xref: /freebsd/sys/dev/ti/if_ti.c (revision c11e094d96120a2e0e726ed9705ae0ec08db49b6)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/sockio.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/queue.h>
89 
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/ethernet.h>
93 #include <net/if_dl.h>
94 #include <net/if_media.h>
95 #include <net/if_types.h>
96 #include <net/if_vlan_var.h>
97 
98 #include <net/bpf.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 
104 #include <vm/vm.h>              /* for vtophys */
105 #include <vm/pmap.h>            /* for vtophys */
106 #include <machine/bus_memio.h>
107 #include <machine/bus.h>
108 #include <machine/resource.h>
109 #include <sys/bus.h>
110 #include <sys/rman.h>
111 
112 #include <pci/pcireg.h>
113 #include <pci/pcivar.h>
114 
115 #include <pci/if_tireg.h>
116 #include <pci/ti_fw.h>
117 #include <pci/ti_fw2.h>
118 
119 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
120 
121 #if !defined(lint)
122 static const char rcsid[] =
123   "$FreeBSD$";
124 #endif
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 
130 static struct ti_type ti_devs[] = {
131 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
132 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
133 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
134 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
135 	{ TC_VENDORID,	TC_DEVICEID_3C985,
136 		"3Com 3c985-SX Gigabit Ethernet" },
137 	{ NG_VENDORID, NG_DEVICEID_GA620,
138 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
139 	{ NG_VENDORID, NG_DEVICEID_GA620T,
140 		"Netgear GA620 1000baseT Gigabit Ethernet" },
141 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
142 		"Silicon Graphics Gigabit Ethernet" },
143 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
144 		"Farallon PN9000SX Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int ti_probe		(device_t);
149 static int ti_attach		(device_t);
150 static int ti_detach		(device_t);
151 static void ti_txeof		(struct ti_softc *);
152 static void ti_rxeof		(struct ti_softc *);
153 
154 static void ti_stats_update	(struct ti_softc *);
155 static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
156 
157 static void ti_intr		(void *);
158 static void ti_start		(struct ifnet *);
159 static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
160 static void ti_init		(void *);
161 static void ti_init2		(struct ti_softc *);
162 static void ti_stop		(struct ti_softc *);
163 static void ti_watchdog		(struct ifnet *);
164 static void ti_shutdown		(device_t);
165 static int ti_ifmedia_upd	(struct ifnet *);
166 static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
167 
168 static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
169 static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
170 static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
171 
172 static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
173 static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
174 static void ti_setmulti		(struct ti_softc *);
175 
176 static void ti_mem		(struct ti_softc *, u_int32_t,
177 					u_int32_t, caddr_t);
178 static void ti_loadfw		(struct ti_softc *);
179 static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
180 static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
181 					caddr_t, int);
182 static void ti_handle_events	(struct ti_softc *);
183 static int ti_alloc_jumbo_mem	(struct ti_softc *);
184 static void *ti_jalloc		(struct ti_softc *);
185 static void ti_jfree		(caddr_t, void *);
186 static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
187 static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
188 static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
189 static int ti_init_rx_ring_std	(struct ti_softc *);
190 static void ti_free_rx_ring_std	(struct ti_softc *);
191 static int ti_init_rx_ring_jumbo	(struct ti_softc *);
192 static void ti_free_rx_ring_jumbo	(struct ti_softc *);
193 static int ti_init_rx_ring_mini	(struct ti_softc *);
194 static void ti_free_rx_ring_mini	(struct ti_softc *);
195 static void ti_free_tx_ring	(struct ti_softc *);
196 static int ti_init_tx_ring	(struct ti_softc *);
197 
198 static int ti_64bitslot_war	(struct ti_softc *);
199 static int ti_chipinit		(struct ti_softc *);
200 static int ti_gibinit		(struct ti_softc *);
201 
202 static device_method_t ti_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		ti_probe),
205 	DEVMETHOD(device_attach,	ti_attach),
206 	DEVMETHOD(device_detach,	ti_detach),
207 	DEVMETHOD(device_shutdown,	ti_shutdown),
208 	{ 0, 0 }
209 };
210 
211 static driver_t ti_driver = {
212 	"ti",
213 	ti_methods,
214 	sizeof(struct ti_softc)
215 };
216 
217 static devclass_t ti_devclass;
218 
219 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
220 
221 /*
222  * Send an instruction or address to the EEPROM, check for ACK.
223  */
224 static u_int32_t ti_eeprom_putbyte(sc, byte)
225 	struct ti_softc		*sc;
226 	int			byte;
227 {
228 	register int		i, ack = 0;
229 
230 	/*
231 	 * Make sure we're in TX mode.
232 	 */
233 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
234 
235 	/*
236 	 * Feed in each bit and stobe the clock.
237 	 */
238 	for (i = 0x80; i; i >>= 1) {
239 		if (byte & i) {
240 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
241 		} else {
242 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243 		}
244 		DELAY(1);
245 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
246 		DELAY(1);
247 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248 	}
249 
250 	/*
251 	 * Turn off TX mode.
252 	 */
253 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
254 
255 	/*
256 	 * Check for ack.
257 	 */
258 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
259 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
260 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261 
262 	return(ack);
263 }
264 
265 /*
266  * Read a byte of data stored in the EEPROM at address 'addr.'
267  * We have to send two address bytes since the EEPROM can hold
268  * more than 256 bytes of data.
269  */
270 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
271 	struct ti_softc		*sc;
272 	int			addr;
273 	u_int8_t		*dest;
274 {
275 	register int		i;
276 	u_int8_t		byte = 0;
277 
278 	EEPROM_START;
279 
280 	/*
281 	 * Send write control code to EEPROM.
282 	 */
283 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
284 		printf("ti%d: failed to send write command, status: %x\n",
285 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
286 		return(1);
287 	}
288 
289 	/*
290 	 * Send first byte of address of byte we want to read.
291 	 */
292 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
293 		printf("ti%d: failed to send address, status: %x\n",
294 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
295 		return(1);
296 	}
297 	/*
298 	 * Send second byte address of byte we want to read.
299 	 */
300 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
301 		printf("ti%d: failed to send address, status: %x\n",
302 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 		return(1);
304 	}
305 
306 	EEPROM_STOP;
307 	EEPROM_START;
308 	/*
309 	 * Send read control code to EEPROM.
310 	 */
311 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
312 		printf("ti%d: failed to send read command, status: %x\n",
313 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
314 		return(1);
315 	}
316 
317 	/*
318 	 * Start reading bits from EEPROM.
319 	 */
320 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
321 	for (i = 0x80; i; i >>= 1) {
322 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
323 		DELAY(1);
324 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
325 			byte |= i;
326 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
327 		DELAY(1);
328 	}
329 
330 	EEPROM_STOP;
331 
332 	/*
333 	 * No ACK generated for read, so just return byte.
334 	 */
335 
336 	*dest = byte;
337 
338 	return(0);
339 }
340 
341 /*
342  * Read a sequence of bytes from the EEPROM.
343  */
344 static int ti_read_eeprom(sc, dest, off, cnt)
345 	struct ti_softc		*sc;
346 	caddr_t			dest;
347 	int			off;
348 	int			cnt;
349 {
350 	int			err = 0, i;
351 	u_int8_t		byte = 0;
352 
353 	for (i = 0; i < cnt; i++) {
354 		err = ti_eeprom_getbyte(sc, off + i, &byte);
355 		if (err)
356 			break;
357 		*(dest + i) = byte;
358 	}
359 
360 	return(err ? 1 : 0);
361 }
362 
363 /*
364  * NIC memory access function. Can be used to either clear a section
365  * of NIC local memory or (if buf is non-NULL) copy data into it.
366  */
367 static void ti_mem(sc, addr, len, buf)
368 	struct ti_softc		*sc;
369 	u_int32_t		addr, len;
370 	caddr_t			buf;
371 {
372 	int			segptr, segsize, cnt;
373 	caddr_t			ti_winbase, ptr;
374 
375 	segptr = addr;
376 	cnt = len;
377 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
378 	ptr = buf;
379 
380 	while(cnt) {
381 		if (cnt < TI_WINLEN)
382 			segsize = cnt;
383 		else
384 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
385 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
386 		if (buf == NULL)
387 			bzero((char *)ti_winbase + (segptr &
388 			    (TI_WINLEN - 1)), segsize);
389 		else {
390 			bcopy((char *)ptr, (char *)ti_winbase +
391 			    (segptr & (TI_WINLEN - 1)), segsize);
392 			ptr += segsize;
393 		}
394 		segptr += segsize;
395 		cnt -= segsize;
396 	}
397 
398 	return;
399 }
400 
401 /*
402  * Load firmware image into the NIC. Check that the firmware revision
403  * is acceptable and see if we want the firmware for the Tigon 1 or
404  * Tigon 2.
405  */
406 static void ti_loadfw(sc)
407 	struct ti_softc		*sc;
408 {
409 	switch(sc->ti_hwrev) {
410 	case TI_HWREV_TIGON:
411 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
412 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
413 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
414 			printf("ti%d: firmware revision mismatch; want "
415 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
416 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
417 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
418 			    tigonFwReleaseMinor, tigonFwReleaseFix);
419 			return;
420 		}
421 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
422 		    (caddr_t)tigonFwText);
423 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
424 		    (caddr_t)tigonFwData);
425 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
426 		    (caddr_t)tigonFwRodata);
427 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
428 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
429 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
430 		break;
431 	case TI_HWREV_TIGON_II:
432 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
433 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
434 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
435 			printf("ti%d: firmware revision mismatch; want "
436 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
437 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
438 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
439 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
440 			return;
441 		}
442 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
443 		    (caddr_t)tigon2FwText);
444 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
445 		    (caddr_t)tigon2FwData);
446 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
447 		    (caddr_t)tigon2FwRodata);
448 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
449 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
450 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
451 		break;
452 	default:
453 		printf("ti%d: can't load firmware: unknown hardware rev\n",
454 		    sc->ti_unit);
455 		break;
456 	}
457 
458 	return;
459 }
460 
461 /*
462  * Send the NIC a command via the command ring.
463  */
464 static void ti_cmd(sc, cmd)
465 	struct ti_softc		*sc;
466 	struct ti_cmd_desc	*cmd;
467 {
468 	u_int32_t		index;
469 
470 	if (sc->ti_rdata->ti_cmd_ring == NULL)
471 		return;
472 
473 	index = sc->ti_cmd_saved_prodidx;
474 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
475 	TI_INC(index, TI_CMD_RING_CNT);
476 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
477 	sc->ti_cmd_saved_prodidx = index;
478 
479 	return;
480 }
481 
482 /*
483  * Send the NIC an extended command. The 'len' parameter specifies the
484  * number of command slots to include after the initial command.
485  */
486 static void ti_cmd_ext(sc, cmd, arg, len)
487 	struct ti_softc		*sc;
488 	struct ti_cmd_desc	*cmd;
489 	caddr_t			arg;
490 	int			len;
491 {
492 	u_int32_t		index;
493 	register int		i;
494 
495 	if (sc->ti_rdata->ti_cmd_ring == NULL)
496 		return;
497 
498 	index = sc->ti_cmd_saved_prodidx;
499 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
500 	TI_INC(index, TI_CMD_RING_CNT);
501 	for (i = 0; i < len; i++) {
502 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
503 		    *(u_int32_t *)(&arg[i * 4]));
504 		TI_INC(index, TI_CMD_RING_CNT);
505 	}
506 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
507 	sc->ti_cmd_saved_prodidx = index;
508 
509 	return;
510 }
511 
512 /*
513  * Handle events that have triggered interrupts.
514  */
515 static void ti_handle_events(sc)
516 	struct ti_softc		*sc;
517 {
518 	struct ti_event_desc	*e;
519 
520 	if (sc->ti_rdata->ti_event_ring == NULL)
521 		return;
522 
523 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
524 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
525 		switch(e->ti_event) {
526 		case TI_EV_LINKSTAT_CHANGED:
527 			sc->ti_linkstat = e->ti_code;
528 			if (e->ti_code == TI_EV_CODE_LINK_UP)
529 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
530 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
531 				printf("ti%d: gigabit link up\n", sc->ti_unit);
532 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
533 				printf("ti%d: link down\n", sc->ti_unit);
534 			break;
535 		case TI_EV_ERROR:
536 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
537 				printf("ti%d: invalid command\n", sc->ti_unit);
538 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
539 				printf("ti%d: unknown command\n", sc->ti_unit);
540 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
541 				printf("ti%d: bad config data\n", sc->ti_unit);
542 			break;
543 		case TI_EV_FIRMWARE_UP:
544 			ti_init2(sc);
545 			break;
546 		case TI_EV_STATS_UPDATED:
547 			ti_stats_update(sc);
548 			break;
549 		case TI_EV_RESET_JUMBO_RING:
550 		case TI_EV_MCAST_UPDATED:
551 			/* Who cares. */
552 			break;
553 		default:
554 			printf("ti%d: unknown event: %d\n",
555 			    sc->ti_unit, e->ti_event);
556 			break;
557 		}
558 		/* Advance the consumer index. */
559 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
560 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
561 	}
562 
563 	return;
564 }
565 
566 /*
567  * Memory management for the jumbo receive ring is a pain in the
568  * butt. We need to allocate at least 9018 bytes of space per frame,
569  * _and_ it has to be contiguous (unless you use the extended
570  * jumbo descriptor format). Using malloc() all the time won't
571  * work: malloc() allocates memory in powers of two, which means we
572  * would end up wasting a considerable amount of space by allocating
573  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
574  * to do our own memory management.
575  *
576  * The driver needs to allocate a contiguous chunk of memory at boot
577  * time. We then chop this up ourselves into 9K pieces and use them
578  * as external mbuf storage.
579  *
580  * One issue here is how much memory to allocate. The jumbo ring has
581  * 256 slots in it, but at 9K per slot than can consume over 2MB of
582  * RAM. This is a bit much, especially considering we also need
583  * RAM for the standard ring and mini ring (on the Tigon 2). To
584  * save space, we only actually allocate enough memory for 64 slots
585  * by default, which works out to between 500 and 600K. This can
586  * be tuned by changing a #define in if_tireg.h.
587  */
588 
589 static int ti_alloc_jumbo_mem(sc)
590 	struct ti_softc		*sc;
591 {
592 	caddr_t			ptr;
593 	register int		i;
594 	struct ti_jpool_entry   *entry;
595 
596 	/* Grab a big chunk o' storage. */
597 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
598 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
599 
600 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
601 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
602 		return(ENOBUFS);
603 	}
604 
605 	SLIST_INIT(&sc->ti_jfree_listhead);
606 	SLIST_INIT(&sc->ti_jinuse_listhead);
607 
608 	/*
609 	 * Now divide it up into 9K pieces and save the addresses
610 	 * in an array.
611 	 */
612 	ptr = sc->ti_cdata.ti_jumbo_buf;
613 	for (i = 0; i < TI_JSLOTS; i++) {
614 		sc->ti_cdata.ti_jslots[i] = ptr;
615 		ptr += TI_JLEN;
616 		entry = malloc(sizeof(struct ti_jpool_entry),
617 			       M_DEVBUF, M_NOWAIT);
618 		if (entry == NULL) {
619 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
620 			           M_DEVBUF);
621 			sc->ti_cdata.ti_jumbo_buf = NULL;
622 			printf("ti%d: no memory for jumbo "
623 			    "buffer queue!\n", sc->ti_unit);
624 			return(ENOBUFS);
625 		}
626 		entry->slot = i;
627 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
628 	}
629 
630 	return(0);
631 }
632 
633 /*
634  * Allocate a jumbo buffer.
635  */
636 static void *ti_jalloc(sc)
637 	struct ti_softc		*sc;
638 {
639 	struct ti_jpool_entry   *entry;
640 
641 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
642 
643 	if (entry == NULL) {
644 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
645 		return(NULL);
646 	}
647 
648 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
649 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
650 	return(sc->ti_cdata.ti_jslots[entry->slot]);
651 }
652 
653 /*
654  * Release a jumbo buffer.
655  */
656 static void ti_jfree(buf, args)
657 	caddr_t			buf;
658 	void			*args;
659 {
660 	struct ti_softc		*sc;
661 	int		        i;
662 	struct ti_jpool_entry   *entry;
663 
664 	/* Extract the softc struct pointer. */
665 	sc = (struct ti_softc *)args;
666 
667 	if (sc == NULL)
668 		panic("ti_jfree: didn't get softc pointer!");
669 
670 	/* calculate the slot this buffer belongs to */
671 	i = ((vm_offset_t)buf
672 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
673 
674 	if ((i < 0) || (i >= TI_JSLOTS))
675 		panic("ti_jfree: asked to free buffer that we don't manage!");
676 
677 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
678 	if (entry == NULL)
679 		panic("ti_jfree: buffer not in use!");
680 	entry->slot = i;
681 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
682 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
683 
684 	return;
685 }
686 
687 
688 /*
689  * Intialize a standard receive ring descriptor.
690  */
691 static int ti_newbuf_std(sc, i, m)
692 	struct ti_softc		*sc;
693 	int			i;
694 	struct mbuf		*m;
695 {
696 	struct mbuf		*m_new = NULL;
697 	struct ti_rx_desc	*r;
698 
699 	if (m == NULL) {
700 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
701 		if (m_new == NULL)
702 			return(ENOBUFS);
703 
704 		MCLGET(m_new, M_DONTWAIT);
705 		if (!(m_new->m_flags & M_EXT)) {
706 			m_freem(m_new);
707 			return(ENOBUFS);
708 		}
709 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
710 	} else {
711 		m_new = m;
712 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
713 		m_new->m_data = m_new->m_ext.ext_buf;
714 	}
715 
716 	m_adj(m_new, ETHER_ALIGN);
717 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
718 	r = &sc->ti_rdata->ti_rx_std_ring[i];
719 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
720 	r->ti_type = TI_BDTYPE_RECV_BD;
721 	r->ti_flags = 0;
722 	if (sc->arpcom.ac_if.if_hwassist)
723 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
724 	r->ti_len = m_new->m_len;
725 	r->ti_idx = i;
726 
727 	return(0);
728 }
729 
730 /*
731  * Intialize a mini receive ring descriptor. This only applies to
732  * the Tigon 2.
733  */
734 static int ti_newbuf_mini(sc, i, m)
735 	struct ti_softc		*sc;
736 	int			i;
737 	struct mbuf		*m;
738 {
739 	struct mbuf		*m_new = NULL;
740 	struct ti_rx_desc	*r;
741 
742 	if (m == NULL) {
743 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
744 		if (m_new == NULL) {
745 			return(ENOBUFS);
746 		}
747 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
748 	} else {
749 		m_new = m;
750 		m_new->m_data = m_new->m_pktdat;
751 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
752 	}
753 
754 	m_adj(m_new, ETHER_ALIGN);
755 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
756 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
757 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
758 	r->ti_type = TI_BDTYPE_RECV_BD;
759 	r->ti_flags = TI_BDFLAG_MINI_RING;
760 	if (sc->arpcom.ac_if.if_hwassist)
761 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
762 	r->ti_len = m_new->m_len;
763 	r->ti_idx = i;
764 
765 	return(0);
766 }
767 
768 /*
769  * Initialize a jumbo receive ring descriptor. This allocates
770  * a jumbo buffer from the pool managed internally by the driver.
771  */
772 static int ti_newbuf_jumbo(sc, i, m)
773 	struct ti_softc		*sc;
774 	int			i;
775 	struct mbuf		*m;
776 {
777 	struct mbuf		*m_new = NULL;
778 	struct ti_rx_desc	*r;
779 
780 	if (m == NULL) {
781 		caddr_t			*buf = NULL;
782 
783 		/* Allocate the mbuf. */
784 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
785 		if (m_new == NULL) {
786 			return(ENOBUFS);
787 		}
788 
789 		/* Allocate the jumbo buffer */
790 		buf = ti_jalloc(sc);
791 		if (buf == NULL) {
792 			m_freem(m_new);
793 			printf("ti%d: jumbo allocation failed "
794 			    "-- packet dropped!\n", sc->ti_unit);
795 			return(ENOBUFS);
796 		}
797 
798 		/* Attach the buffer to the mbuf. */
799 		m_new->m_data = (void *) buf;
800 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
801 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
802 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
803 	} else {
804 		m_new = m;
805 		m_new->m_data = m_new->m_ext.ext_buf;
806 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
807 	}
808 
809 	m_adj(m_new, ETHER_ALIGN);
810 	/* Set up the descriptor. */
811 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
812 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
813 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
814 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
815 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
816 	if (sc->arpcom.ac_if.if_hwassist)
817 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
818 	r->ti_len = m_new->m_len;
819 	r->ti_idx = i;
820 
821 	return(0);
822 }
823 
824 /*
825  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
826  * that's 1MB or memory, which is a lot. For now, we fill only the first
827  * 256 ring entries and hope that our CPU is fast enough to keep up with
828  * the NIC.
829  */
830 static int ti_init_rx_ring_std(sc)
831 	struct ti_softc		*sc;
832 {
833 	register int		i;
834 	struct ti_cmd_desc	cmd;
835 
836 	for (i = 0; i < TI_SSLOTS; i++) {
837 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
838 			return(ENOBUFS);
839 	};
840 
841 	TI_UPDATE_STDPROD(sc, i - 1);
842 	sc->ti_std = i - 1;
843 
844 	return(0);
845 }
846 
847 static void ti_free_rx_ring_std(sc)
848 	struct ti_softc		*sc;
849 {
850 	register int		i;
851 
852 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
853 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
854 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
855 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
856 		}
857 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
858 		    sizeof(struct ti_rx_desc));
859 	}
860 
861 	return;
862 }
863 
864 static int ti_init_rx_ring_jumbo(sc)
865 	struct ti_softc		*sc;
866 {
867 	register int		i;
868 	struct ti_cmd_desc	cmd;
869 
870 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
871 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
872 			return(ENOBUFS);
873 	};
874 
875 	TI_UPDATE_JUMBOPROD(sc, i - 1);
876 	sc->ti_jumbo = i - 1;
877 
878 	return(0);
879 }
880 
881 static void ti_free_rx_ring_jumbo(sc)
882 	struct ti_softc		*sc;
883 {
884 	register int		i;
885 
886 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
887 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
888 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
889 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
890 		}
891 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
892 		    sizeof(struct ti_rx_desc));
893 	}
894 
895 	return;
896 }
897 
898 static int ti_init_rx_ring_mini(sc)
899 	struct ti_softc		*sc;
900 {
901 	register int		i;
902 
903 	for (i = 0; i < TI_MSLOTS; i++) {
904 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
905 			return(ENOBUFS);
906 	};
907 
908 	TI_UPDATE_MINIPROD(sc, i - 1);
909 	sc->ti_mini = i - 1;
910 
911 	return(0);
912 }
913 
914 static void ti_free_rx_ring_mini(sc)
915 	struct ti_softc		*sc;
916 {
917 	register int		i;
918 
919 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
920 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
921 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
922 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
923 		}
924 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
925 		    sizeof(struct ti_rx_desc));
926 	}
927 
928 	return;
929 }
930 
931 static void ti_free_tx_ring(sc)
932 	struct ti_softc		*sc;
933 {
934 	register int		i;
935 
936 	if (sc->ti_rdata->ti_tx_ring == NULL)
937 		return;
938 
939 	for (i = 0; i < TI_TX_RING_CNT; i++) {
940 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
941 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
942 			sc->ti_cdata.ti_tx_chain[i] = NULL;
943 		}
944 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
945 		    sizeof(struct ti_tx_desc));
946 	}
947 
948 	return;
949 }
950 
951 static int ti_init_tx_ring(sc)
952 	struct ti_softc		*sc;
953 {
954 	sc->ti_txcnt = 0;
955 	sc->ti_tx_saved_considx = 0;
956 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
957 	return(0);
958 }
959 
960 /*
961  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
962  * but we have to support the old way too so that Tigon 1 cards will
963  * work.
964  */
965 void ti_add_mcast(sc, addr)
966 	struct ti_softc		*sc;
967 	struct ether_addr	*addr;
968 {
969 	struct ti_cmd_desc	cmd;
970 	u_int16_t		*m;
971 	u_int32_t		ext[2] = {0, 0};
972 
973 	m = (u_int16_t *)&addr->octet[0];
974 
975 	switch(sc->ti_hwrev) {
976 	case TI_HWREV_TIGON:
977 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
978 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
979 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
980 		break;
981 	case TI_HWREV_TIGON_II:
982 		ext[0] = htons(m[0]);
983 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
984 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
985 		break;
986 	default:
987 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
988 		break;
989 	}
990 
991 	return;
992 }
993 
994 void ti_del_mcast(sc, addr)
995 	struct ti_softc		*sc;
996 	struct ether_addr	*addr;
997 {
998 	struct ti_cmd_desc	cmd;
999 	u_int16_t		*m;
1000 	u_int32_t		ext[2] = {0, 0};
1001 
1002 	m = (u_int16_t *)&addr->octet[0];
1003 
1004 	switch(sc->ti_hwrev) {
1005 	case TI_HWREV_TIGON:
1006 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1007 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1008 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1009 		break;
1010 	case TI_HWREV_TIGON_II:
1011 		ext[0] = htons(m[0]);
1012 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1013 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1014 		break;
1015 	default:
1016 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1017 		break;
1018 	}
1019 
1020 	return;
1021 }
1022 
1023 /*
1024  * Configure the Tigon's multicast address filter.
1025  *
1026  * The actual multicast table management is a bit of a pain, thanks to
1027  * slight brain damage on the part of both Alteon and us. With our
1028  * multicast code, we are only alerted when the multicast address table
1029  * changes and at that point we only have the current list of addresses:
1030  * we only know the current state, not the previous state, so we don't
1031  * actually know what addresses were removed or added. The firmware has
1032  * state, but we can't get our grubby mits on it, and there is no 'delete
1033  * all multicast addresses' command. Hence, we have to maintain our own
1034  * state so we know what addresses have been programmed into the NIC at
1035  * any given time.
1036  */
1037 static void ti_setmulti(sc)
1038 	struct ti_softc		*sc;
1039 {
1040 	struct ifnet		*ifp;
1041 	struct ifmultiaddr	*ifma;
1042 	struct ti_cmd_desc	cmd;
1043 	struct ti_mc_entry	*mc;
1044 	u_int32_t		intrs;
1045 
1046 	ifp = &sc->arpcom.ac_if;
1047 
1048 	if (ifp->if_flags & IFF_ALLMULTI) {
1049 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1050 		return;
1051 	} else {
1052 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1053 	}
1054 
1055 	/* Disable interrupts. */
1056 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1057 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1058 
1059 	/* First, zot all the existing filters. */
1060 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1061 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1062 		ti_del_mcast(sc, &mc->mc_addr);
1063 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1064 		free(mc, M_DEVBUF);
1065 	}
1066 
1067 	/* Now program new ones. */
1068 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1069 		if (ifma->ifma_addr->sa_family != AF_LINK)
1070 			continue;
1071 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1072 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1073 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1074 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1075 		ti_add_mcast(sc, &mc->mc_addr);
1076 	}
1077 
1078 	/* Re-enable interrupts. */
1079 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1080 
1081 	return;
1082 }
1083 
1084 /*
1085  * Check to see if the BIOS has configured us for a 64 bit slot when
1086  * we aren't actually in one. If we detect this condition, we can work
1087  * around it on the Tigon 2 by setting a bit in the PCI state register,
1088  * but for the Tigon 1 we must give up and abort the interface attach.
1089  */
1090 static int ti_64bitslot_war(sc)
1091 	struct ti_softc		*sc;
1092 {
1093 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1094 		CSR_WRITE_4(sc, 0x600, 0);
1095 		CSR_WRITE_4(sc, 0x604, 0);
1096 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1097 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1098 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1099 				return(EINVAL);
1100 			else {
1101 				TI_SETBIT(sc, TI_PCI_STATE,
1102 				    TI_PCISTATE_32BIT_BUS);
1103 				return(0);
1104 			}
1105 		}
1106 	}
1107 
1108 	return(0);
1109 }
1110 
1111 /*
1112  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1113  * self-test results.
1114  */
1115 static int ti_chipinit(sc)
1116 	struct ti_softc		*sc;
1117 {
1118 	u_int32_t		cacheline;
1119 	u_int32_t		pci_writemax = 0;
1120 
1121 	/* Initialize link to down state. */
1122 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1123 
1124 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1125 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1126 	else
1127 		sc->arpcom.ac_if.if_hwassist = 0;
1128 
1129 	/* Set endianness before we access any non-PCI registers. */
1130 #if BYTE_ORDER == BIG_ENDIAN
1131 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1132 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1133 #else
1134 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1135 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1136 #endif
1137 
1138 	/* Check the ROM failed bit to see if self-tests passed. */
1139 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1140 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1141 		return(ENODEV);
1142 	}
1143 
1144 	/* Halt the CPU. */
1145 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1146 
1147 	/* Figure out the hardware revision. */
1148 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1149 	case TI_REV_TIGON_I:
1150 		sc->ti_hwrev = TI_HWREV_TIGON;
1151 		break;
1152 	case TI_REV_TIGON_II:
1153 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1154 		break;
1155 	default:
1156 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1157 		return(ENODEV);
1158 	}
1159 
1160 	/* Do special setup for Tigon 2. */
1161 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1162 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1163 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1164 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1165 	}
1166 
1167 	/* Set up the PCI state register. */
1168 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1169 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1170 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1171 	}
1172 
1173 	/* Clear the read/write max DMA parameters. */
1174 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1175 	    TI_PCISTATE_READ_MAXDMA));
1176 
1177 	/* Get cache line size. */
1178 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1179 
1180 	/*
1181 	 * If the system has set enabled the PCI memory write
1182 	 * and invalidate command in the command register, set
1183 	 * the write max parameter accordingly. This is necessary
1184 	 * to use MWI with the Tigon 2.
1185 	 */
1186 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1187 		switch(cacheline) {
1188 		case 1:
1189 		case 4:
1190 		case 8:
1191 		case 16:
1192 		case 32:
1193 		case 64:
1194 			break;
1195 		default:
1196 		/* Disable PCI memory write and invalidate. */
1197 			if (bootverbose)
1198 				printf("ti%d: cache line size %d not "
1199 				    "supported; disabling PCI MWI\n",
1200 				    sc->ti_unit, cacheline);
1201 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1202 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1203 			break;
1204 		}
1205 	}
1206 
1207 #ifdef __brokenalpha__
1208 	/*
1209 	 * From the Alteon sample driver:
1210 	 * Must insure that we do not cross an 8K (bytes) boundary
1211 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1212 	 * restriction on some ALPHA platforms with early revision
1213 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1214 	 */
1215 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1216 #else
1217 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1218 #endif
1219 
1220 	/* This sets the min dma param all the way up (0xff). */
1221 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1222 
1223 	/* Configure DMA variables. */
1224 #if BYTE_ORDER == BIG_ENDIAN
1225 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1226 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1227 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1228 	    TI_OPMODE_DONT_FRAG_JUMBO);
1229 #else
1230 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1231 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1232 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1233 #endif
1234 
1235 	/*
1236 	 * Only allow 1 DMA channel to be active at a time.
1237 	 * I don't think this is a good idea, but without it
1238 	 * the firmware racks up lots of nicDmaReadRingFull
1239 	 * errors.  This is not compatible with hardware checksums.
1240 	 */
1241 	if (sc->arpcom.ac_if.if_hwassist == 0)
1242 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1243 
1244 	/* Recommended settings from Tigon manual. */
1245 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1246 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1247 
1248 	if (ti_64bitslot_war(sc)) {
1249 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1250 		    "but we aren't", sc->ti_unit);
1251 		return(EINVAL);
1252 	}
1253 
1254 	return(0);
1255 }
1256 
1257 /*
1258  * Initialize the general information block and firmware, and
1259  * start the CPU(s) running.
1260  */
1261 static int ti_gibinit(sc)
1262 	struct ti_softc		*sc;
1263 {
1264 	struct ti_rcb		*rcb;
1265 	int			i;
1266 	struct ifnet		*ifp;
1267 
1268 	ifp = &sc->arpcom.ac_if;
1269 
1270 	/* Disable interrupts for now. */
1271 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1272 
1273 	/* Tell the chip where to find the general information block. */
1274 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1275 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1276 
1277 	/* Load the firmware into SRAM. */
1278 	ti_loadfw(sc);
1279 
1280 	/* Set up the contents of the general info and ring control blocks. */
1281 
1282 	/* Set up the event ring and producer pointer. */
1283 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1284 
1285 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1286 	rcb->ti_flags = 0;
1287 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1288 	    vtophys(&sc->ti_ev_prodidx);
1289 	sc->ti_ev_prodidx.ti_idx = 0;
1290 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1291 	sc->ti_ev_saved_considx = 0;
1292 
1293 	/* Set up the command ring and producer mailbox. */
1294 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1295 
1296 	sc->ti_rdata->ti_cmd_ring =
1297 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1298 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1299 	rcb->ti_flags = 0;
1300 	rcb->ti_max_len = 0;
1301 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1302 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1303 	}
1304 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1305 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1306 	sc->ti_cmd_saved_prodidx = 0;
1307 
1308 	/*
1309 	 * Assign the address of the stats refresh buffer.
1310 	 * We re-use the current stats buffer for this to
1311 	 * conserve memory.
1312 	 */
1313 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1314 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1315 
1316 	/* Set up the standard receive ring. */
1317 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1318 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1319 	rcb->ti_max_len = TI_FRAMELEN;
1320 	rcb->ti_flags = 0;
1321 	if (sc->arpcom.ac_if.if_hwassist)
1322 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1323 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1324 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1325 
1326 	/* Set up the jumbo receive ring. */
1327 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1328 	TI_HOSTADDR(rcb->ti_hostaddr) =
1329 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1330 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1331 	rcb->ti_flags = 0;
1332 	if (sc->arpcom.ac_if.if_hwassist)
1333 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1334 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1335 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1336 
1337 	/*
1338 	 * Set up the mini ring. Only activated on the
1339 	 * Tigon 2 but the slot in the config block is
1340 	 * still there on the Tigon 1.
1341 	 */
1342 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1343 	TI_HOSTADDR(rcb->ti_hostaddr) =
1344 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1345 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1346 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1347 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1348 	else
1349 		rcb->ti_flags = 0;
1350 	if (sc->arpcom.ac_if.if_hwassist)
1351 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1352 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1353 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1354 
1355 	/*
1356 	 * Set up the receive return ring.
1357 	 */
1358 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1359 	TI_HOSTADDR(rcb->ti_hostaddr) =
1360 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1361 	rcb->ti_flags = 0;
1362 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1363 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1364 	    vtophys(&sc->ti_return_prodidx);
1365 
1366 	/*
1367 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1368 	 * of putting the transmit ring in the host's address space and
1369 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1370 	 * memory and accessing it through the shared memory region. We
1371 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1372 	 * so we have to revert to the shared memory scheme if we detect
1373 	 * a Tigon 1 chip.
1374 	 */
1375 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1376 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1377 		sc->ti_rdata->ti_tx_ring_nic =
1378 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1379 	}
1380 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1381 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1382 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1383 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1384 		rcb->ti_flags = 0;
1385 	else
1386 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1387 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1388 	if (sc->arpcom.ac_if.if_hwassist)
1389 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1390 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1391 	rcb->ti_max_len = TI_TX_RING_CNT;
1392 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1393 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1394 	else
1395 		TI_HOSTADDR(rcb->ti_hostaddr) =
1396 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1397 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1398 	    vtophys(&sc->ti_tx_considx);
1399 
1400 	/* Set up tuneables */
1401 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1402 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1403 		    (sc->ti_rx_coal_ticks / 10));
1404 	else
1405 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1406 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1407 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1408 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1409 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1410 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1411 
1412 	/* Turn interrupts on. */
1413 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1414 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1415 
1416 	/* Start CPU. */
1417 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1418 
1419 	return(0);
1420 }
1421 
1422 /*
1423  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1424  * against our list and return its name if we find a match.
1425  */
1426 static int ti_probe(dev)
1427 	device_t		dev;
1428 {
1429 	struct ti_type		*t;
1430 
1431 	t = ti_devs;
1432 
1433 	while(t->ti_name != NULL) {
1434 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1435 		    (pci_get_device(dev) == t->ti_did)) {
1436 			device_set_desc(dev, t->ti_name);
1437 			return(0);
1438 		}
1439 		t++;
1440 	}
1441 
1442 	return(ENXIO);
1443 }
1444 
1445 static int ti_attach(dev)
1446 	device_t		dev;
1447 {
1448 	u_int32_t		command;
1449 	struct ifnet		*ifp;
1450 	struct ti_softc		*sc;
1451 	int			unit, error = 0, rid;
1452 
1453 	sc = device_get_softc(dev);
1454 	unit = device_get_unit(dev);
1455 	bzero(sc, sizeof(struct ti_softc));
1456 
1457 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1458 	    MTX_DEF | MTX_RECURSE);
1459 	TI_LOCK(sc);
1460 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1461 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1462 
1463 	/*
1464 	 * Map control/status registers.
1465 	 */
1466 	pci_enable_busmaster(dev);
1467 	pci_enable_io(dev, SYS_RES_MEMORY);
1468 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1469 
1470 	if (!(command & PCIM_CMD_MEMEN)) {
1471 		printf("ti%d: failed to enable memory mapping!\n", unit);
1472 		error = ENXIO;
1473 		goto fail;
1474 	}
1475 
1476 	rid = TI_PCI_LOMEM;
1477 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1478 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1479 
1480 	if (sc->ti_res == NULL) {
1481 		printf ("ti%d: couldn't map memory\n", unit);
1482 		error = ENXIO;
1483 		goto fail;
1484 	}
1485 
1486 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1487 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1488 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1489 
1490 	/* Allocate interrupt */
1491 	rid = 0;
1492 
1493 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1494 	    RF_SHAREABLE | RF_ACTIVE);
1495 
1496 	if (sc->ti_irq == NULL) {
1497 		printf("ti%d: couldn't map interrupt\n", unit);
1498 		error = ENXIO;
1499 		goto fail;
1500 	}
1501 
1502 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1503 	   ti_intr, sc, &sc->ti_intrhand);
1504 
1505 	if (error) {
1506 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1507 		bus_release_resource(dev, SYS_RES_MEMORY,
1508 		    TI_PCI_LOMEM, sc->ti_res);
1509 		printf("ti%d: couldn't set up irq\n", unit);
1510 		goto fail;
1511 	}
1512 
1513 	sc->ti_unit = unit;
1514 
1515 	if (ti_chipinit(sc)) {
1516 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1517 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1518 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1519 		bus_release_resource(dev, SYS_RES_MEMORY,
1520 		    TI_PCI_LOMEM, sc->ti_res);
1521 		error = ENXIO;
1522 		goto fail;
1523 	}
1524 
1525 	/* Zero out the NIC's on-board SRAM. */
1526 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1527 
1528 	/* Init again -- zeroing memory may have clobbered some registers. */
1529 	if (ti_chipinit(sc)) {
1530 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1531 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1532 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1533 		bus_release_resource(dev, SYS_RES_MEMORY,
1534 		    TI_PCI_LOMEM, sc->ti_res);
1535 		error = ENXIO;
1536 		goto fail;
1537 	}
1538 
1539 	/*
1540 	 * Get station address from the EEPROM. Note: the manual states
1541 	 * that the MAC address is at offset 0x8c, however the data is
1542 	 * stored as two longwords (since that's how it's loaded into
1543 	 * the NIC). This means the MAC address is actually preceded
1544 	 * by two zero bytes. We need to skip over those.
1545 	 */
1546 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1547 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1548 		printf("ti%d: failed to read station address\n", unit);
1549 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1550 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1551 		bus_release_resource(dev, SYS_RES_MEMORY,
1552 		    TI_PCI_LOMEM, sc->ti_res);
1553 		error = ENXIO;
1554 		goto fail;
1555 	}
1556 
1557 	/*
1558 	 * A Tigon chip was detected. Inform the world.
1559 	 */
1560 	printf("ti%d: Ethernet address: %6D\n", unit,
1561 				sc->arpcom.ac_enaddr, ":");
1562 
1563 	/* Allocate the general information block and ring buffers. */
1564 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1565 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1566 
1567 	if (sc->ti_rdata == NULL) {
1568 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1569 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1570 		bus_release_resource(dev, SYS_RES_MEMORY,
1571 		    TI_PCI_LOMEM, sc->ti_res);
1572 		error = ENXIO;
1573 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1574 		goto fail;
1575 	}
1576 
1577 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1578 
1579 	/* Try to allocate memory for jumbo buffers. */
1580 	if (ti_alloc_jumbo_mem(sc)) {
1581 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1582 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1583 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1584 		bus_release_resource(dev, SYS_RES_MEMORY,
1585 		    TI_PCI_LOMEM, sc->ti_res);
1586 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1587 		    M_DEVBUF);
1588 		error = ENXIO;
1589 		goto fail;
1590 	}
1591 
1592 	/*
1593 	 * We really need a better way to tell a 1000baseTX card
1594 	 * from a 1000baseSX one, since in theory there could be
1595 	 * OEMed 1000baseTX cards from lame vendors who aren't
1596 	 * clever enough to change the PCI ID. For the moment
1597 	 * though, the AceNIC is the only copper card available.
1598 	 */
1599 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1600 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1601 		sc->ti_copper = 1;
1602 	/* Ok, it's not the only copper card available. */
1603 	if (pci_get_vendor(dev) == NG_VENDORID &&
1604 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1605 		sc->ti_copper = 1;
1606 
1607 	/* Set default tuneable values. */
1608 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1609 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1610 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1611 	sc->ti_rx_max_coal_bds = 64;
1612 	sc->ti_tx_max_coal_bds = 128;
1613 	sc->ti_tx_buf_ratio = 21;
1614 
1615 	/* Set up ifnet structure */
1616 	ifp = &sc->arpcom.ac_if;
1617 	ifp->if_softc = sc;
1618 	ifp->if_unit = sc->ti_unit;
1619 	ifp->if_name = "ti";
1620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1621 	ifp->if_ioctl = ti_ioctl;
1622 	ifp->if_output = ether_output;
1623 	ifp->if_start = ti_start;
1624 	ifp->if_watchdog = ti_watchdog;
1625 	ifp->if_init = ti_init;
1626 	ifp->if_mtu = ETHERMTU;
1627 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1628 
1629 	/* Set up ifmedia support. */
1630 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1631 	if (sc->ti_copper) {
1632 		/*
1633 		 * Copper cards allow manual 10/100 mode selection,
1634 		 * but not manual 1000baseTX mode selection. Why?
1635 		 * Becuase currently there's no way to specify the
1636 		 * master/slave setting through the firmware interface,
1637 		 * so Alteon decided to just bag it and handle it
1638 		 * via autonegotiation.
1639 		 */
1640 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1641 		ifmedia_add(&sc->ifmedia,
1642 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1643 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1644 		ifmedia_add(&sc->ifmedia,
1645 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1646 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1647 		ifmedia_add(&sc->ifmedia,
1648 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1649 	} else {
1650 		/* Fiber cards don't support 10/100 modes. */
1651 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1652 		ifmedia_add(&sc->ifmedia,
1653 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1654 	}
1655 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1656 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1657 
1658 	/*
1659 	 * Call MI attach routine.
1660 	 */
1661 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1662 	TI_UNLOCK(sc);
1663 	return(0);
1664 
1665 fail:
1666 	TI_UNLOCK(sc);
1667 	mtx_destroy(&sc->ti_mtx);
1668 	return(error);
1669 }
1670 
1671 static int ti_detach(dev)
1672 	device_t		dev;
1673 {
1674 	struct ti_softc		*sc;
1675 	struct ifnet		*ifp;
1676 
1677 
1678 	sc = device_get_softc(dev);
1679 	TI_LOCK(sc);
1680 	ifp = &sc->arpcom.ac_if;
1681 
1682 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1683 	ti_stop(sc);
1684 
1685 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1686 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1687 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1688 
1689 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1690 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1691 	ifmedia_removeall(&sc->ifmedia);
1692 
1693 	TI_UNLOCK(sc);
1694 	mtx_destroy(&sc->ti_mtx);
1695 
1696 	return(0);
1697 }
1698 
1699 /*
1700  * Frame reception handling. This is called if there's a frame
1701  * on the receive return list.
1702  *
1703  * Note: we have to be able to handle three possibilities here:
1704  * 1) the frame is from the mini receive ring (can only happen)
1705  *    on Tigon 2 boards)
1706  * 2) the frame is from the jumbo recieve ring
1707  * 3) the frame is from the standard receive ring
1708  */
1709 
1710 static void ti_rxeof(sc)
1711 	struct ti_softc		*sc;
1712 {
1713 	struct ifnet		*ifp;
1714 	struct ti_cmd_desc	cmd;
1715 
1716 	ifp = &sc->arpcom.ac_if;
1717 
1718 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1719 		struct ti_rx_desc	*cur_rx;
1720 		u_int32_t		rxidx;
1721 		struct ether_header	*eh;
1722 		struct mbuf		*m = NULL;
1723 		u_int16_t		vlan_tag = 0;
1724 		int			have_tag = 0;
1725 
1726 		cur_rx =
1727 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1728 		rxidx = cur_rx->ti_idx;
1729 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1730 
1731 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1732 			have_tag = 1;
1733 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1734 		}
1735 
1736 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1737 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1738 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1739 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1740 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1741 				ifp->if_ierrors++;
1742 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1743 				continue;
1744 			}
1745 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1746 				ifp->if_ierrors++;
1747 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1748 				continue;
1749 			}
1750 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1751 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1752 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1753 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1754 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1755 				ifp->if_ierrors++;
1756 				ti_newbuf_mini(sc, sc->ti_mini, m);
1757 				continue;
1758 			}
1759 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1760 				ifp->if_ierrors++;
1761 				ti_newbuf_mini(sc, sc->ti_mini, m);
1762 				continue;
1763 			}
1764 		} else {
1765 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1766 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1767 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1768 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1769 				ifp->if_ierrors++;
1770 				ti_newbuf_std(sc, sc->ti_std, m);
1771 				continue;
1772 			}
1773 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1774 				ifp->if_ierrors++;
1775 				ti_newbuf_std(sc, sc->ti_std, m);
1776 				continue;
1777 			}
1778 		}
1779 
1780 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1781 		ifp->if_ipackets++;
1782 		eh = mtod(m, struct ether_header *);
1783 		m->m_pkthdr.rcvif = ifp;
1784 
1785 		/* Remove header from mbuf and pass it on. */
1786 		m_adj(m, sizeof(struct ether_header));
1787 
1788 		if (ifp->if_hwassist) {
1789 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1790 			    CSUM_DATA_VALID;
1791 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1792 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1793 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1794 		}
1795 
1796 		/*
1797 		 * If we received a packet with a vlan tag, pass it
1798 		 * to vlan_input() instead of ether_input().
1799 		 */
1800 		if (have_tag) {
1801 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1802 			have_tag = vlan_tag = 0;
1803 			continue;
1804 		}
1805 		ether_input(ifp, eh, m);
1806 	}
1807 
1808 	/* Only necessary on the Tigon 1. */
1809 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1810 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1811 		    sc->ti_rx_saved_considx);
1812 
1813 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1814 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1815 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1816 
1817 	return;
1818 }
1819 
1820 static void ti_txeof(sc)
1821 	struct ti_softc		*sc;
1822 {
1823 	struct ti_tx_desc	*cur_tx = NULL;
1824 	struct ifnet		*ifp;
1825 
1826 	ifp = &sc->arpcom.ac_if;
1827 
1828 	/*
1829 	 * Go through our tx ring and free mbufs for those
1830 	 * frames that have been sent.
1831 	 */
1832 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1833 		u_int32_t		idx = 0;
1834 
1835 		idx = sc->ti_tx_saved_considx;
1836 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1837 			if (idx > 383)
1838 				CSR_WRITE_4(sc, TI_WINBASE,
1839 				    TI_TX_RING_BASE + 6144);
1840 			else if (idx > 255)
1841 				CSR_WRITE_4(sc, TI_WINBASE,
1842 				    TI_TX_RING_BASE + 4096);
1843 			else if (idx > 127)
1844 				CSR_WRITE_4(sc, TI_WINBASE,
1845 				    TI_TX_RING_BASE + 2048);
1846 			else
1847 				CSR_WRITE_4(sc, TI_WINBASE,
1848 				    TI_TX_RING_BASE);
1849 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1850 		} else
1851 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1852 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1853 			ifp->if_opackets++;
1854 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1855 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1856 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1857 		}
1858 		sc->ti_txcnt--;
1859 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1860 		ifp->if_timer = 0;
1861 	}
1862 
1863 	if (cur_tx != NULL)
1864 		ifp->if_flags &= ~IFF_OACTIVE;
1865 
1866 	return;
1867 }
1868 
1869 static void ti_intr(xsc)
1870 	void			*xsc;
1871 {
1872 	struct ti_softc		*sc;
1873 	struct ifnet		*ifp;
1874 
1875 	sc = xsc;
1876 	TI_LOCK(sc);
1877 	ifp = &sc->arpcom.ac_if;
1878 
1879 #ifdef notdef
1880 	/* Avoid this for now -- checking this register is expensive. */
1881 	/* Make sure this is really our interrupt. */
1882 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1883 		TI_UNLOCK(sc);
1884 		return;
1885 	}
1886 #endif
1887 
1888 	/* Ack interrupt and stop others from occuring. */
1889 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1890 
1891 	if (ifp->if_flags & IFF_RUNNING) {
1892 		/* Check RX return ring producer/consumer */
1893 		ti_rxeof(sc);
1894 
1895 		/* Check TX ring producer/consumer */
1896 		ti_txeof(sc);
1897 	}
1898 
1899 	ti_handle_events(sc);
1900 
1901 	/* Re-enable interrupts. */
1902 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1903 
1904 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1905 		ti_start(ifp);
1906 
1907 	TI_UNLOCK(sc);
1908 
1909 	return;
1910 }
1911 
1912 static void ti_stats_update(sc)
1913 	struct ti_softc		*sc;
1914 {
1915 	struct ifnet		*ifp;
1916 
1917 	ifp = &sc->arpcom.ac_if;
1918 
1919 	ifp->if_collisions +=
1920 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1921 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1922 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1923 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1924 	   ifp->if_collisions;
1925 
1926 	return;
1927 }
1928 
1929 /*
1930  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1931  * pointers to descriptors.
1932  */
1933 static int ti_encap(sc, m_head, txidx)
1934 	struct ti_softc		*sc;
1935 	struct mbuf		*m_head;
1936 	u_int32_t		*txidx;
1937 {
1938 	struct ti_tx_desc	*f = NULL;
1939 	struct mbuf		*m;
1940 	u_int32_t		frag, cur, cnt = 0;
1941 	u_int16_t		csum_flags = 0;
1942 	struct ifvlan		*ifv = NULL;
1943 
1944 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1945 	    m_head->m_pkthdr.rcvif != NULL &&
1946 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1947 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1948 
1949 	m = m_head;
1950 	cur = frag = *txidx;
1951 
1952 	if (m_head->m_pkthdr.csum_flags) {
1953 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1954 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1955 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1956 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1957 		if (m_head->m_flags & M_LASTFRAG)
1958 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1959 		else if (m_head->m_flags & M_FRAG)
1960 			csum_flags |= TI_BDFLAG_IP_FRAG;
1961 	}
1962 	/*
1963  	 * Start packing the mbufs in this chain into
1964 	 * the fragment pointers. Stop when we run out
1965  	 * of fragments or hit the end of the mbuf chain.
1966 	 */
1967 	for (m = m_head; m != NULL; m = m->m_next) {
1968 		if (m->m_len != 0) {
1969 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1970 				if (frag > 383)
1971 					CSR_WRITE_4(sc, TI_WINBASE,
1972 					    TI_TX_RING_BASE + 6144);
1973 				else if (frag > 255)
1974 					CSR_WRITE_4(sc, TI_WINBASE,
1975 					    TI_TX_RING_BASE + 4096);
1976 				else if (frag > 127)
1977 					CSR_WRITE_4(sc, TI_WINBASE,
1978 					    TI_TX_RING_BASE + 2048);
1979 				else
1980 					CSR_WRITE_4(sc, TI_WINBASE,
1981 					    TI_TX_RING_BASE);
1982 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1983 			} else
1984 				f = &sc->ti_rdata->ti_tx_ring[frag];
1985 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1986 				break;
1987 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1988 			f->ti_len = m->m_len;
1989 			f->ti_flags = csum_flags;
1990 
1991 			if (ifv != NULL) {
1992 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1993 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1994 			} else {
1995 				f->ti_vlan_tag = 0;
1996 			}
1997 
1998 			/*
1999 			 * Sanity check: avoid coming within 16 descriptors
2000 			 * of the end of the ring.
2001 			 */
2002 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2003 				return(ENOBUFS);
2004 			cur = frag;
2005 			TI_INC(frag, TI_TX_RING_CNT);
2006 			cnt++;
2007 		}
2008 	}
2009 
2010 	if (m != NULL)
2011 		return(ENOBUFS);
2012 
2013 	if (frag == sc->ti_tx_saved_considx)
2014 		return(ENOBUFS);
2015 
2016 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2017 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2018 		    TI_BDFLAG_END;
2019 	else
2020 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2021 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2022 	sc->ti_txcnt += cnt;
2023 
2024 	*txidx = frag;
2025 
2026 	return(0);
2027 }
2028 
2029 /*
2030  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2031  * to the mbuf data regions directly in the transmit descriptors.
2032  */
2033 static void ti_start(ifp)
2034 	struct ifnet		*ifp;
2035 {
2036 	struct ti_softc		*sc;
2037 	struct mbuf		*m_head = NULL;
2038 	u_int32_t		prodidx = 0;
2039 
2040 	sc = ifp->if_softc;
2041 	TI_LOCK(sc);
2042 
2043 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2044 
2045 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2046 		IF_DEQUEUE(&ifp->if_snd, m_head);
2047 		if (m_head == NULL)
2048 			break;
2049 
2050 		/*
2051 		 * XXX
2052 		 * safety overkill.  If this is a fragmented packet chain
2053 		 * with delayed TCP/UDP checksums, then only encapsulate
2054 		 * it if we have enough descriptors to handle the entire
2055 		 * chain at once.
2056 		 * (paranoia -- may not actually be needed)
2057 		 */
2058 		if (m_head->m_flags & M_FIRSTFRAG &&
2059 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2060 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2061 			    m_head->m_pkthdr.csum_data + 16) {
2062 				IF_PREPEND(&ifp->if_snd, m_head);
2063 				ifp->if_flags |= IFF_OACTIVE;
2064 				break;
2065 			}
2066 		}
2067 
2068 		/*
2069 		 * Pack the data into the transmit ring. If we
2070 		 * don't have room, set the OACTIVE flag and wait
2071 		 * for the NIC to drain the ring.
2072 		 */
2073 		if (ti_encap(sc, m_head, &prodidx)) {
2074 			IF_PREPEND(&ifp->if_snd, m_head);
2075 			ifp->if_flags |= IFF_OACTIVE;
2076 			break;
2077 		}
2078 
2079 		/*
2080 		 * If there's a BPF listener, bounce a copy of this frame
2081 		 * to him.
2082 		 */
2083 		if (ifp->if_bpf)
2084 			bpf_mtap(ifp, m_head);
2085 	}
2086 
2087 	/* Transmit */
2088 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2089 
2090 	/*
2091 	 * Set a timeout in case the chip goes out to lunch.
2092 	 */
2093 	ifp->if_timer = 5;
2094 	TI_UNLOCK(sc);
2095 
2096 	return;
2097 }
2098 
2099 static void ti_init(xsc)
2100 	void			*xsc;
2101 {
2102 	struct ti_softc		*sc = xsc;
2103 
2104 	/* Cancel pending I/O and flush buffers. */
2105 	ti_stop(sc);
2106 
2107 	TI_LOCK(sc);
2108 	/* Init the gen info block, ring control blocks and firmware. */
2109 	if (ti_gibinit(sc)) {
2110 		printf("ti%d: initialization failure\n", sc->ti_unit);
2111 		TI_UNLOCK(sc);
2112 		return;
2113 	}
2114 
2115 	TI_UNLOCK(sc);
2116 
2117 	return;
2118 }
2119 
2120 static void ti_init2(sc)
2121 	struct ti_softc		*sc;
2122 {
2123 	struct ti_cmd_desc	cmd;
2124 	struct ifnet		*ifp;
2125 	u_int16_t		*m;
2126 	struct ifmedia		*ifm;
2127 	int			tmp;
2128 
2129 	ifp = &sc->arpcom.ac_if;
2130 
2131 	/* Specify MTU and interface index. */
2132 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2133 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2134 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2135 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2136 
2137 	/* Load our MAC address. */
2138 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2139 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2140 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2141 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2142 
2143 	/* Enable or disable promiscuous mode as needed. */
2144 	if (ifp->if_flags & IFF_PROMISC) {
2145 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2146 	} else {
2147 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2148 	}
2149 
2150 	/* Program multicast filter. */
2151 	ti_setmulti(sc);
2152 
2153 	/*
2154 	 * If this is a Tigon 1, we should tell the
2155 	 * firmware to use software packet filtering.
2156 	 */
2157 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2158 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2159 	}
2160 
2161 	/* Init RX ring. */
2162 	ti_init_rx_ring_std(sc);
2163 
2164 	/* Init jumbo RX ring. */
2165 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2166 		ti_init_rx_ring_jumbo(sc);
2167 
2168 	/*
2169 	 * If this is a Tigon 2, we can also configure the
2170 	 * mini ring.
2171 	 */
2172 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2173 		ti_init_rx_ring_mini(sc);
2174 
2175 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2176 	sc->ti_rx_saved_considx = 0;
2177 
2178 	/* Init TX ring. */
2179 	ti_init_tx_ring(sc);
2180 
2181 	/* Tell firmware we're alive. */
2182 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2183 
2184 	/* Enable host interrupts. */
2185 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2186 
2187 	ifp->if_flags |= IFF_RUNNING;
2188 	ifp->if_flags &= ~IFF_OACTIVE;
2189 
2190 	/*
2191 	 * Make sure to set media properly. We have to do this
2192 	 * here since we have to issue commands in order to set
2193 	 * the link negotiation and we can't issue commands until
2194 	 * the firmware is running.
2195 	 */
2196 	ifm = &sc->ifmedia;
2197 	tmp = ifm->ifm_media;
2198 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2199 	ti_ifmedia_upd(ifp);
2200 	ifm->ifm_media = tmp;
2201 
2202 	return;
2203 }
2204 
2205 /*
2206  * Set media options.
2207  */
2208 static int ti_ifmedia_upd(ifp)
2209 	struct ifnet		*ifp;
2210 {
2211 	struct ti_softc		*sc;
2212 	struct ifmedia		*ifm;
2213 	struct ti_cmd_desc	cmd;
2214 
2215 	sc = ifp->if_softc;
2216 	ifm = &sc->ifmedia;
2217 
2218 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2219 		return(EINVAL);
2220 
2221 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2222 	case IFM_AUTO:
2223 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2224 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2225 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2226 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2227 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2228 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2229 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2230 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2231 		break;
2232 	case IFM_1000_SX:
2233 	case IFM_1000_T:
2234 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2235 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2236 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2237 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2238 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2239 		}
2240 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2241 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2242 		break;
2243 	case IFM_100_FX:
2244 	case IFM_10_FL:
2245 	case IFM_100_TX:
2246 	case IFM_10_T:
2247 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2248 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2249 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2250 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2251 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2252 		} else {
2253 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2254 		}
2255 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2256 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2257 		} else {
2258 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2259 		}
2260 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2261 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2262 		break;
2263 	}
2264 
2265 	return(0);
2266 }
2267 
2268 /*
2269  * Report current media status.
2270  */
2271 static void ti_ifmedia_sts(ifp, ifmr)
2272 	struct ifnet		*ifp;
2273 	struct ifmediareq	*ifmr;
2274 {
2275 	struct ti_softc		*sc;
2276 	u_int32_t		media = 0;
2277 
2278 	sc = ifp->if_softc;
2279 
2280 	ifmr->ifm_status = IFM_AVALID;
2281 	ifmr->ifm_active = IFM_ETHER;
2282 
2283 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2284 		return;
2285 
2286 	ifmr->ifm_status |= IFM_ACTIVE;
2287 
2288 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2289 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2290 		if (sc->ti_copper)
2291 			ifmr->ifm_active |= IFM_1000_T;
2292 		else
2293 			ifmr->ifm_active |= IFM_1000_SX;
2294 		if (media & TI_GLNK_FULL_DUPLEX)
2295 			ifmr->ifm_active |= IFM_FDX;
2296 		else
2297 			ifmr->ifm_active |= IFM_HDX;
2298 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2299 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2300 		if (sc->ti_copper) {
2301 			if (media & TI_LNK_100MB)
2302 				ifmr->ifm_active |= IFM_100_TX;
2303 			if (media & TI_LNK_10MB)
2304 				ifmr->ifm_active |= IFM_10_T;
2305 		} else {
2306 			if (media & TI_LNK_100MB)
2307 				ifmr->ifm_active |= IFM_100_FX;
2308 			if (media & TI_LNK_10MB)
2309 				ifmr->ifm_active |= IFM_10_FL;
2310 		}
2311 		if (media & TI_LNK_FULL_DUPLEX)
2312 			ifmr->ifm_active |= IFM_FDX;
2313 		if (media & TI_LNK_HALF_DUPLEX)
2314 			ifmr->ifm_active |= IFM_HDX;
2315 	}
2316 
2317 	return;
2318 }
2319 
2320 static int ti_ioctl(ifp, command, data)
2321 	struct ifnet		*ifp;
2322 	u_long			command;
2323 	caddr_t			data;
2324 {
2325 	struct ti_softc		*sc = ifp->if_softc;
2326 	struct ifreq		*ifr = (struct ifreq *) data;
2327 	int			mask, error = 0;
2328 	struct ti_cmd_desc	cmd;
2329 
2330 	TI_LOCK(sc);
2331 
2332 	switch(command) {
2333 	case SIOCSIFADDR:
2334 	case SIOCGIFADDR:
2335 		error = ether_ioctl(ifp, command, data);
2336 		break;
2337 	case SIOCSIFMTU:
2338 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2339 			error = EINVAL;
2340 		else {
2341 			ifp->if_mtu = ifr->ifr_mtu;
2342 			ti_init(sc);
2343 		}
2344 		break;
2345 	case SIOCSIFFLAGS:
2346 		if (ifp->if_flags & IFF_UP) {
2347 			/*
2348 			 * If only the state of the PROMISC flag changed,
2349 			 * then just use the 'set promisc mode' command
2350 			 * instead of reinitializing the entire NIC. Doing
2351 			 * a full re-init means reloading the firmware and
2352 			 * waiting for it to start up, which may take a
2353 			 * second or two.
2354 			 */
2355 			if (ifp->if_flags & IFF_RUNNING &&
2356 			    ifp->if_flags & IFF_PROMISC &&
2357 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2358 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2359 				    TI_CMD_CODE_PROMISC_ENB, 0);
2360 			} else if (ifp->if_flags & IFF_RUNNING &&
2361 			    !(ifp->if_flags & IFF_PROMISC) &&
2362 			    sc->ti_if_flags & IFF_PROMISC) {
2363 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2364 				    TI_CMD_CODE_PROMISC_DIS, 0);
2365 			} else
2366 				ti_init(sc);
2367 		} else {
2368 			if (ifp->if_flags & IFF_RUNNING) {
2369 				ti_stop(sc);
2370 			}
2371 		}
2372 		sc->ti_if_flags = ifp->if_flags;
2373 		error = 0;
2374 		break;
2375 	case SIOCADDMULTI:
2376 	case SIOCDELMULTI:
2377 		if (ifp->if_flags & IFF_RUNNING) {
2378 			ti_setmulti(sc);
2379 			error = 0;
2380 		}
2381 		break;
2382 	case SIOCSIFMEDIA:
2383 	case SIOCGIFMEDIA:
2384 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2385 		break;
2386 	case SIOCSIFCAP:
2387 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2388 		if (mask & IFCAP_HWCSUM) {
2389 			if (IFCAP_HWCSUM & ifp->if_capenable)
2390 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2391                         else
2392                                 ifp->if_capenable |= IFCAP_HWCSUM;
2393 			if (ifp->if_flags & IFF_RUNNING)
2394 				ti_init(sc);
2395                 }
2396 		error = 0;
2397 		break;
2398 	default:
2399 		error = EINVAL;
2400 		break;
2401 	}
2402 
2403 	TI_UNLOCK(sc);
2404 
2405 	return(error);
2406 }
2407 
2408 static void ti_watchdog(ifp)
2409 	struct ifnet		*ifp;
2410 {
2411 	struct ti_softc		*sc;
2412 
2413 	sc = ifp->if_softc;
2414 	TI_LOCK(sc);
2415 
2416 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2417 	ti_stop(sc);
2418 	ti_init(sc);
2419 
2420 	ifp->if_oerrors++;
2421 	TI_UNLOCK(sc);
2422 
2423 	return;
2424 }
2425 
2426 /*
2427  * Stop the adapter and free any mbufs allocated to the
2428  * RX and TX lists.
2429  */
2430 static void ti_stop(sc)
2431 	struct ti_softc		*sc;
2432 {
2433 	struct ifnet		*ifp;
2434 	struct ti_cmd_desc	cmd;
2435 
2436 	TI_LOCK(sc);
2437 
2438 	ifp = &sc->arpcom.ac_if;
2439 
2440 	/* Disable host interrupts. */
2441 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2442 	/*
2443 	 * Tell firmware we're shutting down.
2444 	 */
2445 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2446 
2447 	/* Halt and reinitialize. */
2448 	ti_chipinit(sc);
2449 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2450 	ti_chipinit(sc);
2451 
2452 	/* Free the RX lists. */
2453 	ti_free_rx_ring_std(sc);
2454 
2455 	/* Free jumbo RX list. */
2456 	ti_free_rx_ring_jumbo(sc);
2457 
2458 	/* Free mini RX list. */
2459 	ti_free_rx_ring_mini(sc);
2460 
2461 	/* Free TX buffers. */
2462 	ti_free_tx_ring(sc);
2463 
2464 	sc->ti_ev_prodidx.ti_idx = 0;
2465 	sc->ti_return_prodidx.ti_idx = 0;
2466 	sc->ti_tx_considx.ti_idx = 0;
2467 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2468 
2469 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2470 	TI_UNLOCK(sc);
2471 
2472 	return;
2473 }
2474 
2475 /*
2476  * Stop all chip I/O so that the kernel's probe routines don't
2477  * get confused by errant DMAs when rebooting.
2478  */
2479 static void ti_shutdown(dev)
2480 	device_t		dev;
2481 {
2482 	struct ti_softc		*sc;
2483 
2484 	sc = device_get_softc(dev);
2485 	TI_LOCK(sc);
2486 	ti_chipinit(sc);
2487 	TI_UNLOCK(sc);
2488 
2489 	return;
2490 }
2491