xref: /freebsd/sys/dev/ti/if_ti.c (revision 9207b4cff7b8d483f4dd3c62266c2b58819eb7f9)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/sockio.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/queue.h>
89 
90 #include <net/if.h>
91 #include <net/if_arp.h>
92 #include <net/ethernet.h>
93 #include <net/if_dl.h>
94 #include <net/if_media.h>
95 #include <net/if_types.h>
96 #include <net/if_vlan_var.h>
97 
98 #include <net/bpf.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 
104 #include <vm/vm.h>              /* for vtophys */
105 #include <vm/pmap.h>            /* for vtophys */
106 #include <machine/bus_memio.h>
107 #include <machine/bus.h>
108 #include <machine/resource.h>
109 #include <sys/bus.h>
110 #include <sys/rman.h>
111 
112 #include <pci/pcireg.h>
113 #include <pci/pcivar.h>
114 
115 #include <pci/if_tireg.h>
116 #include <pci/ti_fw.h>
117 #include <pci/ti_fw2.h>
118 
119 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
120 
121 #if !defined(lint)
122 static const char rcsid[] =
123   "$FreeBSD$";
124 #endif
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 
130 static struct ti_type ti_devs[] = {
131 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
132 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
133 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
134 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
135 	{ TC_VENDORID,	TC_DEVICEID_3C985,
136 		"3Com 3c985-SX Gigabit Ethernet" },
137 	{ NG_VENDORID, NG_DEVICEID_GA620,
138 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
139 	{ NG_VENDORID, NG_DEVICEID_GA620T,
140 		"Netgear GA620 1000baseT Gigabit Ethernet" },
141 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
142 		"Silicon Graphics Gigabit Ethernet" },
143 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
144 		"Farallon PN9000SX Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int ti_probe		__P((device_t));
149 static int ti_attach		__P((device_t));
150 static int ti_detach		__P((device_t));
151 static void ti_txeof		__P((struct ti_softc *));
152 static void ti_rxeof		__P((struct ti_softc *));
153 
154 static void ti_stats_update	__P((struct ti_softc *));
155 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
156 					u_int32_t *));
157 
158 static void ti_intr		__P((void *));
159 static void ti_start		__P((struct ifnet *));
160 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
161 static void ti_init		__P((void *));
162 static void ti_init2		__P((struct ti_softc *));
163 static void ti_stop		__P((struct ti_softc *));
164 static void ti_watchdog		__P((struct ifnet *));
165 static void ti_shutdown		__P((device_t));
166 static int ti_ifmedia_upd	__P((struct ifnet *));
167 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
168 
169 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
170 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
171 						int, u_int8_t *));
172 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
173 
174 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
175 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
176 static void ti_setmulti		__P((struct ti_softc *));
177 
178 static void ti_mem		__P((struct ti_softc *, u_int32_t,
179 					u_int32_t, caddr_t));
180 static void ti_loadfw		__P((struct ti_softc *));
181 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
182 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
183 					caddr_t, int));
184 static void ti_handle_events	__P((struct ti_softc *));
185 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
186 static void *ti_jalloc		__P((struct ti_softc *));
187 static void ti_jfree		__P((caddr_t, void *));
188 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
189 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
190 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
191 static int ti_init_rx_ring_std	__P((struct ti_softc *));
192 static void ti_free_rx_ring_std	__P((struct ti_softc *));
193 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
194 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
195 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
196 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
197 static void ti_free_tx_ring	__P((struct ti_softc *));
198 static int ti_init_tx_ring	__P((struct ti_softc *));
199 
200 static int ti_64bitslot_war	__P((struct ti_softc *));
201 static int ti_chipinit		__P((struct ti_softc *));
202 static int ti_gibinit		__P((struct ti_softc *));
203 
204 static device_method_t ti_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		ti_probe),
207 	DEVMETHOD(device_attach,	ti_attach),
208 	DEVMETHOD(device_detach,	ti_detach),
209 	DEVMETHOD(device_shutdown,	ti_shutdown),
210 	{ 0, 0 }
211 };
212 
213 static driver_t ti_driver = {
214 	"ti",
215 	ti_methods,
216 	sizeof(struct ti_softc)
217 };
218 
219 static devclass_t ti_devclass;
220 
221 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
222 
223 /*
224  * Send an instruction or address to the EEPROM, check for ACK.
225  */
226 static u_int32_t ti_eeprom_putbyte(sc, byte)
227 	struct ti_softc		*sc;
228 	int			byte;
229 {
230 	register int		i, ack = 0;
231 
232 	/*
233 	 * Make sure we're in TX mode.
234 	 */
235 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
236 
237 	/*
238 	 * Feed in each bit and stobe the clock.
239 	 */
240 	for (i = 0x80; i; i >>= 1) {
241 		if (byte & i) {
242 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
243 		} else {
244 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
245 		}
246 		DELAY(1);
247 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
248 		DELAY(1);
249 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250 	}
251 
252 	/*
253 	 * Turn off TX mode.
254 	 */
255 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
256 
257 	/*
258 	 * Check for ack.
259 	 */
260 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
262 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 
264 	return(ack);
265 }
266 
267 /*
268  * Read a byte of data stored in the EEPROM at address 'addr.'
269  * We have to send two address bytes since the EEPROM can hold
270  * more than 256 bytes of data.
271  */
272 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
273 	struct ti_softc		*sc;
274 	int			addr;
275 	u_int8_t		*dest;
276 {
277 	register int		i;
278 	u_int8_t		byte = 0;
279 
280 	EEPROM_START;
281 
282 	/*
283 	 * Send write control code to EEPROM.
284 	 */
285 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
286 		printf("ti%d: failed to send write command, status: %x\n",
287 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
288 		return(1);
289 	}
290 
291 	/*
292 	 * Send first byte of address of byte we want to read.
293 	 */
294 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
295 		printf("ti%d: failed to send address, status: %x\n",
296 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
297 		return(1);
298 	}
299 	/*
300 	 * Send second byte address of byte we want to read.
301 	 */
302 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
303 		printf("ti%d: failed to send address, status: %x\n",
304 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
305 		return(1);
306 	}
307 
308 	EEPROM_STOP;
309 	EEPROM_START;
310 	/*
311 	 * Send read control code to EEPROM.
312 	 */
313 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
314 		printf("ti%d: failed to send read command, status: %x\n",
315 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
316 		return(1);
317 	}
318 
319 	/*
320 	 * Start reading bits from EEPROM.
321 	 */
322 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323 	for (i = 0x80; i; i >>= 1) {
324 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
325 		DELAY(1);
326 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
327 			byte |= i;
328 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
329 		DELAY(1);
330 	}
331 
332 	EEPROM_STOP;
333 
334 	/*
335 	 * No ACK generated for read, so just return byte.
336 	 */
337 
338 	*dest = byte;
339 
340 	return(0);
341 }
342 
343 /*
344  * Read a sequence of bytes from the EEPROM.
345  */
346 static int ti_read_eeprom(sc, dest, off, cnt)
347 	struct ti_softc		*sc;
348 	caddr_t			dest;
349 	int			off;
350 	int			cnt;
351 {
352 	int			err = 0, i;
353 	u_int8_t		byte = 0;
354 
355 	for (i = 0; i < cnt; i++) {
356 		err = ti_eeprom_getbyte(sc, off + i, &byte);
357 		if (err)
358 			break;
359 		*(dest + i) = byte;
360 	}
361 
362 	return(err ? 1 : 0);
363 }
364 
365 /*
366  * NIC memory access function. Can be used to either clear a section
367  * of NIC local memory or (if buf is non-NULL) copy data into it.
368  */
369 static void ti_mem(sc, addr, len, buf)
370 	struct ti_softc		*sc;
371 	u_int32_t		addr, len;
372 	caddr_t			buf;
373 {
374 	int			segptr, segsize, cnt;
375 	caddr_t			ti_winbase, ptr;
376 
377 	segptr = addr;
378 	cnt = len;
379 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
380 	ptr = buf;
381 
382 	while(cnt) {
383 		if (cnt < TI_WINLEN)
384 			segsize = cnt;
385 		else
386 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
387 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
388 		if (buf == NULL)
389 			bzero((char *)ti_winbase + (segptr &
390 			    (TI_WINLEN - 1)), segsize);
391 		else {
392 			bcopy((char *)ptr, (char *)ti_winbase +
393 			    (segptr & (TI_WINLEN - 1)), segsize);
394 			ptr += segsize;
395 		}
396 		segptr += segsize;
397 		cnt -= segsize;
398 	}
399 
400 	return;
401 }
402 
403 /*
404  * Load firmware image into the NIC. Check that the firmware revision
405  * is acceptable and see if we want the firmware for the Tigon 1 or
406  * Tigon 2.
407  */
408 static void ti_loadfw(sc)
409 	struct ti_softc		*sc;
410 {
411 	switch(sc->ti_hwrev) {
412 	case TI_HWREV_TIGON:
413 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
414 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
415 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
416 			printf("ti%d: firmware revision mismatch; want "
417 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
418 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
419 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
420 			    tigonFwReleaseMinor, tigonFwReleaseFix);
421 			return;
422 		}
423 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
424 		    (caddr_t)tigonFwText);
425 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
426 		    (caddr_t)tigonFwData);
427 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
428 		    (caddr_t)tigonFwRodata);
429 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
430 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
431 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
432 		break;
433 	case TI_HWREV_TIGON_II:
434 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
435 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
436 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
437 			printf("ti%d: firmware revision mismatch; want "
438 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
439 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
440 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
441 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
442 			return;
443 		}
444 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
445 		    (caddr_t)tigon2FwText);
446 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
447 		    (caddr_t)tigon2FwData);
448 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
449 		    (caddr_t)tigon2FwRodata);
450 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
451 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
452 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
453 		break;
454 	default:
455 		printf("ti%d: can't load firmware: unknown hardware rev\n",
456 		    sc->ti_unit);
457 		break;
458 	}
459 
460 	return;
461 }
462 
463 /*
464  * Send the NIC a command via the command ring.
465  */
466 static void ti_cmd(sc, cmd)
467 	struct ti_softc		*sc;
468 	struct ti_cmd_desc	*cmd;
469 {
470 	u_int32_t		index;
471 
472 	if (sc->ti_rdata->ti_cmd_ring == NULL)
473 		return;
474 
475 	index = sc->ti_cmd_saved_prodidx;
476 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
477 	TI_INC(index, TI_CMD_RING_CNT);
478 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
479 	sc->ti_cmd_saved_prodidx = index;
480 
481 	return;
482 }
483 
484 /*
485  * Send the NIC an extended command. The 'len' parameter specifies the
486  * number of command slots to include after the initial command.
487  */
488 static void ti_cmd_ext(sc, cmd, arg, len)
489 	struct ti_softc		*sc;
490 	struct ti_cmd_desc	*cmd;
491 	caddr_t			arg;
492 	int			len;
493 {
494 	u_int32_t		index;
495 	register int		i;
496 
497 	if (sc->ti_rdata->ti_cmd_ring == NULL)
498 		return;
499 
500 	index = sc->ti_cmd_saved_prodidx;
501 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
502 	TI_INC(index, TI_CMD_RING_CNT);
503 	for (i = 0; i < len; i++) {
504 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
505 		    *(u_int32_t *)(&arg[i * 4]));
506 		TI_INC(index, TI_CMD_RING_CNT);
507 	}
508 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
509 	sc->ti_cmd_saved_prodidx = index;
510 
511 	return;
512 }
513 
514 /*
515  * Handle events that have triggered interrupts.
516  */
517 static void ti_handle_events(sc)
518 	struct ti_softc		*sc;
519 {
520 	struct ti_event_desc	*e;
521 
522 	if (sc->ti_rdata->ti_event_ring == NULL)
523 		return;
524 
525 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
526 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
527 		switch(e->ti_event) {
528 		case TI_EV_LINKSTAT_CHANGED:
529 			sc->ti_linkstat = e->ti_code;
530 			if (e->ti_code == TI_EV_CODE_LINK_UP)
531 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
532 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
533 				printf("ti%d: gigabit link up\n", sc->ti_unit);
534 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
535 				printf("ti%d: link down\n", sc->ti_unit);
536 			break;
537 		case TI_EV_ERROR:
538 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
539 				printf("ti%d: invalid command\n", sc->ti_unit);
540 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
541 				printf("ti%d: unknown command\n", sc->ti_unit);
542 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
543 				printf("ti%d: bad config data\n", sc->ti_unit);
544 			break;
545 		case TI_EV_FIRMWARE_UP:
546 			ti_init2(sc);
547 			break;
548 		case TI_EV_STATS_UPDATED:
549 			ti_stats_update(sc);
550 			break;
551 		case TI_EV_RESET_JUMBO_RING:
552 		case TI_EV_MCAST_UPDATED:
553 			/* Who cares. */
554 			break;
555 		default:
556 			printf("ti%d: unknown event: %d\n",
557 			    sc->ti_unit, e->ti_event);
558 			break;
559 		}
560 		/* Advance the consumer index. */
561 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
562 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
563 	}
564 
565 	return;
566 }
567 
568 /*
569  * Memory management for the jumbo receive ring is a pain in the
570  * butt. We need to allocate at least 9018 bytes of space per frame,
571  * _and_ it has to be contiguous (unless you use the extended
572  * jumbo descriptor format). Using malloc() all the time won't
573  * work: malloc() allocates memory in powers of two, which means we
574  * would end up wasting a considerable amount of space by allocating
575  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
576  * to do our own memory management.
577  *
578  * The driver needs to allocate a contiguous chunk of memory at boot
579  * time. We then chop this up ourselves into 9K pieces and use them
580  * as external mbuf storage.
581  *
582  * One issue here is how much memory to allocate. The jumbo ring has
583  * 256 slots in it, but at 9K per slot than can consume over 2MB of
584  * RAM. This is a bit much, especially considering we also need
585  * RAM for the standard ring and mini ring (on the Tigon 2). To
586  * save space, we only actually allocate enough memory for 64 slots
587  * by default, which works out to between 500 and 600K. This can
588  * be tuned by changing a #define in if_tireg.h.
589  */
590 
591 static int ti_alloc_jumbo_mem(sc)
592 	struct ti_softc		*sc;
593 {
594 	caddr_t			ptr;
595 	register int		i;
596 	struct ti_jpool_entry   *entry;
597 
598 	/* Grab a big chunk o' storage. */
599 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
600 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
601 
602 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
603 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
604 		return(ENOBUFS);
605 	}
606 
607 	SLIST_INIT(&sc->ti_jfree_listhead);
608 	SLIST_INIT(&sc->ti_jinuse_listhead);
609 
610 	/*
611 	 * Now divide it up into 9K pieces and save the addresses
612 	 * in an array.
613 	 */
614 	ptr = sc->ti_cdata.ti_jumbo_buf;
615 	for (i = 0; i < TI_JSLOTS; i++) {
616 		sc->ti_cdata.ti_jslots[i] = ptr;
617 		ptr += TI_JLEN;
618 		entry = malloc(sizeof(struct ti_jpool_entry),
619 			       M_DEVBUF, M_NOWAIT);
620 		if (entry == NULL) {
621 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
622 			           M_DEVBUF);
623 			sc->ti_cdata.ti_jumbo_buf = NULL;
624 			printf("ti%d: no memory for jumbo "
625 			    "buffer queue!\n", sc->ti_unit);
626 			return(ENOBUFS);
627 		}
628 		entry->slot = i;
629 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
630 	}
631 
632 	return(0);
633 }
634 
635 /*
636  * Allocate a jumbo buffer.
637  */
638 static void *ti_jalloc(sc)
639 	struct ti_softc		*sc;
640 {
641 	struct ti_jpool_entry   *entry;
642 
643 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
644 
645 	if (entry == NULL) {
646 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
647 		return(NULL);
648 	}
649 
650 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
651 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
652 	return(sc->ti_cdata.ti_jslots[entry->slot]);
653 }
654 
655 /*
656  * Release a jumbo buffer.
657  */
658 static void ti_jfree(buf, args)
659 	caddr_t			buf;
660 	void			*args;
661 {
662 	struct ti_softc		*sc;
663 	int		        i;
664 	struct ti_jpool_entry   *entry;
665 
666 	/* Extract the softc struct pointer. */
667 	sc = (struct ti_softc *)args;
668 
669 	if (sc == NULL)
670 		panic("ti_jfree: didn't get softc pointer!");
671 
672 	/* calculate the slot this buffer belongs to */
673 	i = ((vm_offset_t)buf
674 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
675 
676 	if ((i < 0) || (i >= TI_JSLOTS))
677 		panic("ti_jfree: asked to free buffer that we don't manage!");
678 
679 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
680 	if (entry == NULL)
681 		panic("ti_jfree: buffer not in use!");
682 	entry->slot = i;
683 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
684 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
685 
686 	return;
687 }
688 
689 
690 /*
691  * Intialize a standard receive ring descriptor.
692  */
693 static int ti_newbuf_std(sc, i, m)
694 	struct ti_softc		*sc;
695 	int			i;
696 	struct mbuf		*m;
697 {
698 	struct mbuf		*m_new = NULL;
699 	struct ti_rx_desc	*r;
700 
701 	if (m == NULL) {
702 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
703 		if (m_new == NULL)
704 			return(ENOBUFS);
705 
706 		MCLGET(m_new, M_DONTWAIT);
707 		if (!(m_new->m_flags & M_EXT)) {
708 			m_freem(m_new);
709 			return(ENOBUFS);
710 		}
711 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
712 	} else {
713 		m_new = m;
714 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
715 		m_new->m_data = m_new->m_ext.ext_buf;
716 	}
717 
718 	m_adj(m_new, ETHER_ALIGN);
719 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
720 	r = &sc->ti_rdata->ti_rx_std_ring[i];
721 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
722 	r->ti_type = TI_BDTYPE_RECV_BD;
723 	r->ti_flags = 0;
724 	if (sc->arpcom.ac_if.if_hwassist)
725 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
726 	r->ti_len = m_new->m_len;
727 	r->ti_idx = i;
728 
729 	return(0);
730 }
731 
732 /*
733  * Intialize a mini receive ring descriptor. This only applies to
734  * the Tigon 2.
735  */
736 static int ti_newbuf_mini(sc, i, m)
737 	struct ti_softc		*sc;
738 	int			i;
739 	struct mbuf		*m;
740 {
741 	struct mbuf		*m_new = NULL;
742 	struct ti_rx_desc	*r;
743 
744 	if (m == NULL) {
745 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
746 		if (m_new == NULL) {
747 			printf("ti%d: mbuf allocation failed "
748 			    "-- packet dropped!\n", sc->ti_unit);
749 			return(ENOBUFS);
750 		}
751 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
752 	} else {
753 		m_new = m;
754 		m_new->m_data = m_new->m_pktdat;
755 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
756 	}
757 
758 	m_adj(m_new, ETHER_ALIGN);
759 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
760 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
761 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
762 	r->ti_type = TI_BDTYPE_RECV_BD;
763 	r->ti_flags = TI_BDFLAG_MINI_RING;
764 	if (sc->arpcom.ac_if.if_hwassist)
765 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
766 	r->ti_len = m_new->m_len;
767 	r->ti_idx = i;
768 
769 	return(0);
770 }
771 
772 /*
773  * Initialize a jumbo receive ring descriptor. This allocates
774  * a jumbo buffer from the pool managed internally by the driver.
775  */
776 static int ti_newbuf_jumbo(sc, i, m)
777 	struct ti_softc		*sc;
778 	int			i;
779 	struct mbuf		*m;
780 {
781 	struct mbuf		*m_new = NULL;
782 	struct ti_rx_desc	*r;
783 
784 	if (m == NULL) {
785 		caddr_t			*buf = NULL;
786 
787 		/* Allocate the mbuf. */
788 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
789 		if (m_new == NULL) {
790 			printf("ti%d: mbuf allocation failed "
791 			    "-- packet dropped!\n", sc->ti_unit);
792 			return(ENOBUFS);
793 		}
794 
795 		/* Allocate the jumbo buffer */
796 		buf = ti_jalloc(sc);
797 		if (buf == NULL) {
798 			m_freem(m_new);
799 			printf("ti%d: jumbo allocation failed "
800 			    "-- packet dropped!\n", sc->ti_unit);
801 			return(ENOBUFS);
802 		}
803 
804 		/* Attach the buffer to the mbuf. */
805 		m_new->m_data = (void *) buf;
806 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
807 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
808 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
809 	} else {
810 		m_new = m;
811 		m_new->m_data = m_new->m_ext.ext_buf;
812 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
813 	}
814 
815 	m_adj(m_new, ETHER_ALIGN);
816 	/* Set up the descriptor. */
817 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
818 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
819 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
820 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
821 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
822 	if (sc->arpcom.ac_if.if_hwassist)
823 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
824 	r->ti_len = m_new->m_len;
825 	r->ti_idx = i;
826 
827 	return(0);
828 }
829 
830 /*
831  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
832  * that's 1MB or memory, which is a lot. For now, we fill only the first
833  * 256 ring entries and hope that our CPU is fast enough to keep up with
834  * the NIC.
835  */
836 static int ti_init_rx_ring_std(sc)
837 	struct ti_softc		*sc;
838 {
839 	register int		i;
840 	struct ti_cmd_desc	cmd;
841 
842 	for (i = 0; i < TI_SSLOTS; i++) {
843 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
844 			return(ENOBUFS);
845 	};
846 
847 	TI_UPDATE_STDPROD(sc, i - 1);
848 	sc->ti_std = i - 1;
849 
850 	return(0);
851 }
852 
853 static void ti_free_rx_ring_std(sc)
854 	struct ti_softc		*sc;
855 {
856 	register int		i;
857 
858 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
859 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
860 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
861 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
862 		}
863 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
864 		    sizeof(struct ti_rx_desc));
865 	}
866 
867 	return;
868 }
869 
870 static int ti_init_rx_ring_jumbo(sc)
871 	struct ti_softc		*sc;
872 {
873 	register int		i;
874 	struct ti_cmd_desc	cmd;
875 
876 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
877 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
878 			return(ENOBUFS);
879 	};
880 
881 	TI_UPDATE_JUMBOPROD(sc, i - 1);
882 	sc->ti_jumbo = i - 1;
883 
884 	return(0);
885 }
886 
887 static void ti_free_rx_ring_jumbo(sc)
888 	struct ti_softc		*sc;
889 {
890 	register int		i;
891 
892 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
893 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
894 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
895 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
896 		}
897 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
898 		    sizeof(struct ti_rx_desc));
899 	}
900 
901 	return;
902 }
903 
904 static int ti_init_rx_ring_mini(sc)
905 	struct ti_softc		*sc;
906 {
907 	register int		i;
908 
909 	for (i = 0; i < TI_MSLOTS; i++) {
910 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
911 			return(ENOBUFS);
912 	};
913 
914 	TI_UPDATE_MINIPROD(sc, i - 1);
915 	sc->ti_mini = i - 1;
916 
917 	return(0);
918 }
919 
920 static void ti_free_rx_ring_mini(sc)
921 	struct ti_softc		*sc;
922 {
923 	register int		i;
924 
925 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
926 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
927 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
928 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
929 		}
930 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
931 		    sizeof(struct ti_rx_desc));
932 	}
933 
934 	return;
935 }
936 
937 static void ti_free_tx_ring(sc)
938 	struct ti_softc		*sc;
939 {
940 	register int		i;
941 
942 	if (sc->ti_rdata->ti_tx_ring == NULL)
943 		return;
944 
945 	for (i = 0; i < TI_TX_RING_CNT; i++) {
946 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
947 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
948 			sc->ti_cdata.ti_tx_chain[i] = NULL;
949 		}
950 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
951 		    sizeof(struct ti_tx_desc));
952 	}
953 
954 	return;
955 }
956 
957 static int ti_init_tx_ring(sc)
958 	struct ti_softc		*sc;
959 {
960 	sc->ti_txcnt = 0;
961 	sc->ti_tx_saved_considx = 0;
962 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
963 	return(0);
964 }
965 
966 /*
967  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
968  * but we have to support the old way too so that Tigon 1 cards will
969  * work.
970  */
971 void ti_add_mcast(sc, addr)
972 	struct ti_softc		*sc;
973 	struct ether_addr	*addr;
974 {
975 	struct ti_cmd_desc	cmd;
976 	u_int16_t		*m;
977 	u_int32_t		ext[2] = {0, 0};
978 
979 	m = (u_int16_t *)&addr->octet[0];
980 
981 	switch(sc->ti_hwrev) {
982 	case TI_HWREV_TIGON:
983 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
984 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
985 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
986 		break;
987 	case TI_HWREV_TIGON_II:
988 		ext[0] = htons(m[0]);
989 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
990 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
991 		break;
992 	default:
993 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
994 		break;
995 	}
996 
997 	return;
998 }
999 
1000 void ti_del_mcast(sc, addr)
1001 	struct ti_softc		*sc;
1002 	struct ether_addr	*addr;
1003 {
1004 	struct ti_cmd_desc	cmd;
1005 	u_int16_t		*m;
1006 	u_int32_t		ext[2] = {0, 0};
1007 
1008 	m = (u_int16_t *)&addr->octet[0];
1009 
1010 	switch(sc->ti_hwrev) {
1011 	case TI_HWREV_TIGON:
1012 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1013 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1014 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1015 		break;
1016 	case TI_HWREV_TIGON_II:
1017 		ext[0] = htons(m[0]);
1018 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1019 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1020 		break;
1021 	default:
1022 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1023 		break;
1024 	}
1025 
1026 	return;
1027 }
1028 
1029 /*
1030  * Configure the Tigon's multicast address filter.
1031  *
1032  * The actual multicast table management is a bit of a pain, thanks to
1033  * slight brain damage on the part of both Alteon and us. With our
1034  * multicast code, we are only alerted when the multicast address table
1035  * changes and at that point we only have the current list of addresses:
1036  * we only know the current state, not the previous state, so we don't
1037  * actually know what addresses were removed or added. The firmware has
1038  * state, but we can't get our grubby mits on it, and there is no 'delete
1039  * all multicast addresses' command. Hence, we have to maintain our own
1040  * state so we know what addresses have been programmed into the NIC at
1041  * any given time.
1042  */
1043 static void ti_setmulti(sc)
1044 	struct ti_softc		*sc;
1045 {
1046 	struct ifnet		*ifp;
1047 	struct ifmultiaddr	*ifma;
1048 	struct ti_cmd_desc	cmd;
1049 	struct ti_mc_entry	*mc;
1050 	u_int32_t		intrs;
1051 
1052 	ifp = &sc->arpcom.ac_if;
1053 
1054 	if (ifp->if_flags & IFF_ALLMULTI) {
1055 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1056 		return;
1057 	} else {
1058 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1059 	}
1060 
1061 	/* Disable interrupts. */
1062 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1063 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1064 
1065 	/* First, zot all the existing filters. */
1066 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1067 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1068 		ti_del_mcast(sc, &mc->mc_addr);
1069 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1070 		free(mc, M_DEVBUF);
1071 	}
1072 
1073 	/* Now program new ones. */
1074 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1075 		if (ifma->ifma_addr->sa_family != AF_LINK)
1076 			continue;
1077 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1078 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1079 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1080 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1081 		ti_add_mcast(sc, &mc->mc_addr);
1082 	}
1083 
1084 	/* Re-enable interrupts. */
1085 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1086 
1087 	return;
1088 }
1089 
1090 /*
1091  * Check to see if the BIOS has configured us for a 64 bit slot when
1092  * we aren't actually in one. If we detect this condition, we can work
1093  * around it on the Tigon 2 by setting a bit in the PCI state register,
1094  * but for the Tigon 1 we must give up and abort the interface attach.
1095  */
1096 static int ti_64bitslot_war(sc)
1097 	struct ti_softc		*sc;
1098 {
1099 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1100 		CSR_WRITE_4(sc, 0x600, 0);
1101 		CSR_WRITE_4(sc, 0x604, 0);
1102 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1103 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1104 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1105 				return(EINVAL);
1106 			else {
1107 				TI_SETBIT(sc, TI_PCI_STATE,
1108 				    TI_PCISTATE_32BIT_BUS);
1109 				return(0);
1110 			}
1111 		}
1112 	}
1113 
1114 	return(0);
1115 }
1116 
1117 /*
1118  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1119  * self-test results.
1120  */
1121 static int ti_chipinit(sc)
1122 	struct ti_softc		*sc;
1123 {
1124 	u_int32_t		cacheline;
1125 	u_int32_t		pci_writemax = 0;
1126 
1127 	/* Initialize link to down state. */
1128 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1129 
1130 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1131 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1132 	else
1133 		sc->arpcom.ac_if.if_hwassist = 0;
1134 
1135 	/* Set endianness before we access any non-PCI registers. */
1136 #if BYTE_ORDER == BIG_ENDIAN
1137 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1138 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1139 #else
1140 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1141 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1142 #endif
1143 
1144 	/* Check the ROM failed bit to see if self-tests passed. */
1145 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1146 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1147 		return(ENODEV);
1148 	}
1149 
1150 	/* Halt the CPU. */
1151 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1152 
1153 	/* Figure out the hardware revision. */
1154 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1155 	case TI_REV_TIGON_I:
1156 		sc->ti_hwrev = TI_HWREV_TIGON;
1157 		break;
1158 	case TI_REV_TIGON_II:
1159 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1160 		break;
1161 	default:
1162 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1163 		return(ENODEV);
1164 	}
1165 
1166 	/* Do special setup for Tigon 2. */
1167 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1168 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1169 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1170 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1171 	}
1172 
1173 	/* Set up the PCI state register. */
1174 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1175 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1176 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1177 	}
1178 
1179 	/* Clear the read/write max DMA parameters. */
1180 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1181 	    TI_PCISTATE_READ_MAXDMA));
1182 
1183 	/* Get cache line size. */
1184 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1185 
1186 	/*
1187 	 * If the system has set enabled the PCI memory write
1188 	 * and invalidate command in the command register, set
1189 	 * the write max parameter accordingly. This is necessary
1190 	 * to use MWI with the Tigon 2.
1191 	 */
1192 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1193 		switch(cacheline) {
1194 		case 1:
1195 		case 4:
1196 		case 8:
1197 		case 16:
1198 		case 32:
1199 		case 64:
1200 			break;
1201 		default:
1202 		/* Disable PCI memory write and invalidate. */
1203 			if (bootverbose)
1204 				printf("ti%d: cache line size %d not "
1205 				    "supported; disabling PCI MWI\n",
1206 				    sc->ti_unit, cacheline);
1207 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1208 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1209 			break;
1210 		}
1211 	}
1212 
1213 #ifdef __brokenalpha__
1214 	/*
1215 	 * From the Alteon sample driver:
1216 	 * Must insure that we do not cross an 8K (bytes) boundary
1217 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1218 	 * restriction on some ALPHA platforms with early revision
1219 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1220 	 */
1221 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1222 #else
1223 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1224 #endif
1225 
1226 	/* This sets the min dma param all the way up (0xff). */
1227 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1228 
1229 	/* Configure DMA variables. */
1230 #if BYTE_ORDER == BIG_ENDIAN
1231 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1232 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1233 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1234 	    TI_OPMODE_DONT_FRAG_JUMBO);
1235 #else
1236 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1237 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1238 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1239 #endif
1240 
1241 	/*
1242 	 * Only allow 1 DMA channel to be active at a time.
1243 	 * I don't think this is a good idea, but without it
1244 	 * the firmware racks up lots of nicDmaReadRingFull
1245 	 * errors.  This is not compatible with hardware checksums.
1246 	 */
1247 	if (sc->arpcom.ac_if.if_hwassist == 0)
1248 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1249 
1250 	/* Recommended settings from Tigon manual. */
1251 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1252 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1253 
1254 	if (ti_64bitslot_war(sc)) {
1255 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1256 		    "but we aren't", sc->ti_unit);
1257 		return(EINVAL);
1258 	}
1259 
1260 	return(0);
1261 }
1262 
1263 /*
1264  * Initialize the general information block and firmware, and
1265  * start the CPU(s) running.
1266  */
1267 static int ti_gibinit(sc)
1268 	struct ti_softc		*sc;
1269 {
1270 	struct ti_rcb		*rcb;
1271 	int			i;
1272 	struct ifnet		*ifp;
1273 
1274 	ifp = &sc->arpcom.ac_if;
1275 
1276 	/* Disable interrupts for now. */
1277 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1278 
1279 	/* Tell the chip where to find the general information block. */
1280 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1281 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1282 
1283 	/* Load the firmware into SRAM. */
1284 	ti_loadfw(sc);
1285 
1286 	/* Set up the contents of the general info and ring control blocks. */
1287 
1288 	/* Set up the event ring and producer pointer. */
1289 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1290 
1291 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1292 	rcb->ti_flags = 0;
1293 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1294 	    vtophys(&sc->ti_ev_prodidx);
1295 	sc->ti_ev_prodidx.ti_idx = 0;
1296 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1297 	sc->ti_ev_saved_considx = 0;
1298 
1299 	/* Set up the command ring and producer mailbox. */
1300 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1301 
1302 	sc->ti_rdata->ti_cmd_ring =
1303 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1304 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1305 	rcb->ti_flags = 0;
1306 	rcb->ti_max_len = 0;
1307 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1308 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1309 	}
1310 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1311 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1312 	sc->ti_cmd_saved_prodidx = 0;
1313 
1314 	/*
1315 	 * Assign the address of the stats refresh buffer.
1316 	 * We re-use the current stats buffer for this to
1317 	 * conserve memory.
1318 	 */
1319 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1320 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1321 
1322 	/* Set up the standard receive ring. */
1323 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1324 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1325 	rcb->ti_max_len = TI_FRAMELEN;
1326 	rcb->ti_flags = 0;
1327 	if (sc->arpcom.ac_if.if_hwassist)
1328 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1329 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1330 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1331 
1332 	/* Set up the jumbo receive ring. */
1333 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1334 	TI_HOSTADDR(rcb->ti_hostaddr) =
1335 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1336 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1337 	rcb->ti_flags = 0;
1338 	if (sc->arpcom.ac_if.if_hwassist)
1339 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1340 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1341 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1342 
1343 	/*
1344 	 * Set up the mini ring. Only activated on the
1345 	 * Tigon 2 but the slot in the config block is
1346 	 * still there on the Tigon 1.
1347 	 */
1348 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1349 	TI_HOSTADDR(rcb->ti_hostaddr) =
1350 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1351 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1352 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1353 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1354 	else
1355 		rcb->ti_flags = 0;
1356 	if (sc->arpcom.ac_if.if_hwassist)
1357 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1358 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1359 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1360 
1361 	/*
1362 	 * Set up the receive return ring.
1363 	 */
1364 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1365 	TI_HOSTADDR(rcb->ti_hostaddr) =
1366 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1367 	rcb->ti_flags = 0;
1368 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1369 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1370 	    vtophys(&sc->ti_return_prodidx);
1371 
1372 	/*
1373 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1374 	 * of putting the transmit ring in the host's address space and
1375 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1376 	 * memory and accessing it through the shared memory region. We
1377 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1378 	 * so we have to revert to the shared memory scheme if we detect
1379 	 * a Tigon 1 chip.
1380 	 */
1381 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1382 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1383 		sc->ti_rdata->ti_tx_ring_nic =
1384 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1385 	}
1386 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1387 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1388 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1389 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1390 		rcb->ti_flags = 0;
1391 	else
1392 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1393 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1394 	if (sc->arpcom.ac_if.if_hwassist)
1395 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1396 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1397 	rcb->ti_max_len = TI_TX_RING_CNT;
1398 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1399 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1400 	else
1401 		TI_HOSTADDR(rcb->ti_hostaddr) =
1402 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1403 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1404 	    vtophys(&sc->ti_tx_considx);
1405 
1406 	/* Set up tuneables */
1407 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1408 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1409 		    (sc->ti_rx_coal_ticks / 10));
1410 	else
1411 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1412 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1413 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1414 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1415 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1416 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1417 
1418 	/* Turn interrupts on. */
1419 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1420 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1421 
1422 	/* Start CPU. */
1423 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1424 
1425 	return(0);
1426 }
1427 
1428 /*
1429  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1430  * against our list and return its name if we find a match.
1431  */
1432 static int ti_probe(dev)
1433 	device_t		dev;
1434 {
1435 	struct ti_type		*t;
1436 
1437 	t = ti_devs;
1438 
1439 	while(t->ti_name != NULL) {
1440 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1441 		    (pci_get_device(dev) == t->ti_did)) {
1442 			device_set_desc(dev, t->ti_name);
1443 			return(0);
1444 		}
1445 		t++;
1446 	}
1447 
1448 	return(ENXIO);
1449 }
1450 
1451 static int ti_attach(dev)
1452 	device_t		dev;
1453 {
1454 	u_int32_t		command;
1455 	struct ifnet		*ifp;
1456 	struct ti_softc		*sc;
1457 	int			unit, error = 0, rid;
1458 
1459 	sc = device_get_softc(dev);
1460 	unit = device_get_unit(dev);
1461 	bzero(sc, sizeof(struct ti_softc));
1462 
1463 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1464 	TI_LOCK(sc);
1465 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1466 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1467 
1468 	/*
1469 	 * Map control/status registers.
1470 	 */
1471 	pci_enable_busmaster(dev);
1472 	pci_enable_io(dev, SYS_RES_MEMORY);
1473 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1474 
1475 	if (!(command & PCIM_CMD_MEMEN)) {
1476 		printf("ti%d: failed to enable memory mapping!\n", unit);
1477 		error = ENXIO;
1478 		goto fail;
1479 	}
1480 
1481 	rid = TI_PCI_LOMEM;
1482 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1483 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1484 
1485 	if (sc->ti_res == NULL) {
1486 		printf ("ti%d: couldn't map memory\n", unit);
1487 		error = ENXIO;
1488 		goto fail;
1489 	}
1490 
1491 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1492 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1493 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1494 
1495 	/* Allocate interrupt */
1496 	rid = 0;
1497 
1498 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1499 	    RF_SHAREABLE | RF_ACTIVE);
1500 
1501 	if (sc->ti_irq == NULL) {
1502 		printf("ti%d: couldn't map interrupt\n", unit);
1503 		error = ENXIO;
1504 		goto fail;
1505 	}
1506 
1507 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1508 	   ti_intr, sc, &sc->ti_intrhand);
1509 
1510 	if (error) {
1511 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1512 		bus_release_resource(dev, SYS_RES_MEMORY,
1513 		    TI_PCI_LOMEM, sc->ti_res);
1514 		printf("ti%d: couldn't set up irq\n", unit);
1515 		goto fail;
1516 	}
1517 
1518 	sc->ti_unit = unit;
1519 
1520 	if (ti_chipinit(sc)) {
1521 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1522 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1523 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1524 		bus_release_resource(dev, SYS_RES_MEMORY,
1525 		    TI_PCI_LOMEM, sc->ti_res);
1526 		error = ENXIO;
1527 		goto fail;
1528 	}
1529 
1530 	/* Zero out the NIC's on-board SRAM. */
1531 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1532 
1533 	/* Init again -- zeroing memory may have clobbered some registers. */
1534 	if (ti_chipinit(sc)) {
1535 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1536 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1537 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1538 		bus_release_resource(dev, SYS_RES_MEMORY,
1539 		    TI_PCI_LOMEM, sc->ti_res);
1540 		error = ENXIO;
1541 		goto fail;
1542 	}
1543 
1544 	/*
1545 	 * Get station address from the EEPROM. Note: the manual states
1546 	 * that the MAC address is at offset 0x8c, however the data is
1547 	 * stored as two longwords (since that's how it's loaded into
1548 	 * the NIC). This means the MAC address is actually preceded
1549 	 * by two zero bytes. We need to skip over those.
1550 	 */
1551 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1552 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1553 		printf("ti%d: failed to read station address\n", unit);
1554 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1555 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1556 		bus_release_resource(dev, SYS_RES_MEMORY,
1557 		    TI_PCI_LOMEM, sc->ti_res);
1558 		error = ENXIO;
1559 		goto fail;
1560 	}
1561 
1562 	/*
1563 	 * A Tigon chip was detected. Inform the world.
1564 	 */
1565 	printf("ti%d: Ethernet address: %6D\n", unit,
1566 				sc->arpcom.ac_enaddr, ":");
1567 
1568 	/* Allocate the general information block and ring buffers. */
1569 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1570 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1571 
1572 	if (sc->ti_rdata == NULL) {
1573 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1574 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1575 		bus_release_resource(dev, SYS_RES_MEMORY,
1576 		    TI_PCI_LOMEM, sc->ti_res);
1577 		error = ENXIO;
1578 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1579 		goto fail;
1580 	}
1581 
1582 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1583 
1584 	/* Try to allocate memory for jumbo buffers. */
1585 	if (ti_alloc_jumbo_mem(sc)) {
1586 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1587 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1588 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1589 		bus_release_resource(dev, SYS_RES_MEMORY,
1590 		    TI_PCI_LOMEM, sc->ti_res);
1591 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1592 		    M_DEVBUF);
1593 		error = ENXIO;
1594 		goto fail;
1595 	}
1596 
1597 	/*
1598 	 * We really need a better way to tell a 1000baseTX card
1599 	 * from a 1000baseSX one, since in theory there could be
1600 	 * OEMed 1000baseTX cards from lame vendors who aren't
1601 	 * clever enough to change the PCI ID. For the moment
1602 	 * though, the AceNIC is the only copper card available.
1603 	 */
1604 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1605 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1606 		sc->ti_copper = 1;
1607 	/* Ok, it's not the only copper card available. */
1608 	if (pci_get_vendor(dev) == NG_VENDORID &&
1609 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1610 		sc->ti_copper = 1;
1611 
1612 	/* Set default tuneable values. */
1613 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1614 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1615 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1616 	sc->ti_rx_max_coal_bds = 64;
1617 	sc->ti_tx_max_coal_bds = 128;
1618 	sc->ti_tx_buf_ratio = 21;
1619 
1620 	/* Set up ifnet structure */
1621 	ifp = &sc->arpcom.ac_if;
1622 	ifp->if_softc = sc;
1623 	ifp->if_unit = sc->ti_unit;
1624 	ifp->if_name = "ti";
1625 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1626 	ifp->if_ioctl = ti_ioctl;
1627 	ifp->if_output = ether_output;
1628 	ifp->if_start = ti_start;
1629 	ifp->if_watchdog = ti_watchdog;
1630 	ifp->if_init = ti_init;
1631 	ifp->if_mtu = ETHERMTU;
1632 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1633 
1634 	/* Set up ifmedia support. */
1635 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1636 	if (sc->ti_copper) {
1637 		/*
1638 		 * Copper cards allow manual 10/100 mode selection,
1639 		 * but not manual 1000baseTX mode selection. Why?
1640 		 * Becuase currently there's no way to specify the
1641 		 * master/slave setting through the firmware interface,
1642 		 * so Alteon decided to just bag it and handle it
1643 		 * via autonegotiation.
1644 		 */
1645 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1646 		ifmedia_add(&sc->ifmedia,
1647 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1648 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1649 		ifmedia_add(&sc->ifmedia,
1650 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1651 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1652 		ifmedia_add(&sc->ifmedia,
1653 		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1654 	} else {
1655 		/* Fiber cards don't support 10/100 modes. */
1656 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1657 		ifmedia_add(&sc->ifmedia,
1658 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1659 	}
1660 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1661 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1662 
1663 	/*
1664 	 * Call MI attach routine.
1665 	 */
1666 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1667 	TI_UNLOCK(sc);
1668 	return(0);
1669 
1670 fail:
1671 	TI_UNLOCK(sc);
1672 	mtx_destroy(&sc->ti_mtx);
1673 	return(error);
1674 }
1675 
1676 static int ti_detach(dev)
1677 	device_t		dev;
1678 {
1679 	struct ti_softc		*sc;
1680 	struct ifnet		*ifp;
1681 
1682 
1683 	sc = device_get_softc(dev);
1684 	TI_LOCK(sc);
1685 	ifp = &sc->arpcom.ac_if;
1686 
1687 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1688 	ti_stop(sc);
1689 
1690 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1691 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1692 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1693 
1694 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1695 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1696 	ifmedia_removeall(&sc->ifmedia);
1697 
1698 	TI_UNLOCK(sc);
1699 	mtx_destroy(&sc->ti_mtx);
1700 
1701 	return(0);
1702 }
1703 
1704 /*
1705  * Frame reception handling. This is called if there's a frame
1706  * on the receive return list.
1707  *
1708  * Note: we have to be able to handle three possibilities here:
1709  * 1) the frame is from the mini receive ring (can only happen)
1710  *    on Tigon 2 boards)
1711  * 2) the frame is from the jumbo recieve ring
1712  * 3) the frame is from the standard receive ring
1713  */
1714 
1715 static void ti_rxeof(sc)
1716 	struct ti_softc		*sc;
1717 {
1718 	struct ifnet		*ifp;
1719 	struct ti_cmd_desc	cmd;
1720 
1721 	ifp = &sc->arpcom.ac_if;
1722 
1723 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1724 		struct ti_rx_desc	*cur_rx;
1725 		u_int32_t		rxidx;
1726 		struct ether_header	*eh;
1727 		struct mbuf		*m = NULL;
1728 		u_int16_t		vlan_tag = 0;
1729 		int			have_tag = 0;
1730 
1731 		cur_rx =
1732 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1733 		rxidx = cur_rx->ti_idx;
1734 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1735 
1736 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1737 			have_tag = 1;
1738 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1739 		}
1740 
1741 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1742 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1743 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1744 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1745 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1746 				ifp->if_ierrors++;
1747 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1748 				continue;
1749 			}
1750 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1751 				ifp->if_ierrors++;
1752 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1753 				continue;
1754 			}
1755 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1756 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1757 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1758 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1759 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1760 				ifp->if_ierrors++;
1761 				ti_newbuf_mini(sc, sc->ti_mini, m);
1762 				continue;
1763 			}
1764 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1765 				ifp->if_ierrors++;
1766 				ti_newbuf_mini(sc, sc->ti_mini, m);
1767 				continue;
1768 			}
1769 		} else {
1770 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1771 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1772 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1773 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1774 				ifp->if_ierrors++;
1775 				ti_newbuf_std(sc, sc->ti_std, m);
1776 				continue;
1777 			}
1778 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1779 				ifp->if_ierrors++;
1780 				ti_newbuf_std(sc, sc->ti_std, m);
1781 				continue;
1782 			}
1783 		}
1784 
1785 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1786 		ifp->if_ipackets++;
1787 		eh = mtod(m, struct ether_header *);
1788 		m->m_pkthdr.rcvif = ifp;
1789 
1790 		/* Remove header from mbuf and pass it on. */
1791 		m_adj(m, sizeof(struct ether_header));
1792 
1793 		if (ifp->if_hwassist) {
1794 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1795 			    CSUM_DATA_VALID;
1796 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1797 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1798 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1799 		}
1800 
1801 		/*
1802 		 * If we received a packet with a vlan tag, pass it
1803 		 * to vlan_input() instead of ether_input().
1804 		 */
1805 		if (have_tag) {
1806 			VLAN_INPUT_TAG(eh, m, vlan_tag);
1807 			have_tag = vlan_tag = 0;
1808 			continue;
1809 		}
1810 		ether_input(ifp, eh, m);
1811 	}
1812 
1813 	/* Only necessary on the Tigon 1. */
1814 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1815 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1816 		    sc->ti_rx_saved_considx);
1817 
1818 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1819 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1820 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1821 
1822 	return;
1823 }
1824 
1825 static void ti_txeof(sc)
1826 	struct ti_softc		*sc;
1827 {
1828 	struct ti_tx_desc	*cur_tx = NULL;
1829 	struct ifnet		*ifp;
1830 
1831 	ifp = &sc->arpcom.ac_if;
1832 
1833 	/*
1834 	 * Go through our tx ring and free mbufs for those
1835 	 * frames that have been sent.
1836 	 */
1837 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1838 		u_int32_t		idx = 0;
1839 
1840 		idx = sc->ti_tx_saved_considx;
1841 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1842 			if (idx > 383)
1843 				CSR_WRITE_4(sc, TI_WINBASE,
1844 				    TI_TX_RING_BASE + 6144);
1845 			else if (idx > 255)
1846 				CSR_WRITE_4(sc, TI_WINBASE,
1847 				    TI_TX_RING_BASE + 4096);
1848 			else if (idx > 127)
1849 				CSR_WRITE_4(sc, TI_WINBASE,
1850 				    TI_TX_RING_BASE + 2048);
1851 			else
1852 				CSR_WRITE_4(sc, TI_WINBASE,
1853 				    TI_TX_RING_BASE);
1854 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1855 		} else
1856 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1857 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1858 			ifp->if_opackets++;
1859 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1860 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1861 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1862 		}
1863 		sc->ti_txcnt--;
1864 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1865 		ifp->if_timer = 0;
1866 	}
1867 
1868 	if (cur_tx != NULL)
1869 		ifp->if_flags &= ~IFF_OACTIVE;
1870 
1871 	return;
1872 }
1873 
1874 static void ti_intr(xsc)
1875 	void			*xsc;
1876 {
1877 	struct ti_softc		*sc;
1878 	struct ifnet		*ifp;
1879 
1880 	sc = xsc;
1881 	TI_LOCK(sc);
1882 	ifp = &sc->arpcom.ac_if;
1883 
1884 #ifdef notdef
1885 	/* Avoid this for now -- checking this register is expensive. */
1886 	/* Make sure this is really our interrupt. */
1887 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1888 		TI_UNLOCK(sc);
1889 		return;
1890 	}
1891 #endif
1892 
1893 	/* Ack interrupt and stop others from occuring. */
1894 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1895 
1896 	if (ifp->if_flags & IFF_RUNNING) {
1897 		/* Check RX return ring producer/consumer */
1898 		ti_rxeof(sc);
1899 
1900 		/* Check TX ring producer/consumer */
1901 		ti_txeof(sc);
1902 	}
1903 
1904 	ti_handle_events(sc);
1905 
1906 	/* Re-enable interrupts. */
1907 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1908 
1909 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1910 		ti_start(ifp);
1911 
1912 	TI_UNLOCK(sc);
1913 
1914 	return;
1915 }
1916 
1917 static void ti_stats_update(sc)
1918 	struct ti_softc		*sc;
1919 {
1920 	struct ifnet		*ifp;
1921 
1922 	ifp = &sc->arpcom.ac_if;
1923 
1924 	ifp->if_collisions +=
1925 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1926 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1927 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1928 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1929 	   ifp->if_collisions;
1930 
1931 	return;
1932 }
1933 
1934 /*
1935  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1936  * pointers to descriptors.
1937  */
1938 static int ti_encap(sc, m_head, txidx)
1939 	struct ti_softc		*sc;
1940 	struct mbuf		*m_head;
1941 	u_int32_t		*txidx;
1942 {
1943 	struct ti_tx_desc	*f = NULL;
1944 	struct mbuf		*m;
1945 	u_int32_t		frag, cur, cnt = 0;
1946 	u_int16_t		csum_flags = 0;
1947 	struct ifvlan		*ifv = NULL;
1948 
1949 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1950 	    m_head->m_pkthdr.rcvif != NULL &&
1951 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1952 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1953 
1954 	m = m_head;
1955 	cur = frag = *txidx;
1956 
1957 	if (m_head->m_pkthdr.csum_flags) {
1958 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1959 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1960 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1961 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1962 		if (m_head->m_flags & M_LASTFRAG)
1963 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1964 		else if (m_head->m_flags & M_FRAG)
1965 			csum_flags |= TI_BDFLAG_IP_FRAG;
1966 	}
1967 	/*
1968  	 * Start packing the mbufs in this chain into
1969 	 * the fragment pointers. Stop when we run out
1970  	 * of fragments or hit the end of the mbuf chain.
1971 	 */
1972 	for (m = m_head; m != NULL; m = m->m_next) {
1973 		if (m->m_len != 0) {
1974 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1975 				if (frag > 383)
1976 					CSR_WRITE_4(sc, TI_WINBASE,
1977 					    TI_TX_RING_BASE + 6144);
1978 				else if (frag > 255)
1979 					CSR_WRITE_4(sc, TI_WINBASE,
1980 					    TI_TX_RING_BASE + 4096);
1981 				else if (frag > 127)
1982 					CSR_WRITE_4(sc, TI_WINBASE,
1983 					    TI_TX_RING_BASE + 2048);
1984 				else
1985 					CSR_WRITE_4(sc, TI_WINBASE,
1986 					    TI_TX_RING_BASE);
1987 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1988 			} else
1989 				f = &sc->ti_rdata->ti_tx_ring[frag];
1990 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1991 				break;
1992 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1993 			f->ti_len = m->m_len;
1994 			f->ti_flags = csum_flags;
1995 
1996 			if (ifv != NULL) {
1997 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1998 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1999 			} else {
2000 				f->ti_vlan_tag = 0;
2001 			}
2002 
2003 			/*
2004 			 * Sanity check: avoid coming within 16 descriptors
2005 			 * of the end of the ring.
2006 			 */
2007 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2008 				return(ENOBUFS);
2009 			cur = frag;
2010 			TI_INC(frag, TI_TX_RING_CNT);
2011 			cnt++;
2012 		}
2013 	}
2014 
2015 	if (m != NULL)
2016 		return(ENOBUFS);
2017 
2018 	if (frag == sc->ti_tx_saved_considx)
2019 		return(ENOBUFS);
2020 
2021 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2022 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2023 		    TI_BDFLAG_END;
2024 	else
2025 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2026 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2027 	sc->ti_txcnt += cnt;
2028 
2029 	*txidx = frag;
2030 
2031 	return(0);
2032 }
2033 
2034 /*
2035  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2036  * to the mbuf data regions directly in the transmit descriptors.
2037  */
2038 static void ti_start(ifp)
2039 	struct ifnet		*ifp;
2040 {
2041 	struct ti_softc		*sc;
2042 	struct mbuf		*m_head = NULL;
2043 	u_int32_t		prodidx = 0;
2044 
2045 	sc = ifp->if_softc;
2046 	TI_LOCK(sc);
2047 
2048 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2049 
2050 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2051 		IF_DEQUEUE(&ifp->if_snd, m_head);
2052 		if (m_head == NULL)
2053 			break;
2054 
2055 		/*
2056 		 * XXX
2057 		 * safety overkill.  If this is a fragmented packet chain
2058 		 * with delayed TCP/UDP checksums, then only encapsulate
2059 		 * it if we have enough descriptors to handle the entire
2060 		 * chain at once.
2061 		 * (paranoia -- may not actually be needed)
2062 		 */
2063 		if (m_head->m_flags & M_FIRSTFRAG &&
2064 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2065 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2066 			    m_head->m_pkthdr.csum_data + 16) {
2067 				IF_PREPEND(&ifp->if_snd, m_head);
2068 				ifp->if_flags |= IFF_OACTIVE;
2069 				break;
2070 			}
2071 		}
2072 
2073 		/*
2074 		 * Pack the data into the transmit ring. If we
2075 		 * don't have room, set the OACTIVE flag and wait
2076 		 * for the NIC to drain the ring.
2077 		 */
2078 		if (ti_encap(sc, m_head, &prodidx)) {
2079 			IF_PREPEND(&ifp->if_snd, m_head);
2080 			ifp->if_flags |= IFF_OACTIVE;
2081 			break;
2082 		}
2083 
2084 		/*
2085 		 * If there's a BPF listener, bounce a copy of this frame
2086 		 * to him.
2087 		 */
2088 		if (ifp->if_bpf)
2089 			bpf_mtap(ifp, m_head);
2090 	}
2091 
2092 	/* Transmit */
2093 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2094 
2095 	/*
2096 	 * Set a timeout in case the chip goes out to lunch.
2097 	 */
2098 	ifp->if_timer = 5;
2099 	TI_UNLOCK(sc);
2100 
2101 	return;
2102 }
2103 
2104 static void ti_init(xsc)
2105 	void			*xsc;
2106 {
2107 	struct ti_softc		*sc = xsc;
2108 
2109 	/* Cancel pending I/O and flush buffers. */
2110 	ti_stop(sc);
2111 
2112 	TI_LOCK(sc);
2113 	/* Init the gen info block, ring control blocks and firmware. */
2114 	if (ti_gibinit(sc)) {
2115 		printf("ti%d: initialization failure\n", sc->ti_unit);
2116 		TI_UNLOCK(sc);
2117 		return;
2118 	}
2119 
2120 	TI_UNLOCK(sc);
2121 
2122 	return;
2123 }
2124 
2125 static void ti_init2(sc)
2126 	struct ti_softc		*sc;
2127 {
2128 	struct ti_cmd_desc	cmd;
2129 	struct ifnet		*ifp;
2130 	u_int16_t		*m;
2131 	struct ifmedia		*ifm;
2132 	int			tmp;
2133 
2134 	ifp = &sc->arpcom.ac_if;
2135 
2136 	/* Specify MTU and interface index. */
2137 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2138 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2139 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2140 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2141 
2142 	/* Load our MAC address. */
2143 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2144 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2145 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2146 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2147 
2148 	/* Enable or disable promiscuous mode as needed. */
2149 	if (ifp->if_flags & IFF_PROMISC) {
2150 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2151 	} else {
2152 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2153 	}
2154 
2155 	/* Program multicast filter. */
2156 	ti_setmulti(sc);
2157 
2158 	/*
2159 	 * If this is a Tigon 1, we should tell the
2160 	 * firmware to use software packet filtering.
2161 	 */
2162 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2163 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2164 	}
2165 
2166 	/* Init RX ring. */
2167 	ti_init_rx_ring_std(sc);
2168 
2169 	/* Init jumbo RX ring. */
2170 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2171 		ti_init_rx_ring_jumbo(sc);
2172 
2173 	/*
2174 	 * If this is a Tigon 2, we can also configure the
2175 	 * mini ring.
2176 	 */
2177 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2178 		ti_init_rx_ring_mini(sc);
2179 
2180 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2181 	sc->ti_rx_saved_considx = 0;
2182 
2183 	/* Init TX ring. */
2184 	ti_init_tx_ring(sc);
2185 
2186 	/* Tell firmware we're alive. */
2187 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2188 
2189 	/* Enable host interrupts. */
2190 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2191 
2192 	ifp->if_flags |= IFF_RUNNING;
2193 	ifp->if_flags &= ~IFF_OACTIVE;
2194 
2195 	/*
2196 	 * Make sure to set media properly. We have to do this
2197 	 * here since we have to issue commands in order to set
2198 	 * the link negotiation and we can't issue commands until
2199 	 * the firmware is running.
2200 	 */
2201 	ifm = &sc->ifmedia;
2202 	tmp = ifm->ifm_media;
2203 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2204 	ti_ifmedia_upd(ifp);
2205 	ifm->ifm_media = tmp;
2206 
2207 	return;
2208 }
2209 
2210 /*
2211  * Set media options.
2212  */
2213 static int ti_ifmedia_upd(ifp)
2214 	struct ifnet		*ifp;
2215 {
2216 	struct ti_softc		*sc;
2217 	struct ifmedia		*ifm;
2218 	struct ti_cmd_desc	cmd;
2219 
2220 	sc = ifp->if_softc;
2221 	ifm = &sc->ifmedia;
2222 
2223 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2224 		return(EINVAL);
2225 
2226 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2227 	case IFM_AUTO:
2228 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2229 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2230 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2231 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2232 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2233 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2234 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2235 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2236 		break;
2237 	case IFM_1000_SX:
2238 	case IFM_1000_TX:
2239 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2240 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2241 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2242 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2243 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2244 		}
2245 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2246 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2247 		break;
2248 	case IFM_100_FX:
2249 	case IFM_10_FL:
2250 	case IFM_100_TX:
2251 	case IFM_10_T:
2252 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2253 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2254 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2255 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2256 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2257 		} else {
2258 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2259 		}
2260 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2261 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2262 		} else {
2263 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2264 		}
2265 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2266 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2267 		break;
2268 	}
2269 
2270 	return(0);
2271 }
2272 
2273 /*
2274  * Report current media status.
2275  */
2276 static void ti_ifmedia_sts(ifp, ifmr)
2277 	struct ifnet		*ifp;
2278 	struct ifmediareq	*ifmr;
2279 {
2280 	struct ti_softc		*sc;
2281 	u_int32_t		media = 0;
2282 
2283 	sc = ifp->if_softc;
2284 
2285 	ifmr->ifm_status = IFM_AVALID;
2286 	ifmr->ifm_active = IFM_ETHER;
2287 
2288 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2289 		return;
2290 
2291 	ifmr->ifm_status |= IFM_ACTIVE;
2292 
2293 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2294 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2295 		if (sc->ti_copper)
2296 			ifmr->ifm_active |= IFM_1000_TX;
2297 		else
2298 			ifmr->ifm_active |= IFM_1000_SX;
2299 		if (media & TI_GLNK_FULL_DUPLEX)
2300 			ifmr->ifm_active |= IFM_FDX;
2301 		else
2302 			ifmr->ifm_active |= IFM_HDX;
2303 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2304 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2305 		if (sc->ti_copper) {
2306 			if (media & TI_LNK_100MB)
2307 				ifmr->ifm_active |= IFM_100_TX;
2308 			if (media & TI_LNK_10MB)
2309 				ifmr->ifm_active |= IFM_10_T;
2310 		} else {
2311 			if (media & TI_LNK_100MB)
2312 				ifmr->ifm_active |= IFM_100_FX;
2313 			if (media & TI_LNK_10MB)
2314 				ifmr->ifm_active |= IFM_10_FL;
2315 		}
2316 		if (media & TI_LNK_FULL_DUPLEX)
2317 			ifmr->ifm_active |= IFM_FDX;
2318 		if (media & TI_LNK_HALF_DUPLEX)
2319 			ifmr->ifm_active |= IFM_HDX;
2320 	}
2321 
2322 	return;
2323 }
2324 
2325 static int ti_ioctl(ifp, command, data)
2326 	struct ifnet		*ifp;
2327 	u_long			command;
2328 	caddr_t			data;
2329 {
2330 	struct ti_softc		*sc = ifp->if_softc;
2331 	struct ifreq		*ifr = (struct ifreq *) data;
2332 	int			mask, error = 0;
2333 	struct ti_cmd_desc	cmd;
2334 
2335 	TI_LOCK(sc);
2336 
2337 	switch(command) {
2338 	case SIOCSIFADDR:
2339 	case SIOCGIFADDR:
2340 		error = ether_ioctl(ifp, command, data);
2341 		break;
2342 	case SIOCSIFMTU:
2343 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2344 			error = EINVAL;
2345 		else {
2346 			ifp->if_mtu = ifr->ifr_mtu;
2347 			ti_init(sc);
2348 		}
2349 		break;
2350 	case SIOCSIFFLAGS:
2351 		if (ifp->if_flags & IFF_UP) {
2352 			/*
2353 			 * If only the state of the PROMISC flag changed,
2354 			 * then just use the 'set promisc mode' command
2355 			 * instead of reinitializing the entire NIC. Doing
2356 			 * a full re-init means reloading the firmware and
2357 			 * waiting for it to start up, which may take a
2358 			 * second or two.
2359 			 */
2360 			if (ifp->if_flags & IFF_RUNNING &&
2361 			    ifp->if_flags & IFF_PROMISC &&
2362 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2363 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2364 				    TI_CMD_CODE_PROMISC_ENB, 0);
2365 			} else if (ifp->if_flags & IFF_RUNNING &&
2366 			    !(ifp->if_flags & IFF_PROMISC) &&
2367 			    sc->ti_if_flags & IFF_PROMISC) {
2368 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2369 				    TI_CMD_CODE_PROMISC_DIS, 0);
2370 			} else
2371 				ti_init(sc);
2372 		} else {
2373 			if (ifp->if_flags & IFF_RUNNING) {
2374 				ti_stop(sc);
2375 			}
2376 		}
2377 		sc->ti_if_flags = ifp->if_flags;
2378 		error = 0;
2379 		break;
2380 	case SIOCADDMULTI:
2381 	case SIOCDELMULTI:
2382 		if (ifp->if_flags & IFF_RUNNING) {
2383 			ti_setmulti(sc);
2384 			error = 0;
2385 		}
2386 		break;
2387 	case SIOCSIFMEDIA:
2388 	case SIOCGIFMEDIA:
2389 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2390 		break;
2391 	case SIOCSIFCAP:
2392 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2393 		if (mask & IFCAP_HWCSUM) {
2394 			if (IFCAP_HWCSUM & ifp->if_capenable)
2395 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2396                         else
2397                                 ifp->if_capenable |= IFCAP_HWCSUM;
2398 			if (ifp->if_flags & IFF_RUNNING)
2399 				ti_init(sc);
2400                 }
2401 		error = 0;
2402 		break;
2403 	default:
2404 		error = EINVAL;
2405 		break;
2406 	}
2407 
2408 	TI_UNLOCK(sc);
2409 
2410 	return(error);
2411 }
2412 
2413 static void ti_watchdog(ifp)
2414 	struct ifnet		*ifp;
2415 {
2416 	struct ti_softc		*sc;
2417 
2418 	sc = ifp->if_softc;
2419 	TI_LOCK(sc);
2420 
2421 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2422 	ti_stop(sc);
2423 	ti_init(sc);
2424 
2425 	ifp->if_oerrors++;
2426 	TI_UNLOCK(sc);
2427 
2428 	return;
2429 }
2430 
2431 /*
2432  * Stop the adapter and free any mbufs allocated to the
2433  * RX and TX lists.
2434  */
2435 static void ti_stop(sc)
2436 	struct ti_softc		*sc;
2437 {
2438 	struct ifnet		*ifp;
2439 	struct ti_cmd_desc	cmd;
2440 
2441 	TI_LOCK(sc);
2442 
2443 	ifp = &sc->arpcom.ac_if;
2444 
2445 	/* Disable host interrupts. */
2446 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2447 	/*
2448 	 * Tell firmware we're shutting down.
2449 	 */
2450 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2451 
2452 	/* Halt and reinitialize. */
2453 	ti_chipinit(sc);
2454 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2455 	ti_chipinit(sc);
2456 
2457 	/* Free the RX lists. */
2458 	ti_free_rx_ring_std(sc);
2459 
2460 	/* Free jumbo RX list. */
2461 	ti_free_rx_ring_jumbo(sc);
2462 
2463 	/* Free mini RX list. */
2464 	ti_free_rx_ring_mini(sc);
2465 
2466 	/* Free TX buffers. */
2467 	ti_free_tx_ring(sc);
2468 
2469 	sc->ti_ev_prodidx.ti_idx = 0;
2470 	sc->ti_return_prodidx.ti_idx = 0;
2471 	sc->ti_tx_considx.ti_idx = 0;
2472 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2473 
2474 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2475 	TI_UNLOCK(sc);
2476 
2477 	return;
2478 }
2479 
2480 /*
2481  * Stop all chip I/O so that the kernel's probe routines don't
2482  * get confused by errant DMAs when rebooting.
2483  */
2484 static void ti_shutdown(dev)
2485 	device_t		dev;
2486 {
2487 	struct ti_softc		*sc;
2488 
2489 	sc = device_get_softc(dev);
2490 	TI_LOCK(sc);
2491 	ti_chipinit(sc);
2492 	TI_UNLOCK(sc);
2493 
2494 	return;
2495 }
2496