aligned cases, we just bail.
484 	 * If this proves to be a problem, it will be fixed.
485 	 */
486 	if ((readdata == 0)
487 	 && (tigon_addr & 0x3)) {
488 		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
489 		       "word-aligned\n", sc->ti_unit, tigon_addr);
490 		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
491 		       "supported\n", sc->ti_unit);
492 		return(EINVAL);
493 	}
494 
495 	segptr = tigon_addr & ~0x3;
496 	segresid = tigon_addr - segptr;
497 
498 	/*
499 	 * This is the non-aligned amount left over that we'll need to
500 	 * copy.
501 	 */
502 	resid = len & 0x3;
503 
504 	/* Add in the left over amount at the front of the buffer */
505 	resid += segresid;
506 
507 	cnt = len & ~0x3;
508 	/*
509 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
510 	 * decrease the residual by that much.
511 	 */
512 	cnt += resid & ~0x3;
513 	resid -= resid & ~0x3;
514 
515 	ptr = buf;
516 
517 	first_pass = 1;
518 
519 	/*
520 	 * Make sure we aren't interrupted while we're changing the window
521 	 * pointer.
522 	 */
523 	TI_LOCK(sc);
524 
525 	/*
526 	 * Save the old window base value.
527 	 */
528 	origwin = CSR_READ_4(sc, TI_WINBASE);
529 
530 	while(cnt) {
531 		bus_size_t ti_offset;
532 
533 		if (cnt < TI_WINLEN)
534 			segsize = cnt;
535 		else
536 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
537 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
538 
539 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
540 
541 		if (readdata) {
542 
543 			bus_space_read_region_4(sc->ti_btag,
544 						sc->ti_bhandle, ti_offset,
545 						(u_int32_t *)tmparray,
546 						segsize >> 2);
547 			if (useraddr) {
548 				/*
549 				 * Yeah, this is a little on the kludgy
550 				 * side, but at least this code is only
551 				 * used for debugging.
552 				 */
553 				ti_bcopy_swap(tmparray, tmparray2, segsize,
554 					      TI_SWAP_NTOH);
555 
556 				if (first_pass) {
557 					copyout(&tmparray2[segresid], ptr,
558 						segsize - segresid);
559 					first_pass = 0;
560 				} else
561 					copyout(tmparray2, ptr, segsize);
562 			} else {
563 				if (first_pass) {
564 
565 					ti_bcopy_swap(tmparray, tmparray2,
566 						      segsize, TI_SWAP_NTOH);
567 					bcopy(&tmparray2[segresid], ptr,
568 					      segsize - segresid);
569 					first_pass = 0;
570 				} else
571 					ti_bcopy_swap(tmparray, ptr, segsize,
572 						      TI_SWAP_NTOH);
573 			}
574 
575 		} else {
576 			if (useraddr) {
577 				copyin(ptr, tmparray2, segsize);
578 				ti_bcopy_swap(tmparray2, tmparray, segsize,
579 					      TI_SWAP_HTON);
580 			} else
581 				ti_bcopy_swap(ptr, tmparray, segsize,
582 					      TI_SWAP_HTON);
583 
584 			bus_space_write_region_4(sc->ti_btag,
585 						 sc->ti_bhandle, ti_offset,
586 						 (u_int32_t *)tmparray,
587 						 segsize >> 2);
588 		}
589 		segptr += segsize;
590 		ptr += segsize;
591 		cnt -= segsize;
592 	}
593 
594 	/*
595 	 * Handle leftover, non-word-aligned bytes.
596 	 */
597 	if (resid != 0) {
598 		u_int32_t	tmpval, tmpval2;
599 		bus_size_t	ti_offset;
600 
601 		/*
602 		 * Set the segment pointer.
603 		 */
604 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
605 
606 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
607 
608 		/*
609 		 * First, grab whatever is in our source/destination.
610 		 * We'll obviously need this for reads, but also for
611 		 * writes, since we'll be doing read/modify/write.
612 		 */
613 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
614 					ti_offset, &tmpval, 1);
615 
616 		/*
617 		 * Next, translate this from little-endian to big-endian
618 		 * (at least on i386 boxes).
619 		 */
620 		tmpval2 = ntohl(tmpval);
621 
622 		if (readdata) {
623 			/*
624 			 * If we're reading, just copy the leftover number
625 			 * of bytes from the host byte order buffer to
626 			 * the user's buffer.
627 			 */
628 			if (useraddr)
629 				copyout(&tmpval2, ptr, resid);
630 			else
631 				bcopy(&tmpval2, ptr, resid);
632 		} else {
633 			/*
634 			 * If we're writing, first copy the bytes to be
635 			 * written into the network byte order buffer,
636 			 * leaving the rest of the buffer with whatever was
637 			 * originally in there.  Then, swap the bytes
638 			 * around into host order and write them out.
639 			 *
640 			 * XXX KDM the read side of this has been verified
641 			 * to work, but the write side of it has not been
642 			 * verified.  So user beware.
643 			 */
644 			if (useraddr)
645 				copyin(ptr, &tmpval2, resid);
646 			else
647 				bcopy(ptr, &tmpval2, resid);
648 
649 			tmpval = htonl(tmpval2);
650 
651 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
652 						 ti_offset, &tmpval, 1);
653 		}
654 	}
655 
656 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
657 
658 	TI_UNLOCK(sc);
659 
660 	return(0);
661 }
662 
663 static int
664 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
665 	struct ti_softc		*sc;
666 	u_int32_t		tigon_addr, len;
667 	caddr_t			buf;
668 	int			useraddr, readdata;
669 	int			cpu;
670 {
671 	u_int32_t	segptr;
672 	int		cnt;
673 	u_int32_t	tmpval, tmpval2;
674 	caddr_t		ptr;
675 
676 	/*
677 	 * At the moment, we don't handle non-aligned cases, we just bail.
678 	 * If this proves to be a problem, it will be fixed.
679 	 */
680 	if (tigon_addr & 0x3) {
681 		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
682 		       "word-aligned\n", sc->ti_unit, tigon_addr);
683 		return(EINVAL);
684 	}
685 
686 	if (len & 0x3) {
687 		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
688 		       "word-aligned\n", sc->ti_unit, len);
689 		return(EINVAL);
690 	}
691 
692 	segptr = tigon_addr;
693 	cnt = len;
694 	ptr = buf;
695 
696 	TI_LOCK(sc);
697 
698 	while (cnt) {
699 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
700 
701 		if (readdata) {
702 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
703 
704 			tmpval = ntohl(tmpval2);
705 
706 			/*
707 			 * Note:  I've used this debugging interface
708 			 * extensively with Alteon's 12.3.15 firmware,
709 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
710 			 *
711 			 * When you compile the firmware without
712 			 * optimization, which is necessary sometimes in
713 			 * order to properly step through it, you sometimes
714 			 * read out a bogus value of 0xc0017c instead of
715 			 * whatever was supposed to be in that scratchpad
716 			 * location.  That value is on the stack somewhere,
717 			 * but I've never been able to figure out what was
718 			 * causing the problem.
719 			 *
720 			 * The address seems to pop up in random places,
721 			 * often not in the same place on two subsequent
722 			 * reads.
723 			 *
724 			 * In any case, the underlying data doesn't seem
725 			 * to be affected, just the value read out.
726 			 *
727 			 * KDM, 3/7/2000
728 			 */
729 
730 			if (tmpval2 == 0xc0017c)
731 				printf("ti%d: found 0xc0017c at %#x "
732 				       "(tmpval2)\n", sc->ti_unit, segptr);
733 
734 			if (tmpval == 0xc0017c)
735 				printf("ti%d: found 0xc0017c at %#x "
736 				       "(tmpval)\n", sc->ti_unit, segptr);
737 
738 			if (useraddr)
739 				copyout(&tmpval, ptr, 4);
740 			else
741 				bcopy(&tmpval, ptr, 4);
742 		} else {
743 			if (useraddr)
744 				copyin(ptr, &tmpval2, 4);
745 			else
746 				bcopy(ptr, &tmpval2, 4);
747 
748 			tmpval = htonl(tmpval2);
749 
750 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
751 		}
752 
753 		cnt -= 4;
754 		segptr += 4;
755 		ptr += 4;
756 	}
757 
758 	TI_UNLOCK(sc);
759 
760 	return(0);
761 }
762 
763 static int
764 ti_bcopy_swap(src, dst, len, swap_type)
765 	const void	*src;
766 	void		*dst;
767 	size_t		len;
768 	ti_swap_type	swap_type;
769 {
770 	const u_int8_t *tmpsrc;
771 	u_int8_t *tmpdst;
772 	size_t tmplen;
773 
774 	if (len & 0x3) {
775 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
776 		       len);
777 		return(-1);
778 	}
779 
780 	tmpsrc = src;
781 	tmpdst = dst;
782 	tmplen = len;
783 
784 	while (tmplen) {
785 		if (swap_type == TI_SWAP_NTOH)
786 			*(u_int32_t *)tmpdst =
787 				ntohl(*(const u_int32_t *)tmpsrc);
788 		else
789 			*(u_int32_t *)tmpdst =
790 				htonl(*(const u_int32_t *)tmpsrc);
791 
792 		tmpsrc += 4;
793 		tmpdst += 4;
794 		tmplen -= 4;
795 	}
796 
797 	return(0);
798 }
799 
800 /*
801  * Load firmware image into the NIC. Check that the firmware revision
802  * is acceptable and see if we want the firmware for the Tigon 1 or
803  * Tigon 2.
804  */
805 static void
806 ti_loadfw(sc)
807 	struct ti_softc		*sc;
808 {
809 	switch(sc->ti_hwrev) {
810 	case TI_HWREV_TIGON:
811 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
812 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
813 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
814 			printf("ti%d: firmware revision mismatch; want "
815 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
816 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
817 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
818 			    tigonFwReleaseMinor, tigonFwReleaseFix);
819 			return;
820 		}
821 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
822 		    (caddr_t)tigonFwText);
823 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
824 		    (caddr_t)tigonFwData);
825 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
826 		    (caddr_t)tigonFwRodata);
827 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
828 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
829 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
830 		break;
831 	case TI_HWREV_TIGON_II:
832 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
833 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
834 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
835 			printf("ti%d: firmware revision mismatch; want "
836 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
837 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
838 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
839 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
840 			return;
841 		}
842 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
843 		    (caddr_t)tigon2FwText);
844 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
845 		    (caddr_t)tigon2FwData);
846 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
847 		    (caddr_t)tigon2FwRodata);
848 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
849 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
850 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
851 		break;
852 	default:
853 		printf("ti%d: can't load firmware: unknown hardware rev\n",
854 		    sc->ti_unit);
855 		break;
856 	}
857 
858 	return;
859 }
860 
861 /*
862  * Send the NIC a command via the command ring.
863  */
864 static void
865 ti_cmd(sc, cmd)
866 	struct ti_softc		*sc;
867 	struct ti_cmd_desc	*cmd;
868 {
869 	u_int32_t		index;
870 
871 	if (sc->ti_rdata->ti_cmd_ring == NULL)
872 		return;
873 
874 	index = sc->ti_cmd_saved_prodidx;
875 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
876 	TI_INC(index, TI_CMD_RING_CNT);
877 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
878 	sc->ti_cmd_saved_prodidx = index;
879 
880 	return;
881 }
882 
883 /*
884  * Send the NIC an extended command. The 'len' parameter specifies the
885  * number of command slots to include after the initial command.
886  */
887 static void
888 ti_cmd_ext(sc, cmd, arg, len)
889 	struct ti_softc		*sc;
890 	struct ti_cmd_desc	*cmd;
891 	caddr_t			arg;
892 	int			len;
893 {
894 	u_int32_t		index;
895 	register int		i;
896 
897 	if (sc->ti_rdata->ti_cmd_ring == NULL)
898 		return;
899 
900 	index = sc->ti_cmd_saved_prodidx;
901 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
902 	TI_INC(index, TI_CMD_RING_CNT);
903 	for (i = 0; i < len; i++) {
904 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
905 		    *(u_int32_t *)(&arg[i * 4]));
906 		TI_INC(index, TI_CMD_RING_CNT);
907 	}
908 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
909 	sc->ti_cmd_saved_prodidx = index;
910 
911 	return;
912 }
913 
914 /*
915  * Handle events that have triggered interrupts.
916  */
917 static void
918 ti_handle_events(sc)
919 	struct ti_softc		*sc;
920 {
921 	struct ti_event_desc	*e;
922 
923 	if (sc->ti_rdata->ti_event_ring == NULL)
924 		return;
925 
926 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
927 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
928 		switch(e->ti_event) {
929 		case TI_EV_LINKSTAT_CHANGED:
930 			sc->ti_linkstat = e->ti_code;
931 			if (e->ti_code == TI_EV_CODE_LINK_UP)
932 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
933 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
934 				printf("ti%d: gigabit link up\n", sc->ti_unit);
935 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
936 				printf("ti%d: link down\n", sc->ti_unit);
937 			break;
938 		case TI_EV_ERROR:
939 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
940 				printf("ti%d: invalid command\n", sc->ti_unit);
941 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
942 				printf("ti%d: unknown command\n", sc->ti_unit);
943 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
944 				printf("ti%d: bad config data\n", sc->ti_unit);
945 			break;
946 		case TI_EV_FIRMWARE_UP:
947 			ti_init2(sc);
948 			break;
949 		case TI_EV_STATS_UPDATED:
950 			ti_stats_update(sc);
951 			break;
952 		case TI_EV_RESET_JUMBO_RING:
953 		case TI_EV_MCAST_UPDATED:
954 			/* Who cares. */
955 			break;
956 		default:
957 			printf("ti%d: unknown event: %d\n",
958 			    sc->ti_unit, e->ti_event);
959 			break;
960 		}
961 		/* Advance the consumer index. */
962 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
963 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
964 	}
965 
966 	return;
967 }
968 
969 #ifdef TI_PRIVATE_JUMBOS
970 
971 /*
972  * Memory management for the jumbo receive ring is a pain in the
973  * butt. We need to allocate at least 9018 bytes of space per frame,
974  * _and_ it has to be contiguous (unless you use the extended
975  * jumbo descriptor format). Using malloc() all the time won't
976  * work: malloc() allocates memory in powers of two, which means we
977  * would end up wasting a considerable amount of space by allocating
978  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
979  * to do our own memory management.
980  *
981  * The driver needs to allocate a contiguous chunk of memory at boot
982  * time. We then chop this up ourselves into 9K pieces and use them
983  * as external mbuf storage.
984  *
985  * One issue here is how much memory to allocate. The jumbo ring has
986  * 256 slots in it, but at 9K per slot than can consume over 2MB of
987  * RAM. This is a bit much, especially considering we also need
988  * RAM for the standard ring and mini ring (on the Tigon 2). To
989  * save space, we only actually allocate enough memory for 64 slots
990  * by default, which works out to between 500 and 600K. This can
991  * be tuned by changing a #define in if_tireg.h.
992  */
993 
994 static int
995 ti_alloc_jumbo_mem(sc)
996 	struct ti_softc		*sc;
997 {
998 	caddr_t			ptr;
999 	register int		i;
1000 	struct ti_jpool_entry   *entry;
1001 
1002 	/* Grab a big chunk o' storage. */
1003 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
1004 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1005 
1006 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
1007 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
1008 		return(ENOBUFS);
1009 	}
1010 
1011 	SLIST_INIT(&sc->ti_jfree_listhead);
1012 	SLIST_INIT(&sc->ti_jinuse_listhead);
1013 
1014 	/*
1015 	 * Now divide it up into 9K pieces and save the addresses
1016 	 * in an array.
1017 	 */
1018 	ptr = sc->ti_cdata.ti_jumbo_buf;
1019 	for (i = 0; i < TI_JSLOTS; i++) {
1020 		sc->ti_cdata.ti_jslots[i] = ptr;
1021 		ptr += TI_JLEN;
1022 		entry = malloc(sizeof(struct ti_jpool_entry),
1023 			       M_DEVBUF, M_NOWAIT);
1024 		if (entry == NULL) {
1025 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1026 			           M_DEVBUF);
1027 			sc->ti_cdata.ti_jumbo_buf = NULL;
1028 			printf("ti%d: no memory for jumbo "
1029 			    "buffer queue!\n", sc->ti_unit);
1030 			return(ENOBUFS);
1031 		}
1032 		entry->slot = i;
1033 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1034 	}
1035 
1036 	return(0);
1037 }
1038 
1039 /*
1040  * Allocate a jumbo buffer.
1041  */
1042 static void *ti_jalloc(sc)
1043 	struct ti_softc		*sc;
1044 {
1045 	struct ti_jpool_entry   *entry;
1046 
1047 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1048 
1049 	if (entry == NULL) {
1050 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1051 		return(NULL);
1052 	}
1053 
1054 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1055 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1056 	return(sc->ti_cdata.ti_jslots[entry->slot]);
1057 }
1058 
1059 /*
1060  * Release a jumbo buffer.
1061  */
1062 static void
1063 ti_jfree(buf, args)
1064 	void			*buf;
1065 	void			*args;
1066 {
1067 	struct ti_softc		*sc;
1068 	int		        i;
1069 	struct ti_jpool_entry   *entry;
1070 
1071 	/* Extract the softc struct pointer. */
1072 	sc = (struct ti_softc *)args;
1073 
1074 	if (sc == NULL)
1075 		panic("ti_jfree: didn't get softc pointer!");
1076 
1077 	/* calculate the slot this buffer belongs to */
1078 	i = ((vm_offset_t)buf
1079 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1080 
1081 	if ((i < 0) || (i >= TI_JSLOTS))
1082 		panic("ti_jfree: asked to free buffer that we don't manage!");
1083 
1084 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1085 	if (entry == NULL)
1086 		panic("ti_jfree: buffer not in use!");
1087 	entry->slot = i;
1088 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1089 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1090 
1091 	return;
1092 }
1093 
1094 #endif /* TI_PRIVATE_JUMBOS */
1095 
1096 /*
1097  * Intialize a standard receive ring descriptor.
1098  */
1099 static int
1100 ti_newbuf_std(sc, i, m)
1101 	struct ti_softc		*sc;
1102 	int			i;
1103 	struct mbuf		*m;
1104 {
1105 	struct mbuf		*m_new = NULL;
1106 	struct ti_rx_desc	*r;
1107 
1108 	if (m == NULL) {
1109 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1110 		if (m_new == NULL)
1111 			return(ENOBUFS);
1112 
1113 		MCLGET(m_new, M_DONTWAIT);
1114 		if (!(m_new->m_flags & M_EXT)) {
1115 			m_freem(m_new);
1116 			return(ENOBUFS);
1117 		}
1118 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1119 	} else {
1120 		m_new = m;
1121 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1122 		m_new->m_data = m_new->m_ext.ext_buf;
1123 	}
1124 
1125 	m_adj(m_new, ETHER_ALIGN);
1126 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1127 	r = &sc->ti_rdata->ti_rx_std_ring[i];
1128 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1129 	r->ti_type = TI_BDTYPE_RECV_BD;
1130 	r->ti_flags = 0;
1131 	if (sc->arpcom.ac_if.if_hwassist)
1132 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1133 	r->ti_len = m_new->m_len;
1134 	r->ti_idx = i;
1135 
1136 	return(0);
1137 }
1138 
1139 /*
1140  * Intialize a mini receive ring descriptor. This only applies to
1141  * the Tigon 2.
1142  */
1143 static int
1144 ti_newbuf_mini(sc, i, m)
1145 	struct ti_softc		*sc;
1146 	int			i;
1147 	struct mbuf		*m;
1148 {
1149 	struct mbuf		*m_new = NULL;
1150 	struct ti_rx_desc	*r;
1151 
1152 	if (m == NULL) {
1153 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1154 		if (m_new == NULL) {
1155 			return(ENOBUFS);
1156 		}
1157 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1158 	} else {
1159 		m_new = m;
1160 		m_new->m_data = m_new->m_pktdat;
1161 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1162 	}
1163 
1164 	m_adj(m_new, ETHER_ALIGN);
1165 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1166 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1167 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1168 	r->ti_type = TI_BDTYPE_RECV_BD;
1169 	r->ti_flags = TI_BDFLAG_MINI_RING;
1170 	if (sc->arpcom.ac_if.if_hwassist)
1171 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1172 	r->ti_len = m_new->m_len;
1173 	r->ti_idx = i;
1174 
1175 	return(0);
1176 }
1177 
1178 #ifdef TI_PRIVATE_JUMBOS
1179 
1180 /*
1181  * Initialize a jumbo receive ring descriptor. This allocates
1182  * a jumbo buffer from the pool managed internally by the driver.
1183  */
1184 static int
1185 ti_newbuf_jumbo(sc, i, m)
1186 	struct ti_softc		*sc;
1187 	int			i;
1188 	struct mbuf		*m;
1189 {
1190 	struct mbuf		*m_new = NULL;
1191 	struct ti_rx_desc	*r;
1192 
1193 	if (m == NULL) {
1194 		caddr_t			*buf = NULL;
1195 
1196 		/* Allocate the mbuf. */
1197 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1198 		if (m_new == NULL) {
1199 			return(ENOBUFS);
1200 		}
1201 
1202 		/* Allocate the jumbo buffer */
1203 		buf = ti_jalloc(sc);
1204 		if (buf == NULL) {
1205 			m_freem(m_new);
1206 			printf("ti%d: jumbo allocation failed "
1207 			    "-- packet dropped!\n", sc->ti_unit);
1208 			return(ENOBUFS);
1209 		}
1210 
1211 		/* Attach the buffer to the mbuf. */
1212 		m_new->m_data = (void *) buf;
1213 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1214 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1215 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1216 	} else {
1217 		m_new = m;
1218 		m_new->m_data = m_new->m_ext.ext_buf;
1219 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1220 	}
1221 
1222 	m_adj(m_new, ETHER_ALIGN);
1223 	/* Set up the descriptor. */
1224 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1225 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1226 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1227 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1228 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1229 	if (sc->arpcom.ac_if.if_hwassist)
1230 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1231 	r->ti_len = m_new->m_len;
1232 	r->ti_idx = i;
1233 
1234 	return(0);
1235 }
1236 
1237 #else
1238 #include <vm/vm_page.h>
1239 
1240 #if (PAGE_SIZE == 4096)
1241 #define NPAYLOAD 2
1242 #else
1243 #define NPAYLOAD 1
1244 #endif
1245 
1246 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1247 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1248 #define NFS_HDR_LEN (UDP_HDR_LEN)
1249 static int HDR_LEN =  TCP_HDR_LEN;
1250 
1251 
1252  /*
1253   * Initialize a jumbo receive ring descriptor. This allocates
1254   * a jumbo buffer from the pool managed internally by the driver.
1255   */
1256 static int
1257 ti_newbuf_jumbo(sc, idx, m_old)
1258         struct ti_softc         *sc;
1259         int                     idx;
1260         struct mbuf             *m_old;
1261 {
1262 	struct mbuf		*cur, *m_new = NULL;
1263 	struct mbuf		*m[3] = {NULL, NULL, NULL};
1264 	struct ti_rx_desc_ext	*r;
1265 	vm_page_t		frame;
1266 				/* 1 extra buf to make nobufs easy*/
1267 	caddr_t			buf[3] = {NULL, NULL, NULL};
1268 	int			i;
1269 
1270 	if (m_old != NULL) {
1271 		m_new = m_old;
1272 		cur = m_old->m_next;
1273 		for (i = 0; i <= NPAYLOAD; i++){
1274 			m[i] = cur;
1275 			cur = cur->m_next;
1276 		}
1277 	} else {
1278 		/* Allocate the mbufs. */
1279 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1280 		if (m_new == NULL) {
1281 			printf("ti%d: mbuf allocation failed "
1282    			       "-- packet dropped!\n", sc->ti_unit);
1283 			goto nobufs;
1284 		}
1285 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1286 		if (m[NPAYLOAD] == NULL) {
1287 			printf("ti%d: cluster mbuf allocation failed "
1288 			       "-- packet dropped!\n", sc->ti_unit);
1289 			goto nobufs;
1290 		}
1291 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1292 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1293 			printf("ti%d: mbuf allocation failed "
1294 			       "-- packet dropped!\n", sc->ti_unit);
1295 			goto nobufs;
1296 		}
1297 		m[NPAYLOAD]->m_len = MCLBYTES;
1298 
1299 		for (i = 0; i < NPAYLOAD; i++){
1300 			MGET(m[i], M_DONTWAIT, MT_DATA);
1301 			if (m[i] == NULL) {
1302 				printf("ti%d: mbuf allocation failed "
1303 				       "-- packet dropped!\n", sc->ti_unit);
1304 				goto nobufs;
1305 			}
1306 			if (!(frame = jumbo_pg_alloc())){
1307   				printf("ti%d: buffer allocation failed "
1308    				       "-- packet dropped!\n", sc->ti_unit);
1309 				printf("      index %d page %d\n", idx, i);
1310    				goto nobufs;
1311 			}
1312 			buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame));
1313 		}
1314 		for (i = 0; i < NPAYLOAD; i++){
1315   		/* Attach the buffer to the mbuf. */
1316    			m[i]->m_data = (void *)buf[i];
1317 			m[i]->m_len = PAGE_SIZE;
1318 			MEXTADD(m[i], (void *)buf[i], PAGE_SIZE,
1319 				jumbo_freem, NULL, 0, EXT_DISPOSABLE);
1320 			m[i]->m_next = m[i+1];
1321 		}
1322 		/* link the buffers to the header */
1323 		m_new->m_next = m[0];
1324 		m_new->m_data += ETHER_ALIGN;
1325 		if (sc->ti_hdrsplit)
1326 			m_new->m_len = MHLEN - ETHER_ALIGN;
1327 		else
1328    			m_new->m_len = HDR_LEN;
1329 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1330 	}
1331 
1332 	/* Set up the descriptor. */
1333 	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1334 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1335 	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1336 	r->ti_len0 = m_new->m_len;
1337 
1338 	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1339 	r->ti_len1 = PAGE_SIZE;
1340 
1341 	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1342 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1343 
1344 	if (PAGE_SIZE == 4096) {
1345 		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1346 		r->ti_len3 = MCLBYTES;
1347 	} else {
1348 		r->ti_len3 = 0;
1349 	}
1350         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1351 
1352         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1353 
1354 	if (sc->arpcom.ac_if.if_hwassist)
1355 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1356 
1357         r->ti_idx = idx;
1358 
1359         return(0);
1360 
1361  nobufs:
1362 
1363 	/*
1364 	 * Warning! :
1365 	 * This can only be called before the mbufs are strung together.
1366 	 * If the mbufs are strung together, m_freem() will free the chain,
1367 	 * so that the later mbufs will be freed multiple times.
1368 	 */
1369         if (m_new)
1370                 m_freem(m_new);
1371 
1372         for(i = 0; i < 3; i++){
1373                 if (m[i])
1374                         m_freem(m[i]);
1375                 if (buf[i])
1376                         jumbo_pg_free((vm_offset_t)buf[i]);
1377         }
1378         return ENOBUFS;
1379 }
1380 #endif
1381 
1382 
1383 
1384 /*
1385  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1386  * that's 1MB or memory, which is a lot. For now, we fill only the first
1387  * 256 ring entries and hope that our CPU is fast enough to keep up with
1388  * the NIC.
1389  */
1390 static int
1391 ti_init_rx_ring_std(sc)
1392 	struct ti_softc		*sc;
1393 {
1394 	register int		i;
1395 	struct ti_cmd_desc	cmd;
1396 
1397 	for (i = 0; i < TI_SSLOTS; i++) {
1398 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1399 			return(ENOBUFS);
1400 	};
1401 
1402 	TI_UPDATE_STDPROD(sc, i - 1);
1403 	sc->ti_std = i - 1;
1404 
1405 	return(0);
1406 }
1407 
1408 static void
1409 ti_free_rx_ring_std(sc)
1410 	struct ti_softc		*sc;
1411 {
1412 	register int		i;
1413 
1414 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1415 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1416 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1417 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1418 		}
1419 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1420 		    sizeof(struct ti_rx_desc));
1421 	}
1422 
1423 	return;
1424 }
1425 
1426 static int
1427 ti_init_rx_ring_jumbo(sc)
1428 	struct ti_softc		*sc;
1429 {
1430 	register int		i;
1431 	struct ti_cmd_desc	cmd;
1432 
1433 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1434 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1435 			return(ENOBUFS);
1436 	};
1437 
1438 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1439 	sc->ti_jumbo = i - 1;
1440 
1441 	return(0);
1442 }
1443 
1444 static void
1445 ti_free_rx_ring_jumbo(sc)
1446 	struct ti_softc		*sc;
1447 {
1448 	register int		i;
1449 
1450 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1451 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1452 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1453 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1454 		}
1455 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1456 		    sizeof(struct ti_rx_desc));
1457 	}
1458 
1459 	return;
1460 }
1461 
1462 static int
1463 ti_init_rx_ring_mini(sc)
1464 	struct ti_softc		*sc;
1465 {
1466 	register int		i;
1467 
1468 	for (i = 0; i < TI_MSLOTS; i++) {
1469 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1470 			return(ENOBUFS);
1471 	};
1472 
1473 	TI_UPDATE_MINIPROD(sc, i - 1);
1474 	sc->ti_mini = i - 1;
1475 
1476 	return(0);
1477 }
1478 
1479 static void
1480 ti_free_rx_ring_mini(sc)
1481 	struct ti_softc		*sc;
1482 {
1483 	register int		i;
1484 
1485 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1486 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1487 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1488 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1489 		}
1490 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1491 		    sizeof(struct ti_rx_desc));
1492 	}
1493 
1494 	return;
1495 }
1496 
1497 static void
1498 ti_free_tx_ring(sc)
1499 	struct ti_softc		*sc;
1500 {
1501 	register int		i;
1502 
1503 	if (sc->ti_rdata->ti_tx_ring == NULL)
1504 		return;
1505 
1506 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1507 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1508 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1509 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1510 		}
1511 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1512 		    sizeof(struct ti_tx_desc));
1513 	}
1514 
1515 	return;
1516 }
1517 
1518 static int
1519 ti_init_tx_ring(sc)
1520 	struct ti_softc		*sc;
1521 {
1522 	sc->ti_txcnt = 0;
1523 	sc->ti_tx_saved_considx = 0;
1524 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1525 	return(0);
1526 }
1527 
1528 /*
1529  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1530  * but we have to support the old way too so that Tigon 1 cards will
1531  * work.
1532  */
1533 static void
1534 ti_add_mcast(sc, addr)
1535 	struct ti_softc		*sc;
1536 	struct ether_addr	*addr;
1537 {
1538 	struct ti_cmd_desc	cmd;
1539 	u_int16_t		*m;
1540 	u_int32_t		ext[2] = {0, 0};
1541 
1542 	m = (u_int16_t *)&addr->octet[0];
1543 
1544 	switch(sc->ti_hwrev) {
1545 	case TI_HWREV_TIGON:
1546 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1547 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1548 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1549 		break;
1550 	case TI_HWREV_TIGON_II:
1551 		ext[0] = htons(m[0]);
1552 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1553 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1554 		break;
1555 	default:
1556 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1557 		break;
1558 	}
1559 
1560 	return;
1561 }
1562 
1563 static void
1564 ti_del_mcast(sc, addr)
1565 	struct ti_softc		*sc;
1566 	struct ether_addr	*addr;
1567 {
1568 	struct ti_cmd_desc	cmd;
1569 	u_int16_t		*m;
1570 	u_int32_t		ext[2] = {0, 0};
1571 
1572 	m = (u_int16_t *)&addr->octet[0];
1573 
1574 	switch(sc->ti_hwrev) {
1575 	case TI_HWREV_TIGON:
1576 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1577 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1578 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1579 		break;
1580 	case TI_HWREV_TIGON_II:
1581 		ext[0] = htons(m[0]);
1582 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1583 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1584 		break;
1585 	default:
1586 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1587 		break;
1588 	}
1589 
1590 	return;
1591 }
1592 
1593 /*
1594  * Configure the Tigon's multicast address filter.
1595  *
1596  * The actual multicast table management is a bit of a pain, thanks to
1597  * slight brain damage on the part of both Alteon and us. With our
1598  * multicast code, we are only alerted when the multicast address table
1599  * changes and at that point we only have the current list of addresses:
1600  * we only know the current state, not the previous state, so we don't
1601  * actually know what addresses were removed or added. The firmware has
1602  * state, but we can't get our grubby mits on it, and there is no 'delete
1603  * all multicast addresses' command. Hence, we have to maintain our own
1604  * state so we know what addresses have been programmed into the NIC at
1605  * any given time.
1606  */
1607 static void
1608 ti_setmulti(sc)
1609 	struct ti_softc		*sc;
1610 {
1611 	struct ifnet		*ifp;
1612 	struct ifmultiaddr	*ifma;
1613 	struct ti_cmd_desc	cmd;
1614 	struct ti_mc_entry	*mc;
1615 	u_int32_t		intrs;
1616 
1617 	ifp = &sc->arpcom.ac_if;
1618 
1619 	if (ifp->if_flags & IFF_ALLMULTI) {
1620 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1621 		return;
1622 	} else {
1623 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1624 	}
1625 
1626 	/* Disable interrupts. */
1627 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1628 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1629 
1630 	/* First, zot all the existing filters. */
1631 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1632 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1633 		ti_del_mcast(sc, &mc->mc_addr);
1634 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1635 		free(mc, M_DEVBUF);
1636 	}
1637 
1638 	/* Now program new ones. */
1639 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1640 		if (ifma->ifma_addr->sa_family != AF_LINK)
1641 			continue;
1642 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1643 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1644 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1645 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1646 		ti_add_mcast(sc, &mc->mc_addr);
1647 	}
1648 
1649 	/* Re-enable interrupts. */
1650 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1651 
1652 	return;
1653 }
1654 
1655 /*
1656  * Check to see if the BIOS has configured us for a 64 bit slot when
1657  * we aren't actually in one. If we detect this condition, we can work
1658  * around it on the Tigon 2 by setting a bit in the PCI state register,
1659  * but for the Tigon 1 we must give up and abort the interface attach.
1660  */
1661 static int ti_64bitslot_war(sc)
1662 	struct ti_softc		*sc;
1663 {
1664 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1665 		CSR_WRITE_4(sc, 0x600, 0);
1666 		CSR_WRITE_4(sc, 0x604, 0);
1667 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1668 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1669 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1670 				return(EINVAL);
1671 			else {
1672 				TI_SETBIT(sc, TI_PCI_STATE,
1673 				    TI_PCISTATE_32BIT_BUS);
1674 				return(0);
1675 			}
1676 		}
1677 	}
1678 
1679 	return(0);
1680 }
1681 
1682 /*
1683  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1684  * self-test results.
1685  */
1686 static int
1687 ti_chipinit(sc)
1688 	struct ti_softc		*sc;
1689 {
1690 	u_int32_t		cacheline;
1691 	u_int32_t		pci_writemax = 0;
1692 	u_int32_t		hdrsplit;
1693 
1694 	/* Initialize link to down state. */
1695 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1696 
1697 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1698 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1699 	else
1700 		sc->arpcom.ac_if.if_hwassist = 0;
1701 
1702 	/* Set endianness before we access any non-PCI registers. */
1703 #if BYTE_ORDER == BIG_ENDIAN
1704 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1705 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1706 #else
1707 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1708 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1709 #endif
1710 
1711 	/* Check the ROM failed bit to see if self-tests passed. */
1712 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1713 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1714 		return(ENODEV);
1715 	}
1716 
1717 	/* Halt the CPU. */
1718 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1719 
1720 	/* Figure out the hardware revision. */
1721 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1722 	case TI_REV_TIGON_I:
1723 		sc->ti_hwrev = TI_HWREV_TIGON;
1724 		break;
1725 	case TI_REV_TIGON_II:
1726 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1727 		break;
1728 	default:
1729 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1730 		return(ENODEV);
1731 	}
1732 
1733 	/* Do special setup for Tigon 2. */
1734 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1735 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1736 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1737 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1738 	}
1739 
1740 	/*
1741 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1742 	 * can't do header splitting.
1743 	 */
1744 #ifdef TI_JUMBO_HDRSPLIT
1745 	if (sc->ti_hwrev != TI_HWREV_TIGON)
1746 		sc->ti_hdrsplit = 1;
1747 	else
1748 		printf("ti%d: can't do header splitting on a Tigon I board\n",
1749 		       sc->ti_unit);
1750 #endif /* TI_JUMBO_HDRSPLIT */
1751 
1752 	/* Set up the PCI state register. */
1753 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1754 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1755 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1756 	}
1757 
1758 	/* Clear the read/write max DMA parameters. */
1759 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1760 	    TI_PCISTATE_READ_MAXDMA));
1761 
1762 	/* Get cache line size. */
1763 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1764 
1765 	/*
1766 	 * If the system has set enabled the PCI memory write
1767 	 * and invalidate command in the command register, set
1768 	 * the write max parameter accordingly. This is necessary
1769 	 * to use MWI with the Tigon 2.
1770 	 */
1771 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1772 		switch(cacheline) {
1773 		case 1:
1774 		case 4:
1775 		case 8:
1776 		case 16:
1777 		case 32:
1778 		case 64:
1779 			break;
1780 		default:
1781 		/* Disable PCI memory write and invalidate. */
1782 			if (bootverbose)
1783 				printf("ti%d: cache line size %d not "
1784 				    "supported; disabling PCI MWI\n",
1785 				    sc->ti_unit, cacheline);
1786 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1787 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1788 			break;
1789 		}
1790 	}
1791 
1792 #ifdef __brokenalpha__
1793 	/*
1794 	 * From the Alteon sample driver:
1795 	 * Must insure that we do not cross an 8K (bytes) boundary
1796 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1797 	 * restriction on some ALPHA platforms with early revision
1798 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1799 	 */
1800 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1801 #else
1802 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1803 #endif
1804 
1805 	/* This sets the min dma param all the way up (0xff). */
1806 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1807 
1808 	if (sc->ti_hdrsplit)
1809 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1810 	else
1811 		hdrsplit = 0;
1812 
1813 	/* Configure DMA variables. */
1814 #if BYTE_ORDER == BIG_ENDIAN
1815 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1816 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1817 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1818 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1819 #else /* BYTE_ORDER */
1820 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1821 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1822 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1823 #endif /* BYTE_ORDER */
1824 
1825 	/*
1826 	 * Only allow 1 DMA channel to be active at a time.
1827 	 * I don't think this is a good idea, but without it
1828 	 * the firmware racks up lots of nicDmaReadRingFull
1829 	 * errors.  This is not compatible with hardware checksums.
1830 	 */
1831 	if (sc->arpcom.ac_if.if_hwassist == 0)
1832 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1833 
1834 	/* Recommended settings from Tigon manual. */
1835 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1836 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1837 
1838 	if (ti_64bitslot_war(sc)) {
1839 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1840 		    "but we aren't", sc->ti_unit);
1841 		return(EINVAL);
1842 	}
1843 
1844 	return(0);
1845 }
1846 
1847 /*
1848  * Initialize the general information block and firmware, and
1849  * start the CPU(s) running.
1850  */
1851 static int
1852 ti_gibinit(sc)
1853 	struct ti_softc		*sc;
1854 {
1855 	struct ti_rcb		*rcb;
1856 	int			i;
1857 	struct ifnet		*ifp;
1858 
1859 	ifp = &sc->arpcom.ac_if;
1860 
1861 	/* Disable interrupts for now. */
1862 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1863 
1864 	/* Tell the chip where to find the general information block. */
1865 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1866 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1867 
1868 	/* Load the firmware into SRAM. */
1869 	ti_loadfw(sc);
1870 
1871 	/* Set up the contents of the general info and ring control blocks. */
1872 
1873 	/* Set up the event ring and producer pointer. */
1874 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1875 
1876 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1877 	rcb->ti_flags = 0;
1878 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1879 	    vtophys(&sc->ti_ev_prodidx);
1880 	sc->ti_ev_prodidx.ti_idx = 0;
1881 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1882 	sc->ti_ev_saved_considx = 0;
1883 
1884 	/* Set up the command ring and producer mailbox. */
1885 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1886 
1887 	sc->ti_rdata->ti_cmd_ring =
1888 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1889 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1890 	rcb->ti_flags = 0;
1891 	rcb->ti_max_len = 0;
1892 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1893 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1894 	}
1895 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1896 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1897 	sc->ti_cmd_saved_prodidx = 0;
1898 
1899 	/*
1900 	 * Assign the address of the stats refresh buffer.
1901 	 * We re-use the current stats buffer for this to
1902 	 * conserve memory.
1903 	 */
1904 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1905 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1906 
1907 	/* Set up the standard receive ring. */
1908 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1909 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1910 	rcb->ti_max_len = TI_FRAMELEN;
1911 	rcb->ti_flags = 0;
1912 	if (sc->arpcom.ac_if.if_hwassist)
1913 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1914 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1915 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1916 
1917 	/* Set up the jumbo receive ring. */
1918 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1919 	TI_HOSTADDR(rcb->ti_hostaddr) =
1920 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1921 
1922 #ifdef TI_PRIVATE_JUMBOS
1923 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1924 	rcb->ti_flags = 0;
1925 #else
1926 	rcb->ti_max_len = PAGE_SIZE;
1927 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1928 #endif
1929 	if (sc->arpcom.ac_if.if_hwassist)
1930 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1931 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1932 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1933 
1934 	/*
1935 	 * Set up the mini ring. Only activated on the
1936 	 * Tigon 2 but the slot in the config block is
1937 	 * still there on the Tigon 1.
1938 	 */
1939 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1940 	TI_HOSTADDR(rcb->ti_hostaddr) =
1941 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1942 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1943 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1944 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1945 	else
1946 		rcb->ti_flags = 0;
1947 	if (sc->arpcom.ac_if.if_hwassist)
1948 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1949 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1950 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1951 
1952 	/*
1953 	 * Set up the receive return ring.
1954 	 */
1955 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1956 	TI_HOSTADDR(rcb->ti_hostaddr) =
1957 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1958 	rcb->ti_flags = 0;
1959 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1960 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1961 	    vtophys(&sc->ti_return_prodidx);
1962 
1963 	/*
1964 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1965 	 * of putting the transmit ring in the host's address space and
1966 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1967 	 * memory and accessing it through the shared memory region. We
1968 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1969 	 * so we have to revert to the shared memory scheme if we detect
1970 	 * a Tigon 1 chip.
1971 	 */
1972 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1973 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1974 		sc->ti_rdata->ti_tx_ring_nic =
1975 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1976 	}
1977 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1978 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1979 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1980 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1981 		rcb->ti_flags = 0;
1982 	else
1983 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1984 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1985 	if (sc->arpcom.ac_if.if_hwassist)
1986 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1987 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1988 	rcb->ti_max_len = TI_TX_RING_CNT;
1989 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1990 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1991 	else
1992 		TI_HOSTADDR(rcb->ti_hostaddr) =
1993 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1994 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1995 	    vtophys(&sc->ti_tx_considx);
1996 
1997 	/* Set up tuneables */
1998 #if 0
1999 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2000 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2001 		    (sc->ti_rx_coal_ticks / 10));
2002 	else
2003 #endif
2004 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2005 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2006 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2007 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2008 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2009 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2010 
2011 	/* Turn interrupts on. */
2012 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2013 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2014 
2015 	/* Start CPU. */
2016 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2017 
2018 	return(0);
2019 }
2020 
2021 /*
2022  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2023  * against our list and return its name if we find a match.
2024  */
2025 static int
2026 ti_probe(dev)
2027 	device_t		dev;
2028 {
2029 	struct ti_type		*t;
2030 
2031 	t = ti_devs;
2032 
2033 	while(t->ti_name != NULL) {
2034 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2035 		    (pci_get_device(dev) == t->ti_did)) {
2036 			device_set_desc(dev, t->ti_name);
2037 			return(0);
2038 		}
2039 		t++;
2040 	}
2041 
2042 	return(ENXIO);
2043 }
2044 
2045 static int
2046 ti_attach(dev)
2047 	device_t		dev;
2048 {
2049 	struct ifnet		*ifp;
2050 	struct ti_softc		*sc;
2051 	int			unit, error = 0, rid;
2052 
2053 	sc = device_get_softc(dev);
2054 	unit = device_get_unit(dev);
2055 
2056 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2057 	    MTX_DEF | MTX_RECURSE);
2058 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2059 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM |
2060 	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2061 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2062 
2063 	/*
2064 	 * Map control/status registers.
2065 	 */
2066 	pci_enable_busmaster(dev);
2067 
2068 	rid = TI_PCI_LOMEM;
2069 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2070 	    RF_ACTIVE|PCI_RF_DENSE);
2071 
2072 	if (sc->ti_res == NULL) {
2073 		printf ("ti%d: couldn't map memory\n", unit);
2074 		error = ENXIO;
2075 		goto fail;
2076 	}
2077 
2078 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2079 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2080 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2081 
2082 	/* Allocate interrupt */
2083 	rid = 0;
2084 
2085 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2086 	    RF_SHAREABLE | RF_ACTIVE);
2087 
2088 	if (sc->ti_irq == NULL) {
2089 		printf("ti%d: couldn't map interrupt\n", unit);
2090 		error = ENXIO;
2091 		goto fail;
2092 	}
2093 
2094 	sc->ti_unit = unit;
2095 
2096 	if (ti_chipinit(sc)) {
2097 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2098 		error = ENXIO;
2099 		goto fail;
2100 	}
2101 
2102 	/* Zero out the NIC's on-board SRAM. */
2103 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2104 
2105 	/* Init again -- zeroing memory may have clobbered some registers. */
2106 	if (ti_chipinit(sc)) {
2107 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2108 		error = ENXIO;
2109 		goto fail;
2110 	}
2111 
2112 	/*
2113 	 * Get station address from the EEPROM. Note: the manual states
2114 	 * that the MAC address is at offset 0x8c, however the data is
2115 	 * stored as two longwords (since that's how it's loaded into
2116 	 * the NIC). This means the MAC address is actually preceded
2117 	 * by two zero bytes. We need to skip over those.
2118 	 */
2119 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2120 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2121 		printf("ti%d: failed to read station address\n", unit);
2122 		error = ENXIO;
2123 		goto fail;
2124 	}
2125 
2126 	/* Allocate the general information block and ring buffers. */
2127 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2128 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2129 
2130 	if (sc->ti_rdata == NULL) {
2131 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2132 		error = ENXIO;
2133 		goto fail;
2134 	}
2135 
2136 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2137 
2138 	/* Try to allocate memory for jumbo buffers. */
2139 #ifdef TI_PRIVATE_JUMBOS
2140 	if (ti_alloc_jumbo_mem(sc)) {
2141 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2142 		error = ENXIO;
2143 		goto fail;
2144 	}
2145 #else
2146 	if (!jumbo_vm_init()) {
2147 		printf("ti%d: VM initialization failed!\n", sc->ti_unit);
2148 		error = ENOMEM;
2149 		goto fail;
2150 	}
2151 #endif
2152 
2153 	/*
2154 	 * We really need a better way to tell a 1000baseTX card
2155 	 * from a 1000baseSX one, since in theory there could be
2156 	 * OEMed 1000baseTX cards from lame vendors who aren't
2157 	 * clever enough to change the PCI ID. For the moment
2158 	 * though, the AceNIC is the only copper card available.
2159 	 */
2160 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2161 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2162 		sc->ti_copper = 1;
2163 	/* Ok, it's not the only copper card available. */
2164 	if (pci_get_vendor(dev) == NG_VENDORID &&
2165 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2166 		sc->ti_copper = 1;
2167 
2168 	/* Set default tuneable values. */
2169 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2170 #if 0
2171 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2172 #endif
2173 	sc->ti_rx_coal_ticks = 170;
2174 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2175 	sc->ti_rx_max_coal_bds = 64;
2176 #if 0
2177 	sc->ti_tx_max_coal_bds = 128;
2178 #endif
2179 	sc->ti_tx_max_coal_bds = 32;
2180 	sc->ti_tx_buf_ratio = 21;
2181 
2182 	/* Set up ifnet structure */
2183 	ifp = &sc->arpcom.ac_if;
2184 	ifp->if_softc = sc;
2185 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2186 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2187 	tis[unit] = sc;
2188 	ifp->if_ioctl = ti_ioctl;
2189 	ifp->if_start = ti_start;
2190 	ifp->if_watchdog = ti_watchdog;
2191 	ifp->if_init = ti_init;
2192 	ifp->if_mtu = ETHERMTU;
2193 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2194 
2195 	/* Set up ifmedia support. */
2196 	if (sc->ti_copper) {
2197 		/*
2198 		 * Copper cards allow manual 10/100 mode selection,
2199 		 * but not manual 1000baseTX mode selection. Why?
2200 		 * Becuase currently there's no way to specify the
2201 		 * master/slave setting through the firmware interface,
2202 		 * so Alteon decided to just bag it and handle it
2203 		 * via autonegotiation.
2204 		 */
2205 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2206 		ifmedia_add(&sc->ifmedia,
2207 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2208 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2209 		ifmedia_add(&sc->ifmedia,
2210 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2211 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2212 		ifmedia_add(&sc->ifmedia,
2213 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2214 	} else {
2215 		/* Fiber cards don't support 10/100 modes. */
2216 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2217 		ifmedia_add(&sc->ifmedia,
2218 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2219 	}
2220 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2221 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2222 
2223 	/*
2224 	 * We're assuming here that card initialization is a sequential
2225 	 * thing.  If it isn't, multiple cards probing at the same time
2226 	 * could stomp on the list of softcs here.
2227 	 */
2228 
2229 	/* Register the device */
2230 	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2231 			   0600, "ti%d", sc->ti_unit);
2232 	sc->dev->si_drv1 = sc;
2233 
2234 	/*
2235 	 * Call MI attach routine.
2236 	 */
2237 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
2238 
2239 	/* Hook interrupt last to avoid having to lock softc */
2240 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2241 	   ti_intr, sc, &sc->ti_intrhand);
2242 
2243 	if (error) {
2244 		printf("ti%d: couldn't set up irq\n", unit);
2245 		ether_ifdetach(ifp);
2246 		goto fail;
2247 	}
2248 
2249 fail:
2250 	if (sc && error)
2251 		ti_detach(dev);
2252 
2253 	return(error);
2254 }
2255 
2256 /*
2257  * Shutdown hardware and free up resources. This can be called any
2258  * time after the mutex has been initialized. It is called in both
2259  * the error case in attach and the normal detach case so it needs
2260  * to be careful about only freeing resources that have actually been
2261  * allocated.
2262  */
2263 static int
2264 ti_detach(dev)
2265 	device_t		dev;
2266 {
2267 	struct ti_softc		*sc;
2268 	struct ifnet		*ifp;
2269 
2270 	sc = device_get_softc(dev);
2271 	destroy_dev(sc->dev);
2272 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2273 	TI_LOCK(sc);
2274 	ifp = &sc->arpcom.ac_if;
2275 
2276 	/* These should only be active if attach succeeded */
2277 	if (device_is_attached(dev)) {
2278 		ti_stop(sc);
2279 		ether_ifdetach(ifp);
2280 		bus_generic_detach(dev);
2281 	}
2282 	ifmedia_removeall(&sc->ifmedia);
2283 
2284 	if (sc->ti_intrhand)
2285 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2286 	if (sc->ti_irq)
2287 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2288 	if (sc->ti_res) {
2289 		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2290 		    sc->ti_res);
2291 	}
2292 
2293 #ifdef TI_PRIVATE_JUMBOS
2294 	if (sc->ti_cdata.ti_jumbo_buf)
2295 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2296 #endif
2297 	if (sc->ti_rdata)
2298 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2299 
2300 	TI_UNLOCK(sc);
2301 	mtx_destroy(&sc->ti_mtx);
2302 
2303 	return(0);
2304 }
2305 
2306 #ifdef TI_JUMBO_HDRSPLIT
2307 /*
2308  * If hdr_len is 0, that means that header splitting wasn't done on
2309  * this packet for some reason.  The two most likely reasons are that
2310  * the protocol isn't a supported protocol for splitting, or this
2311  * packet had a fragment offset that wasn't 0.
2312  *
2313  * The header length, if it is non-zero, will always be the length of
2314  * the headers on the packet, but that length could be longer than the
2315  * first mbuf.  So we take the minimum of the two as the actual
2316  * length.
2317  */
2318 static __inline void
2319 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2320 {
2321 	int i = 0;
2322 	int lengths[4] = {0, 0, 0, 0};
2323 	struct mbuf *m, *mp;
2324 
2325 	if (hdr_len != 0)
2326 		top->m_len = min(hdr_len, top->m_len);
2327 	pkt_len -= top->m_len;
2328 	lengths[i++] = top->m_len;
2329 
2330 	mp = top;
2331 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2332 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2333 		pkt_len -= m->m_len;
2334 		lengths[i++] = m->m_len;
2335 		mp = m;
2336 	}
2337 
2338 #if 0
2339 	if (hdr_len != 0)
2340 		printf("got split packet: ");
2341 	else
2342 		printf("got non-split packet: ");
2343 
2344 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2345 	    lengths[1], lengths[2], lengths[3],
2346 	    lengths[0] + lengths[1] + lengths[2] +
2347 	    lengths[3]);
2348 #endif
2349 
2350 	if (pkt_len)
2351 		panic("header splitting didn't");
2352 
2353 	if (m) {
2354 		m_freem(m);
2355 		mp->m_next = NULL;
2356 
2357 	}
2358 	if (mp->m_next != NULL)
2359 		panic("ti_hdr_split: last mbuf in chain should be null");
2360 }
2361 #endif /* TI_JUMBO_HDRSPLIT */
2362 
2363 /*
2364  * Frame reception handling. This is called if there's a frame
2365  * on the receive return list.
2366  *
2367  * Note: we have to be able to handle three possibilities here:
2368  * 1) the frame is from the mini receive ring (can only happen)
2369  *    on Tigon 2 boards)
2370  * 2) the frame is from the jumbo recieve ring
2371  * 3) the frame is from the standard receive ring
2372  */
2373 
2374 static void
2375 ti_rxeof(sc)
2376 	struct ti_softc		*sc;
2377 {
2378 	struct ifnet		*ifp;
2379 	struct ti_cmd_desc	cmd;
2380 
2381 	TI_LOCK_ASSERT(sc);
2382 
2383 	ifp = &sc->arpcom.ac_if;
2384 
2385 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2386 		struct ti_rx_desc	*cur_rx;
2387 		u_int32_t		rxidx;
2388 		struct mbuf		*m = NULL;
2389 		u_int16_t		vlan_tag = 0;
2390 		int			have_tag = 0;
2391 
2392 		cur_rx =
2393 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2394 		rxidx = cur_rx->ti_idx;
2395 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2396 
2397 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2398 			have_tag = 1;
2399 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2400 		}
2401 
2402 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2403 
2404 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2405 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2406 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2407 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2408 				ifp->if_ierrors++;
2409 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2410 				continue;
2411 			}
2412 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2413 				ifp->if_ierrors++;
2414 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2415 				continue;
2416 			}
2417 #ifdef TI_PRIVATE_JUMBOS
2418                         m->m_len = cur_rx->ti_len;
2419 #else /* TI_PRIVATE_JUMBOS */
2420 #ifdef TI_JUMBO_HDRSPLIT
2421 			if (sc->ti_hdrsplit)
2422 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2423 					     cur_rx->ti_len, rxidx);
2424 			else
2425 #endif /* TI_JUMBO_HDRSPLIT */
2426                         	m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2427 #endif /* TI_PRIVATE_JUMBOS */
2428 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2429 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2430 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2431 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2432 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2433 				ifp->if_ierrors++;
2434 				ti_newbuf_mini(sc, sc->ti_mini, m);
2435 				continue;
2436 			}
2437 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2438 				ifp->if_ierrors++;
2439 				ti_newbuf_mini(sc, sc->ti_mini, m);
2440 				continue;
2441 			}
2442 			m->m_len = cur_rx->ti_len;
2443 		} else {
2444 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2445 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2446 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2447 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2448 				ifp->if_ierrors++;
2449 				ti_newbuf_std(sc, sc->ti_std, m);
2450 				continue;
2451 			}
2452 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2453 				ifp->if_ierrors++;
2454 				ti_newbuf_std(sc, sc->ti_std, m);
2455 				continue;
2456 			}
2457 			m->m_len = cur_rx->ti_len;
2458 		}
2459 
2460 		m->m_pkthdr.len = cur_rx->ti_len;
2461 		ifp->if_ipackets++;
2462 		m->m_pkthdr.rcvif = ifp;
2463 
2464 		if (ifp->if_hwassist) {
2465 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2466 			    CSUM_DATA_VALID;
2467 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2468 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2469 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2470 		}
2471 
2472 		/*
2473 		 * If we received a packet with a vlan tag,
2474 		 * tag it before passing the packet upward.
2475 		 */
2476 		if (have_tag)
2477 			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2478 		TI_UNLOCK(sc);
2479 		(*ifp->if_input)(ifp, m);
2480 		TI_LOCK(sc);
2481 	}
2482 
2483 	/* Only necessary on the Tigon 1. */
2484 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2485 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2486 		    sc->ti_rx_saved_considx);
2487 
2488 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2489 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2490 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2491 
2492 	return;
2493 }
2494 
2495 static void
2496 ti_txeof(sc)
2497 	struct ti_softc		*sc;
2498 {
2499 	struct ti_tx_desc	*cur_tx = NULL;
2500 	struct ifnet		*ifp;
2501 
2502 	ifp = &sc->arpcom.ac_if;
2503 
2504 	/*
2505 	 * Go through our tx ring and free mbufs for those
2506 	 * frames that have been sent.
2507 	 */
2508 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2509 		u_int32_t		idx = 0;
2510 
2511 		idx = sc->ti_tx_saved_considx;
2512 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2513 			if (idx > 383)
2514 				CSR_WRITE_4(sc, TI_WINBASE,
2515 				    TI_TX_RING_BASE + 6144);
2516 			else if (idx > 255)
2517 				CSR_WRITE_4(sc, TI_WINBASE,
2518 				    TI_TX_RING_BASE + 4096);
2519 			else if (idx > 127)
2520 				CSR_WRITE_4(sc, TI_WINBASE,
2521 				    TI_TX_RING_BASE + 2048);
2522 			else
2523 				CSR_WRITE_4(sc, TI_WINBASE,
2524 				    TI_TX_RING_BASE);
2525 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2526 		} else
2527 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2528 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2529 			ifp->if_opackets++;
2530 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2531 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2532 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2533 		}
2534 		sc->ti_txcnt--;
2535 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2536 		ifp->if_timer = 0;
2537 	}
2538 
2539 	if (cur_tx != NULL)
2540 		ifp->if_flags &= ~IFF_OACTIVE;
2541 
2542 	return;
2543 }
2544 
2545 static void
2546 ti_intr(xsc)
2547 	void			*xsc;
2548 {
2549 	struct ti_softc		*sc;
2550 	struct ifnet		*ifp;
2551 
2552 	sc = xsc;
2553 	TI_LOCK(sc);
2554 	ifp = &sc->arpcom.ac_if;
2555 
2556 /*#ifdef notdef*/
2557 	/* Avoid this for now -- checking this register is expensive. */
2558 	/* Make sure this is really our interrupt. */
2559 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2560 		TI_UNLOCK(sc);
2561 		return;
2562 	}
2563 /*#endif*/
2564 
2565 	/* Ack interrupt and stop others from occuring. */
2566 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2567 
2568 	if (ifp->if_flags & IFF_RUNNING) {
2569 		/* Check RX return ring producer/consumer */
2570 		ti_rxeof(sc);
2571 
2572 		/* Check TX ring producer/consumer */
2573 		ti_txeof(sc);
2574 	}
2575 
2576 	ti_handle_events(sc);
2577 
2578 	/* Re-enable interrupts. */
2579 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2580 
2581 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2582 		ti_start(ifp);
2583 
2584 	TI_UNLOCK(sc);
2585 
2586 	return;
2587 }
2588 
2589 static void
2590 ti_stats_update(sc)
2591 	struct ti_softc		*sc;
2592 {
2593 	struct ifnet		*ifp;
2594 
2595 	ifp = &sc->arpcom.ac_if;
2596 
2597 	ifp->if_collisions +=
2598 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2599 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2600 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2601 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2602 	   ifp->if_collisions;
2603 
2604 	return;
2605 }
2606 
2607 /*
2608  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2609  * pointers to descriptors.
2610  */
2611 static int
2612 ti_encap(sc, m_head, txidx)
2613 	struct ti_softc		*sc;
2614 	struct mbuf		*m_head;
2615 	u_int32_t		*txidx;
2616 {
2617 	struct ti_tx_desc	*f = NULL;
2618 	struct mbuf		*m;
2619 	u_int32_t		frag, cur, cnt = 0;
2620 	u_int16_t		csum_flags = 0;
2621 	struct m_tag		*mtag;
2622 
2623 	m = m_head;
2624 	cur = frag = *txidx;
2625 
2626 	if (m_head->m_pkthdr.csum_flags) {
2627 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2628 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2629 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2630 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2631 		if (m_head->m_flags & M_LASTFRAG)
2632 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2633 		else if (m_head->m_flags & M_FRAG)
2634 			csum_flags |= TI_BDFLAG_IP_FRAG;
2635 	}
2636 
2637 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2638 
2639 	/*
2640  	 * Start packing the mbufs in this chain into
2641 	 * the fragment pointers. Stop when we run out
2642  	 * of fragments or hit the end of the mbuf chain.
2643 	 */
2644 	for (m = m_head; m != NULL; m = m->m_next) {
2645 		if (m->m_len != 0) {
2646 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2647 				if (frag > 383)
2648 					CSR_WRITE_4(sc, TI_WINBASE,
2649 					    TI_TX_RING_BASE + 6144);
2650 				else if (frag > 255)
2651 					CSR_WRITE_4(sc, TI_WINBASE,
2652 					    TI_TX_RING_BASE + 4096);
2653 				else if (frag > 127)
2654 					CSR_WRITE_4(sc, TI_WINBASE,
2655 					    TI_TX_RING_BASE + 2048);
2656 				else
2657 					CSR_WRITE_4(sc, TI_WINBASE,
2658 					    TI_TX_RING_BASE);
2659 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2660 			} else
2661 				f = &sc->ti_rdata->ti_tx_ring[frag];
2662 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2663 				break;
2664 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2665 			f->ti_len = m->m_len;
2666 			f->ti_flags = csum_flags;
2667 
2668 			if (mtag != NULL) {
2669 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2670 				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2671 			} else {
2672 				f->ti_vlan_tag = 0;
2673 			}
2674 
2675 			/*
2676 			 * Sanity check: avoid coming within 16 descriptors
2677 			 * of the end of the ring.
2678 			 */
2679 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2680 				return(ENOBUFS);
2681 			cur = frag;
2682 			TI_INC(frag, TI_TX_RING_CNT);
2683 			cnt++;
2684 		}
2685 	}
2686 
2687 	if (m != NULL)
2688 		return(ENOBUFS);
2689 
2690 	if (frag == sc->ti_tx_saved_considx)
2691 		return(ENOBUFS);
2692 
2693 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2694 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2695 	            TI_BDFLAG_END;
2696 	else
2697 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2698 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2699 	sc->ti_txcnt += cnt;
2700 
2701 	*txidx = frag;
2702 
2703 	return(0);
2704 }
2705 
2706 /*
2707  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2708  * to the mbuf data regions directly in the transmit descriptors.
2709  */
2710 static void
2711 ti_start(ifp)
2712 	struct ifnet		*ifp;
2713 {
2714 	struct ti_softc		*sc;
2715 	struct mbuf		*m_head = NULL;
2716 	u_int32_t		prodidx = 0;
2717 
2718 	sc = ifp->if_softc;
2719 	TI_LOCK(sc);
2720 
2721 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2722 
2723 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2724 		IF_DEQUEUE(&ifp->if_snd, m_head);
2725 		if (m_head == NULL)
2726 			break;
2727 
2728 		/*
2729 		 * XXX
2730 		 * safety overkill.  If this is a fragmented packet chain
2731 		 * with delayed TCP/UDP checksums, then only encapsulate
2732 		 * it if we have enough descriptors to handle the entire
2733 		 * chain at once.
2734 		 * (paranoia -- may not actually be needed)
2735 		 */
2736 		if (m_head->m_flags & M_FIRSTFRAG &&
2737 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2738 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2739 			    m_head->m_pkthdr.csum_data + 16) {
2740 				IF_PREPEND(&ifp->if_snd, m_head);
2741 				ifp->if_flags |= IFF_OACTIVE;
2742 				break;
2743 			}
2744 		}
2745 
2746 		/*
2747 		 * Pack the data into the transmit ring. If we
2748 		 * don't have room, set the OACTIVE flag and wait
2749 		 * for the NIC to drain the ring.
2750 		 */
2751 		if (ti_encap(sc, m_head, &prodidx)) {
2752 			IF_PREPEND(&ifp->if_snd, m_head);
2753 			ifp->if_flags |= IFF_OACTIVE;
2754 			break;
2755 		}
2756 
2757 		/*
2758 		 * If there's a BPF listener, bounce a copy of this frame
2759 		 * to him.
2760 		 */
2761 		BPF_MTAP(ifp, m_head);
2762 	}
2763 
2764 	/* Transmit */
2765 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2766 
2767 	/*
2768 	 * Set a timeout in case the chip goes out to lunch.
2769 	 */
2770 	ifp->if_timer = 5;
2771 	TI_UNLOCK(sc);
2772 
2773 	return;
2774 }
2775 
2776 static void
2777 ti_init(xsc)
2778 	void			*xsc;
2779 {
2780 	struct ti_softc		*sc = xsc;
2781 
2782 	/* Cancel pending I/O and flush buffers. */
2783 	ti_stop(sc);
2784 
2785 	TI_LOCK(sc);
2786 	/* Init the gen info block, ring control blocks and firmware. */
2787 	if (ti_gibinit(sc)) {
2788 		printf("ti%d: initialization failure\n", sc->ti_unit);
2789 		TI_UNLOCK(sc);
2790 		return;
2791 	}
2792 
2793 	TI_UNLOCK(sc);
2794 
2795 	return;
2796 }
2797 
2798 static void ti_init2(sc)
2799 	struct ti_softc		*sc;
2800 {
2801 	struct ti_cmd_desc	cmd;
2802 	struct ifnet		*ifp;
2803 	u_int16_t		*m;
2804 	struct ifmedia		*ifm;
2805 	int			tmp;
2806 
2807 	ifp = &sc->arpcom.ac_if;
2808 
2809 	/* Specify MTU and interface index. */
2810 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2811 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2812 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2813 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2814 
2815 	/* Load our MAC address. */
2816 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2817 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2818 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2819 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2820 
2821 	/* Enable or disable promiscuous mode as needed. */
2822 	if (ifp->if_flags & IFF_PROMISC) {
2823 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2824 	} else {
2825 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2826 	}
2827 
2828 	/* Program multicast filter. */
2829 	ti_setmulti(sc);
2830 
2831 	/*
2832 	 * If this is a Tigon 1, we should tell the
2833 	 * firmware to use software packet filtering.
2834 	 */
2835 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2836 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2837 	}
2838 
2839 	/* Init RX ring. */
2840 	ti_init_rx_ring_std(sc);
2841 
2842 	/* Init jumbo RX ring. */
2843 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2844 		ti_init_rx_ring_jumbo(sc);
2845 
2846 	/*
2847 	 * If this is a Tigon 2, we can also configure the
2848 	 * mini ring.
2849 	 */
2850 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2851 		ti_init_rx_ring_mini(sc);
2852 
2853 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2854 	sc->ti_rx_saved_considx = 0;
2855 
2856 	/* Init TX ring. */
2857 	ti_init_tx_ring(sc);
2858 
2859 	/* Tell firmware we're alive. */
2860 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2861 
2862 	/* Enable host interrupts. */
2863 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2864 
2865 	ifp->if_flags |= IFF_RUNNING;
2866 	ifp->if_flags &= ~IFF_OACTIVE;
2867 
2868 	/*
2869 	 * Make sure to set media properly. We have to do this
2870 	 * here since we have to issue commands in order to set
2871 	 * the link negotiation and we can't issue commands until
2872 	 * the firmware is running.
2873 	 */
2874 	ifm = &sc->ifmedia;
2875 	tmp = ifm->ifm_media;
2876 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2877 	ti_ifmedia_upd(ifp);
2878 	ifm->ifm_media = tmp;
2879 
2880 	return;
2881 }
2882 
2883 /*
2884  * Set media options.
2885  */
2886 static int
2887 ti_ifmedia_upd(ifp)
2888 	struct ifnet		*ifp;
2889 {
2890 	struct ti_softc		*sc;
2891 	struct ifmedia		*ifm;
2892 	struct ti_cmd_desc	cmd;
2893 	u_int32_t		flowctl;
2894 
2895 	sc = ifp->if_softc;
2896 	ifm = &sc->ifmedia;
2897 
2898 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2899 		return(EINVAL);
2900 
2901 	flowctl = 0;
2902 
2903 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2904 	case IFM_AUTO:
2905 		/*
2906 		 * Transmit flow control doesn't work on the Tigon 1.
2907 		 */
2908 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2909 
2910 		/*
2911 		 * Transmit flow control can also cause problems on the
2912 		 * Tigon 2, apparantly with both the copper and fiber
2913 		 * boards.  The symptom is that the interface will just
2914 		 * hang.  This was reproduced with Alteon 180 switches.
2915 		 */
2916 #if 0
2917 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2918 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2919 #endif
2920 
2921 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2922 		    TI_GLNK_FULL_DUPLEX| flowctl |
2923 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2924 
2925 		flowctl = TI_LNK_RX_FLOWCTL_Y;
2926 #if 0
2927 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2928 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2929 #endif
2930 
2931 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2932 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2933 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2934 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2935 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2936 		break;
2937 	case IFM_1000_SX:
2938 	case IFM_1000_T:
2939 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2940 #if 0
2941 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2942 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2943 #endif
2944 
2945 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2946 		    flowctl |TI_GLNK_ENB);
2947 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2948 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2949 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2950 		}
2951 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2952 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2953 		break;
2954 	case IFM_100_FX:
2955 	case IFM_10_FL:
2956 	case IFM_100_TX:
2957 	case IFM_10_T:
2958 		flowctl = TI_LNK_RX_FLOWCTL_Y;
2959 #if 0
2960 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2961 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2962 #endif
2963 
2964 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2965 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
2966 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2967 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2968 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2969 		} else {
2970 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2971 		}
2972 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2973 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2974 		} else {
2975 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2976 		}
2977 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2978 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2979 		break;
2980 	}
2981 
2982 	return(0);
2983 }
2984 
2985 /*
2986  * Report current media status.
2987  */
2988 static void
2989 ti_ifmedia_sts(ifp, ifmr)
2990 	struct ifnet		*ifp;
2991 	struct ifmediareq	*ifmr;
2992 {
2993 	struct ti_softc		*sc;
2994 	u_int32_t		media = 0;
2995 
2996 	sc = ifp->if_softc;
2997 
2998 	ifmr->ifm_status = IFM_AVALID;
2999 	ifmr->ifm_active = IFM_ETHER;
3000 
3001 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3002 		return;
3003 
3004 	ifmr->ifm_status |= IFM_ACTIVE;
3005 
3006 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3007 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3008 		if (sc->ti_copper)
3009 			ifmr->ifm_active |= IFM_1000_T;
3010 		else
3011 			ifmr->ifm_active |= IFM_1000_SX;
3012 		if (media & TI_GLNK_FULL_DUPLEX)
3013 			ifmr->ifm_active |= IFM_FDX;
3014 		else
3015 			ifmr->ifm_active |= IFM_HDX;
3016 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3017 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3018 		if (sc->ti_copper) {
3019 			if (media & TI_LNK_100MB)
3020 				ifmr->ifm_active |= IFM_100_TX;
3021 			if (media & TI_LNK_10MB)
3022 				ifmr->ifm_active |= IFM_10_T;
3023 		} else {
3024 			if (media & TI_LNK_100MB)
3025 				ifmr->ifm_active |= IFM_100_FX;
3026 			if (media & TI_LNK_10MB)
3027 				ifmr->ifm_active |= IFM_10_FL;
3028 		}
3029 		if (media & TI_LNK_FULL_DUPLEX)
3030 			ifmr->ifm_active |= IFM_FDX;
3031 		if (media & TI_LNK_HALF_DUPLEX)
3032 			ifmr->ifm_active |= IFM_HDX;
3033 	}
3034 
3035 	return;
3036 }
3037 
3038 static int
3039 ti_ioctl(ifp, command, data)
3040 	struct ifnet		*ifp;
3041 	u_long			command;
3042 	caddr_t			data;
3043 {
3044 	struct ti_softc		*sc = ifp->if_softc;
3045 	struct ifreq		*ifr = (struct ifreq *) data;
3046 	int			mask, error = 0;
3047 	struct ti_cmd_desc	cmd;
3048 
3049 	TI_LOCK(sc);
3050 
3051 	switch(command) {
3052 	case SIOCSIFMTU:
3053 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3054 			error = EINVAL;
3055 		else {
3056 			ifp->if_mtu = ifr->ifr_mtu;
3057 			ti_init(sc);
3058 		}
3059 		break;
3060 	case SIOCSIFFLAGS:
3061 		if (ifp->if_flags & IFF_UP) {
3062 			/*
3063 			 * If only the state of the PROMISC flag changed,
3064 			 * then just use the 'set promisc mode' command
3065 			 * instead of reinitializing the entire NIC. Doing
3066 			 * a full re-init means reloading the firmware and
3067 			 * waiting for it to start up, which may take a
3068 			 * second or two.
3069 			 */
3070 			if (ifp->if_flags & IFF_RUNNING &&
3071 			    ifp->if_flags & IFF_PROMISC &&
3072 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3073 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3074 				    TI_CMD_CODE_PROMISC_ENB, 0);
3075 			} else if (ifp->if_flags & IFF_RUNNING &&
3076 			    !(ifp->if_flags & IFF_PROMISC) &&
3077 			    sc->ti_if_flags & IFF_PROMISC) {
3078 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3079 				    TI_CMD_CODE_PROMISC_DIS, 0);
3080 			} else
3081 				ti_init(sc);
3082 		} else {
3083 			if (ifp->if_flags & IFF_RUNNING) {
3084 				ti_stop(sc);
3085 			}
3086 		}
3087 		sc->ti_if_flags = ifp->if_flags;
3088 		error = 0;
3089 		break;
3090 	case SIOCADDMULTI:
3091 	case SIOCDELMULTI:
3092 		if (ifp->if_flags & IFF_RUNNING) {
3093 			ti_setmulti(sc);
3094 			error = 0;
3095 		}
3096 		break;
3097 	case SIOCSIFMEDIA:
3098 	case SIOCGIFMEDIA:
3099 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3100 		break;
3101 	case SIOCSIFCAP:
3102 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3103 		if (mask & IFCAP_HWCSUM) {
3104 			if (IFCAP_HWCSUM & ifp->if_capenable)
3105 				ifp->if_capenable &= ~IFCAP_HWCSUM;
3106                         else
3107                                 ifp->if_capenable |= IFCAP_HWCSUM;
3108 			if (ifp->if_flags & IFF_RUNNING)
3109 				ti_init(sc);
3110                 }
3111 		error = 0;
3112 		break;
3113 	default:
3114 		error = ether_ioctl(ifp, command, data);
3115 		break;
3116 	}
3117 
3118 	TI_UNLOCK(sc);
3119 
3120 	return(error);
3121 }
3122 
3123 static int
3124 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3125 {
3126 	struct ti_softc *sc;
3127 
3128 	sc = dev->si_drv1;
3129 	if (sc == NULL)
3130 		return(ENODEV);
3131 
3132 	TI_LOCK(sc);
3133 	sc->ti_flags |= TI_FLAG_DEBUGING;
3134 	TI_UNLOCK(sc);
3135 
3136 	return(0);
3137 }
3138 
3139 static int
3140 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3141 {
3142 	struct ti_softc *sc;
3143 
3144 	sc = dev->si_drv1;
3145 	if (sc == NULL)
3146 		return(ENODEV);
3147 
3148 	TI_LOCK(sc);
3149 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3150 	TI_UNLOCK(sc);
3151 
3152 	return(0);
3153 }
3154 
3155 /*
3156  * This ioctl routine goes along with the Tigon character device.
3157  */
3158 static int
3159 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3160 {
3161 	int error;
3162 	struct ti_softc *sc;
3163 
3164 	sc = dev->si_drv1;
3165 	if (sc == NULL)
3166 		return(ENODEV);
3167 
3168 	error = 0;
3169 
3170 	switch(cmd) {
3171 	case TIIOCGETSTATS:
3172 	{
3173 		struct ti_stats *outstats;
3174 
3175 		outstats = (struct ti_stats *)addr;
3176 
3177 		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3178 		      sizeof(struct ti_stats));
3179 		break;
3180 	}
3181 	case TIIOCGETPARAMS:
3182 	{
3183 		struct ti_params	*params;
3184 
3185 		params = (struct ti_params *)addr;
3186 
3187 		params->ti_stat_ticks = sc->ti_stat_ticks;
3188 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3189 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3190 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3191 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3192 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3193 		params->param_mask = TI_PARAM_ALL;
3194 
3195 		error = 0;
3196 
3197 		break;
3198 	}
3199 	case TIIOCSETPARAMS:
3200 	{
3201 		struct ti_params *params;
3202 
3203 		params = (struct ti_params *)addr;
3204 
3205 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3206 			sc->ti_stat_ticks = params->ti_stat_ticks;
3207 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3208 		}
3209 
3210 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3211 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3212 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3213 				    sc->ti_rx_coal_ticks);
3214 		}
3215 
3216 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3217 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3218 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3219 				    sc->ti_tx_coal_ticks);
3220 		}
3221 
3222 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3223 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3224 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3225 				    sc->ti_rx_max_coal_bds);
3226 		}
3227 
3228 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3229 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3230 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3231 				    sc->ti_tx_max_coal_bds);
3232 		}
3233 
3234 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3235 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3236 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3237 				    sc->ti_tx_buf_ratio);
3238 		}
3239 
3240 		error = 0;
3241 
3242 		break;
3243 	}
3244 	case TIIOCSETTRACE: {
3245 		ti_trace_type	trace_type;
3246 
3247 		trace_type = *(ti_trace_type *)addr;
3248 
3249 		/*
3250 		 * Set tracing to whatever the user asked for.  Setting
3251 		 * this register to 0 should have the effect of disabling
3252 		 * tracing.
3253 		 */
3254 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3255 
3256 		error = 0;
3257 
3258 		break;
3259 	}
3260 	case TIIOCGETTRACE: {
3261 		struct ti_trace_buf	*trace_buf;
3262 		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3263 
3264 		trace_buf = (struct ti_trace_buf *)addr;
3265 
3266 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3267 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3268 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3269 
3270 #if 0
3271 		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3272 		       "trace_len = %d\n", sc->ti_unit, trace_start,
3273 		       cur_trace_ptr, trace_len);
3274 		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3275 		       trace_buf->buf_len);
3276 #endif
3277 
3278 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3279 				    trace_buf->buf_len),
3280 				    (caddr_t)trace_buf->buf, 1, 1);
3281 
3282 		if (error == 0) {
3283 			trace_buf->fill_len = min(trace_len,
3284 						  trace_buf->buf_len);
3285 			if (cur_trace_ptr < trace_start)
3286 				trace_buf->cur_trace_ptr =
3287 					trace_start - cur_trace_ptr;
3288 			else
3289 				trace_buf->cur_trace_ptr =
3290 					cur_trace_ptr - trace_start;
3291 		} else
3292 			trace_buf->fill_len = 0;
3293 
3294 
3295 		break;
3296 	}
3297 
3298 	/*
3299 	 * For debugging, five ioctls are needed:
3300 	 * ALT_ATTACH
3301 	 * ALT_READ_TG_REG
3302 	 * ALT_WRITE_TG_REG
3303 	 * ALT_READ_TG_MEM
3304 	 * ALT_WRITE_TG_MEM
3305 	 */
3306 	case ALT_ATTACH:
3307 		/*
3308 		 * From what I can tell, Alteon's Solaris Tigon driver
3309 		 * only has one character device, so you have to attach
3310 		 * to the Tigon board you're interested in.  This seems
3311 		 * like a not-so-good way to do things, since unless you
3312 		 * subsequently specify the unit number of the device
3313 		 * you're interested in in every ioctl, you'll only be
3314 		 * able to debug one board at a time.
3315 		 */
3316 		error = 0;
3317 		break;
3318 	case ALT_READ_TG_MEM:
3319 	case ALT_WRITE_TG_MEM:
3320 	{
3321 		struct tg_mem *mem_param;
3322 		u_int32_t sram_end, scratch_end;
3323 
3324 		mem_param = (struct tg_mem *)addr;
3325 
3326 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3327 			sram_end = TI_END_SRAM_I;
3328 			scratch_end = TI_END_SCRATCH_I;
3329 		} else {
3330 			sram_end = TI_END_SRAM_II;
3331 			scratch_end = TI_END_SCRATCH_II;
3332 		}
3333 
3334 		/*
3335 		 * For now, we'll only handle accessing regular SRAM,
3336 		 * nothing else.
3337 		 */
3338 		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3339 		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3340 			/*
3341 			 * In this instance, we always copy to/from user
3342 			 * space, so the user space argument is set to 1.
3343 			 */
3344 			error = ti_copy_mem(sc, mem_param->tgAddr,
3345 					    mem_param->len,
3346 					    mem_param->userAddr, 1,
3347 					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3348 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3349 			&& (mem_param->tgAddr <= scratch_end)) {
3350 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3351 						mem_param->len,
3352 						mem_param->userAddr, 1,
3353 						(cmd == ALT_READ_TG_MEM) ?
3354 						1 : 0, TI_PROCESSOR_A);
3355 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3356 			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3357 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3358 				printf("ti%d:  invalid memory range for "
3359 				       "Tigon I\n", sc->ti_unit);
3360 				error = EINVAL;
3361 				break;
3362 			}
3363 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3364 						TI_SCRATCH_DEBUG_OFF,
3365 						mem_param->len,
3366 						mem_param->userAddr, 1,
3367 						(cmd == ALT_READ_TG_MEM) ?
3368 						1 : 0, TI_PROCESSOR_B);
3369 		} else {
3370 			printf("ti%d: memory address %#x len %d is out of "
3371 			       "supported range\n", sc->ti_unit,
3372 			        mem_param->tgAddr, mem_param->len);
3373 			error = EINVAL;
3374 		}
3375 
3376 		break;
3377 	}
3378 	case ALT_READ_TG_REG:
3379 	case ALT_WRITE_TG_REG:
3380 	{
3381 		struct tg_reg	*regs;
3382 		u_int32_t	tmpval;
3383 
3384 		regs = (struct tg_reg *)addr;
3385 
3386 		/*
3387 		 * Make sure the address in question isn't out of range.
3388 		 */
3389 		if (regs->addr > TI_REG_MAX) {
3390 			error = EINVAL;
3391 			break;
3392 		}
3393 		if (cmd == ALT_READ_TG_REG) {
3394 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3395 						regs->addr, &tmpval, 1);
3396 			regs->data = ntohl(tmpval);
3397 #if 0
3398 			if ((regs->addr == TI_CPU_STATE)
3399 			 || (regs->addr == TI_CPU_CTL_B)) {
3400 				printf("ti%d: register %#x = %#x\n",
3401 				       sc->ti_unit, regs->addr, tmpval);
3402 			}
3403 #endif
3404 		} else {
3405 			tmpval = htonl(regs->data);
3406 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3407 						 regs->addr, &tmpval, 1);
3408 		}
3409 
3410 		break;
3411 	}
3412 	default:
3413 		error = ENOTTY;
3414 		break;
3415 	}
3416 	return(error);
3417 }
3418 
3419 static void
3420 ti_watchdog(ifp)
3421 	struct ifnet		*ifp;
3422 {
3423 	struct ti_softc		*sc;
3424 
3425 	sc = ifp->if_softc;
3426 	TI_LOCK(sc);
3427 
3428 	/*
3429 	 * When we're debugging, the chip is often stopped for long periods
3430 	 * of time, and that would normally cause the watchdog timer to fire.
3431 	 * Since that impedes debugging, we don't want to do that.
3432 	 */
3433 	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3434 		TI_UNLOCK(sc);
3435 		return;
3436 	}
3437 
3438 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3439 	ti_stop(sc);
3440 	ti_init(sc);
3441 
3442 	ifp->if_oerrors++;
3443 	TI_UNLOCK(sc);
3444 
3445 	return;
3446 }
3447 
3448 /*
3449  * Stop the adapter and free any mbufs allocated to the
3450  * RX and TX lists.
3451  */
3452 static void
3453 ti_stop(sc)
3454 	struct ti_softc		*sc;
3455 {
3456 	struct ifnet		*ifp;
3457 	struct ti_cmd_desc	cmd;
3458 
3459 	TI_LOCK(sc);
3460 
3461 	ifp = &sc->arpcom.ac_if;
3462 
3463 	/* Disable host interrupts. */
3464 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3465 	/*
3466 	 * Tell firmware we're shutting down.
3467 	 */
3468 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3469 
3470 	/* Halt and reinitialize. */
3471 	ti_chipinit(sc);
3472 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3473 	ti_chipinit(sc);
3474 
3475 	/* Free the RX lists. */
3476 	ti_free_rx_ring_std(sc);
3477 
3478 	/* Free jumbo RX list. */
3479 	ti_free_rx_ring_jumbo(sc);
3480 
3481 	/* Free mini RX list. */
3482 	ti_free_rx_ring_mini(sc);
3483 
3484 	/* Free TX buffers. */
3485 	ti_free_tx_ring(sc);
3486 
3487 	sc->ti_ev_prodidx.ti_idx = 0;
3488 	sc->ti_return_prodidx.ti_idx = 0;
3489 	sc->ti_tx_considx.ti_idx = 0;
3490 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3491 
3492 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3493 	TI_UNLOCK(sc);
3494 
3495 	return;
3496 }
3497 
3498 /*
3499  * Stop all chip I/O so that the kernel's probe routines don't
3500  * get confused by errant DMAs when rebooting.
3501  */
3502 static void
3503 ti_shutdown(dev)
3504 	device_t		dev;
3505 {
3506 	struct ti_softc		*sc;
3507 
3508 	sc = device_get_softc(dev);
3509 	TI_LOCK(sc);
3510 	ti_chipinit(sc);
3511 	TI_UNLOCK(sc);
3512 
3513 	return;
3514 }
3515