xref: /freebsd/sys/dev/ti/if_ti.c (revision b601c69bdbe8755d26570261d7fd4c02ee4eff74)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include "vlan.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/queue.h>
91 
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 
98 #include <net/bpf.h>
99 
100 #if NVLAN > 0
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103 #endif
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/clock.h>      /* for DELAY */
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include <pci/pcireg.h>
119 #include <pci/pcivar.h>
120 
121 #include <pci/if_tireg.h>
122 #include <pci/ti_fw.h>
123 #include <pci/ti_fw2.h>
124 
125 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
126 
127 #if !defined(lint)
128 static const char rcsid[] =
129   "$FreeBSD$";
130 #endif
131 
132 /*
133  * Various supported device vendors/types and their names.
134  */
135 
136 static struct ti_type ti_devs[] = {
137 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
138 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
139 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
140 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
141 	{ TC_VENDORID,	TC_DEVICEID_3C985,
142 		"3Com 3c985-SX Gigabit Ethernet" },
143 	{ NG_VENDORID, NG_DEVICEID_GA620,
144 		"Netgear GA620 Gigabit Ethernet" },
145 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
146 		"Silicon Graphics Gigabit Ethernet" },
147 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
148 		"Farallon PN9000SX Gigabit Ethernet" },
149 	{ 0, 0, NULL }
150 };
151 
152 static int ti_probe		__P((device_t));
153 static int ti_attach		__P((device_t));
154 static int ti_detach		__P((device_t));
155 static void ti_txeof		__P((struct ti_softc *));
156 static void ti_rxeof		__P((struct ti_softc *));
157 
158 static void ti_stats_update	__P((struct ti_softc *));
159 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
160 					u_int32_t *));
161 
162 static void ti_intr		__P((void *));
163 static void ti_start		__P((struct ifnet *));
164 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
165 static void ti_init		__P((void *));
166 static void ti_init2		__P((struct ti_softc *));
167 static void ti_stop		__P((struct ti_softc *));
168 static void ti_watchdog		__P((struct ifnet *));
169 static void ti_shutdown		__P((device_t));
170 static int ti_ifmedia_upd	__P((struct ifnet *));
171 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
172 
173 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
174 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
175 						int, u_int8_t *));
176 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
177 
178 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
179 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
180 static void ti_setmulti		__P((struct ti_softc *));
181 
182 static void ti_mem		__P((struct ti_softc *, u_int32_t,
183 					u_int32_t, caddr_t));
184 static void ti_loadfw		__P((struct ti_softc *));
185 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
186 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
187 					caddr_t, int));
188 static void ti_handle_events	__P((struct ti_softc *));
189 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
190 static void *ti_jalloc		__P((struct ti_softc *));
191 static void ti_jfree		__P((caddr_t, u_int));
192 static void ti_jref		__P((caddr_t, u_int));
193 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196 static int ti_init_rx_ring_std	__P((struct ti_softc *));
197 static void ti_free_rx_ring_std	__P((struct ti_softc *));
198 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202 static void ti_free_tx_ring	__P((struct ti_softc *));
203 static int ti_init_tx_ring	__P((struct ti_softc *));
204 
205 static int ti_64bitslot_war	__P((struct ti_softc *));
206 static int ti_chipinit		__P((struct ti_softc *));
207 static int ti_gibinit		__P((struct ti_softc *));
208 
209 static device_method_t ti_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		ti_probe),
212 	DEVMETHOD(device_attach,	ti_attach),
213 	DEVMETHOD(device_detach,	ti_detach),
214 	DEVMETHOD(device_shutdown,	ti_shutdown),
215 	{ 0, 0 }
216 };
217 
218 static driver_t ti_driver = {
219 	"ti",
220 	ti_methods,
221 	sizeof(struct ti_softc)
222 };
223 
224 static devclass_t ti_devclass;
225 
226 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227 
228 /*
229  * Send an instruction or address to the EEPROM, check for ACK.
230  */
231 static u_int32_t ti_eeprom_putbyte(sc, byte)
232 	struct ti_softc		*sc;
233 	int			byte;
234 {
235 	register int		i, ack = 0;
236 
237 	/*
238 	 * Make sure we're in TX mode.
239 	 */
240 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241 
242 	/*
243 	 * Feed in each bit and stobe the clock.
244 	 */
245 	for (i = 0x80; i; i >>= 1) {
246 		if (byte & i) {
247 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 		} else {
249 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250 		}
251 		DELAY(1);
252 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 		DELAY(1);
254 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255 	}
256 
257 	/*
258 	 * Turn off TX mode.
259 	 */
260 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261 
262 	/*
263 	 * Check for ack.
264 	 */
265 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268 
269 	return(ack);
270 }
271 
272 /*
273  * Read a byte of data stored in the EEPROM at address 'addr.'
274  * We have to send two address bytes since the EEPROM can hold
275  * more than 256 bytes of data.
276  */
277 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278 	struct ti_softc		*sc;
279 	int			addr;
280 	u_int8_t		*dest;
281 {
282 	register int		i;
283 	u_int8_t		byte = 0;
284 
285 	EEPROM_START;
286 
287 	/*
288 	 * Send write control code to EEPROM.
289 	 */
290 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291 		printf("ti%d: failed to send write command, status: %x\n",
292 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293 		return(1);
294 	}
295 
296 	/*
297 	 * Send first byte of address of byte we want to read.
298 	 */
299 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300 		printf("ti%d: failed to send address, status: %x\n",
301 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 		return(1);
303 	}
304 	/*
305 	 * Send second byte address of byte we want to read.
306 	 */
307 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308 		printf("ti%d: failed to send address, status: %x\n",
309 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310 		return(1);
311 	}
312 
313 	EEPROM_STOP;
314 	EEPROM_START;
315 	/*
316 	 * Send read control code to EEPROM.
317 	 */
318 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319 		printf("ti%d: failed to send read command, status: %x\n",
320 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321 		return(1);
322 	}
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328 	for (i = 0x80; i; i >>= 1) {
329 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330 		DELAY(1);
331 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332 			byte |= i;
333 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334 		DELAY(1);
335 	}
336 
337 	EEPROM_STOP;
338 
339 	/*
340 	 * No ACK generated for read, so just return byte.
341 	 */
342 
343 	*dest = byte;
344 
345 	return(0);
346 }
347 
348 /*
349  * Read a sequence of bytes from the EEPROM.
350  */
351 static int ti_read_eeprom(sc, dest, off, cnt)
352 	struct ti_softc		*sc;
353 	caddr_t			dest;
354 	int			off;
355 	int			cnt;
356 {
357 	int			err = 0, i;
358 	u_int8_t		byte = 0;
359 
360 	for (i = 0; i < cnt; i++) {
361 		err = ti_eeprom_getbyte(sc, off + i, &byte);
362 		if (err)
363 			break;
364 		*(dest + i) = byte;
365 	}
366 
367 	return(err ? 1 : 0);
368 }
369 
370 /*
371  * NIC memory access function. Can be used to either clear a section
372  * of NIC local memory or (if buf is non-NULL) copy data into it.
373  */
374 static void ti_mem(sc, addr, len, buf)
375 	struct ti_softc		*sc;
376 	u_int32_t		addr, len;
377 	caddr_t			buf;
378 {
379 	int			segptr, segsize, cnt;
380 	caddr_t			ti_winbase, ptr;
381 
382 	segptr = addr;
383 	cnt = len;
384 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385 	ptr = buf;
386 
387 	while(cnt) {
388 		if (cnt < TI_WINLEN)
389 			segsize = cnt;
390 		else
391 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393 		if (buf == NULL)
394 			bzero((char *)ti_winbase + (segptr &
395 			    (TI_WINLEN - 1)), segsize);
396 		else {
397 			bcopy((char *)ptr, (char *)ti_winbase +
398 			    (segptr & (TI_WINLEN - 1)), segsize);
399 			ptr += segsize;
400 		}
401 		segptr += segsize;
402 		cnt -= segsize;
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Load firmware image into the NIC. Check that the firmware revision
410  * is acceptable and see if we want the firmware for the Tigon 1 or
411  * Tigon 2.
412  */
413 static void ti_loadfw(sc)
414 	struct ti_softc		*sc;
415 {
416 	switch(sc->ti_hwrev) {
417 	case TI_HWREV_TIGON:
418 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421 			printf("ti%d: firmware revision mismatch; want "
422 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425 			    tigonFwReleaseMinor, tigonFwReleaseFix);
426 			return;
427 		}
428 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429 		    (caddr_t)tigonFwText);
430 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431 		    (caddr_t)tigonFwData);
432 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433 		    (caddr_t)tigonFwRodata);
434 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437 		break;
438 	case TI_HWREV_TIGON_II:
439 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442 			printf("ti%d: firmware revision mismatch; want "
443 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447 			return;
448 		}
449 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450 		    (caddr_t)tigon2FwText);
451 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452 		    (caddr_t)tigon2FwData);
453 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454 		    (caddr_t)tigon2FwRodata);
455 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458 		break;
459 	default:
460 		printf("ti%d: can't load firmware: unknown hardware rev\n",
461 		    sc->ti_unit);
462 		break;
463 	}
464 
465 	return;
466 }
467 
468 /*
469  * Send the NIC a command via the command ring.
470  */
471 static void ti_cmd(sc, cmd)
472 	struct ti_softc		*sc;
473 	struct ti_cmd_desc	*cmd;
474 {
475 	u_int32_t		index;
476 
477 	if (sc->ti_rdata->ti_cmd_ring == NULL)
478 		return;
479 
480 	index = sc->ti_cmd_saved_prodidx;
481 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482 	TI_INC(index, TI_CMD_RING_CNT);
483 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484 	sc->ti_cmd_saved_prodidx = index;
485 
486 	return;
487 }
488 
489 /*
490  * Send the NIC an extended command. The 'len' parameter specifies the
491  * number of command slots to include after the initial command.
492  */
493 static void ti_cmd_ext(sc, cmd, arg, len)
494 	struct ti_softc		*sc;
495 	struct ti_cmd_desc	*cmd;
496 	caddr_t			arg;
497 	int			len;
498 {
499 	u_int32_t		index;
500 	register int		i;
501 
502 	if (sc->ti_rdata->ti_cmd_ring == NULL)
503 		return;
504 
505 	index = sc->ti_cmd_saved_prodidx;
506 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507 	TI_INC(index, TI_CMD_RING_CNT);
508 	for (i = 0; i < len; i++) {
509 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510 		    *(u_int32_t *)(&arg[i * 4]));
511 		TI_INC(index, TI_CMD_RING_CNT);
512 	}
513 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514 	sc->ti_cmd_saved_prodidx = index;
515 
516 	return;
517 }
518 
519 /*
520  * Handle events that have triggered interrupts.
521  */
522 static void ti_handle_events(sc)
523 	struct ti_softc		*sc;
524 {
525 	struct ti_event_desc	*e;
526 
527 	if (sc->ti_rdata->ti_event_ring == NULL)
528 		return;
529 
530 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532 		switch(e->ti_event) {
533 		case TI_EV_LINKSTAT_CHANGED:
534 			sc->ti_linkstat = e->ti_code;
535 			if (e->ti_code == TI_EV_CODE_LINK_UP)
536 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538 				printf("ti%d: gigabit link up\n", sc->ti_unit);
539 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540 				printf("ti%d: link down\n", sc->ti_unit);
541 			break;
542 		case TI_EV_ERROR:
543 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544 				printf("ti%d: invalid command\n", sc->ti_unit);
545 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546 				printf("ti%d: unknown command\n", sc->ti_unit);
547 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548 				printf("ti%d: bad config data\n", sc->ti_unit);
549 			break;
550 		case TI_EV_FIRMWARE_UP:
551 			ti_init2(sc);
552 			break;
553 		case TI_EV_STATS_UPDATED:
554 			ti_stats_update(sc);
555 			break;
556 		case TI_EV_RESET_JUMBO_RING:
557 		case TI_EV_MCAST_UPDATED:
558 			/* Who cares. */
559 			break;
560 		default:
561 			printf("ti%d: unknown event: %d\n",
562 			    sc->ti_unit, e->ti_event);
563 			break;
564 		}
565 		/* Advance the consumer index. */
566 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568 	}
569 
570 	return;
571 }
572 
573 /*
574  * Memory management for the jumbo receive ring is a pain in the
575  * butt. We need to allocate at least 9018 bytes of space per frame,
576  * _and_ it has to be contiguous (unless you use the extended
577  * jumbo descriptor format). Using malloc() all the time won't
578  * work: malloc() allocates memory in powers of two, which means we
579  * would end up wasting a considerable amount of space by allocating
580  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581  * to do our own memory management.
582  *
583  * The driver needs to allocate a contiguous chunk of memory at boot
584  * time. We then chop this up ourselves into 9K pieces and use them
585  * as external mbuf storage.
586  *
587  * One issue here is how much memory to allocate. The jumbo ring has
588  * 256 slots in it, but at 9K per slot than can consume over 2MB of
589  * RAM. This is a bit much, especially considering we also need
590  * RAM for the standard ring and mini ring (on the Tigon 2). To
591  * save space, we only actually allocate enough memory for 64 slots
592  * by default, which works out to between 500 and 600K. This can
593  * be tuned by changing a #define in if_tireg.h.
594  */
595 
596 static int ti_alloc_jumbo_mem(sc)
597 	struct ti_softc		*sc;
598 {
599 	caddr_t			ptr;
600 	register int		i;
601 	struct ti_jpool_entry   *entry;
602 
603 	/* Grab a big chunk o' storage. */
604 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606 
607 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609 		return(ENOBUFS);
610 	}
611 
612 	SLIST_INIT(&sc->ti_jfree_listhead);
613 	SLIST_INIT(&sc->ti_jinuse_listhead);
614 
615 	/*
616 	 * Now divide it up into 9K pieces and save the addresses
617 	 * in an array. Note that we play an evil trick here by using
618 	 * the first few bytes in the buffer to hold the the address
619 	 * of the softc structure for this interface. This is because
620 	 * ti_jfree() needs it, but it is called by the mbuf management
621 	 * code which will not pass it to us explicitly.
622 	 */
623 	ptr = sc->ti_cdata.ti_jumbo_buf;
624 	for (i = 0; i < TI_JSLOTS; i++) {
625 		u_int64_t		**aptr;
626 		aptr = (u_int64_t **)ptr;
627 		aptr[0] = (u_int64_t *)sc;
628 		ptr += sizeof(u_int64_t);
629 		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
630 		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
631 		ptr += (TI_JLEN - sizeof(u_int64_t));
632 		entry = malloc(sizeof(struct ti_jpool_entry),
633 			       M_DEVBUF, M_NOWAIT);
634 		if (entry == NULL) {
635 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
636 			           M_DEVBUF);
637 			sc->ti_cdata.ti_jumbo_buf = NULL;
638 			printf("ti%d: no memory for jumbo "
639 			    "buffer queue!\n", sc->ti_unit);
640 			return(ENOBUFS);
641 		}
642 		entry->slot = i;
643 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
644 	}
645 
646 	return(0);
647 }
648 
649 /*
650  * Allocate a jumbo buffer.
651  */
652 static void *ti_jalloc(sc)
653 	struct ti_softc		*sc;
654 {
655 	struct ti_jpool_entry   *entry;
656 
657 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
658 
659 	if (entry == NULL) {
660 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
661 		return(NULL);
662 	}
663 
664 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
665 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
666 	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
667 	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
668 }
669 
670 /*
671  * Adjust usage count on a jumbo buffer. In general this doesn't
672  * get used much because our jumbo buffers don't get passed around
673  * too much, but it's implemented for correctness.
674  */
675 static void ti_jref(buf, size)
676 	caddr_t			buf;
677 	u_int			size;
678 {
679 	struct ti_softc		*sc;
680 	u_int64_t		**aptr;
681 	register int		i;
682 
683 	/* Extract the softc struct pointer. */
684 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
685 	sc = (struct ti_softc *)(aptr[0]);
686 
687 	if (sc == NULL)
688 		panic("ti_jref: can't find softc pointer!");
689 
690 	if (size != TI_JUMBO_FRAMELEN)
691 		panic("ti_jref: adjusting refcount of buf of wrong size!");
692 
693 	/* calculate the slot this buffer belongs to */
694 
695 	i = ((vm_offset_t)aptr
696 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
697 
698 	if ((i < 0) || (i >= TI_JSLOTS))
699 		panic("ti_jref: asked to reference buffer "
700 		    "that we don't manage!");
701 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
702 		panic("ti_jref: buffer already free!");
703 	else
704 		sc->ti_cdata.ti_jslots[i].ti_inuse++;
705 
706 	return;
707 }
708 
709 /*
710  * Release a jumbo buffer.
711  */
712 static void ti_jfree(buf, size)
713 	caddr_t			buf;
714 	u_int			size;
715 {
716 	struct ti_softc		*sc;
717 	u_int64_t		**aptr;
718 	int		        i;
719 	struct ti_jpool_entry   *entry;
720 
721 	/* Extract the softc struct pointer. */
722 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
723 	sc = (struct ti_softc *)(aptr[0]);
724 
725 	if (sc == NULL)
726 		panic("ti_jfree: can't find softc pointer!");
727 
728 	if (size != TI_JUMBO_FRAMELEN)
729 		panic("ti_jfree: freeing buffer of wrong size!");
730 
731 	/* calculate the slot this buffer belongs to */
732 
733 	i = ((vm_offset_t)aptr
734 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
735 
736 	if ((i < 0) || (i >= TI_JSLOTS))
737 		panic("ti_jfree: asked to free buffer that we don't manage!");
738 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
739 		panic("ti_jfree: buffer already free!");
740 	else {
741 		sc->ti_cdata.ti_jslots[i].ti_inuse--;
742 		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
743 			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
744 			if (entry == NULL)
745 				panic("ti_jfree: buffer not in use!");
746 			entry->slot = i;
747 			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
748 					  jpool_entries);
749 			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
750 					  entry, jpool_entries);
751 		}
752 	}
753 
754 	return;
755 }
756 
757 
758 /*
759  * Intialize a standard receive ring descriptor.
760  */
761 static int ti_newbuf_std(sc, i, m)
762 	struct ti_softc		*sc;
763 	int			i;
764 	struct mbuf		*m;
765 {
766 	struct mbuf		*m_new = NULL;
767 	struct ti_rx_desc	*r;
768 
769 	if (m == NULL) {
770 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771 		if (m_new == NULL) {
772 			printf("ti%d: mbuf allocation failed "
773 			    "-- packet dropped!\n", sc->ti_unit);
774 			return(ENOBUFS);
775 		}
776 
777 		MCLGET(m_new, M_DONTWAIT);
778 		if (!(m_new->m_flags & M_EXT)) {
779 			printf("ti%d: cluster allocation failed "
780 			    "-- packet dropped!\n", sc->ti_unit);
781 			m_freem(m_new);
782 			return(ENOBUFS);
783 		}
784 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
785 	} else {
786 		m_new = m;
787 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
788 		m_new->m_data = m_new->m_ext.ext_buf;
789 	}
790 
791 	m_adj(m_new, ETHER_ALIGN);
792 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
793 	r = &sc->ti_rdata->ti_rx_std_ring[i];
794 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
795 	r->ti_type = TI_BDTYPE_RECV_BD;
796 	r->ti_flags = 0;
797 	if (sc->arpcom.ac_if.if_hwassist)
798 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
799 	r->ti_len = m_new->m_len;
800 	r->ti_idx = i;
801 
802 	return(0);
803 }
804 
805 /*
806  * Intialize a mini receive ring descriptor. This only applies to
807  * the Tigon 2.
808  */
809 static int ti_newbuf_mini(sc, i, m)
810 	struct ti_softc		*sc;
811 	int			i;
812 	struct mbuf		*m;
813 {
814 	struct mbuf		*m_new = NULL;
815 	struct ti_rx_desc	*r;
816 
817 	if (m == NULL) {
818 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
819 		if (m_new == NULL) {
820 			printf("ti%d: mbuf allocation failed "
821 			    "-- packet dropped!\n", sc->ti_unit);
822 			return(ENOBUFS);
823 		}
824 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
825 	} else {
826 		m_new = m;
827 		m_new->m_data = m_new->m_pktdat;
828 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
829 	}
830 
831 	m_adj(m_new, ETHER_ALIGN);
832 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
833 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
834 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
835 	r->ti_type = TI_BDTYPE_RECV_BD;
836 	r->ti_flags = TI_BDFLAG_MINI_RING;
837 	if (sc->arpcom.ac_if.if_hwassist)
838 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
839 	r->ti_len = m_new->m_len;
840 	r->ti_idx = i;
841 
842 	return(0);
843 }
844 
845 /*
846  * Initialize a jumbo receive ring descriptor. This allocates
847  * a jumbo buffer from the pool managed internally by the driver.
848  */
849 static int ti_newbuf_jumbo(sc, i, m)
850 	struct ti_softc		*sc;
851 	int			i;
852 	struct mbuf		*m;
853 {
854 	struct mbuf		*m_new = NULL;
855 	struct ti_rx_desc	*r;
856 
857 	if (m == NULL) {
858 		caddr_t			*buf = NULL;
859 
860 		/* Allocate the mbuf. */
861 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
862 		if (m_new == NULL) {
863 			printf("ti%d: mbuf allocation failed "
864 			    "-- packet dropped!\n", sc->ti_unit);
865 			return(ENOBUFS);
866 		}
867 
868 		/* Allocate the jumbo buffer */
869 		buf = ti_jalloc(sc);
870 		if (buf == NULL) {
871 			m_freem(m_new);
872 			printf("ti%d: jumbo allocation failed "
873 			    "-- packet dropped!\n", sc->ti_unit);
874 			return(ENOBUFS);
875 		}
876 
877 		/* Attach the buffer to the mbuf. */
878 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
879 		m_new->m_flags |= M_EXT;
880 		m_new->m_len = m_new->m_pkthdr.len =
881 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
882 		m_new->m_ext.ext_free = ti_jfree;
883 		m_new->m_ext.ext_ref = ti_jref;
884 	} else {
885 		m_new = m;
886 		m_new->m_data = m_new->m_ext.ext_buf;
887 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
888 	}
889 
890 	m_adj(m_new, ETHER_ALIGN);
891 	/* Set up the descriptor. */
892 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
893 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
894 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
895 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
896 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
897 	if (sc->arpcom.ac_if.if_hwassist)
898 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
899 	r->ti_len = m_new->m_len;
900 	r->ti_idx = i;
901 
902 	return(0);
903 }
904 
905 /*
906  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
907  * that's 1MB or memory, which is a lot. For now, we fill only the first
908  * 256 ring entries and hope that our CPU is fast enough to keep up with
909  * the NIC.
910  */
911 static int ti_init_rx_ring_std(sc)
912 	struct ti_softc		*sc;
913 {
914 	register int		i;
915 	struct ti_cmd_desc	cmd;
916 
917 	for (i = 0; i < TI_SSLOTS; i++) {
918 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
919 			return(ENOBUFS);
920 	};
921 
922 	TI_UPDATE_STDPROD(sc, i - 1);
923 	sc->ti_std = i - 1;
924 
925 	return(0);
926 }
927 
928 static void ti_free_rx_ring_std(sc)
929 	struct ti_softc		*sc;
930 {
931 	register int		i;
932 
933 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
934 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
935 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
936 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
937 		}
938 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
939 		    sizeof(struct ti_rx_desc));
940 	}
941 
942 	return;
943 }
944 
945 static int ti_init_rx_ring_jumbo(sc)
946 	struct ti_softc		*sc;
947 {
948 	register int		i;
949 	struct ti_cmd_desc	cmd;
950 
951 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
952 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
953 			return(ENOBUFS);
954 	};
955 
956 	TI_UPDATE_JUMBOPROD(sc, i - 1);
957 	sc->ti_jumbo = i - 1;
958 
959 	return(0);
960 }
961 
962 static void ti_free_rx_ring_jumbo(sc)
963 	struct ti_softc		*sc;
964 {
965 	register int		i;
966 
967 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
968 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
969 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
970 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
971 		}
972 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
973 		    sizeof(struct ti_rx_desc));
974 	}
975 
976 	return;
977 }
978 
979 static int ti_init_rx_ring_mini(sc)
980 	struct ti_softc		*sc;
981 {
982 	register int		i;
983 
984 	for (i = 0; i < TI_MSLOTS; i++) {
985 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
986 			return(ENOBUFS);
987 	};
988 
989 	TI_UPDATE_MINIPROD(sc, i - 1);
990 	sc->ti_mini = i - 1;
991 
992 	return(0);
993 }
994 
995 static void ti_free_rx_ring_mini(sc)
996 	struct ti_softc		*sc;
997 {
998 	register int		i;
999 
1000 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1001 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1002 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1003 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1004 		}
1005 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1006 		    sizeof(struct ti_rx_desc));
1007 	}
1008 
1009 	return;
1010 }
1011 
1012 static void ti_free_tx_ring(sc)
1013 	struct ti_softc		*sc;
1014 {
1015 	register int		i;
1016 
1017 	if (sc->ti_rdata->ti_tx_ring == NULL)
1018 		return;
1019 
1020 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1021 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1022 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1023 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1024 		}
1025 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1026 		    sizeof(struct ti_tx_desc));
1027 	}
1028 
1029 	return;
1030 }
1031 
1032 static int ti_init_tx_ring(sc)
1033 	struct ti_softc		*sc;
1034 {
1035 	sc->ti_txcnt = 0;
1036 	sc->ti_tx_saved_considx = 0;
1037 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1038 	return(0);
1039 }
1040 
1041 /*
1042  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1043  * but we have to support the old way too so that Tigon 1 cards will
1044  * work.
1045  */
1046 void ti_add_mcast(sc, addr)
1047 	struct ti_softc		*sc;
1048 	struct ether_addr	*addr;
1049 {
1050 	struct ti_cmd_desc	cmd;
1051 	u_int16_t		*m;
1052 	u_int32_t		ext[2] = {0, 0};
1053 
1054 	m = (u_int16_t *)&addr->octet[0];
1055 
1056 	switch(sc->ti_hwrev) {
1057 	case TI_HWREV_TIGON:
1058 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1059 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1060 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1061 		break;
1062 	case TI_HWREV_TIGON_II:
1063 		ext[0] = htons(m[0]);
1064 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1065 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1066 		break;
1067 	default:
1068 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1069 		break;
1070 	}
1071 
1072 	return;
1073 }
1074 
1075 void ti_del_mcast(sc, addr)
1076 	struct ti_softc		*sc;
1077 	struct ether_addr	*addr;
1078 {
1079 	struct ti_cmd_desc	cmd;
1080 	u_int16_t		*m;
1081 	u_int32_t		ext[2] = {0, 0};
1082 
1083 	m = (u_int16_t *)&addr->octet[0];
1084 
1085 	switch(sc->ti_hwrev) {
1086 	case TI_HWREV_TIGON:
1087 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1088 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1089 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1090 		break;
1091 	case TI_HWREV_TIGON_II:
1092 		ext[0] = htons(m[0]);
1093 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1094 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1095 		break;
1096 	default:
1097 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1098 		break;
1099 	}
1100 
1101 	return;
1102 }
1103 
1104 /*
1105  * Configure the Tigon's multicast address filter.
1106  *
1107  * The actual multicast table management is a bit of a pain, thanks to
1108  * slight brain damage on the part of both Alteon and us. With our
1109  * multicast code, we are only alerted when the multicast address table
1110  * changes and at that point we only have the current list of addresses:
1111  * we only know the current state, not the previous state, so we don't
1112  * actually know what addresses were removed or added. The firmware has
1113  * state, but we can't get our grubby mits on it, and there is no 'delete
1114  * all multicast addresses' command. Hence, we have to maintain our own
1115  * state so we know what addresses have been programmed into the NIC at
1116  * any given time.
1117  */
1118 static void ti_setmulti(sc)
1119 	struct ti_softc		*sc;
1120 {
1121 	struct ifnet		*ifp;
1122 	struct ifmultiaddr	*ifma;
1123 	struct ti_cmd_desc	cmd;
1124 	struct ti_mc_entry	*mc;
1125 	u_int32_t		intrs;
1126 
1127 	ifp = &sc->arpcom.ac_if;
1128 
1129 	if (ifp->if_flags & IFF_ALLMULTI) {
1130 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1131 		return;
1132 	} else {
1133 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1134 	}
1135 
1136 	/* Disable interrupts. */
1137 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1138 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1139 
1140 	/* First, zot all the existing filters. */
1141 	while (sc->ti_mc_listhead.slh_first != NULL) {
1142 		mc = sc->ti_mc_listhead.slh_first;
1143 		ti_del_mcast(sc, &mc->mc_addr);
1144 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1145 		free(mc, M_DEVBUF);
1146 	}
1147 
1148 	/* Now program new ones. */
1149 	for (ifma = ifp->if_multiaddrs.lh_first;
1150 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1151 		if (ifma->ifma_addr->sa_family != AF_LINK)
1152 			continue;
1153 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1154 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1155 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1156 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1157 		ti_add_mcast(sc, &mc->mc_addr);
1158 	}
1159 
1160 	/* Re-enable interrupts. */
1161 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1162 
1163 	return;
1164 }
1165 
1166 /*
1167  * Check to see if the BIOS has configured us for a 64 bit slot when
1168  * we aren't actually in one. If we detect this condition, we can work
1169  * around it on the Tigon 2 by setting a bit in the PCI state register,
1170  * but for the Tigon 1 we must give up and abort the interface attach.
1171  */
1172 static int ti_64bitslot_war(sc)
1173 	struct ti_softc		*sc;
1174 {
1175 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1176 		CSR_WRITE_4(sc, 0x600, 0);
1177 		CSR_WRITE_4(sc, 0x604, 0);
1178 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1179 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1180 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1181 				return(EINVAL);
1182 			else {
1183 				TI_SETBIT(sc, TI_PCI_STATE,
1184 				    TI_PCISTATE_32BIT_BUS);
1185 				return(0);
1186 			}
1187 		}
1188 	}
1189 
1190 	return(0);
1191 }
1192 
1193 /*
1194  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1195  * self-test results.
1196  */
1197 static int ti_chipinit(sc)
1198 	struct ti_softc		*sc;
1199 {
1200 	u_int32_t		cacheline;
1201 	u_int32_t		pci_writemax = 0;
1202 
1203 	/* Initialize link to down state. */
1204 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1205 
1206 	sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1207 
1208 	/* Set endianness before we access any non-PCI registers. */
1209 #if BYTE_ORDER == BIG_ENDIAN
1210 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1211 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1212 #else
1213 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1214 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1215 #endif
1216 
1217 	/* Check the ROM failed bit to see if self-tests passed. */
1218 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1219 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1220 		return(ENODEV);
1221 	}
1222 
1223 	/* Halt the CPU. */
1224 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1225 
1226 	/* Figure out the hardware revision. */
1227 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1228 	case TI_REV_TIGON_I:
1229 		sc->ti_hwrev = TI_HWREV_TIGON;
1230 		break;
1231 	case TI_REV_TIGON_II:
1232 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1233 		break;
1234 	default:
1235 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1236 		return(ENODEV);
1237 	}
1238 
1239 	/* Do special setup for Tigon 2. */
1240 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1241 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1242 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1243 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1244 	}
1245 
1246 	/* Set up the PCI state register. */
1247 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1248 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1249 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1250 	}
1251 
1252 	/* Clear the read/write max DMA parameters. */
1253 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1254 	    TI_PCISTATE_READ_MAXDMA));
1255 
1256 	/* Get cache line size. */
1257 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1258 
1259 	/*
1260 	 * If the system has set enabled the PCI memory write
1261 	 * and invalidate command in the command register, set
1262 	 * the write max parameter accordingly. This is necessary
1263 	 * to use MWI with the Tigon 2.
1264 	 */
1265 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1266 		switch(cacheline) {
1267 		case 1:
1268 		case 4:
1269 		case 8:
1270 		case 16:
1271 		case 32:
1272 		case 64:
1273 			break;
1274 		default:
1275 		/* Disable PCI memory write and invalidate. */
1276 			if (bootverbose)
1277 				printf("ti%d: cache line size %d not "
1278 				    "supported; disabling PCI MWI\n",
1279 				    sc->ti_unit, cacheline);
1280 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1281 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1282 			break;
1283 		}
1284 	}
1285 
1286 #ifdef __brokenalpha__
1287 	/*
1288 	 * From the Alteon sample driver:
1289 	 * Must insure that we do not cross an 8K (bytes) boundary
1290 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1291 	 * restriction on some ALPHA platforms with early revision
1292 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1293 	 */
1294 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1295 #else
1296 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1297 #endif
1298 
1299 	/* This sets the min dma param all the way up (0xff). */
1300 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1301 
1302 	/* Configure DMA variables. */
1303 #if BYTE_ORDER == BIG_ENDIAN
1304 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1305 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1306 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1307 	    TI_OPMODE_DONT_FRAG_JUMBO);
1308 #else
1309 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1310 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1311 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1312 #endif
1313 
1314 	/*
1315 	 * Only allow 1 DMA channel to be active at a time.
1316 	 * I don't think this is a good idea, but without it
1317 	 * the firmware racks up lots of nicDmaReadRingFull
1318 	 * errors.  This is not compatible with hardware checksums.
1319 	 */
1320 	if (sc->arpcom.ac_if.if_hwassist == 0)
1321 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1322 
1323 	/* Recommended settings from Tigon manual. */
1324 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1325 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1326 
1327 	if (ti_64bitslot_war(sc)) {
1328 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1329 		    "but we aren't", sc->ti_unit);
1330 		return(EINVAL);
1331 	}
1332 
1333 	return(0);
1334 }
1335 
1336 /*
1337  * Initialize the general information block and firmware, and
1338  * start the CPU(s) running.
1339  */
1340 static int ti_gibinit(sc)
1341 	struct ti_softc		*sc;
1342 {
1343 	struct ti_rcb		*rcb;
1344 	int			i;
1345 	struct ifnet		*ifp;
1346 
1347 	ifp = &sc->arpcom.ac_if;
1348 
1349 	/* Disable interrupts for now. */
1350 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1351 
1352 	/* Tell the chip where to find the general information block. */
1353 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1354 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1355 
1356 	/* Load the firmware into SRAM. */
1357 	ti_loadfw(sc);
1358 
1359 	/* Set up the contents of the general info and ring control blocks. */
1360 
1361 	/* Set up the event ring and producer pointer. */
1362 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1363 
1364 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1365 	rcb->ti_flags = 0;
1366 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1367 	    vtophys(&sc->ti_ev_prodidx);
1368 	sc->ti_ev_prodidx.ti_idx = 0;
1369 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1370 	sc->ti_ev_saved_considx = 0;
1371 
1372 	/* Set up the command ring and producer mailbox. */
1373 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1374 
1375 	sc->ti_rdata->ti_cmd_ring =
1376 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1377 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1378 	rcb->ti_flags = 0;
1379 	rcb->ti_max_len = 0;
1380 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1381 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1382 	}
1383 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1384 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1385 	sc->ti_cmd_saved_prodidx = 0;
1386 
1387 	/*
1388 	 * Assign the address of the stats refresh buffer.
1389 	 * We re-use the current stats buffer for this to
1390 	 * conserve memory.
1391 	 */
1392 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1393 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1394 
1395 	/* Set up the standard receive ring. */
1396 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1397 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1398 	rcb->ti_max_len = TI_FRAMELEN;
1399 	rcb->ti_flags = 0;
1400 	if (sc->arpcom.ac_if.if_hwassist)
1401 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1402 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1403 #if NVLAN > 0
1404 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1405 #endif
1406 
1407 	/* Set up the jumbo receive ring. */
1408 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1409 	TI_HOSTADDR(rcb->ti_hostaddr) =
1410 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1411 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1412 	rcb->ti_flags = 0;
1413 	if (sc->arpcom.ac_if.if_hwassist)
1414 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1415 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1416 #if NVLAN > 0
1417 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1418 #endif
1419 
1420 	/*
1421 	 * Set up the mini ring. Only activated on the
1422 	 * Tigon 2 but the slot in the config block is
1423 	 * still there on the Tigon 1.
1424 	 */
1425 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1426 	TI_HOSTADDR(rcb->ti_hostaddr) =
1427 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1428 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1429 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1430 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1431 	else
1432 		rcb->ti_flags = 0;
1433 	if (sc->arpcom.ac_if.if_hwassist)
1434 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1435 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1436 #if NVLAN > 0
1437 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1438 #endif
1439 
1440 	/*
1441 	 * Set up the receive return ring.
1442 	 */
1443 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1444 	TI_HOSTADDR(rcb->ti_hostaddr) =
1445 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1446 	rcb->ti_flags = 0;
1447 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1448 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1449 	    vtophys(&sc->ti_return_prodidx);
1450 
1451 	/*
1452 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1453 	 * of putting the transmit ring in the host's address space and
1454 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1455 	 * memory and accessing it through the shared memory region. We
1456 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1457 	 * so we have to revert to the shared memory scheme if we detect
1458 	 * a Tigon 1 chip.
1459 	 */
1460 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1461 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1462 		sc->ti_rdata->ti_tx_ring_nic =
1463 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1464 	}
1465 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1466 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1467 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1468 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1469 		rcb->ti_flags = 0;
1470 	else
1471 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1472 #if NVLAN > 0
1473 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1474 #endif
1475 	if (sc->arpcom.ac_if.if_hwassist)
1476 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1477 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1478 	rcb->ti_max_len = TI_TX_RING_CNT;
1479 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1480 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1481 	else
1482 		TI_HOSTADDR(rcb->ti_hostaddr) =
1483 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1484 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1485 	    vtophys(&sc->ti_tx_considx);
1486 
1487 	/* Set up tuneables */
1488 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1489 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1490 		    (sc->ti_rx_coal_ticks / 10));
1491 	else
1492 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1493 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1494 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1495 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1496 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1497 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1498 
1499 	/* Turn interrupts on. */
1500 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1501 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1502 
1503 	/* Start CPU. */
1504 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1505 
1506 	return(0);
1507 }
1508 
1509 /*
1510  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1511  * against our list and return its name if we find a match.
1512  */
1513 static int ti_probe(dev)
1514 	device_t		dev;
1515 {
1516 	struct ti_type		*t;
1517 
1518 	t = ti_devs;
1519 
1520 	while(t->ti_name != NULL) {
1521 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1522 		    (pci_get_device(dev) == t->ti_did)) {
1523 			device_set_desc(dev, t->ti_name);
1524 			return(0);
1525 		}
1526 		t++;
1527 	}
1528 
1529 	return(ENXIO);
1530 }
1531 
1532 static int ti_attach(dev)
1533 	device_t		dev;
1534 {
1535 	int			s;
1536 	u_int32_t		command;
1537 	struct ifnet		*ifp;
1538 	struct ti_softc		*sc;
1539 	int			unit, error = 0, rid;
1540 
1541 	s = splimp();
1542 
1543 	sc = device_get_softc(dev);
1544 	unit = device_get_unit(dev);
1545 	bzero(sc, sizeof(struct ti_softc));
1546 
1547 	/*
1548 	 * Map control/status registers.
1549 	 */
1550 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1551 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1552 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1553 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1554 
1555 	if (!(command & PCIM_CMD_MEMEN)) {
1556 		printf("ti%d: failed to enable memory mapping!\n", unit);
1557 		error = ENXIO;
1558 		goto fail;
1559 	}
1560 
1561 	rid = TI_PCI_LOMEM;
1562 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1563 	    0, ~0, 1, RF_ACTIVE);
1564 
1565 	if (sc->ti_res == NULL) {
1566 		printf ("ti%d: couldn't map memory\n", unit);
1567 		error = ENXIO;
1568 		goto fail;
1569 	}
1570 
1571 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1572 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1573 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1574 
1575 	/*
1576 	 * XXX FIXME: rman_get_virtual() on the alpha is currently
1577 	 * broken and returns a physical address instead of a kernel
1578 	 * virtual address. Consequently, we need to do a little
1579 	 * extra mangling of the vhandle on the alpha. This should
1580 	 * eventually be fixed! The whole idea here is to get rid
1581 	 * of platform dependencies.
1582 	 */
1583 #ifdef __alpha__
1584 	if (pci_cvt_to_bwx(sc->ti_vhandle))
1585 		sc->ti_vhandle = pci_cvt_to_bwx(sc->ti_vhandle);
1586 	else
1587 		sc->ti_vhandle = pci_cvt_to_dense(sc->ti_vhandle);
1588 	sc->ti_vhandle = ALPHA_PHYS_TO_K0SEG(sc->ti_vhandle);
1589 #endif
1590 
1591 	/* Allocate interrupt */
1592 	rid = 0;
1593 
1594 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1595 	    RF_SHAREABLE | RF_ACTIVE);
1596 
1597 	if (sc->ti_irq == NULL) {
1598 		printf("ti%d: couldn't map interrupt\n", unit);
1599 		error = ENXIO;
1600 		goto fail;
1601 	}
1602 
1603 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1604 	   ti_intr, sc, &sc->ti_intrhand);
1605 
1606 	if (error) {
1607 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1608 		bus_release_resource(dev, SYS_RES_MEMORY,
1609 		    TI_PCI_LOMEM, sc->ti_res);
1610 		printf("ti%d: couldn't set up irq\n", unit);
1611 		goto fail;
1612 	}
1613 
1614 	sc->ti_unit = unit;
1615 
1616 	if (ti_chipinit(sc)) {
1617 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1618 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1619 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1620 		bus_release_resource(dev, SYS_RES_MEMORY,
1621 		    TI_PCI_LOMEM, sc->ti_res);
1622 		error = ENXIO;
1623 		goto fail;
1624 	}
1625 
1626 	/* Zero out the NIC's on-board SRAM. */
1627 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1628 
1629 	/* Init again -- zeroing memory may have clobbered some registers. */
1630 	if (ti_chipinit(sc)) {
1631 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1632 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1633 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1634 		bus_release_resource(dev, SYS_RES_MEMORY,
1635 		    TI_PCI_LOMEM, sc->ti_res);
1636 		error = ENXIO;
1637 		goto fail;
1638 	}
1639 
1640 	/*
1641 	 * Get station address from the EEPROM. Note: the manual states
1642 	 * that the MAC address is at offset 0x8c, however the data is
1643 	 * stored as two longwords (since that's how it's loaded into
1644 	 * the NIC). This means the MAC address is actually preceeded
1645 	 * by two zero bytes. We need to skip over those.
1646 	 */
1647 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1648 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1649 		printf("ti%d: failed to read station address\n", unit);
1650 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1651 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1652 		bus_release_resource(dev, SYS_RES_MEMORY,
1653 		    TI_PCI_LOMEM, sc->ti_res);
1654 		error = ENXIO;
1655 		goto fail;
1656 	}
1657 
1658 	/*
1659 	 * A Tigon chip was detected. Inform the world.
1660 	 */
1661 	printf("ti%d: Ethernet address: %6D\n", unit,
1662 				sc->arpcom.ac_enaddr, ":");
1663 
1664 	/* Allocate the general information block and ring buffers. */
1665 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1666 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1667 
1668 	if (sc->ti_rdata == NULL) {
1669 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1670 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1671 		bus_release_resource(dev, SYS_RES_MEMORY,
1672 		    TI_PCI_LOMEM, sc->ti_res);
1673 		error = ENXIO;
1674 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1675 		goto fail;
1676 	}
1677 
1678 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1679 
1680 	/* Try to allocate memory for jumbo buffers. */
1681 	if (ti_alloc_jumbo_mem(sc)) {
1682 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1683 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1684 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1685 		bus_release_resource(dev, SYS_RES_MEMORY,
1686 		    TI_PCI_LOMEM, sc->ti_res);
1687 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1688 		    M_DEVBUF);
1689 		error = ENXIO;
1690 		goto fail;
1691 	}
1692 
1693 	/*
1694 	 * We really need a better way to tell a 1000baseTX card
1695 	 * from a 1000baseSX one, since in theory there could be
1696 	 * OEMed 1000baseTX cards from lame vendors who aren't
1697 	 * clever enough to change the PCI ID. For the moment
1698 	 * though, the AceNIC is the only copper card available.
1699 	 */
1700 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1701 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1702 		sc->ti_copper = 1;
1703 
1704 	/* Set default tuneable values. */
1705 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1706 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1707 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1708 	sc->ti_rx_max_coal_bds = 64;
1709 	sc->ti_tx_max_coal_bds = 128;
1710 	sc->ti_tx_buf_ratio = 21;
1711 
1712 	/* Set up ifnet structure */
1713 	ifp = &sc->arpcom.ac_if;
1714 	ifp->if_softc = sc;
1715 	ifp->if_unit = sc->ti_unit;
1716 	ifp->if_name = "ti";
1717 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1718 	ifp->if_ioctl = ti_ioctl;
1719 	ifp->if_output = ether_output;
1720 	ifp->if_start = ti_start;
1721 	ifp->if_watchdog = ti_watchdog;
1722 	ifp->if_init = ti_init;
1723 	ifp->if_mtu = ETHERMTU;
1724 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1725 
1726 	/* Set up ifmedia support. */
1727 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1728 	if (sc->ti_copper) {
1729 		/*
1730 		 * Copper cards allow manual 10/100 mode selection,
1731 		 * but not manual 1000baseTX mode selection. Why?
1732 		 * Becuase currently there's no way to specify the
1733 		 * master/slave setting through the firmware interface,
1734 		 * so Alteon decided to just bag it and handle it
1735 		 * via autonegotiation.
1736 		 */
1737 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1738 		ifmedia_add(&sc->ifmedia,
1739 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1740 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1741 		ifmedia_add(&sc->ifmedia,
1742 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1743 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1744 		ifmedia_add(&sc->ifmedia,
1745 		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1746 	} else {
1747 		/* Fiber cards don't support 10/100 modes. */
1748 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1749 		ifmedia_add(&sc->ifmedia,
1750 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1751 	}
1752 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1753 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1754 
1755 	/*
1756 	 * Call MI attach routine.
1757 	 */
1758 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1759 
1760 fail:
1761 	splx(s);
1762 
1763 	return(error);
1764 }
1765 
1766 static int ti_detach(dev)
1767 	device_t		dev;
1768 {
1769 	struct ti_softc		*sc;
1770 	struct ifnet		*ifp;
1771 	int			s;
1772 
1773 	s = splimp();
1774 
1775 	sc = device_get_softc(dev);
1776 	ifp = &sc->arpcom.ac_if;
1777 
1778 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1779 	ti_stop(sc);
1780 
1781 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1782 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1783 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1784 
1785 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1786 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1787 	ifmedia_removeall(&sc->ifmedia);
1788 
1789 	splx(s);
1790 
1791 	return(0);
1792 }
1793 
1794 /*
1795  * Frame reception handling. This is called if there's a frame
1796  * on the receive return list.
1797  *
1798  * Note: we have to be able to handle three possibilities here:
1799  * 1) the frame is from the mini receive ring (can only happen)
1800  *    on Tigon 2 boards)
1801  * 2) the frame is from the jumbo recieve ring
1802  * 3) the frame is from the standard receive ring
1803  */
1804 
1805 static void ti_rxeof(sc)
1806 	struct ti_softc		*sc;
1807 {
1808 	struct ifnet		*ifp;
1809 	struct ti_cmd_desc	cmd;
1810 
1811 	ifp = &sc->arpcom.ac_if;
1812 
1813 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1814 		struct ti_rx_desc	*cur_rx;
1815 		u_int32_t		rxidx;
1816 		struct ether_header	*eh;
1817 		struct mbuf		*m = NULL;
1818 #if NVLAN > 0
1819 		u_int16_t		vlan_tag = 0;
1820 		int			have_tag = 0;
1821 #endif
1822 
1823 		cur_rx =
1824 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1825 		rxidx = cur_rx->ti_idx;
1826 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1827 
1828 #if NVLAN > 0
1829 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1830 			have_tag = 1;
1831 			vlan_tag = cur_rx->ti_vlan_tag;
1832 		}
1833 #endif
1834 
1835 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1836 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1837 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1838 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1839 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1840 				ifp->if_ierrors++;
1841 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1842 				continue;
1843 			}
1844 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1845 				ifp->if_ierrors++;
1846 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1847 				continue;
1848 			}
1849 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1850 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1851 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1852 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1853 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1854 				ifp->if_ierrors++;
1855 				ti_newbuf_mini(sc, sc->ti_mini, m);
1856 				continue;
1857 			}
1858 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1859 				ifp->if_ierrors++;
1860 				ti_newbuf_mini(sc, sc->ti_mini, m);
1861 				continue;
1862 			}
1863 		} else {
1864 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1865 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1866 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1867 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1868 				ifp->if_ierrors++;
1869 				ti_newbuf_std(sc, sc->ti_std, m);
1870 				continue;
1871 			}
1872 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1873 				ifp->if_ierrors++;
1874 				ti_newbuf_std(sc, sc->ti_std, m);
1875 				continue;
1876 			}
1877 		}
1878 
1879 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1880 		ifp->if_ipackets++;
1881 		eh = mtod(m, struct ether_header *);
1882 		m->m_pkthdr.rcvif = ifp;
1883 
1884 		/* Remove header from mbuf and pass it on. */
1885 		m_adj(m, sizeof(struct ether_header));
1886 
1887 		if (ifp->if_hwassist) {
1888 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1889 			    CSUM_DATA_VALID;
1890 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1891 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1892 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1893 		}
1894 
1895 #if NVLAN > 0
1896 		/*
1897 		 * If we received a packet with a vlan tag, pass it
1898 		 * to vlan_input() instead of ether_input().
1899 		 */
1900 		if (have_tag) {
1901 			vlan_input_tag(eh, m, vlan_tag);
1902 			have_tag = vlan_tag = 0;
1903 			continue;
1904 		}
1905 #endif
1906 		ether_input(ifp, eh, m);
1907 	}
1908 
1909 	/* Only necessary on the Tigon 1. */
1910 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1911 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1912 		    sc->ti_rx_saved_considx);
1913 
1914 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1915 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1916 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1917 
1918 	return;
1919 }
1920 
1921 static void ti_txeof(sc)
1922 	struct ti_softc		*sc;
1923 {
1924 	struct ti_tx_desc	*cur_tx = NULL;
1925 	struct ifnet		*ifp;
1926 
1927 	ifp = &sc->arpcom.ac_if;
1928 
1929 	/*
1930 	 * Go through our tx ring and free mbufs for those
1931 	 * frames that have been sent.
1932 	 */
1933 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1934 		u_int32_t		idx = 0;
1935 
1936 		idx = sc->ti_tx_saved_considx;
1937 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1938 			if (idx > 383)
1939 				CSR_WRITE_4(sc, TI_WINBASE,
1940 				    TI_TX_RING_BASE + 6144);
1941 			else if (idx > 255)
1942 				CSR_WRITE_4(sc, TI_WINBASE,
1943 				    TI_TX_RING_BASE + 4096);
1944 			else if (idx > 127)
1945 				CSR_WRITE_4(sc, TI_WINBASE,
1946 				    TI_TX_RING_BASE + 2048);
1947 			else
1948 				CSR_WRITE_4(sc, TI_WINBASE,
1949 				    TI_TX_RING_BASE);
1950 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1951 		} else
1952 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1953 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1954 			ifp->if_opackets++;
1955 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1956 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1957 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1958 		}
1959 		sc->ti_txcnt--;
1960 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1961 		ifp->if_timer = 0;
1962 	}
1963 
1964 	if (cur_tx != NULL)
1965 		ifp->if_flags &= ~IFF_OACTIVE;
1966 
1967 	return;
1968 }
1969 
1970 static void ti_intr(xsc)
1971 	void			*xsc;
1972 {
1973 	struct ti_softc		*sc;
1974 	struct ifnet		*ifp;
1975 
1976 	sc = xsc;
1977 	ifp = &sc->arpcom.ac_if;
1978 
1979 #ifdef notdef
1980 	/* Avoid this for now -- checking this register is expensive. */
1981 	/* Make sure this is really our interrupt. */
1982 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1983 		return;
1984 #endif
1985 
1986 	/* Ack interrupt and stop others from occuring. */
1987 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1988 
1989 	if (ifp->if_flags & IFF_RUNNING) {
1990 		/* Check RX return ring producer/consumer */
1991 		ti_rxeof(sc);
1992 
1993 		/* Check TX ring producer/consumer */
1994 		ti_txeof(sc);
1995 	}
1996 
1997 	ti_handle_events(sc);
1998 
1999 	/* Re-enable interrupts. */
2000 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2001 
2002 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2003 		ti_start(ifp);
2004 
2005 	return;
2006 }
2007 
2008 static void ti_stats_update(sc)
2009 	struct ti_softc		*sc;
2010 {
2011 	struct ifnet		*ifp;
2012 
2013 	ifp = &sc->arpcom.ac_if;
2014 
2015 	ifp->if_collisions +=
2016 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2017 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2018 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2019 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2020 	   ifp->if_collisions;
2021 
2022 	return;
2023 }
2024 
2025 /*
2026  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2027  * pointers to descriptors.
2028  */
2029 static int ti_encap(sc, m_head, txidx)
2030 	struct ti_softc		*sc;
2031 	struct mbuf		*m_head;
2032 	u_int32_t		*txidx;
2033 {
2034 	struct ti_tx_desc	*f = NULL;
2035 	struct mbuf		*m;
2036 	u_int32_t		frag, cur, cnt = 0;
2037 	u_int16_t		csum_flags = 0;
2038 #if NVLAN > 0
2039 	struct ifvlan		*ifv = NULL;
2040 
2041 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2042 	    m_head->m_pkthdr.rcvif != NULL &&
2043 	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2044 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2045 #endif
2046 
2047 	m = m_head;
2048 	cur = frag = *txidx;
2049 
2050 	if (m_head->m_pkthdr.csum_flags) {
2051 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2052 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2053 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2054 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2055 		if (m_head->m_flags & M_LASTFRAG)
2056 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2057 		else if (m_head->m_flags & M_FRAG)
2058 			csum_flags |= TI_BDFLAG_IP_FRAG;
2059 	}
2060 	/*
2061  	 * Start packing the mbufs in this chain into
2062 	 * the fragment pointers. Stop when we run out
2063  	 * of fragments or hit the end of the mbuf chain.
2064 	 */
2065 	for (m = m_head; m != NULL; m = m->m_next) {
2066 		if (m->m_len != 0) {
2067 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2068 				if (frag > 383)
2069 					CSR_WRITE_4(sc, TI_WINBASE,
2070 					    TI_TX_RING_BASE + 6144);
2071 				else if (frag > 255)
2072 					CSR_WRITE_4(sc, TI_WINBASE,
2073 					    TI_TX_RING_BASE + 4096);
2074 				else if (frag > 127)
2075 					CSR_WRITE_4(sc, TI_WINBASE,
2076 					    TI_TX_RING_BASE + 2048);
2077 				else
2078 					CSR_WRITE_4(sc, TI_WINBASE,
2079 					    TI_TX_RING_BASE);
2080 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2081 			} else
2082 				f = &sc->ti_rdata->ti_tx_ring[frag];
2083 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2084 				break;
2085 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2086 			f->ti_len = m->m_len;
2087 			f->ti_flags = csum_flags;
2088 #if NVLAN > 0
2089 			if (ifv != NULL) {
2090 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2091 				f->ti_vlan_tag = ifv->ifv_tag;
2092 			} else {
2093 				f->ti_vlan_tag = 0;
2094 			}
2095 #endif
2096 			/*
2097 			 * Sanity check: avoid coming within 16 descriptors
2098 			 * of the end of the ring.
2099 			 */
2100 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2101 				return(ENOBUFS);
2102 			cur = frag;
2103 			TI_INC(frag, TI_TX_RING_CNT);
2104 			cnt++;
2105 		}
2106 	}
2107 
2108 	if (m != NULL)
2109 		return(ENOBUFS);
2110 
2111 	if (frag == sc->ti_tx_saved_considx)
2112 		return(ENOBUFS);
2113 
2114 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2115 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2116 		    TI_BDFLAG_END;
2117 	else
2118 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2119 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2120 	sc->ti_txcnt += cnt;
2121 
2122 	*txidx = frag;
2123 
2124 	return(0);
2125 }
2126 
2127 /*
2128  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2129  * to the mbuf data regions directly in the transmit descriptors.
2130  */
2131 static void ti_start(ifp)
2132 	struct ifnet		*ifp;
2133 {
2134 	struct ti_softc		*sc;
2135 	struct mbuf		*m_head = NULL;
2136 	u_int32_t		prodidx = 0;
2137 
2138 	sc = ifp->if_softc;
2139 
2140 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2141 
2142 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2143 		IF_DEQUEUE(&ifp->if_snd, m_head);
2144 		if (m_head == NULL)
2145 			break;
2146 
2147 		/*
2148 		 * XXX
2149 		 * safety overkill.  If this is a fragmented packet chain
2150 		 * with delayed TCP/UDP checksums, then only encapsulate
2151 		 * it if we have enough descriptors to handle the entire
2152 		 * chain at once.
2153 		 * (paranoia -- may not actually be needed)
2154 		 */
2155 		if (m_head->m_flags & M_FIRSTFRAG &&
2156 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2157 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2158 			    m_head->m_pkthdr.csum_data + 16) {
2159 				IF_PREPEND(&ifp->if_snd, m_head);
2160 				ifp->if_flags |= IFF_OACTIVE;
2161 				break;
2162 			}
2163 		}
2164 
2165 		/*
2166 		 * Pack the data into the transmit ring. If we
2167 		 * don't have room, set the OACTIVE flag and wait
2168 		 * for the NIC to drain the ring.
2169 		 */
2170 		if (ti_encap(sc, m_head, &prodidx)) {
2171 			IF_PREPEND(&ifp->if_snd, m_head);
2172 			ifp->if_flags |= IFF_OACTIVE;
2173 			break;
2174 		}
2175 
2176 		/*
2177 		 * If there's a BPF listener, bounce a copy of this frame
2178 		 * to him.
2179 		 */
2180 		if (ifp->if_bpf)
2181 			bpf_mtap(ifp, m_head);
2182 	}
2183 
2184 	/* Transmit */
2185 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2186 
2187 	/*
2188 	 * Set a timeout in case the chip goes out to lunch.
2189 	 */
2190 	ifp->if_timer = 5;
2191 
2192 	return;
2193 }
2194 
2195 static void ti_init(xsc)
2196 	void			*xsc;
2197 {
2198 	struct ti_softc		*sc = xsc;
2199         int			s;
2200 
2201 	s = splimp();
2202 
2203 	/* Cancel pending I/O and flush buffers. */
2204 	ti_stop(sc);
2205 
2206 	/* Init the gen info block, ring control blocks and firmware. */
2207 	if (ti_gibinit(sc)) {
2208 		printf("ti%d: initialization failure\n", sc->ti_unit);
2209 		splx(s);
2210 		return;
2211 	}
2212 
2213 	splx(s);
2214 
2215 	return;
2216 }
2217 
2218 static void ti_init2(sc)
2219 	struct ti_softc		*sc;
2220 {
2221 	struct ti_cmd_desc	cmd;
2222 	struct ifnet		*ifp;
2223 	u_int16_t		*m;
2224 	struct ifmedia		*ifm;
2225 	int			tmp;
2226 
2227 	ifp = &sc->arpcom.ac_if;
2228 
2229 	/* Specify MTU and interface index. */
2230 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2231 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2232 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2233 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2234 
2235 	/* Load our MAC address. */
2236 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2237 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2238 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2239 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2240 
2241 	/* Enable or disable promiscuous mode as needed. */
2242 	if (ifp->if_flags & IFF_PROMISC) {
2243 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2244 	} else {
2245 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2246 	}
2247 
2248 	/* Program multicast filter. */
2249 	ti_setmulti(sc);
2250 
2251 	/*
2252 	 * If this is a Tigon 1, we should tell the
2253 	 * firmware to use software packet filtering.
2254 	 */
2255 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2256 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2257 	}
2258 
2259 	/* Init RX ring. */
2260 	ti_init_rx_ring_std(sc);
2261 
2262 	/* Init jumbo RX ring. */
2263 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2264 		ti_init_rx_ring_jumbo(sc);
2265 
2266 	/*
2267 	 * If this is a Tigon 2, we can also configure the
2268 	 * mini ring.
2269 	 */
2270 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2271 		ti_init_rx_ring_mini(sc);
2272 
2273 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2274 	sc->ti_rx_saved_considx = 0;
2275 
2276 	/* Init TX ring. */
2277 	ti_init_tx_ring(sc);
2278 
2279 	/* Tell firmware we're alive. */
2280 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2281 
2282 	/* Enable host interrupts. */
2283 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2284 
2285 	ifp->if_flags |= IFF_RUNNING;
2286 	ifp->if_flags &= ~IFF_OACTIVE;
2287 
2288 	/*
2289 	 * Make sure to set media properly. We have to do this
2290 	 * here since we have to issue commands in order to set
2291 	 * the link negotiation and we can't issue commands until
2292 	 * the firmware is running.
2293 	 */
2294 	ifm = &sc->ifmedia;
2295 	tmp = ifm->ifm_media;
2296 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2297 	ti_ifmedia_upd(ifp);
2298 	ifm->ifm_media = tmp;
2299 
2300 	return;
2301 }
2302 
2303 /*
2304  * Set media options.
2305  */
2306 static int ti_ifmedia_upd(ifp)
2307 	struct ifnet		*ifp;
2308 {
2309 	struct ti_softc		*sc;
2310 	struct ifmedia		*ifm;
2311 	struct ti_cmd_desc	cmd;
2312 
2313 	sc = ifp->if_softc;
2314 	ifm = &sc->ifmedia;
2315 
2316 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2317 		return(EINVAL);
2318 
2319 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2320 	case IFM_AUTO:
2321 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2322 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2323 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2324 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2325 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2326 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2327 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2328 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2329 		break;
2330 	case IFM_1000_SX:
2331 	case IFM_1000_TX:
2332 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2333 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2334 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2335 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2336 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2337 		}
2338 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2339 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2340 		break;
2341 	case IFM_100_FX:
2342 	case IFM_10_FL:
2343 	case IFM_100_TX:
2344 	case IFM_10_T:
2345 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2346 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2347 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2348 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2349 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2350 		} else {
2351 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2352 		}
2353 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2354 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2355 		} else {
2356 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2357 		}
2358 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2359 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2360 		break;
2361 	}
2362 
2363 	return(0);
2364 }
2365 
2366 /*
2367  * Report current media status.
2368  */
2369 static void ti_ifmedia_sts(ifp, ifmr)
2370 	struct ifnet		*ifp;
2371 	struct ifmediareq	*ifmr;
2372 {
2373 	struct ti_softc		*sc;
2374 	u_int32_t		media = 0;
2375 
2376 	sc = ifp->if_softc;
2377 
2378 	ifmr->ifm_status = IFM_AVALID;
2379 	ifmr->ifm_active = IFM_ETHER;
2380 
2381 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2382 		return;
2383 
2384 	ifmr->ifm_status |= IFM_ACTIVE;
2385 
2386 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2387 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2388 		if (sc->ti_copper)
2389 			ifmr->ifm_active |= IFM_1000_TX;
2390 		else
2391 			ifmr->ifm_active |= IFM_1000_SX;
2392 		if (media & TI_GLNK_FULL_DUPLEX)
2393 			ifmr->ifm_active |= IFM_FDX;
2394 		else
2395 			ifmr->ifm_active |= IFM_HDX;
2396 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2397 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2398 		if (sc->ti_copper) {
2399 			if (media & TI_LNK_100MB)
2400 				ifmr->ifm_active |= IFM_100_TX;
2401 			if (media & TI_LNK_10MB)
2402 				ifmr->ifm_active |= IFM_10_T;
2403 		} else {
2404 			if (media & TI_LNK_100MB)
2405 				ifmr->ifm_active |= IFM_100_FX;
2406 			if (media & TI_LNK_10MB)
2407 				ifmr->ifm_active |= IFM_10_FL;
2408 		}
2409 		if (media & TI_LNK_FULL_DUPLEX)
2410 			ifmr->ifm_active |= IFM_FDX;
2411 		if (media & TI_LNK_HALF_DUPLEX)
2412 			ifmr->ifm_active |= IFM_HDX;
2413 	}
2414 
2415 	return;
2416 }
2417 
2418 static int ti_ioctl(ifp, command, data)
2419 	struct ifnet		*ifp;
2420 	u_long			command;
2421 	caddr_t			data;
2422 {
2423 	struct ti_softc		*sc = ifp->if_softc;
2424 	struct ifreq		*ifr = (struct ifreq *) data;
2425 	int			s, error = 0;
2426 	struct ti_cmd_desc	cmd;
2427 
2428 	s = splimp();
2429 
2430 	switch(command) {
2431 	case SIOCSIFADDR:
2432 	case SIOCGIFADDR:
2433 		error = ether_ioctl(ifp, command, data);
2434 		break;
2435 	case SIOCSIFMTU:
2436 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2437 			error = EINVAL;
2438 		else {
2439 			ifp->if_mtu = ifr->ifr_mtu;
2440 			ti_init(sc);
2441 		}
2442 		break;
2443 	case SIOCSIFFLAGS:
2444 		if (ifp->if_flags & IFF_UP) {
2445 			/*
2446 			 * If only the state of the PROMISC flag changed,
2447 			 * then just use the 'set promisc mode' command
2448 			 * instead of reinitializing the entire NIC. Doing
2449 			 * a full re-init means reloading the firmware and
2450 			 * waiting for it to start up, which may take a
2451 			 * second or two.
2452 			 */
2453 			if (ifp->if_flags & IFF_RUNNING &&
2454 			    ifp->if_flags & IFF_PROMISC &&
2455 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2456 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2457 				    TI_CMD_CODE_PROMISC_ENB, 0);
2458 			} else if (ifp->if_flags & IFF_RUNNING &&
2459 			    !(ifp->if_flags & IFF_PROMISC) &&
2460 			    sc->ti_if_flags & IFF_PROMISC) {
2461 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2462 				    TI_CMD_CODE_PROMISC_DIS, 0);
2463 			} else
2464 				ti_init(sc);
2465 		} else {
2466 			if (ifp->if_flags & IFF_RUNNING) {
2467 				ti_stop(sc);
2468 			}
2469 		}
2470 		sc->ti_if_flags = ifp->if_flags;
2471 		error = 0;
2472 		break;
2473 	case SIOCADDMULTI:
2474 	case SIOCDELMULTI:
2475 		if (ifp->if_flags & IFF_RUNNING) {
2476 			ti_setmulti(sc);
2477 			error = 0;
2478 		}
2479 		break;
2480 	case SIOCSIFMEDIA:
2481 	case SIOCGIFMEDIA:
2482 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2483 		break;
2484 	default:
2485 		error = EINVAL;
2486 		break;
2487 	}
2488 
2489 	(void)splx(s);
2490 
2491 	return(error);
2492 }
2493 
2494 static void ti_watchdog(ifp)
2495 	struct ifnet		*ifp;
2496 {
2497 	struct ti_softc		*sc;
2498 
2499 	sc = ifp->if_softc;
2500 
2501 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2502 	ti_stop(sc);
2503 	ti_init(sc);
2504 
2505 	ifp->if_oerrors++;
2506 
2507 	return;
2508 }
2509 
2510 /*
2511  * Stop the adapter and free any mbufs allocated to the
2512  * RX and TX lists.
2513  */
2514 static void ti_stop(sc)
2515 	struct ti_softc		*sc;
2516 {
2517 	struct ifnet		*ifp;
2518 	struct ti_cmd_desc	cmd;
2519 
2520 	ifp = &sc->arpcom.ac_if;
2521 
2522 	/* Disable host interrupts. */
2523 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2524 	/*
2525 	 * Tell firmware we're shutting down.
2526 	 */
2527 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2528 
2529 	/* Halt and reinitialize. */
2530 	ti_chipinit(sc);
2531 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2532 	ti_chipinit(sc);
2533 
2534 	/* Free the RX lists. */
2535 	ti_free_rx_ring_std(sc);
2536 
2537 	/* Free jumbo RX list. */
2538 	ti_free_rx_ring_jumbo(sc);
2539 
2540 	/* Free mini RX list. */
2541 	ti_free_rx_ring_mini(sc);
2542 
2543 	/* Free TX buffers. */
2544 	ti_free_tx_ring(sc);
2545 
2546 	sc->ti_ev_prodidx.ti_idx = 0;
2547 	sc->ti_return_prodidx.ti_idx = 0;
2548 	sc->ti_tx_considx.ti_idx = 0;
2549 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2550 
2551 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2552 
2553 	return;
2554 }
2555 
2556 /*
2557  * Stop all chip I/O so that the kernel's probe routines don't
2558  * get confused by errant DMAs when rebooting.
2559  */
2560 static void ti_shutdown(dev)
2561 	device_t		dev;
2562 {
2563 	struct ti_softc		*sc;
2564 
2565 	sc = device_get_softc(dev);
2566 
2567 	ti_chipinit(sc);
2568 
2569 	return;
2570 }
2571