xref: /freebsd/sys/dev/ti/if_ti.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/ethernet.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_types.h>
101 #include <net/if_vlan_var.h>
102 
103 #include <net/bpf.h>
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>		/* for vtophys */
110 #include <vm/pmap.h>		/* for vtophys */
111 #include <machine/bus_memio.h>
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 /* #define TI_PRIVATE_JUMBOS */
118 
119 #if !defined(TI_PRIVATE_JUMBOS)
120 #include <sys/sockio.h>
121 #include <sys/uio.h>
122 #include <sys/lock.h>
123 #include <sys/sf_buf.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_param.h>
129 #include <vm/vm_pageout.h>
130 #include <sys/vmmeter.h>
131 #include <vm/vm_page.h>
132 #include <vm/vm_object.h>
133 #include <vm/vm_kern.h>
134 #include <sys/proc.h>
135 #endif /* !TI_PRIVATE_JUMBOS */
136 
137 #include <dev/pci/pcireg.h>
138 #include <dev/pci/pcivar.h>
139 
140 #include <sys/tiio.h>
141 #include <pci/if_tireg.h>
142 #include <pci/ti_fw.h>
143 #include <pci/ti_fw2.h>
144 
145 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
146 /*
147  * We can only turn on header splitting if we're using extended receive
148  * BDs.
149  */
150 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
151 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
152 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
153 
154 struct ti_softc *tis[8];
155 
156 typedef enum {
157 	TI_SWAP_HTON,
158 	TI_SWAP_NTOH
159 } ti_swap_type;
160 
161 
162 /*
163  * Various supported device vendors/types and their names.
164  */
165 
166 static struct ti_type ti_devs[] = {
167 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
168 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
169 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
170 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
171 	{ TC_VENDORID,	TC_DEVICEID_3C985,
172 		"3Com 3c985-SX Gigabit Ethernet" },
173 	{ NG_VENDORID, NG_DEVICEID_GA620,
174 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
175 	{ NG_VENDORID, NG_DEVICEID_GA620T,
176 		"Netgear GA620 1000baseT Gigabit Ethernet" },
177 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
178 		"Silicon Graphics Gigabit Ethernet" },
179 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
180 		"Farallon PN9000SX Gigabit Ethernet" },
181 	{ 0, 0, NULL }
182 };
183 
184 
185 static	d_open_t	ti_open;
186 static	d_close_t	ti_close;
187 static	d_ioctl_t	ti_ioctl2;
188 
189 static struct cdevsw ti_cdevsw = {
190 	.d_version =	D_VERSION,
191 	.d_flags =	D_NEEDGIANT,
192 	.d_open =	ti_open,
193 	.d_close =	ti_close,
194 	.d_ioctl =	ti_ioctl2,
195 	.d_name =	"ti",
196 };
197 
198 static int ti_probe(device_t);
199 static int ti_attach(device_t);
200 static int ti_detach(device_t);
201 static void ti_txeof(struct ti_softc *);
202 static void ti_rxeof(struct ti_softc *);
203 
204 static void ti_stats_update(struct ti_softc *);
205 static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
206 
207 static void ti_intr(void *);
208 static void ti_start(struct ifnet *);
209 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
210 static void ti_init(void *);
211 static void ti_init2(struct ti_softc *);
212 static void ti_stop(struct ti_softc *);
213 static void ti_watchdog(struct ifnet *);
214 static void ti_shutdown(device_t);
215 static int ti_ifmedia_upd(struct ifnet *);
216 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 
218 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
219 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
220 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
221 
222 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
223 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
224 static void ti_setmulti(struct ti_softc *);
225 
226 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
227 static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
228 static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
229 		int, int, int);
230 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
231 static void ti_loadfw(struct ti_softc *);
232 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
233 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
234 static void ti_handle_events(struct ti_softc *);
235 #ifdef TI_PRIVATE_JUMBOS
236 static int ti_alloc_jumbo_mem(struct ti_softc *);
237 static void *ti_jalloc(struct ti_softc *);
238 static void ti_jfree(void *, void *);
239 #endif /* TI_PRIVATE_JUMBOS */
240 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
241 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
242 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
243 static int ti_init_rx_ring_std(struct ti_softc *);
244 static void ti_free_rx_ring_std(struct ti_softc *);
245 static int ti_init_rx_ring_jumbo(struct ti_softc *);
246 static void ti_free_rx_ring_jumbo(struct ti_softc *);
247 static int ti_init_rx_ring_mini(struct ti_softc *);
248 static void ti_free_rx_ring_mini(struct ti_softc *);
249 static void ti_free_tx_ring(struct ti_softc *);
250 static int ti_init_tx_ring(struct ti_softc *);
251 
252 static int ti_64bitslot_war(struct ti_softc *);
253 static int ti_chipinit(struct ti_softc *);
254 static int ti_gibinit(struct ti_softc *);
255 
256 #ifdef TI_JUMBO_HDRSPLIT
257 static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
258 					     int pkt_len, int idx);
259 #endif /* TI_JUMBO_HDRSPLIT */
260 
261 static device_method_t ti_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		ti_probe),
264 	DEVMETHOD(device_attach,	ti_attach),
265 	DEVMETHOD(device_detach,	ti_detach),
266 	DEVMETHOD(device_shutdown,	ti_shutdown),
267 	{ 0, 0 }
268 };
269 
270 static driver_t ti_driver = {
271 	"ti",
272 	ti_methods,
273 	sizeof(struct ti_softc)
274 };
275 
276 static devclass_t ti_devclass;
277 
278 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
279 MODULE_DEPEND(ti, pci, 1, 1, 1);
280 MODULE_DEPEND(ti, ether, 1, 1, 1);
281 
282 /*
283  * Send an instruction or address to the EEPROM, check for ACK.
284  */
285 static u_int32_t ti_eeprom_putbyte(sc, byte)
286 	struct ti_softc		*sc;
287 	int			byte;
288 {
289 	register int		i, ack = 0;
290 
291 	/*
292 	 * Make sure we're in TX mode.
293 	 */
294 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
295 
296 	/*
297 	 * Feed in each bit and stobe the clock.
298 	 */
299 	for (i = 0x80; i; i >>= 1) {
300 		if (byte & i) {
301 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
302 		} else {
303 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
304 		}
305 		DELAY(1);
306 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
307 		DELAY(1);
308 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
309 	}
310 
311 	/*
312 	 * Turn off TX mode.
313 	 */
314 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
315 
316 	/*
317 	 * Check for ack.
318 	 */
319 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
320 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
321 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
322 
323 	return (ack);
324 }
325 
326 /*
327  * Read a byte of data stored in the EEPROM at address 'addr.'
328  * We have to send two address bytes since the EEPROM can hold
329  * more than 256 bytes of data.
330  */
331 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
332 	struct ti_softc		*sc;
333 	int			addr;
334 	u_int8_t		*dest;
335 {
336 	register int		i;
337 	u_int8_t		byte = 0;
338 
339 	EEPROM_START;
340 
341 	/*
342 	 * Send write control code to EEPROM.
343 	 */
344 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
345 		printf("ti%d: failed to send write command, status: %x\n",
346 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
347 		return (1);
348 	}
349 
350 	/*
351 	 * Send first byte of address of byte we want to read.
352 	 */
353 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
354 		printf("ti%d: failed to send address, status: %x\n",
355 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
356 		return (1);
357 	}
358 	/*
359 	 * Send second byte address of byte we want to read.
360 	 */
361 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
362 		printf("ti%d: failed to send address, status: %x\n",
363 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
364 		return (1);
365 	}
366 
367 	EEPROM_STOP;
368 	EEPROM_START;
369 	/*
370 	 * Send read control code to EEPROM.
371 	 */
372 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
373 		printf("ti%d: failed to send read command, status: %x\n",
374 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
375 		return (1);
376 	}
377 
378 	/*
379 	 * Start reading bits from EEPROM.
380 	 */
381 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
382 	for (i = 0x80; i; i >>= 1) {
383 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
384 		DELAY(1);
385 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
386 			byte |= i;
387 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
388 		DELAY(1);
389 	}
390 
391 	EEPROM_STOP;
392 
393 	/*
394 	 * No ACK generated for read, so just return byte.
395 	 */
396 
397 	*dest = byte;
398 
399 	return (0);
400 }
401 
402 /*
403  * Read a sequence of bytes from the EEPROM.
404  */
405 static int
406 ti_read_eeprom(sc, dest, off, cnt)
407 	struct ti_softc		*sc;
408 	caddr_t			dest;
409 	int			off;
410 	int			cnt;
411 {
412 	int			err = 0, i;
413 	u_int8_t		byte = 0;
414 
415 	for (i = 0; i < cnt; i++) {
416 		err = ti_eeprom_getbyte(sc, off + i, &byte);
417 		if (err)
418 			break;
419 		*(dest + i) = byte;
420 	}
421 
422 	return (err ? 1 : 0);
423 }
424 
425 /*
426  * NIC memory access function. Can be used to either clear a section
427  * of NIC local memory or (if buf is non-NULL) copy data into it.
428  */
429 static void
430 ti_mem(sc, addr, len, buf)
431 	struct ti_softc		*sc;
432 	u_int32_t		addr, len;
433 	caddr_t			buf;
434 {
435 	int			segptr, segsize, cnt;
436 	caddr_t			ti_winbase, ptr;
437 
438 	segptr = addr;
439 	cnt = len;
440 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
441 	ptr = buf;
442 
443 	while (cnt) {
444 		if (cnt < TI_WINLEN)
445 			segsize = cnt;
446 		else
447 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
448 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
449 		if (buf == NULL)
450 			bzero((char *)ti_winbase + (segptr &
451 			    (TI_WINLEN - 1)), segsize);
452 		else {
453 			bcopy((char *)ptr, (char *)ti_winbase +
454 			    (segptr & (TI_WINLEN - 1)), segsize);
455 			ptr += segsize;
456 		}
457 		segptr += segsize;
458 		cnt -= segsize;
459 	}
460 }
461 
462 static int
463 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
464 	struct ti_softc		*sc;
465 	u_int32_t		tigon_addr, len;
466 	caddr_t			buf;
467 	int			useraddr, readdata;
468 {
469 	int		segptr, segsize, cnt;
470 	caddr_t		ptr;
471 	u_int32_t	origwin;
472 	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
473 	int		resid, segresid;
474 	int		first_pass;
475 
476 	/*
477 	 * At the moment, we don't handle non-aligned cases, we just bail.
478 	 * If this proves to be a problem, it will be fixed.
479 	 */
480 	if ((readdata == 0)
481 	 && (tigon_addr & 0x3)) {
482 		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
483 		       "word-aligned\n", sc->ti_unit, tigon_addr);
484 		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
485 		       "supported\n", sc->ti_unit);
486 		return (EINVAL);
487 	}
488 
489 	segptr = tigon_addr & ~0x3;
490 	segresid = tigon_addr - segptr;
491 
492 	/*
493 	 * This is the non-aligned amount left over that we'll need to
494 	 * copy.
495 	 */
496 	resid = len & 0x3;
497 
498 	/* Add in the left over amount at the front of the buffer */
499 	resid += segresid;
500 
501 	cnt = len & ~0x3;
502 	/*
503 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
504 	 * decrease the residual by that much.
505 	 */
506 	cnt += resid & ~0x3;
507 	resid -= resid & ~0x3;
508 
509 	ptr = buf;
510 
511 	first_pass = 1;
512 
513 	/*
514 	 * Make sure we aren't interrupted while we're changing the window
515 	 * pointer.
516 	 */
517 	TI_LOCK(sc);
518 
519 	/*
520 	 * Save the old window base value.
521 	 */
522 	origwin = CSR_READ_4(sc, TI_WINBASE);
523 
524 	while (cnt) {
525 		bus_size_t ti_offset;
526 
527 		if (cnt < TI_WINLEN)
528 			segsize = cnt;
529 		else
530 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
531 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
532 
533 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
534 
535 		if (readdata) {
536 
537 			bus_space_read_region_4(sc->ti_btag,
538 						sc->ti_bhandle, ti_offset,
539 						(u_int32_t *)tmparray,
540 						segsize >> 2);
541 			if (useraddr) {
542 				/*
543 				 * Yeah, this is a little on the kludgy
544 				 * side, but at least this code is only
545 				 * used for debugging.
546 				 */
547 				ti_bcopy_swap(tmparray, tmparray2, segsize,
548 					      TI_SWAP_NTOH);
549 
550 				if (first_pass) {
551 					copyout(&tmparray2[segresid], ptr,
552 						segsize - segresid);
553 					first_pass = 0;
554 				} else
555 					copyout(tmparray2, ptr, segsize);
556 			} else {
557 				if (first_pass) {
558 
559 					ti_bcopy_swap(tmparray, tmparray2,
560 						      segsize, TI_SWAP_NTOH);
561 					bcopy(&tmparray2[segresid], ptr,
562 					      segsize - segresid);
563 					first_pass = 0;
564 				} else
565 					ti_bcopy_swap(tmparray, ptr, segsize,
566 						      TI_SWAP_NTOH);
567 			}
568 
569 		} else {
570 			if (useraddr) {
571 				copyin(ptr, tmparray2, segsize);
572 				ti_bcopy_swap(tmparray2, tmparray, segsize,
573 					      TI_SWAP_HTON);
574 			} else
575 				ti_bcopy_swap(ptr, tmparray, segsize,
576 					      TI_SWAP_HTON);
577 
578 			bus_space_write_region_4(sc->ti_btag,
579 						 sc->ti_bhandle, ti_offset,
580 						 (u_int32_t *)tmparray,
581 						 segsize >> 2);
582 		}
583 		segptr += segsize;
584 		ptr += segsize;
585 		cnt -= segsize;
586 	}
587 
588 	/*
589 	 * Handle leftover, non-word-aligned bytes.
590 	 */
591 	if (resid != 0) {
592 		u_int32_t	tmpval, tmpval2;
593 		bus_size_t	ti_offset;
594 
595 		/*
596 		 * Set the segment pointer.
597 		 */
598 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
599 
600 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
601 
602 		/*
603 		 * First, grab whatever is in our source/destination.
604 		 * We'll obviously need this for reads, but also for
605 		 * writes, since we'll be doing read/modify/write.
606 		 */
607 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
608 					ti_offset, &tmpval, 1);
609 
610 		/*
611 		 * Next, translate this from little-endian to big-endian
612 		 * (at least on i386 boxes).
613 		 */
614 		tmpval2 = ntohl(tmpval);
615 
616 		if (readdata) {
617 			/*
618 			 * If we're reading, just copy the leftover number
619 			 * of bytes from the host byte order buffer to
620 			 * the user's buffer.
621 			 */
622 			if (useraddr)
623 				copyout(&tmpval2, ptr, resid);
624 			else
625 				bcopy(&tmpval2, ptr, resid);
626 		} else {
627 			/*
628 			 * If we're writing, first copy the bytes to be
629 			 * written into the network byte order buffer,
630 			 * leaving the rest of the buffer with whatever was
631 			 * originally in there.  Then, swap the bytes
632 			 * around into host order and write them out.
633 			 *
634 			 * XXX KDM the read side of this has been verified
635 			 * to work, but the write side of it has not been
636 			 * verified.  So user beware.
637 			 */
638 			if (useraddr)
639 				copyin(ptr, &tmpval2, resid);
640 			else
641 				bcopy(ptr, &tmpval2, resid);
642 
643 			tmpval = htonl(tmpval2);
644 
645 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
646 						 ti_offset, &tmpval, 1);
647 		}
648 	}
649 
650 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
651 
652 	TI_UNLOCK(sc);
653 
654 	return (0);
655 }
656 
657 static int
658 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
659 	struct ti_softc		*sc;
660 	u_int32_t		tigon_addr, len;
661 	caddr_t			buf;
662 	int			useraddr, readdata;
663 	int			cpu;
664 {
665 	u_int32_t	segptr;
666 	int		cnt;
667 	u_int32_t	tmpval, tmpval2;
668 	caddr_t		ptr;
669 
670 	/*
671 	 * At the moment, we don't handle non-aligned cases, we just bail.
672 	 * If this proves to be a problem, it will be fixed.
673 	 */
674 	if (tigon_addr & 0x3) {
675 		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
676 		       "word-aligned\n", sc->ti_unit, tigon_addr);
677 		return (EINVAL);
678 	}
679 
680 	if (len & 0x3) {
681 		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
682 		       "word-aligned\n", sc->ti_unit, len);
683 		return (EINVAL);
684 	}
685 
686 	segptr = tigon_addr;
687 	cnt = len;
688 	ptr = buf;
689 
690 	TI_LOCK(sc);
691 
692 	while (cnt) {
693 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
694 
695 		if (readdata) {
696 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
697 
698 			tmpval = ntohl(tmpval2);
699 
700 			/*
701 			 * Note:  I've used this debugging interface
702 			 * extensively with Alteon's 12.3.15 firmware,
703 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
704 			 *
705 			 * When you compile the firmware without
706 			 * optimization, which is necessary sometimes in
707 			 * order to properly step through it, you sometimes
708 			 * read out a bogus value of 0xc0017c instead of
709 			 * whatever was supposed to be in that scratchpad
710 			 * location.  That value is on the stack somewhere,
711 			 * but I've never been able to figure out what was
712 			 * causing the problem.
713 			 *
714 			 * The address seems to pop up in random places,
715 			 * often not in the same place on two subsequent
716 			 * reads.
717 			 *
718 			 * In any case, the underlying data doesn't seem
719 			 * to be affected, just the value read out.
720 			 *
721 			 * KDM, 3/7/2000
722 			 */
723 
724 			if (tmpval2 == 0xc0017c)
725 				printf("ti%d: found 0xc0017c at %#x "
726 				       "(tmpval2)\n", sc->ti_unit, segptr);
727 
728 			if (tmpval == 0xc0017c)
729 				printf("ti%d: found 0xc0017c at %#x "
730 				       "(tmpval)\n", sc->ti_unit, segptr);
731 
732 			if (useraddr)
733 				copyout(&tmpval, ptr, 4);
734 			else
735 				bcopy(&tmpval, ptr, 4);
736 		} else {
737 			if (useraddr)
738 				copyin(ptr, &tmpval2, 4);
739 			else
740 				bcopy(ptr, &tmpval2, 4);
741 
742 			tmpval = htonl(tmpval2);
743 
744 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
745 		}
746 
747 		cnt -= 4;
748 		segptr += 4;
749 		ptr += 4;
750 	}
751 
752 	TI_UNLOCK(sc);
753 
754 	return (0);
755 }
756 
757 static int
758 ti_bcopy_swap(src, dst, len, swap_type)
759 	const void	*src;
760 	void		*dst;
761 	size_t		len;
762 	ti_swap_type	swap_type;
763 {
764 	const u_int8_t *tmpsrc;
765 	u_int8_t *tmpdst;
766 	size_t tmplen;
767 
768 	if (len & 0x3) {
769 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
770 		       len);
771 		return (-1);
772 	}
773 
774 	tmpsrc = src;
775 	tmpdst = dst;
776 	tmplen = len;
777 
778 	while (tmplen) {
779 		if (swap_type == TI_SWAP_NTOH)
780 			*(u_int32_t *)tmpdst =
781 				ntohl(*(const u_int32_t *)tmpsrc);
782 		else
783 			*(u_int32_t *)tmpdst =
784 				htonl(*(const u_int32_t *)tmpsrc);
785 
786 		tmpsrc += 4;
787 		tmpdst += 4;
788 		tmplen -= 4;
789 	}
790 
791 	return (0);
792 }
793 
794 /*
795  * Load firmware image into the NIC. Check that the firmware revision
796  * is acceptable and see if we want the firmware for the Tigon 1 or
797  * Tigon 2.
798  */
799 static void
800 ti_loadfw(sc)
801 	struct ti_softc		*sc;
802 {
803 	switch (sc->ti_hwrev) {
804 	case TI_HWREV_TIGON:
805 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
806 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
807 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
808 			printf("ti%d: firmware revision mismatch; want "
809 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
810 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
811 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
812 			    tigonFwReleaseMinor, tigonFwReleaseFix);
813 			return;
814 		}
815 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
816 		    (caddr_t)tigonFwText);
817 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
818 		    (caddr_t)tigonFwData);
819 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
820 		    (caddr_t)tigonFwRodata);
821 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
822 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
823 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
824 		break;
825 	case TI_HWREV_TIGON_II:
826 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
827 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
828 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
829 			printf("ti%d: firmware revision mismatch; want "
830 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
831 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
832 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
833 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
834 			return;
835 		}
836 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
837 		    (caddr_t)tigon2FwText);
838 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
839 		    (caddr_t)tigon2FwData);
840 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
841 		    (caddr_t)tigon2FwRodata);
842 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
843 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
844 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
845 		break;
846 	default:
847 		printf("ti%d: can't load firmware: unknown hardware rev\n",
848 		    sc->ti_unit);
849 		break;
850 	}
851 }
852 
853 /*
854  * Send the NIC a command via the command ring.
855  */
856 static void
857 ti_cmd(sc, cmd)
858 	struct ti_softc		*sc;
859 	struct ti_cmd_desc	*cmd;
860 {
861 	u_int32_t		index;
862 
863 	if (sc->ti_rdata->ti_cmd_ring == NULL)
864 		return;
865 
866 	index = sc->ti_cmd_saved_prodidx;
867 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
868 	TI_INC(index, TI_CMD_RING_CNT);
869 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
870 	sc->ti_cmd_saved_prodidx = index;
871 }
872 
873 /*
874  * Send the NIC an extended command. The 'len' parameter specifies the
875  * number of command slots to include after the initial command.
876  */
877 static void
878 ti_cmd_ext(sc, cmd, arg, len)
879 	struct ti_softc		*sc;
880 	struct ti_cmd_desc	*cmd;
881 	caddr_t			arg;
882 	int			len;
883 {
884 	u_int32_t		index;
885 	register int		i;
886 
887 	if (sc->ti_rdata->ti_cmd_ring == NULL)
888 		return;
889 
890 	index = sc->ti_cmd_saved_prodidx;
891 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
892 	TI_INC(index, TI_CMD_RING_CNT);
893 	for (i = 0; i < len; i++) {
894 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
895 		    *(u_int32_t *)(&arg[i * 4]));
896 		TI_INC(index, TI_CMD_RING_CNT);
897 	}
898 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
899 	sc->ti_cmd_saved_prodidx = index;
900 }
901 
902 /*
903  * Handle events that have triggered interrupts.
904  */
905 static void
906 ti_handle_events(sc)
907 	struct ti_softc		*sc;
908 {
909 	struct ti_event_desc	*e;
910 
911 	if (sc->ti_rdata->ti_event_ring == NULL)
912 		return;
913 
914 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
915 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
916 		switch (e->ti_event) {
917 		case TI_EV_LINKSTAT_CHANGED:
918 			sc->ti_linkstat = e->ti_code;
919 			if (e->ti_code == TI_EV_CODE_LINK_UP)
920 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
921 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
922 				printf("ti%d: gigabit link up\n", sc->ti_unit);
923 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
924 				printf("ti%d: link down\n", sc->ti_unit);
925 			break;
926 		case TI_EV_ERROR:
927 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
928 				printf("ti%d: invalid command\n", sc->ti_unit);
929 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
930 				printf("ti%d: unknown command\n", sc->ti_unit);
931 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
932 				printf("ti%d: bad config data\n", sc->ti_unit);
933 			break;
934 		case TI_EV_FIRMWARE_UP:
935 			ti_init2(sc);
936 			break;
937 		case TI_EV_STATS_UPDATED:
938 			ti_stats_update(sc);
939 			break;
940 		case TI_EV_RESET_JUMBO_RING:
941 		case TI_EV_MCAST_UPDATED:
942 			/* Who cares. */
943 			break;
944 		default:
945 			printf("ti%d: unknown event: %d\n",
946 			    sc->ti_unit, e->ti_event);
947 			break;
948 		}
949 		/* Advance the consumer index. */
950 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
951 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
952 	}
953 }
954 
955 #ifdef TI_PRIVATE_JUMBOS
956 
957 /*
958  * Memory management for the jumbo receive ring is a pain in the
959  * butt. We need to allocate at least 9018 bytes of space per frame,
960  * _and_ it has to be contiguous (unless you use the extended
961  * jumbo descriptor format). Using malloc() all the time won't
962  * work: malloc() allocates memory in powers of two, which means we
963  * would end up wasting a considerable amount of space by allocating
964  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
965  * to do our own memory management.
966  *
967  * The driver needs to allocate a contiguous chunk of memory at boot
968  * time. We then chop this up ourselves into 9K pieces and use them
969  * as external mbuf storage.
970  *
971  * One issue here is how much memory to allocate. The jumbo ring has
972  * 256 slots in it, but at 9K per slot than can consume over 2MB of
973  * RAM. This is a bit much, especially considering we also need
974  * RAM for the standard ring and mini ring (on the Tigon 2). To
975  * save space, we only actually allocate enough memory for 64 slots
976  * by default, which works out to between 500 and 600K. This can
977  * be tuned by changing a #define in if_tireg.h.
978  */
979 
980 static int
981 ti_alloc_jumbo_mem(sc)
982 	struct ti_softc		*sc;
983 {
984 	caddr_t			ptr;
985 	register int		i;
986 	struct ti_jpool_entry   *entry;
987 
988 	/* Grab a big chunk o' storage. */
989 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
990 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
991 
992 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
993 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
994 		return (ENOBUFS);
995 	}
996 
997 	SLIST_INIT(&sc->ti_jfree_listhead);
998 	SLIST_INIT(&sc->ti_jinuse_listhead);
999 
1000 	/*
1001 	 * Now divide it up into 9K pieces and save the addresses
1002 	 * in an array.
1003 	 */
1004 	ptr = sc->ti_cdata.ti_jumbo_buf;
1005 	for (i = 0; i < TI_JSLOTS; i++) {
1006 		sc->ti_cdata.ti_jslots[i] = ptr;
1007 		ptr += TI_JLEN;
1008 		entry = malloc(sizeof(struct ti_jpool_entry),
1009 			       M_DEVBUF, M_NOWAIT);
1010 		if (entry == NULL) {
1011 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1012 			           M_DEVBUF);
1013 			sc->ti_cdata.ti_jumbo_buf = NULL;
1014 			printf("ti%d: no memory for jumbo "
1015 			    "buffer queue!\n", sc->ti_unit);
1016 			return (ENOBUFS);
1017 		}
1018 		entry->slot = i;
1019 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1020 	}
1021 
1022 	return (0);
1023 }
1024 
1025 /*
1026  * Allocate a jumbo buffer.
1027  */
1028 static void *ti_jalloc(sc)
1029 	struct ti_softc		*sc;
1030 {
1031 	struct ti_jpool_entry	*entry;
1032 
1033 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1034 
1035 	if (entry == NULL) {
1036 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1037 		return (NULL);
1038 	}
1039 
1040 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1041 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1042 	return (sc->ti_cdata.ti_jslots[entry->slot]);
1043 }
1044 
1045 /*
1046  * Release a jumbo buffer.
1047  */
1048 static void
1049 ti_jfree(buf, args)
1050 	void			*buf;
1051 	void			*args;
1052 {
1053 	struct ti_softc		*sc;
1054 	int			i;
1055 	struct ti_jpool_entry	*entry;
1056 
1057 	/* Extract the softc struct pointer. */
1058 	sc = (struct ti_softc *)args;
1059 
1060 	if (sc == NULL)
1061 		panic("ti_jfree: didn't get softc pointer!");
1062 
1063 	/* calculate the slot this buffer belongs to */
1064 	i = ((vm_offset_t)buf
1065 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1066 
1067 	if ((i < 0) || (i >= TI_JSLOTS))
1068 		panic("ti_jfree: asked to free buffer that we don't manage!");
1069 
1070 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1071 	if (entry == NULL)
1072 		panic("ti_jfree: buffer not in use!");
1073 	entry->slot = i;
1074 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1075 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1076 }
1077 
1078 #endif /* TI_PRIVATE_JUMBOS */
1079 
1080 /*
1081  * Intialize a standard receive ring descriptor.
1082  */
1083 static int
1084 ti_newbuf_std(sc, i, m)
1085 	struct ti_softc		*sc;
1086 	int			i;
1087 	struct mbuf		*m;
1088 {
1089 	struct mbuf		*m_new = NULL;
1090 	struct ti_rx_desc	*r;
1091 
1092 	if (m == NULL) {
1093 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1094 		if (m_new == NULL)
1095 			return (ENOBUFS);
1096 
1097 		MCLGET(m_new, M_DONTWAIT);
1098 		if (!(m_new->m_flags & M_EXT)) {
1099 			m_freem(m_new);
1100 			return (ENOBUFS);
1101 		}
1102 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1103 	} else {
1104 		m_new = m;
1105 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1106 		m_new->m_data = m_new->m_ext.ext_buf;
1107 	}
1108 
1109 	m_adj(m_new, ETHER_ALIGN);
1110 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1111 	r = &sc->ti_rdata->ti_rx_std_ring[i];
1112 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1113 	r->ti_type = TI_BDTYPE_RECV_BD;
1114 	r->ti_flags = 0;
1115 	if (sc->arpcom.ac_if.if_hwassist)
1116 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1117 	r->ti_len = m_new->m_len;
1118 	r->ti_idx = i;
1119 
1120 	return (0);
1121 }
1122 
1123 /*
1124  * Intialize a mini receive ring descriptor. This only applies to
1125  * the Tigon 2.
1126  */
1127 static int
1128 ti_newbuf_mini(sc, i, m)
1129 	struct ti_softc		*sc;
1130 	int			i;
1131 	struct mbuf		*m;
1132 {
1133 	struct mbuf		*m_new = NULL;
1134 	struct ti_rx_desc	*r;
1135 
1136 	if (m == NULL) {
1137 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1138 		if (m_new == NULL) {
1139 			return (ENOBUFS);
1140 		}
1141 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1142 	} else {
1143 		m_new = m;
1144 		m_new->m_data = m_new->m_pktdat;
1145 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1146 	}
1147 
1148 	m_adj(m_new, ETHER_ALIGN);
1149 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1150 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1151 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1152 	r->ti_type = TI_BDTYPE_RECV_BD;
1153 	r->ti_flags = TI_BDFLAG_MINI_RING;
1154 	if (sc->arpcom.ac_if.if_hwassist)
1155 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1156 	r->ti_len = m_new->m_len;
1157 	r->ti_idx = i;
1158 
1159 	return (0);
1160 }
1161 
1162 #ifdef TI_PRIVATE_JUMBOS
1163 
1164 /*
1165  * Initialize a jumbo receive ring descriptor. This allocates
1166  * a jumbo buffer from the pool managed internally by the driver.
1167  */
1168 static int
1169 ti_newbuf_jumbo(sc, i, m)
1170 	struct ti_softc		*sc;
1171 	int			i;
1172 	struct mbuf		*m;
1173 {
1174 	struct mbuf		*m_new = NULL;
1175 	struct ti_rx_desc	*r;
1176 
1177 	if (m == NULL) {
1178 		caddr_t			*buf = NULL;
1179 
1180 		/* Allocate the mbuf. */
1181 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1182 		if (m_new == NULL) {
1183 			return (ENOBUFS);
1184 		}
1185 
1186 		/* Allocate the jumbo buffer */
1187 		buf = ti_jalloc(sc);
1188 		if (buf == NULL) {
1189 			m_freem(m_new);
1190 			printf("ti%d: jumbo allocation failed "
1191 			    "-- packet dropped!\n", sc->ti_unit);
1192 			return (ENOBUFS);
1193 		}
1194 
1195 		/* Attach the buffer to the mbuf. */
1196 		m_new->m_data = (void *) buf;
1197 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1198 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1199 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1200 	} else {
1201 		m_new = m;
1202 		m_new->m_data = m_new->m_ext.ext_buf;
1203 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1204 	}
1205 
1206 	m_adj(m_new, ETHER_ALIGN);
1207 	/* Set up the descriptor. */
1208 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1209 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1210 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1211 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1212 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1213 	if (sc->arpcom.ac_if.if_hwassist)
1214 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1215 	r->ti_len = m_new->m_len;
1216 	r->ti_idx = i;
1217 
1218 	return (0);
1219 }
1220 
1221 #else
1222 #include <vm/vm_page.h>
1223 
1224 #if (PAGE_SIZE == 4096)
1225 #define NPAYLOAD 2
1226 #else
1227 #define NPAYLOAD 1
1228 #endif
1229 
1230 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1231 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1232 #define NFS_HDR_LEN (UDP_HDR_LEN)
1233 static int HDR_LEN =  TCP_HDR_LEN;
1234 
1235 
1236 /*
1237  * Initialize a jumbo receive ring descriptor. This allocates
1238  * a jumbo buffer from the pool managed internally by the driver.
1239  */
1240 static int
1241 ti_newbuf_jumbo(sc, idx, m_old)
1242 	struct ti_softc		*sc;
1243 	int			idx;
1244 	struct mbuf		*m_old;
1245 {
1246 	struct mbuf		*cur, *m_new = NULL;
1247 	struct mbuf		*m[3] = {NULL, NULL, NULL};
1248 	struct ti_rx_desc_ext	*r;
1249 	vm_page_t		frame;
1250 	static int		color;
1251 				/* 1 extra buf to make nobufs easy*/
1252 	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1253 	int			i;
1254 
1255 	if (m_old != NULL) {
1256 		m_new = m_old;
1257 		cur = m_old->m_next;
1258 		for (i = 0; i <= NPAYLOAD; i++){
1259 			m[i] = cur;
1260 			cur = cur->m_next;
1261 		}
1262 	} else {
1263 		/* Allocate the mbufs. */
1264 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1265 		if (m_new == NULL) {
1266 			printf("ti%d: mbuf allocation failed "
1267 			       "-- packet dropped!\n", sc->ti_unit);
1268 			goto nobufs;
1269 		}
1270 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1271 		if (m[NPAYLOAD] == NULL) {
1272 			printf("ti%d: cluster mbuf allocation failed "
1273 			       "-- packet dropped!\n", sc->ti_unit);
1274 			goto nobufs;
1275 		}
1276 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1277 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1278 			printf("ti%d: mbuf allocation failed "
1279 			       "-- packet dropped!\n", sc->ti_unit);
1280 			goto nobufs;
1281 		}
1282 		m[NPAYLOAD]->m_len = MCLBYTES;
1283 
1284 		for (i = 0; i < NPAYLOAD; i++){
1285 			MGET(m[i], M_DONTWAIT, MT_DATA);
1286 			if (m[i] == NULL) {
1287 				printf("ti%d: mbuf allocation failed "
1288 				       "-- packet dropped!\n", sc->ti_unit);
1289 				goto nobufs;
1290 			}
1291 			frame = vm_page_alloc(NULL, color++,
1292 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1293 			    VM_ALLOC_WIRED);
1294 			if (frame == NULL) {
1295 				printf("ti%d: buffer allocation failed "
1296 				       "-- packet dropped!\n", sc->ti_unit);
1297 				printf("      index %d page %d\n", idx, i);
1298 				goto nobufs;
1299 			}
1300 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1301 			if (sf[i] == NULL) {
1302 				vm_page_lock_queues();
1303 				vm_page_unwire(frame, 0);
1304 				vm_page_free(frame);
1305 				vm_page_unlock_queues();
1306 				printf("ti%d: buffer allocation failed "
1307 				       "-- packet dropped!\n", sc->ti_unit);
1308 				printf("      index %d page %d\n", idx, i);
1309 				goto nobufs;
1310 			}
1311 		}
1312 		for (i = 0; i < NPAYLOAD; i++){
1313 		/* Attach the buffer to the mbuf. */
1314 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1315 			m[i]->m_len = PAGE_SIZE;
1316 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1317 			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1318 			m[i]->m_next = m[i+1];
1319 		}
1320 		/* link the buffers to the header */
1321 		m_new->m_next = m[0];
1322 		m_new->m_data += ETHER_ALIGN;
1323 		if (sc->ti_hdrsplit)
1324 			m_new->m_len = MHLEN - ETHER_ALIGN;
1325 		else
1326 			m_new->m_len = HDR_LEN;
1327 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1328 	}
1329 
1330 	/* Set up the descriptor. */
1331 	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1332 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1333 	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1334 	r->ti_len0 = m_new->m_len;
1335 
1336 	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1337 	r->ti_len1 = PAGE_SIZE;
1338 
1339 	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1340 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1341 
1342 	if (PAGE_SIZE == 4096) {
1343 		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1344 		r->ti_len3 = MCLBYTES;
1345 	} else {
1346 		r->ti_len3 = 0;
1347 	}
1348 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1349 
1350 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1351 
1352 	if (sc->arpcom.ac_if.if_hwassist)
1353 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1354 
1355 	r->ti_idx = idx;
1356 
1357 	return (0);
1358 
1359 nobufs:
1360 
1361 	/*
1362 	 * Warning! :
1363 	 * This can only be called before the mbufs are strung together.
1364 	 * If the mbufs are strung together, m_freem() will free the chain,
1365 	 * so that the later mbufs will be freed multiple times.
1366 	 */
1367 	if (m_new)
1368 		m_freem(m_new);
1369 
1370 	for (i = 0; i < 3; i++) {
1371 		if (m[i])
1372 			m_freem(m[i]);
1373 		if (sf[i])
1374 			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1375 	}
1376 	return (ENOBUFS);
1377 }
1378 #endif
1379 
1380 
1381 
1382 /*
1383  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1384  * that's 1MB or memory, which is a lot. For now, we fill only the first
1385  * 256 ring entries and hope that our CPU is fast enough to keep up with
1386  * the NIC.
1387  */
1388 static int
1389 ti_init_rx_ring_std(sc)
1390 	struct ti_softc		*sc;
1391 {
1392 	register int		i;
1393 	struct ti_cmd_desc	cmd;
1394 
1395 	for (i = 0; i < TI_SSLOTS; i++) {
1396 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1397 			return (ENOBUFS);
1398 	};
1399 
1400 	TI_UPDATE_STDPROD(sc, i - 1);
1401 	sc->ti_std = i - 1;
1402 
1403 	return (0);
1404 }
1405 
1406 static void
1407 ti_free_rx_ring_std(sc)
1408 	struct ti_softc		*sc;
1409 {
1410 	register int		i;
1411 
1412 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1413 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1414 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1415 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1416 		}
1417 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1418 		    sizeof(struct ti_rx_desc));
1419 	}
1420 }
1421 
1422 static int
1423 ti_init_rx_ring_jumbo(sc)
1424 	struct ti_softc		*sc;
1425 {
1426 	register int		i;
1427 	struct ti_cmd_desc	cmd;
1428 
1429 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1430 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1431 			return (ENOBUFS);
1432 	};
1433 
1434 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1435 	sc->ti_jumbo = i - 1;
1436 
1437 	return (0);
1438 }
1439 
1440 static void
1441 ti_free_rx_ring_jumbo(sc)
1442 	struct ti_softc		*sc;
1443 {
1444 	register int		i;
1445 
1446 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1447 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1448 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1449 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1450 		}
1451 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1452 		    sizeof(struct ti_rx_desc));
1453 	}
1454 }
1455 
1456 static int
1457 ti_init_rx_ring_mini(sc)
1458 	struct ti_softc		*sc;
1459 {
1460 	register int		i;
1461 
1462 	for (i = 0; i < TI_MSLOTS; i++) {
1463 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1464 			return (ENOBUFS);
1465 	};
1466 
1467 	TI_UPDATE_MINIPROD(sc, i - 1);
1468 	sc->ti_mini = i - 1;
1469 
1470 	return (0);
1471 }
1472 
1473 static void
1474 ti_free_rx_ring_mini(sc)
1475 	struct ti_softc		*sc;
1476 {
1477 	register int		i;
1478 
1479 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1480 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1481 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1482 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1483 		}
1484 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1485 		    sizeof(struct ti_rx_desc));
1486 	}
1487 }
1488 
1489 static void
1490 ti_free_tx_ring(sc)
1491 	struct ti_softc		*sc;
1492 {
1493 	register int		i;
1494 
1495 	if (sc->ti_rdata->ti_tx_ring == NULL)
1496 		return;
1497 
1498 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1499 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1500 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1501 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1502 		}
1503 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1504 		    sizeof(struct ti_tx_desc));
1505 	}
1506 }
1507 
1508 static int
1509 ti_init_tx_ring(sc)
1510 	struct ti_softc		*sc;
1511 {
1512 	sc->ti_txcnt = 0;
1513 	sc->ti_tx_saved_considx = 0;
1514 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1515 	return (0);
1516 }
1517 
1518 /*
1519  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1520  * but we have to support the old way too so that Tigon 1 cards will
1521  * work.
1522  */
1523 static void
1524 ti_add_mcast(sc, addr)
1525 	struct ti_softc		*sc;
1526 	struct ether_addr	*addr;
1527 {
1528 	struct ti_cmd_desc	cmd;
1529 	u_int16_t		*m;
1530 	u_int32_t		ext[2] = {0, 0};
1531 
1532 	m = (u_int16_t *)&addr->octet[0];
1533 
1534 	switch (sc->ti_hwrev) {
1535 	case TI_HWREV_TIGON:
1536 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1537 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1538 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1539 		break;
1540 	case TI_HWREV_TIGON_II:
1541 		ext[0] = htons(m[0]);
1542 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1543 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1544 		break;
1545 	default:
1546 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1547 		break;
1548 	}
1549 }
1550 
1551 static void
1552 ti_del_mcast(sc, addr)
1553 	struct ti_softc		*sc;
1554 	struct ether_addr	*addr;
1555 {
1556 	struct ti_cmd_desc	cmd;
1557 	u_int16_t		*m;
1558 	u_int32_t		ext[2] = {0, 0};
1559 
1560 	m = (u_int16_t *)&addr->octet[0];
1561 
1562 	switch (sc->ti_hwrev) {
1563 	case TI_HWREV_TIGON:
1564 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1565 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1566 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1567 		break;
1568 	case TI_HWREV_TIGON_II:
1569 		ext[0] = htons(m[0]);
1570 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1571 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1572 		break;
1573 	default:
1574 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1575 		break;
1576 	}
1577 }
1578 
1579 /*
1580  * Configure the Tigon's multicast address filter.
1581  *
1582  * The actual multicast table management is a bit of a pain, thanks to
1583  * slight brain damage on the part of both Alteon and us. With our
1584  * multicast code, we are only alerted when the multicast address table
1585  * changes and at that point we only have the current list of addresses:
1586  * we only know the current state, not the previous state, so we don't
1587  * actually know what addresses were removed or added. The firmware has
1588  * state, but we can't get our grubby mits on it, and there is no 'delete
1589  * all multicast addresses' command. Hence, we have to maintain our own
1590  * state so we know what addresses have been programmed into the NIC at
1591  * any given time.
1592  */
1593 static void
1594 ti_setmulti(sc)
1595 	struct ti_softc		*sc;
1596 {
1597 	struct ifnet		*ifp;
1598 	struct ifmultiaddr	*ifma;
1599 	struct ti_cmd_desc	cmd;
1600 	struct ti_mc_entry	*mc;
1601 	u_int32_t		intrs;
1602 
1603 	ifp = &sc->arpcom.ac_if;
1604 
1605 	if (ifp->if_flags & IFF_ALLMULTI) {
1606 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1607 		return;
1608 	} else {
1609 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1610 	}
1611 
1612 	/* Disable interrupts. */
1613 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1614 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1615 
1616 	/* First, zot all the existing filters. */
1617 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1618 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1619 		ti_del_mcast(sc, &mc->mc_addr);
1620 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1621 		free(mc, M_DEVBUF);
1622 	}
1623 
1624 	/* Now program new ones. */
1625 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1626 		if (ifma->ifma_addr->sa_family != AF_LINK)
1627 			continue;
1628 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1629 		if (mc == NULL) {
1630 			if_printf(ifp, "no memory for mcast filter entry\n");
1631 			continue;
1632 		}
1633 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1634 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1635 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1636 		ti_add_mcast(sc, &mc->mc_addr);
1637 	}
1638 
1639 	/* Re-enable interrupts. */
1640 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1641 }
1642 
1643 /*
1644  * Check to see if the BIOS has configured us for a 64 bit slot when
1645  * we aren't actually in one. If we detect this condition, we can work
1646  * around it on the Tigon 2 by setting a bit in the PCI state register,
1647  * but for the Tigon 1 we must give up and abort the interface attach.
1648  */
1649 static int ti_64bitslot_war(sc)
1650 	struct ti_softc		*sc;
1651 {
1652 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1653 		CSR_WRITE_4(sc, 0x600, 0);
1654 		CSR_WRITE_4(sc, 0x604, 0);
1655 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1656 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1657 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1658 				return (EINVAL);
1659 			else {
1660 				TI_SETBIT(sc, TI_PCI_STATE,
1661 				    TI_PCISTATE_32BIT_BUS);
1662 				return (0);
1663 			}
1664 		}
1665 	}
1666 
1667 	return (0);
1668 }
1669 
1670 /*
1671  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1672  * self-test results.
1673  */
1674 static int
1675 ti_chipinit(sc)
1676 	struct ti_softc		*sc;
1677 {
1678 	u_int32_t		cacheline;
1679 	u_int32_t		pci_writemax = 0;
1680 	u_int32_t		hdrsplit;
1681 
1682 	/* Initialize link to down state. */
1683 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1684 
1685 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1686 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1687 	else
1688 		sc->arpcom.ac_if.if_hwassist = 0;
1689 
1690 	/* Set endianness before we access any non-PCI registers. */
1691 #if BYTE_ORDER == BIG_ENDIAN
1692 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1693 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1694 #else
1695 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1696 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1697 #endif
1698 
1699 	/* Check the ROM failed bit to see if self-tests passed. */
1700 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1701 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1702 		return (ENODEV);
1703 	}
1704 
1705 	/* Halt the CPU. */
1706 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1707 
1708 	/* Figure out the hardware revision. */
1709 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1710 	case TI_REV_TIGON_I:
1711 		sc->ti_hwrev = TI_HWREV_TIGON;
1712 		break;
1713 	case TI_REV_TIGON_II:
1714 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1715 		break;
1716 	default:
1717 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1718 		return (ENODEV);
1719 	}
1720 
1721 	/* Do special setup for Tigon 2. */
1722 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1723 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1724 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1725 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1726 	}
1727 
1728 	/*
1729 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1730 	 * can't do header splitting.
1731 	 */
1732 #ifdef TI_JUMBO_HDRSPLIT
1733 	if (sc->ti_hwrev != TI_HWREV_TIGON)
1734 		sc->ti_hdrsplit = 1;
1735 	else
1736 		printf("ti%d: can't do header splitting on a Tigon I board\n",
1737 		       sc->ti_unit);
1738 #endif /* TI_JUMBO_HDRSPLIT */
1739 
1740 	/* Set up the PCI state register. */
1741 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1742 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1743 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1744 	}
1745 
1746 	/* Clear the read/write max DMA parameters. */
1747 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1748 	    TI_PCISTATE_READ_MAXDMA));
1749 
1750 	/* Get cache line size. */
1751 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1752 
1753 	/*
1754 	 * If the system has set enabled the PCI memory write
1755 	 * and invalidate command in the command register, set
1756 	 * the write max parameter accordingly. This is necessary
1757 	 * to use MWI with the Tigon 2.
1758 	 */
1759 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1760 		switch (cacheline) {
1761 		case 1:
1762 		case 4:
1763 		case 8:
1764 		case 16:
1765 		case 32:
1766 		case 64:
1767 			break;
1768 		default:
1769 		/* Disable PCI memory write and invalidate. */
1770 			if (bootverbose)
1771 				printf("ti%d: cache line size %d not "
1772 				    "supported; disabling PCI MWI\n",
1773 				    sc->ti_unit, cacheline);
1774 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1775 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1776 			break;
1777 		}
1778 	}
1779 
1780 #ifdef __brokenalpha__
1781 	/*
1782 	 * From the Alteon sample driver:
1783 	 * Must insure that we do not cross an 8K (bytes) boundary
1784 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1785 	 * restriction on some ALPHA platforms with early revision
1786 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1787 	 */
1788 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1789 #else
1790 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1791 #endif
1792 
1793 	/* This sets the min dma param all the way up (0xff). */
1794 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1795 
1796 	if (sc->ti_hdrsplit)
1797 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1798 	else
1799 		hdrsplit = 0;
1800 
1801 	/* Configure DMA variables. */
1802 #if BYTE_ORDER == BIG_ENDIAN
1803 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1804 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1805 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1806 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1807 #else /* BYTE_ORDER */
1808 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1809 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1810 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1811 #endif /* BYTE_ORDER */
1812 
1813 	/*
1814 	 * Only allow 1 DMA channel to be active at a time.
1815 	 * I don't think this is a good idea, but without it
1816 	 * the firmware racks up lots of nicDmaReadRingFull
1817 	 * errors.  This is not compatible with hardware checksums.
1818 	 */
1819 	if (sc->arpcom.ac_if.if_hwassist == 0)
1820 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1821 
1822 	/* Recommended settings from Tigon manual. */
1823 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1824 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1825 
1826 	if (ti_64bitslot_war(sc)) {
1827 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1828 		    "but we aren't", sc->ti_unit);
1829 		return (EINVAL);
1830 	}
1831 
1832 	return (0);
1833 }
1834 
1835 #define	TI_RD_OFF(x)	offsetof(struct ti_ring_data, x)
1836 
1837 /*
1838  * Initialize the general information block and firmware, and
1839  * start the CPU(s) running.
1840  */
1841 static int
1842 ti_gibinit(sc)
1843 	struct ti_softc		*sc;
1844 {
1845 	struct ti_rcb		*rcb;
1846 	int			i;
1847 	struct ifnet		*ifp;
1848 	uint32_t		rdphys;
1849 
1850 	ifp = &sc->arpcom.ac_if;
1851 	rdphys = sc->ti_rdata_phys;
1852 
1853 	/* Disable interrupts for now. */
1854 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1855 
1856 	/*
1857 	 * Tell the chip where to find the general information block.
1858 	 * While this struct could go into >4GB memory, we allocate it in a
1859 	 * single slab with the other descriptors, and those don't seem to
1860 	 * support being located in a 64-bit region.
1861 	 */
1862 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1863 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
1864 
1865 	/* Load the firmware into SRAM. */
1866 	ti_loadfw(sc);
1867 
1868 	/* Set up the contents of the general info and ring control blocks. */
1869 
1870 	/* Set up the event ring and producer pointer. */
1871 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1872 
1873 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
1874 	rcb->ti_flags = 0;
1875 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1876 	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
1877 	sc->ti_ev_prodidx.ti_idx = 0;
1878 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1879 	sc->ti_ev_saved_considx = 0;
1880 
1881 	/* Set up the command ring and producer mailbox. */
1882 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1883 
1884 	sc->ti_rdata->ti_cmd_ring =
1885 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1886 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1887 	rcb->ti_flags = 0;
1888 	rcb->ti_max_len = 0;
1889 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1890 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1891 	}
1892 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1893 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1894 	sc->ti_cmd_saved_prodidx = 0;
1895 
1896 	/*
1897 	 * Assign the address of the stats refresh buffer.
1898 	 * We re-use the current stats buffer for this to
1899 	 * conserve memory.
1900 	 */
1901 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1902 	    rdphys + TI_RD_OFF(ti_info.ti_stats);
1903 
1904 	/* Set up the standard receive ring. */
1905 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1906 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
1907 	rcb->ti_max_len = TI_FRAMELEN;
1908 	rcb->ti_flags = 0;
1909 	if (sc->arpcom.ac_if.if_hwassist)
1910 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1911 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1912 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1913 
1914 	/* Set up the jumbo receive ring. */
1915 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1916 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
1917 
1918 #ifdef TI_PRIVATE_JUMBOS
1919 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1920 	rcb->ti_flags = 0;
1921 #else
1922 	rcb->ti_max_len = PAGE_SIZE;
1923 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1924 #endif
1925 	if (sc->arpcom.ac_if.if_hwassist)
1926 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1927 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1928 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1929 
1930 	/*
1931 	 * Set up the mini ring. Only activated on the
1932 	 * Tigon 2 but the slot in the config block is
1933 	 * still there on the Tigon 1.
1934 	 */
1935 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1936 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
1937 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1938 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1939 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1940 	else
1941 		rcb->ti_flags = 0;
1942 	if (sc->arpcom.ac_if.if_hwassist)
1943 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1944 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1945 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1946 
1947 	/*
1948 	 * Set up the receive return ring.
1949 	 */
1950 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1951 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
1952 	rcb->ti_flags = 0;
1953 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1954 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1955 	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
1956 
1957 	/*
1958 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1959 	 * of putting the transmit ring in the host's address space and
1960 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1961 	 * memory and accessing it through the shared memory region. We
1962 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1963 	 * so we have to revert to the shared memory scheme if we detect
1964 	 * a Tigon 1 chip.
1965 	 */
1966 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1967 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1968 		sc->ti_rdata->ti_tx_ring_nic =
1969 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1970 	}
1971 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1972 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1973 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1974 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1975 		rcb->ti_flags = 0;
1976 	else
1977 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1978 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1979 	if (sc->arpcom.ac_if.if_hwassist)
1980 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1981 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1982 	rcb->ti_max_len = TI_TX_RING_CNT;
1983 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1984 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1985 	else
1986 		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
1987 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1988 	    rdphys + TI_RD_OFF(ti_tx_considx_r);
1989 
1990 	/* Set up tuneables */
1991 #if 0
1992 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1993 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1994 		    (sc->ti_rx_coal_ticks / 10));
1995 	else
1996 #endif
1997 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1998 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1999 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2000 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2001 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2002 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2003 
2004 	/* Turn interrupts on. */
2005 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2006 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2007 
2008 	/* Start CPU. */
2009 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2010 
2011 	return (0);
2012 }
2013 
2014 static void
2015 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2016 {
2017 	struct ti_softc *sc;
2018 
2019 	sc = arg;
2020 	if (error || nseg != 1)
2021 		return;
2022 
2023 	/*
2024 	 * All of the Tigon data structures need to live at <4GB.  This
2025 	 * cast is fine since busdma was told about this constraint.
2026 	 */
2027 	sc->ti_rdata_phys = (uint32_t)segs[0].ds_addr;
2028 	return;
2029 }
2030 
2031 /*
2032  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2033  * against our list and return its name if we find a match.
2034  */
2035 static int
2036 ti_probe(dev)
2037 	device_t		dev;
2038 {
2039 	struct ti_type		*t;
2040 
2041 	t = ti_devs;
2042 
2043 	while (t->ti_name != NULL) {
2044 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2045 		    (pci_get_device(dev) == t->ti_did)) {
2046 			device_set_desc(dev, t->ti_name);
2047 			return (BUS_PROBE_DEFAULT);
2048 		}
2049 		t++;
2050 	}
2051 
2052 	return (ENXIO);
2053 }
2054 
2055 static int
2056 ti_attach(dev)
2057 	device_t		dev;
2058 {
2059 	struct ifnet		*ifp;
2060 	struct ti_softc		*sc;
2061 	int			unit, error = 0, rid;
2062 
2063 	sc = device_get_softc(dev);
2064 	unit = device_get_unit(dev);
2065 
2066 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2067 	    MTX_DEF | MTX_RECURSE);
2068 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2069 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM |
2070 	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2071 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2072 
2073 	/*
2074 	 * Map control/status registers.
2075 	 */
2076 	pci_enable_busmaster(dev);
2077 
2078 	rid = TI_PCI_LOMEM;
2079 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2080 	    RF_ACTIVE|PCI_RF_DENSE);
2081 
2082 	if (sc->ti_res == NULL) {
2083 		printf ("ti%d: couldn't map memory\n", unit);
2084 		error = ENXIO;
2085 		goto fail;
2086 	}
2087 
2088 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2089 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2090 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2091 
2092 	/* Allocate interrupt */
2093 	rid = 0;
2094 
2095 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2096 	    RF_SHAREABLE | RF_ACTIVE);
2097 
2098 	if (sc->ti_irq == NULL) {
2099 		printf("ti%d: couldn't map interrupt\n", unit);
2100 		error = ENXIO;
2101 		goto fail;
2102 	}
2103 
2104 	sc->ti_unit = unit;
2105 
2106 	if (ti_chipinit(sc)) {
2107 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2108 		error = ENXIO;
2109 		goto fail;
2110 	}
2111 
2112 	/* Zero out the NIC's on-board SRAM. */
2113 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2114 
2115 	/* Init again -- zeroing memory may have clobbered some registers. */
2116 	if (ti_chipinit(sc)) {
2117 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2118 		error = ENXIO;
2119 		goto fail;
2120 	}
2121 
2122 	/*
2123 	 * Get station address from the EEPROM. Note: the manual states
2124 	 * that the MAC address is at offset 0x8c, however the data is
2125 	 * stored as two longwords (since that's how it's loaded into
2126 	 * the NIC). This means the MAC address is actually preceded
2127 	 * by two zero bytes. We need to skip over those.
2128 	 */
2129 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2130 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2131 		printf("ti%d: failed to read station address\n", unit);
2132 		error = ENXIO;
2133 		goto fail;
2134 	}
2135 
2136 	/* Allocate the general information block and ring buffers. */
2137 	if (bus_dma_tag_create(NULL,			/* parent */
2138 				1, 0,			/* algnmnt, boundary */
2139 				BUS_SPACE_MAXADDR,	/* lowaddr */
2140 				BUS_SPACE_MAXADDR,	/* highaddr */
2141 				NULL, NULL,		/* filter, filterarg */
2142 				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2143 				0,			/* nsegments */
2144 				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2145 				0,			/* flags */
2146 				NULL, NULL,		/* lockfunc, lockarg */
2147 				&sc->ti_parent_dmat) != 0) {
2148 		printf("ti%d: Failed to allocate parent dmat\n", sc->ti_unit);
2149 		error = ENOMEM;
2150 		goto fail;
2151 	}
2152 
2153 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2154 				PAGE_SIZE, 0,		/* algnmnt, boundary */
2155 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2156 				BUS_SPACE_MAXADDR,	/* highaddr */
2157 				NULL, NULL,		/* filter, filterarg */
2158 				sizeof(struct ti_ring_data),	/* maxsize */
2159 				1,			/* nsegments */
2160 				sizeof(struct ti_ring_data),	/* maxsegsize */
2161 				0,			/* flags */
2162 				NULL, NULL,		/* lockfunc, lockarg */
2163 				&sc->ti_rdata_dmat) != 0) {
2164 		printf("ti%d: Failed to allocate rdata dmat\n", sc->ti_unit);
2165 		error = ENOMEM;
2166 		goto fail;
2167 	}
2168 
2169 	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2170 			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2171 		printf("ti%d: Failed to allocate rdata memory\n", sc->ti_unit);
2172 		error = ENOMEM;
2173 		goto fail;
2174 	}
2175 
2176 	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2177 			    sc->ti_rdata, sizeof(struct ti_ring_data),
2178 			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2179 		printf("ti%d: Failed to load rdata segments\n", sc->ti_unit);
2180 		error = ENOMEM;
2181 		goto fail;
2182 	}
2183 
2184 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2185 
2186 	/* Try to allocate memory for jumbo buffers. */
2187 #ifdef TI_PRIVATE_JUMBOS
2188 	if (ti_alloc_jumbo_mem(sc)) {
2189 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2190 		error = ENXIO;
2191 		goto fail;
2192 	}
2193 #endif
2194 
2195 	/*
2196 	 * We really need a better way to tell a 1000baseTX card
2197 	 * from a 1000baseSX one, since in theory there could be
2198 	 * OEMed 1000baseTX cards from lame vendors who aren't
2199 	 * clever enough to change the PCI ID. For the moment
2200 	 * though, the AceNIC is the only copper card available.
2201 	 */
2202 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2203 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2204 		sc->ti_copper = 1;
2205 	/* Ok, it's not the only copper card available. */
2206 	if (pci_get_vendor(dev) == NG_VENDORID &&
2207 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2208 		sc->ti_copper = 1;
2209 
2210 	/* Set default tuneable values. */
2211 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2212 #if 0
2213 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2214 #endif
2215 	sc->ti_rx_coal_ticks = 170;
2216 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2217 	sc->ti_rx_max_coal_bds = 64;
2218 #if 0
2219 	sc->ti_tx_max_coal_bds = 128;
2220 #endif
2221 	sc->ti_tx_max_coal_bds = 32;
2222 	sc->ti_tx_buf_ratio = 21;
2223 
2224 	/* Set up ifnet structure */
2225 	ifp = &sc->arpcom.ac_if;
2226 	ifp->if_softc = sc;
2227 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2228 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2229 	    IFF_NEEDSGIANT;
2230 	tis[unit] = sc;
2231 	ifp->if_ioctl = ti_ioctl;
2232 	ifp->if_start = ti_start;
2233 	ifp->if_watchdog = ti_watchdog;
2234 	ifp->if_init = ti_init;
2235 	ifp->if_mtu = ETHERMTU;
2236 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2237 
2238 	/* Set up ifmedia support. */
2239 	if (sc->ti_copper) {
2240 		/*
2241 		 * Copper cards allow manual 10/100 mode selection,
2242 		 * but not manual 1000baseTX mode selection. Why?
2243 		 * Becuase currently there's no way to specify the
2244 		 * master/slave setting through the firmware interface,
2245 		 * so Alteon decided to just bag it and handle it
2246 		 * via autonegotiation.
2247 		 */
2248 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2249 		ifmedia_add(&sc->ifmedia,
2250 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2251 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2252 		ifmedia_add(&sc->ifmedia,
2253 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2254 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2255 		ifmedia_add(&sc->ifmedia,
2256 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2257 	} else {
2258 		/* Fiber cards don't support 10/100 modes. */
2259 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2260 		ifmedia_add(&sc->ifmedia,
2261 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2262 	}
2263 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2264 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2265 
2266 	/*
2267 	 * We're assuming here that card initialization is a sequential
2268 	 * thing.  If it isn't, multiple cards probing at the same time
2269 	 * could stomp on the list of softcs here.
2270 	 */
2271 
2272 	/* Register the device */
2273 	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2274 			   0600, "ti%d", sc->ti_unit);
2275 	sc->dev->si_drv1 = sc;
2276 
2277 	/*
2278 	 * Call MI attach routine.
2279 	 */
2280 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
2281 
2282 	/* Hook interrupt last to avoid having to lock softc */
2283 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2284 	   ti_intr, sc, &sc->ti_intrhand);
2285 
2286 	if (error) {
2287 		printf("ti%d: couldn't set up irq\n", unit);
2288 		ether_ifdetach(ifp);
2289 		goto fail;
2290 	}
2291 
2292 fail:
2293 	if (sc && error)
2294 		ti_detach(dev);
2295 
2296 	return (error);
2297 }
2298 
2299 /*
2300  * Shutdown hardware and free up resources. This can be called any
2301  * time after the mutex has been initialized. It is called in both
2302  * the error case in attach and the normal detach case so it needs
2303  * to be careful about only freeing resources that have actually been
2304  * allocated.
2305  */
2306 static int
2307 ti_detach(dev)
2308 	device_t		dev;
2309 {
2310 	struct ti_softc		*sc;
2311 	struct ifnet		*ifp;
2312 
2313 	sc = device_get_softc(dev);
2314 	if (sc->dev)
2315 		destroy_dev(sc->dev);
2316 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2317 	TI_LOCK(sc);
2318 	ifp = &sc->arpcom.ac_if;
2319 
2320 	/* These should only be active if attach succeeded */
2321 	if (device_is_attached(dev)) {
2322 		ti_stop(sc);
2323 		ether_ifdetach(ifp);
2324 		bus_generic_detach(dev);
2325 	}
2326 	ifmedia_removeall(&sc->ifmedia);
2327 
2328 	if (sc->ti_rdata)
2329 		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2330 				sc->ti_rdata_dmamap);
2331 	if (sc->ti_rdata_dmat)
2332 		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2333 	if (sc->ti_parent_dmat)
2334 		bus_dma_tag_destroy(sc->ti_parent_dmat);
2335 	if (sc->ti_intrhand)
2336 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2337 	if (sc->ti_irq)
2338 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2339 	if (sc->ti_res) {
2340 		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2341 		    sc->ti_res);
2342 	}
2343 
2344 #ifdef TI_PRIVATE_JUMBOS
2345 	if (sc->ti_cdata.ti_jumbo_buf)
2346 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2347 #endif
2348 	if (sc->ti_rdata)
2349 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2350 
2351 	TI_UNLOCK(sc);
2352 	mtx_destroy(&sc->ti_mtx);
2353 
2354 	return (0);
2355 }
2356 
2357 #ifdef TI_JUMBO_HDRSPLIT
2358 /*
2359  * If hdr_len is 0, that means that header splitting wasn't done on
2360  * this packet for some reason.  The two most likely reasons are that
2361  * the protocol isn't a supported protocol for splitting, or this
2362  * packet had a fragment offset that wasn't 0.
2363  *
2364  * The header length, if it is non-zero, will always be the length of
2365  * the headers on the packet, but that length could be longer than the
2366  * first mbuf.  So we take the minimum of the two as the actual
2367  * length.
2368  */
2369 static __inline void
2370 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2371 {
2372 	int i = 0;
2373 	int lengths[4] = {0, 0, 0, 0};
2374 	struct mbuf *m, *mp;
2375 
2376 	if (hdr_len != 0)
2377 		top->m_len = min(hdr_len, top->m_len);
2378 	pkt_len -= top->m_len;
2379 	lengths[i++] = top->m_len;
2380 
2381 	mp = top;
2382 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2383 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2384 		pkt_len -= m->m_len;
2385 		lengths[i++] = m->m_len;
2386 		mp = m;
2387 	}
2388 
2389 #if 0
2390 	if (hdr_len != 0)
2391 		printf("got split packet: ");
2392 	else
2393 		printf("got non-split packet: ");
2394 
2395 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2396 	    lengths[1], lengths[2], lengths[3],
2397 	    lengths[0] + lengths[1] + lengths[2] +
2398 	    lengths[3]);
2399 #endif
2400 
2401 	if (pkt_len)
2402 		panic("header splitting didn't");
2403 
2404 	if (m) {
2405 		m_freem(m);
2406 		mp->m_next = NULL;
2407 
2408 	}
2409 	if (mp->m_next != NULL)
2410 		panic("ti_hdr_split: last mbuf in chain should be null");
2411 }
2412 #endif /* TI_JUMBO_HDRSPLIT */
2413 
2414 /*
2415  * Frame reception handling. This is called if there's a frame
2416  * on the receive return list.
2417  *
2418  * Note: we have to be able to handle three possibilities here:
2419  * 1) the frame is from the mini receive ring (can only happen)
2420  *    on Tigon 2 boards)
2421  * 2) the frame is from the jumbo recieve ring
2422  * 3) the frame is from the standard receive ring
2423  */
2424 
2425 static void
2426 ti_rxeof(sc)
2427 	struct ti_softc		*sc;
2428 {
2429 	struct ifnet		*ifp;
2430 	struct ti_cmd_desc	cmd;
2431 
2432 	TI_LOCK_ASSERT(sc);
2433 
2434 	ifp = &sc->arpcom.ac_if;
2435 
2436 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2437 		struct ti_rx_desc	*cur_rx;
2438 		u_int32_t		rxidx;
2439 		struct mbuf		*m = NULL;
2440 		u_int16_t		vlan_tag = 0;
2441 		int			have_tag = 0;
2442 
2443 		cur_rx =
2444 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2445 		rxidx = cur_rx->ti_idx;
2446 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2447 
2448 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2449 			have_tag = 1;
2450 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2451 		}
2452 
2453 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2454 
2455 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2456 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2457 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2458 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2459 				ifp->if_ierrors++;
2460 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2461 				continue;
2462 			}
2463 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2464 				ifp->if_ierrors++;
2465 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2466 				continue;
2467 			}
2468 #ifdef TI_PRIVATE_JUMBOS
2469 			m->m_len = cur_rx->ti_len;
2470 #else /* TI_PRIVATE_JUMBOS */
2471 #ifdef TI_JUMBO_HDRSPLIT
2472 			if (sc->ti_hdrsplit)
2473 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2474 					     cur_rx->ti_len, rxidx);
2475 			else
2476 #endif /* TI_JUMBO_HDRSPLIT */
2477 			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2478 #endif /* TI_PRIVATE_JUMBOS */
2479 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2480 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2481 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2482 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2483 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2484 				ifp->if_ierrors++;
2485 				ti_newbuf_mini(sc, sc->ti_mini, m);
2486 				continue;
2487 			}
2488 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2489 				ifp->if_ierrors++;
2490 				ti_newbuf_mini(sc, sc->ti_mini, m);
2491 				continue;
2492 			}
2493 			m->m_len = cur_rx->ti_len;
2494 		} else {
2495 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2496 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2497 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2498 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2499 				ifp->if_ierrors++;
2500 				ti_newbuf_std(sc, sc->ti_std, m);
2501 				continue;
2502 			}
2503 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2504 				ifp->if_ierrors++;
2505 				ti_newbuf_std(sc, sc->ti_std, m);
2506 				continue;
2507 			}
2508 			m->m_len = cur_rx->ti_len;
2509 		}
2510 
2511 		m->m_pkthdr.len = cur_rx->ti_len;
2512 		ifp->if_ipackets++;
2513 		m->m_pkthdr.rcvif = ifp;
2514 
2515 		if (ifp->if_hwassist) {
2516 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2517 			    CSUM_DATA_VALID;
2518 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2519 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2520 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2521 		}
2522 
2523 		/*
2524 		 * If we received a packet with a vlan tag,
2525 		 * tag it before passing the packet upward.
2526 		 */
2527 		if (have_tag)
2528 			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2529 		TI_UNLOCK(sc);
2530 		(*ifp->if_input)(ifp, m);
2531 		TI_LOCK(sc);
2532 	}
2533 
2534 	/* Only necessary on the Tigon 1. */
2535 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2536 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2537 		    sc->ti_rx_saved_considx);
2538 
2539 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2540 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2541 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2542 }
2543 
2544 static void
2545 ti_txeof(sc)
2546 	struct ti_softc		*sc;
2547 {
2548 	struct ti_tx_desc	*cur_tx = NULL;
2549 	struct ifnet		*ifp;
2550 
2551 	ifp = &sc->arpcom.ac_if;
2552 
2553 	/*
2554 	 * Go through our tx ring and free mbufs for those
2555 	 * frames that have been sent.
2556 	 */
2557 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2558 		u_int32_t		idx = 0;
2559 
2560 		idx = sc->ti_tx_saved_considx;
2561 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2562 			if (idx > 383)
2563 				CSR_WRITE_4(sc, TI_WINBASE,
2564 				    TI_TX_RING_BASE + 6144);
2565 			else if (idx > 255)
2566 				CSR_WRITE_4(sc, TI_WINBASE,
2567 				    TI_TX_RING_BASE + 4096);
2568 			else if (idx > 127)
2569 				CSR_WRITE_4(sc, TI_WINBASE,
2570 				    TI_TX_RING_BASE + 2048);
2571 			else
2572 				CSR_WRITE_4(sc, TI_WINBASE,
2573 				    TI_TX_RING_BASE);
2574 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2575 		} else
2576 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2577 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2578 			ifp->if_opackets++;
2579 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2580 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2581 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2582 		}
2583 		sc->ti_txcnt--;
2584 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2585 		ifp->if_timer = 0;
2586 	}
2587 
2588 	if (cur_tx != NULL)
2589 		ifp->if_flags &= ~IFF_OACTIVE;
2590 }
2591 
2592 static void
2593 ti_intr(xsc)
2594 	void			*xsc;
2595 {
2596 	struct ti_softc		*sc;
2597 	struct ifnet		*ifp;
2598 
2599 	sc = xsc;
2600 	TI_LOCK(sc);
2601 	ifp = &sc->arpcom.ac_if;
2602 
2603 /*#ifdef notdef*/
2604 	/* Avoid this for now -- checking this register is expensive. */
2605 	/* Make sure this is really our interrupt. */
2606 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2607 		TI_UNLOCK(sc);
2608 		return;
2609 	}
2610 /*#endif*/
2611 
2612 	/* Ack interrupt and stop others from occuring. */
2613 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2614 
2615 	if (ifp->if_flags & IFF_RUNNING) {
2616 		/* Check RX return ring producer/consumer */
2617 		ti_rxeof(sc);
2618 
2619 		/* Check TX ring producer/consumer */
2620 		ti_txeof(sc);
2621 	}
2622 
2623 	ti_handle_events(sc);
2624 
2625 	/* Re-enable interrupts. */
2626 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2627 
2628 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2629 		ti_start(ifp);
2630 
2631 	TI_UNLOCK(sc);
2632 }
2633 
2634 static void
2635 ti_stats_update(sc)
2636 	struct ti_softc		*sc;
2637 {
2638 	struct ifnet		*ifp;
2639 
2640 	ifp = &sc->arpcom.ac_if;
2641 
2642 	ifp->if_collisions +=
2643 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2644 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2645 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2646 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2647 	   ifp->if_collisions;
2648 }
2649 
2650 /*
2651  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2652  * pointers to descriptors.
2653  */
2654 static int
2655 ti_encap(sc, m_head, txidx)
2656 	struct ti_softc		*sc;
2657 	struct mbuf		*m_head;
2658 	u_int32_t		*txidx;
2659 {
2660 	struct ti_tx_desc	*f = NULL;
2661 	struct mbuf		*m;
2662 	u_int32_t		frag, cur, cnt = 0;
2663 	u_int16_t		csum_flags = 0;
2664 	struct m_tag		*mtag;
2665 
2666 	m = m_head;
2667 	cur = frag = *txidx;
2668 
2669 	if (m_head->m_pkthdr.csum_flags) {
2670 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2671 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2672 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2673 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2674 		if (m_head->m_flags & M_LASTFRAG)
2675 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2676 		else if (m_head->m_flags & M_FRAG)
2677 			csum_flags |= TI_BDFLAG_IP_FRAG;
2678 	}
2679 
2680 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2681 
2682 	/*
2683 	 * Start packing the mbufs in this chain into
2684 	 * the fragment pointers. Stop when we run out
2685 	 * of fragments or hit the end of the mbuf chain.
2686 	 */
2687 	for (m = m_head; m != NULL; m = m->m_next) {
2688 		if (m->m_len != 0) {
2689 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2690 				if (frag > 383)
2691 					CSR_WRITE_4(sc, TI_WINBASE,
2692 					    TI_TX_RING_BASE + 6144);
2693 				else if (frag > 255)
2694 					CSR_WRITE_4(sc, TI_WINBASE,
2695 					    TI_TX_RING_BASE + 4096);
2696 				else if (frag > 127)
2697 					CSR_WRITE_4(sc, TI_WINBASE,
2698 					    TI_TX_RING_BASE + 2048);
2699 				else
2700 					CSR_WRITE_4(sc, TI_WINBASE,
2701 					    TI_TX_RING_BASE);
2702 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2703 			} else
2704 				f = &sc->ti_rdata->ti_tx_ring[frag];
2705 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2706 				break;
2707 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2708 			f->ti_len = m->m_len;
2709 			f->ti_flags = csum_flags;
2710 
2711 			if (mtag != NULL) {
2712 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2713 				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2714 			} else {
2715 				f->ti_vlan_tag = 0;
2716 			}
2717 
2718 			/*
2719 			 * Sanity check: avoid coming within 16 descriptors
2720 			 * of the end of the ring.
2721 			 */
2722 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2723 				return (ENOBUFS);
2724 			cur = frag;
2725 			TI_INC(frag, TI_TX_RING_CNT);
2726 			cnt++;
2727 		}
2728 	}
2729 
2730 	if (m != NULL)
2731 		return (ENOBUFS);
2732 
2733 	if (frag == sc->ti_tx_saved_considx)
2734 		return (ENOBUFS);
2735 
2736 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2737 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2738 	            TI_BDFLAG_END;
2739 	else
2740 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2741 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2742 	sc->ti_txcnt += cnt;
2743 
2744 	*txidx = frag;
2745 
2746 	return (0);
2747 }
2748 
2749 /*
2750  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2751  * to the mbuf data regions directly in the transmit descriptors.
2752  */
2753 static void
2754 ti_start(ifp)
2755 	struct ifnet		*ifp;
2756 {
2757 	struct ti_softc		*sc;
2758 	struct mbuf		*m_head = NULL;
2759 	u_int32_t		prodidx = 0;
2760 
2761 	sc = ifp->if_softc;
2762 	TI_LOCK(sc);
2763 
2764 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2765 
2766 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2767 		IF_DEQUEUE(&ifp->if_snd, m_head);
2768 		if (m_head == NULL)
2769 			break;
2770 
2771 		/*
2772 		 * XXX
2773 		 * safety overkill.  If this is a fragmented packet chain
2774 		 * with delayed TCP/UDP checksums, then only encapsulate
2775 		 * it if we have enough descriptors to handle the entire
2776 		 * chain at once.
2777 		 * (paranoia -- may not actually be needed)
2778 		 */
2779 		if (m_head->m_flags & M_FIRSTFRAG &&
2780 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2781 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2782 			    m_head->m_pkthdr.csum_data + 16) {
2783 				IF_PREPEND(&ifp->if_snd, m_head);
2784 				ifp->if_flags |= IFF_OACTIVE;
2785 				break;
2786 			}
2787 		}
2788 
2789 		/*
2790 		 * Pack the data into the transmit ring. If we
2791 		 * don't have room, set the OACTIVE flag and wait
2792 		 * for the NIC to drain the ring.
2793 		 */
2794 		if (ti_encap(sc, m_head, &prodidx)) {
2795 			IF_PREPEND(&ifp->if_snd, m_head);
2796 			ifp->if_flags |= IFF_OACTIVE;
2797 			break;
2798 		}
2799 
2800 		/*
2801 		 * If there's a BPF listener, bounce a copy of this frame
2802 		 * to him.
2803 		 */
2804 		BPF_MTAP(ifp, m_head);
2805 	}
2806 
2807 	/* Transmit */
2808 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2809 
2810 	/*
2811 	 * Set a timeout in case the chip goes out to lunch.
2812 	 */
2813 	ifp->if_timer = 5;
2814 	TI_UNLOCK(sc);
2815 }
2816 
2817 static void
2818 ti_init(xsc)
2819 	void			*xsc;
2820 {
2821 	struct ti_softc		*sc = xsc;
2822 
2823 	/* Cancel pending I/O and flush buffers. */
2824 	ti_stop(sc);
2825 
2826 	TI_LOCK(sc);
2827 	/* Init the gen info block, ring control blocks and firmware. */
2828 	if (ti_gibinit(sc)) {
2829 		printf("ti%d: initialization failure\n", sc->ti_unit);
2830 		TI_UNLOCK(sc);
2831 		return;
2832 	}
2833 
2834 	TI_UNLOCK(sc);
2835 }
2836 
2837 static void ti_init2(sc)
2838 	struct ti_softc		*sc;
2839 {
2840 	struct ti_cmd_desc	cmd;
2841 	struct ifnet		*ifp;
2842 	u_int16_t		*m;
2843 	struct ifmedia		*ifm;
2844 	int			tmp;
2845 
2846 	ifp = &sc->arpcom.ac_if;
2847 
2848 	/* Specify MTU and interface index. */
2849 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2850 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2851 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2852 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2853 
2854 	/* Load our MAC address. */
2855 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2856 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2857 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2858 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2859 
2860 	/* Enable or disable promiscuous mode as needed. */
2861 	if (ifp->if_flags & IFF_PROMISC) {
2862 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2863 	} else {
2864 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2865 	}
2866 
2867 	/* Program multicast filter. */
2868 	ti_setmulti(sc);
2869 
2870 	/*
2871 	 * If this is a Tigon 1, we should tell the
2872 	 * firmware to use software packet filtering.
2873 	 */
2874 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2875 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2876 	}
2877 
2878 	/* Init RX ring. */
2879 	ti_init_rx_ring_std(sc);
2880 
2881 	/* Init jumbo RX ring. */
2882 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2883 		ti_init_rx_ring_jumbo(sc);
2884 
2885 	/*
2886 	 * If this is a Tigon 2, we can also configure the
2887 	 * mini ring.
2888 	 */
2889 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2890 		ti_init_rx_ring_mini(sc);
2891 
2892 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2893 	sc->ti_rx_saved_considx = 0;
2894 
2895 	/* Init TX ring. */
2896 	ti_init_tx_ring(sc);
2897 
2898 	/* Tell firmware we're alive. */
2899 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2900 
2901 	/* Enable host interrupts. */
2902 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2903 
2904 	ifp->if_flags |= IFF_RUNNING;
2905 	ifp->if_flags &= ~IFF_OACTIVE;
2906 
2907 	/*
2908 	 * Make sure to set media properly. We have to do this
2909 	 * here since we have to issue commands in order to set
2910 	 * the link negotiation and we can't issue commands until
2911 	 * the firmware is running.
2912 	 */
2913 	ifm = &sc->ifmedia;
2914 	tmp = ifm->ifm_media;
2915 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2916 	ti_ifmedia_upd(ifp);
2917 	ifm->ifm_media = tmp;
2918 }
2919 
2920 /*
2921  * Set media options.
2922  */
2923 static int
2924 ti_ifmedia_upd(ifp)
2925 	struct ifnet		*ifp;
2926 {
2927 	struct ti_softc		*sc;
2928 	struct ifmedia		*ifm;
2929 	struct ti_cmd_desc	cmd;
2930 	u_int32_t		flowctl;
2931 
2932 	sc = ifp->if_softc;
2933 	ifm = &sc->ifmedia;
2934 
2935 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2936 		return (EINVAL);
2937 
2938 	flowctl = 0;
2939 
2940 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2941 	case IFM_AUTO:
2942 		/*
2943 		 * Transmit flow control doesn't work on the Tigon 1.
2944 		 */
2945 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2946 
2947 		/*
2948 		 * Transmit flow control can also cause problems on the
2949 		 * Tigon 2, apparantly with both the copper and fiber
2950 		 * boards.  The symptom is that the interface will just
2951 		 * hang.  This was reproduced with Alteon 180 switches.
2952 		 */
2953 #if 0
2954 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2955 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2956 #endif
2957 
2958 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2959 		    TI_GLNK_FULL_DUPLEX| flowctl |
2960 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2961 
2962 		flowctl = TI_LNK_RX_FLOWCTL_Y;
2963 #if 0
2964 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2965 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2966 #endif
2967 
2968 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2969 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2970 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2971 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2972 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2973 		break;
2974 	case IFM_1000_SX:
2975 	case IFM_1000_T:
2976 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2977 #if 0
2978 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2979 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2980 #endif
2981 
2982 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2983 		    flowctl |TI_GLNK_ENB);
2984 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2985 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2986 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2987 		}
2988 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2989 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2990 		break;
2991 	case IFM_100_FX:
2992 	case IFM_10_FL:
2993 	case IFM_100_TX:
2994 	case IFM_10_T:
2995 		flowctl = TI_LNK_RX_FLOWCTL_Y;
2996 #if 0
2997 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2998 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2999 #endif
3000 
3001 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3002 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3003 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3004 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3005 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3006 		} else {
3007 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3008 		}
3009 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3010 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3011 		} else {
3012 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3013 		}
3014 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3015 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3016 		break;
3017 	}
3018 
3019 	return (0);
3020 }
3021 
3022 /*
3023  * Report current media status.
3024  */
3025 static void
3026 ti_ifmedia_sts(ifp, ifmr)
3027 	struct ifnet		*ifp;
3028 	struct ifmediareq	*ifmr;
3029 {
3030 	struct ti_softc		*sc;
3031 	u_int32_t		media = 0;
3032 
3033 	sc = ifp->if_softc;
3034 
3035 	ifmr->ifm_status = IFM_AVALID;
3036 	ifmr->ifm_active = IFM_ETHER;
3037 
3038 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3039 		return;
3040 
3041 	ifmr->ifm_status |= IFM_ACTIVE;
3042 
3043 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3044 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3045 		if (sc->ti_copper)
3046 			ifmr->ifm_active |= IFM_1000_T;
3047 		else
3048 			ifmr->ifm_active |= IFM_1000_SX;
3049 		if (media & TI_GLNK_FULL_DUPLEX)
3050 			ifmr->ifm_active |= IFM_FDX;
3051 		else
3052 			ifmr->ifm_active |= IFM_HDX;
3053 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3054 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3055 		if (sc->ti_copper) {
3056 			if (media & TI_LNK_100MB)
3057 				ifmr->ifm_active |= IFM_100_TX;
3058 			if (media & TI_LNK_10MB)
3059 				ifmr->ifm_active |= IFM_10_T;
3060 		} else {
3061 			if (media & TI_LNK_100MB)
3062 				ifmr->ifm_active |= IFM_100_FX;
3063 			if (media & TI_LNK_10MB)
3064 				ifmr->ifm_active |= IFM_10_FL;
3065 		}
3066 		if (media & TI_LNK_FULL_DUPLEX)
3067 			ifmr->ifm_active |= IFM_FDX;
3068 		if (media & TI_LNK_HALF_DUPLEX)
3069 			ifmr->ifm_active |= IFM_HDX;
3070 	}
3071 }
3072 
3073 static int
3074 ti_ioctl(ifp, command, data)
3075 	struct ifnet		*ifp;
3076 	u_long			command;
3077 	caddr_t			data;
3078 {
3079 	struct ti_softc		*sc = ifp->if_softc;
3080 	struct ifreq		*ifr = (struct ifreq *) data;
3081 	int			mask, error = 0;
3082 	struct ti_cmd_desc	cmd;
3083 
3084 	TI_LOCK(sc);
3085 
3086 	switch (command) {
3087 	case SIOCSIFMTU:
3088 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3089 			error = EINVAL;
3090 		else {
3091 			ifp->if_mtu = ifr->ifr_mtu;
3092 			ti_init(sc);
3093 		}
3094 		break;
3095 	case SIOCSIFFLAGS:
3096 		if (ifp->if_flags & IFF_UP) {
3097 			/*
3098 			 * If only the state of the PROMISC flag changed,
3099 			 * then just use the 'set promisc mode' command
3100 			 * instead of reinitializing the entire NIC. Doing
3101 			 * a full re-init means reloading the firmware and
3102 			 * waiting for it to start up, which may take a
3103 			 * second or two.
3104 			 */
3105 			if (ifp->if_flags & IFF_RUNNING &&
3106 			    ifp->if_flags & IFF_PROMISC &&
3107 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3108 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3109 				    TI_CMD_CODE_PROMISC_ENB, 0);
3110 			} else if (ifp->if_flags & IFF_RUNNING &&
3111 			    !(ifp->if_flags & IFF_PROMISC) &&
3112 			    sc->ti_if_flags & IFF_PROMISC) {
3113 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3114 				    TI_CMD_CODE_PROMISC_DIS, 0);
3115 			} else
3116 				ti_init(sc);
3117 		} else {
3118 			if (ifp->if_flags & IFF_RUNNING) {
3119 				ti_stop(sc);
3120 			}
3121 		}
3122 		sc->ti_if_flags = ifp->if_flags;
3123 		error = 0;
3124 		break;
3125 	case SIOCADDMULTI:
3126 	case SIOCDELMULTI:
3127 		if (ifp->if_flags & IFF_RUNNING) {
3128 			ti_setmulti(sc);
3129 			error = 0;
3130 		}
3131 		break;
3132 	case SIOCSIFMEDIA:
3133 	case SIOCGIFMEDIA:
3134 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3135 		break;
3136 	case SIOCSIFCAP:
3137 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3138 		if (mask & IFCAP_HWCSUM) {
3139 			if (IFCAP_HWCSUM & ifp->if_capenable)
3140 				ifp->if_capenable &= ~IFCAP_HWCSUM;
3141 			else
3142 				ifp->if_capenable |= IFCAP_HWCSUM;
3143 			if (ifp->if_flags & IFF_RUNNING)
3144 				ti_init(sc);
3145 		}
3146 		error = 0;
3147 		break;
3148 	default:
3149 		error = ether_ioctl(ifp, command, data);
3150 		break;
3151 	}
3152 
3153 	TI_UNLOCK(sc);
3154 
3155 	return (error);
3156 }
3157 
3158 static int
3159 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3160 {
3161 	struct ti_softc *sc;
3162 
3163 	sc = dev->si_drv1;
3164 	if (sc == NULL)
3165 		return (ENODEV);
3166 
3167 	TI_LOCK(sc);
3168 	sc->ti_flags |= TI_FLAG_DEBUGING;
3169 	TI_UNLOCK(sc);
3170 
3171 	return (0);
3172 }
3173 
3174 static int
3175 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3176 {
3177 	struct ti_softc *sc;
3178 
3179 	sc = dev->si_drv1;
3180 	if (sc == NULL)
3181 		return (ENODEV);
3182 
3183 	TI_LOCK(sc);
3184 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3185 	TI_UNLOCK(sc);
3186 
3187 	return (0);
3188 }
3189 
3190 /*
3191  * This ioctl routine goes along with the Tigon character device.
3192  */
3193 static int
3194 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3195 {
3196 	int error;
3197 	struct ti_softc *sc;
3198 
3199 	sc = dev->si_drv1;
3200 	if (sc == NULL)
3201 		return (ENODEV);
3202 
3203 	error = 0;
3204 
3205 	switch (cmd) {
3206 	case TIIOCGETSTATS:
3207 	{
3208 		struct ti_stats *outstats;
3209 
3210 		outstats = (struct ti_stats *)addr;
3211 
3212 		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3213 		      sizeof(struct ti_stats));
3214 		break;
3215 	}
3216 	case TIIOCGETPARAMS:
3217 	{
3218 		struct ti_params	*params;
3219 
3220 		params = (struct ti_params *)addr;
3221 
3222 		params->ti_stat_ticks = sc->ti_stat_ticks;
3223 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3224 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3225 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3226 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3227 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3228 		params->param_mask = TI_PARAM_ALL;
3229 
3230 		error = 0;
3231 
3232 		break;
3233 	}
3234 	case TIIOCSETPARAMS:
3235 	{
3236 		struct ti_params *params;
3237 
3238 		params = (struct ti_params *)addr;
3239 
3240 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3241 			sc->ti_stat_ticks = params->ti_stat_ticks;
3242 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3243 		}
3244 
3245 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3246 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3247 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3248 				    sc->ti_rx_coal_ticks);
3249 		}
3250 
3251 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3252 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3253 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3254 				    sc->ti_tx_coal_ticks);
3255 		}
3256 
3257 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3258 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3259 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3260 				    sc->ti_rx_max_coal_bds);
3261 		}
3262 
3263 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3264 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3265 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3266 				    sc->ti_tx_max_coal_bds);
3267 		}
3268 
3269 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3270 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3271 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3272 				    sc->ti_tx_buf_ratio);
3273 		}
3274 
3275 		error = 0;
3276 
3277 		break;
3278 	}
3279 	case TIIOCSETTRACE: {
3280 		ti_trace_type	trace_type;
3281 
3282 		trace_type = *(ti_trace_type *)addr;
3283 
3284 		/*
3285 		 * Set tracing to whatever the user asked for.  Setting
3286 		 * this register to 0 should have the effect of disabling
3287 		 * tracing.
3288 		 */
3289 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3290 
3291 		error = 0;
3292 
3293 		break;
3294 	}
3295 	case TIIOCGETTRACE: {
3296 		struct ti_trace_buf	*trace_buf;
3297 		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3298 
3299 		trace_buf = (struct ti_trace_buf *)addr;
3300 
3301 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3302 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3303 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3304 
3305 #if 0
3306 		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3307 		       "trace_len = %d\n", sc->ti_unit, trace_start,
3308 		       cur_trace_ptr, trace_len);
3309 		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3310 		       trace_buf->buf_len);
3311 #endif
3312 
3313 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3314 				    trace_buf->buf_len),
3315 				    (caddr_t)trace_buf->buf, 1, 1);
3316 
3317 		if (error == 0) {
3318 			trace_buf->fill_len = min(trace_len,
3319 						  trace_buf->buf_len);
3320 			if (cur_trace_ptr < trace_start)
3321 				trace_buf->cur_trace_ptr =
3322 					trace_start - cur_trace_ptr;
3323 			else
3324 				trace_buf->cur_trace_ptr =
3325 					cur_trace_ptr - trace_start;
3326 		} else
3327 			trace_buf->fill_len = 0;
3328 
3329 		break;
3330 	}
3331 
3332 	/*
3333 	 * For debugging, five ioctls are needed:
3334 	 * ALT_ATTACH
3335 	 * ALT_READ_TG_REG
3336 	 * ALT_WRITE_TG_REG
3337 	 * ALT_READ_TG_MEM
3338 	 * ALT_WRITE_TG_MEM
3339 	 */
3340 	case ALT_ATTACH:
3341 		/*
3342 		 * From what I can tell, Alteon's Solaris Tigon driver
3343 		 * only has one character device, so you have to attach
3344 		 * to the Tigon board you're interested in.  This seems
3345 		 * like a not-so-good way to do things, since unless you
3346 		 * subsequently specify the unit number of the device
3347 		 * you're interested in in every ioctl, you'll only be
3348 		 * able to debug one board at a time.
3349 		 */
3350 		error = 0;
3351 		break;
3352 	case ALT_READ_TG_MEM:
3353 	case ALT_WRITE_TG_MEM:
3354 	{
3355 		struct tg_mem *mem_param;
3356 		u_int32_t sram_end, scratch_end;
3357 
3358 		mem_param = (struct tg_mem *)addr;
3359 
3360 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3361 			sram_end = TI_END_SRAM_I;
3362 			scratch_end = TI_END_SCRATCH_I;
3363 		} else {
3364 			sram_end = TI_END_SRAM_II;
3365 			scratch_end = TI_END_SCRATCH_II;
3366 		}
3367 
3368 		/*
3369 		 * For now, we'll only handle accessing regular SRAM,
3370 		 * nothing else.
3371 		 */
3372 		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3373 		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3374 			/*
3375 			 * In this instance, we always copy to/from user
3376 			 * space, so the user space argument is set to 1.
3377 			 */
3378 			error = ti_copy_mem(sc, mem_param->tgAddr,
3379 					    mem_param->len,
3380 					    mem_param->userAddr, 1,
3381 					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3382 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3383 			&& (mem_param->tgAddr <= scratch_end)) {
3384 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3385 						mem_param->len,
3386 						mem_param->userAddr, 1,
3387 						(cmd == ALT_READ_TG_MEM) ?
3388 						1 : 0, TI_PROCESSOR_A);
3389 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3390 			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3391 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3392 				printf("ti%d:  invalid memory range for "
3393 				       "Tigon I\n", sc->ti_unit);
3394 				error = EINVAL;
3395 				break;
3396 			}
3397 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3398 						TI_SCRATCH_DEBUG_OFF,
3399 						mem_param->len,
3400 						mem_param->userAddr, 1,
3401 						(cmd == ALT_READ_TG_MEM) ?
3402 						1 : 0, TI_PROCESSOR_B);
3403 		} else {
3404 			printf("ti%d: memory address %#x len %d is out of "
3405 			       "supported range\n", sc->ti_unit,
3406 			        mem_param->tgAddr, mem_param->len);
3407 			error = EINVAL;
3408 		}
3409 
3410 		break;
3411 	}
3412 	case ALT_READ_TG_REG:
3413 	case ALT_WRITE_TG_REG:
3414 	{
3415 		struct tg_reg	*regs;
3416 		u_int32_t	tmpval;
3417 
3418 		regs = (struct tg_reg *)addr;
3419 
3420 		/*
3421 		 * Make sure the address in question isn't out of range.
3422 		 */
3423 		if (regs->addr > TI_REG_MAX) {
3424 			error = EINVAL;
3425 			break;
3426 		}
3427 		if (cmd == ALT_READ_TG_REG) {
3428 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3429 						regs->addr, &tmpval, 1);
3430 			regs->data = ntohl(tmpval);
3431 #if 0
3432 			if ((regs->addr == TI_CPU_STATE)
3433 			 || (regs->addr == TI_CPU_CTL_B)) {
3434 				printf("ti%d: register %#x = %#x\n",
3435 				       sc->ti_unit, regs->addr, tmpval);
3436 			}
3437 #endif
3438 		} else {
3439 			tmpval = htonl(regs->data);
3440 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3441 						 regs->addr, &tmpval, 1);
3442 		}
3443 
3444 		break;
3445 	}
3446 	default:
3447 		error = ENOTTY;
3448 		break;
3449 	}
3450 	return (error);
3451 }
3452 
3453 static void
3454 ti_watchdog(ifp)
3455 	struct ifnet		*ifp;
3456 {
3457 	struct ti_softc		*sc;
3458 
3459 	sc = ifp->if_softc;
3460 	TI_LOCK(sc);
3461 
3462 	/*
3463 	 * When we're debugging, the chip is often stopped for long periods
3464 	 * of time, and that would normally cause the watchdog timer to fire.
3465 	 * Since that impedes debugging, we don't want to do that.
3466 	 */
3467 	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3468 		TI_UNLOCK(sc);
3469 		return;
3470 	}
3471 
3472 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3473 	ti_stop(sc);
3474 	ti_init(sc);
3475 
3476 	ifp->if_oerrors++;
3477 	TI_UNLOCK(sc);
3478 }
3479 
3480 /*
3481  * Stop the adapter and free any mbufs allocated to the
3482  * RX and TX lists.
3483  */
3484 static void
3485 ti_stop(sc)
3486 	struct ti_softc		*sc;
3487 {
3488 	struct ifnet		*ifp;
3489 	struct ti_cmd_desc	cmd;
3490 
3491 	TI_LOCK(sc);
3492 
3493 	ifp = &sc->arpcom.ac_if;
3494 
3495 	/* Disable host interrupts. */
3496 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3497 	/*
3498 	 * Tell firmware we're shutting down.
3499 	 */
3500 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3501 
3502 	/* Halt and reinitialize. */
3503 	ti_chipinit(sc);
3504 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3505 	ti_chipinit(sc);
3506 
3507 	/* Free the RX lists. */
3508 	ti_free_rx_ring_std(sc);
3509 
3510 	/* Free jumbo RX list. */
3511 	ti_free_rx_ring_jumbo(sc);
3512 
3513 	/* Free mini RX list. */
3514 	ti_free_rx_ring_mini(sc);
3515 
3516 	/* Free TX buffers. */
3517 	ti_free_tx_ring(sc);
3518 
3519 	sc->ti_ev_prodidx.ti_idx = 0;
3520 	sc->ti_return_prodidx.ti_idx = 0;
3521 	sc->ti_tx_considx.ti_idx = 0;
3522 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3523 
3524 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3525 	TI_UNLOCK(sc);
3526 }
3527 
3528 /*
3529  * Stop all chip I/O so that the kernel's probe routines don't
3530  * get confused by errant DMAs when rebooting.
3531  */
3532 static void
3533 ti_shutdown(dev)
3534 	device_t		dev;
3535 {
3536 	struct ti_softc		*sc;
3537 
3538 	sc = device_get_softc(dev);
3539 	TI_LOCK(sc);
3540 	ti_chipinit(sc);
3541 	TI_UNLOCK(sc);
3542 }
3543