xref: /freebsd/sys/dev/ti/if_ti.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95 
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103 
104 #include <net/bpf.h>
105 
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109 
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 /* #define TI_PRIVATE_JUMBOS */
116 #ifndef TI_PRIVATE_JUMBOS
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128 
129 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130 /*
131  * We can only turn on header splitting if we're using extended receive
132  * BDs.
133  */
134 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
135 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
136 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
137 
138 typedef enum {
139 	TI_SWAP_HTON,
140 	TI_SWAP_NTOH
141 } ti_swap_type;
142 
143 
144 /*
145  * Various supported device vendors/types and their names.
146  */
147 
148 static const struct ti_type const ti_devs[] = {
149 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153 	{ TC_VENDORID,	TC_DEVICEID_3C985,
154 		"3Com 3c985-SX Gigabit Ethernet" },
155 	{ NG_VENDORID, NG_DEVICEID_GA620,
156 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157 	{ NG_VENDORID, NG_DEVICEID_GA620T,
158 		"Netgear GA620 1000baseT Gigabit Ethernet" },
159 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160 		"Silicon Graphics Gigabit Ethernet" },
161 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162 		"Farallon PN9000SX Gigabit Ethernet" },
163 	{ 0, 0, NULL }
164 };
165 
166 
167 static	d_open_t	ti_open;
168 static	d_close_t	ti_close;
169 static	d_ioctl_t	ti_ioctl2;
170 
171 static struct cdevsw ti_cdevsw = {
172 	.d_version =	D_VERSION,
173 	.d_flags =	0,
174 	.d_open =	ti_open,
175 	.d_close =	ti_close,
176 	.d_ioctl =	ti_ioctl2,
177 	.d_name =	"ti",
178 };
179 
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185 
186 static void ti_stats_update(struct ti_softc *);
187 static int ti_encap(struct ti_softc *, struct mbuf **);
188 
189 static void ti_intr(void *);
190 static void ti_start(struct ifnet *);
191 static void ti_start_locked(struct ifnet *);
192 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(void *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(struct ifnet *);
200 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201 
202 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
203 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
204 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
205 
206 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
207 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
208 static void ti_setmulti(struct ti_softc *);
209 
210 static void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
211 static void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, void *);
212 static void ti_mem_zero(struct ti_softc *, u_int32_t, u_int32_t);
213 static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
214 static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
215 		int, int, int);
216 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
217 static void ti_loadfw(struct ti_softc *);
218 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
219 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
220 static void ti_handle_events(struct ti_softc *);
221 static int ti_alloc_dmamaps(struct ti_softc *);
222 static void ti_free_dmamaps(struct ti_softc *);
223 static int ti_alloc_jumbo_mem(struct ti_softc *);
224 #ifdef TI_PRIVATE_JUMBOS
225 static void *ti_jalloc(struct ti_softc *);
226 static void ti_jfree(void *, void *);
227 #endif /* TI_PRIVATE_JUMBOS */
228 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
229 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
230 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
231 static int ti_init_rx_ring_std(struct ti_softc *);
232 static void ti_free_rx_ring_std(struct ti_softc *);
233 static int ti_init_rx_ring_jumbo(struct ti_softc *);
234 static void ti_free_rx_ring_jumbo(struct ti_softc *);
235 static int ti_init_rx_ring_mini(struct ti_softc *);
236 static void ti_free_rx_ring_mini(struct ti_softc *);
237 static void ti_free_tx_ring(struct ti_softc *);
238 static int ti_init_tx_ring(struct ti_softc *);
239 
240 static int ti_64bitslot_war(struct ti_softc *);
241 static int ti_chipinit(struct ti_softc *);
242 static int ti_gibinit(struct ti_softc *);
243 
244 #ifdef TI_JUMBO_HDRSPLIT
245 static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
246 					     int pkt_len, int idx);
247 #endif /* TI_JUMBO_HDRSPLIT */
248 
249 static device_method_t ti_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		ti_probe),
252 	DEVMETHOD(device_attach,	ti_attach),
253 	DEVMETHOD(device_detach,	ti_detach),
254 	DEVMETHOD(device_shutdown,	ti_shutdown),
255 	{ 0, 0 }
256 };
257 
258 static driver_t ti_driver = {
259 	"ti",
260 	ti_methods,
261 	sizeof(struct ti_softc)
262 };
263 
264 static devclass_t ti_devclass;
265 
266 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
267 MODULE_DEPEND(ti, pci, 1, 1, 1);
268 MODULE_DEPEND(ti, ether, 1, 1, 1);
269 
270 /*
271  * Send an instruction or address to the EEPROM, check for ACK.
272  */
273 static u_int32_t ti_eeprom_putbyte(sc, byte)
274 	struct ti_softc		*sc;
275 	int			byte;
276 {
277 	int			i, ack = 0;
278 
279 	/*
280 	 * Make sure we're in TX mode.
281 	 */
282 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
283 
284 	/*
285 	 * Feed in each bit and stobe the clock.
286 	 */
287 	for (i = 0x80; i; i >>= 1) {
288 		if (byte & i) {
289 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
290 		} else {
291 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
292 		}
293 		DELAY(1);
294 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
295 		DELAY(1);
296 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
297 	}
298 
299 	/*
300 	 * Turn off TX mode.
301 	 */
302 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
303 
304 	/*
305 	 * Check for ack.
306 	 */
307 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
309 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
310 
311 	return (ack);
312 }
313 
314 /*
315  * Read a byte of data stored in the EEPROM at address 'addr.'
316  * We have to send two address bytes since the EEPROM can hold
317  * more than 256 bytes of data.
318  */
319 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
320 	struct ti_softc		*sc;
321 	int			addr;
322 	u_int8_t		*dest;
323 {
324 	int			i;
325 	u_int8_t		byte = 0;
326 
327 	EEPROM_START;
328 
329 	/*
330 	 * Send write control code to EEPROM.
331 	 */
332 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
333 		device_printf(sc->ti_dev,
334 		    "failed to send write command, status: %x\n",
335 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
336 		return (1);
337 	}
338 
339 	/*
340 	 * Send first byte of address of byte we want to read.
341 	 */
342 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
343 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
344 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
345 		return (1);
346 	}
347 	/*
348 	 * Send second byte address of byte we want to read.
349 	 */
350 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
351 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
352 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
353 		return (1);
354 	}
355 
356 	EEPROM_STOP;
357 	EEPROM_START;
358 	/*
359 	 * Send read control code to EEPROM.
360 	 */
361 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
362 		device_printf(sc->ti_dev,
363 		    "failed to send read command, status: %x\n",
364 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
365 		return (1);
366 	}
367 
368 	/*
369 	 * Start reading bits from EEPROM.
370 	 */
371 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
372 	for (i = 0x80; i; i >>= 1) {
373 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
374 		DELAY(1);
375 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
376 			byte |= i;
377 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378 		DELAY(1);
379 	}
380 
381 	EEPROM_STOP;
382 
383 	/*
384 	 * No ACK generated for read, so just return byte.
385 	 */
386 
387 	*dest = byte;
388 
389 	return (0);
390 }
391 
392 /*
393  * Read a sequence of bytes from the EEPROM.
394  */
395 static int
396 ti_read_eeprom(sc, dest, off, cnt)
397 	struct ti_softc		*sc;
398 	caddr_t			dest;
399 	int			off;
400 	int			cnt;
401 {
402 	int			err = 0, i;
403 	u_int8_t		byte = 0;
404 
405 	for (i = 0; i < cnt; i++) {
406 		err = ti_eeprom_getbyte(sc, off + i, &byte);
407 		if (err)
408 			break;
409 		*(dest + i) = byte;
410 	}
411 
412 	return (err ? 1 : 0);
413 }
414 
415 /*
416  * NIC memory read function.
417  * Can be used to copy data from NIC local memory.
418  */
419 static void
420 ti_mem_read(sc, addr, len, buf)
421 	struct ti_softc		*sc;
422 	u_int32_t		addr, len;
423 	void			*buf;
424 {
425 	int			segptr, segsize, cnt;
426 	char			*ptr;
427 
428 	segptr = addr;
429 	cnt = len;
430 	ptr = buf;
431 
432 	while (cnt) {
433 		if (cnt < TI_WINLEN)
434 			segsize = cnt;
435 		else
436 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
437 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
438 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
440 		    segsize / 4);
441 		ptr += segsize;
442 		segptr += segsize;
443 		cnt -= segsize;
444 	}
445 }
446 
447 
448 /*
449  * NIC memory write function.
450  * Can be used to copy data into NIC local memory.
451  */
452 static void
453 ti_mem_write(sc, addr, len, buf)
454 	struct ti_softc		*sc;
455 	u_int32_t		addr, len;
456 	void			*buf;
457 {
458 	int			segptr, segsize, cnt;
459 	char			*ptr;
460 
461 	segptr = addr;
462 	cnt = len;
463 	ptr = buf;
464 
465 	while (cnt) {
466 		if (cnt < TI_WINLEN)
467 			segsize = cnt;
468 		else
469 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
470 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
471 		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
472 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
473 		    segsize / 4);
474 		ptr += segsize;
475 		segptr += segsize;
476 		cnt -= segsize;
477 	}
478 }
479 
480 /*
481  * NIC memory read function.
482  * Can be used to clear a section of NIC local memory.
483  */
484 static void
485 ti_mem_zero(sc, addr, len)
486 	struct ti_softc		*sc;
487 	u_int32_t		addr, len;
488 {
489 	int			segptr, segsize, cnt;
490 
491 	segptr = addr;
492 	cnt = len;
493 
494 	while (cnt) {
495 		if (cnt < TI_WINLEN)
496 			segsize = cnt;
497 		else
498 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
499 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
500 		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
501 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
502 		segptr += segsize;
503 		cnt -= segsize;
504 	}
505 }
506 
507 static int
508 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
509 	struct ti_softc		*sc;
510 	u_int32_t		tigon_addr, len;
511 	caddr_t			buf;
512 	int			useraddr, readdata;
513 {
514 	int		segptr, segsize, cnt;
515 	caddr_t		ptr;
516 	u_int32_t	origwin;
517 	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
518 	int		resid, segresid;
519 	int		first_pass;
520 
521 	TI_LOCK_ASSERT(sc);
522 
523 	/*
524 	 * At the moment, we don't handle non-aligned cases, we just bail.
525 	 * If this proves to be a problem, it will be fixed.
526 	 */
527 	if ((readdata == 0)
528 	 && (tigon_addr & 0x3)) {
529 		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
530 		    "word-aligned\n", __func__, tigon_addr);
531 		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
532 		    "yet supported\n", __func__);
533 		return (EINVAL);
534 	}
535 
536 	segptr = tigon_addr & ~0x3;
537 	segresid = tigon_addr - segptr;
538 
539 	/*
540 	 * This is the non-aligned amount left over that we'll need to
541 	 * copy.
542 	 */
543 	resid = len & 0x3;
544 
545 	/* Add in the left over amount at the front of the buffer */
546 	resid += segresid;
547 
548 	cnt = len & ~0x3;
549 	/*
550 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
551 	 * decrease the residual by that much.
552 	 */
553 	cnt += resid & ~0x3;
554 	resid -= resid & ~0x3;
555 
556 	ptr = buf;
557 
558 	first_pass = 1;
559 
560 	/*
561 	 * Save the old window base value.
562 	 */
563 	origwin = CSR_READ_4(sc, TI_WINBASE);
564 
565 	while (cnt) {
566 		bus_size_t ti_offset;
567 
568 		if (cnt < TI_WINLEN)
569 			segsize = cnt;
570 		else
571 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
572 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
573 
574 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
575 
576 		if (readdata) {
577 
578 			bus_space_read_region_4(sc->ti_btag,
579 						sc->ti_bhandle, ti_offset,
580 						(u_int32_t *)tmparray,
581 						segsize >> 2);
582 			if (useraddr) {
583 				/*
584 				 * Yeah, this is a little on the kludgy
585 				 * side, but at least this code is only
586 				 * used for debugging.
587 				 */
588 				ti_bcopy_swap(tmparray, tmparray2, segsize,
589 					      TI_SWAP_NTOH);
590 
591 				TI_UNLOCK(sc);
592 				if (first_pass) {
593 					copyout(&tmparray2[segresid], ptr,
594 						segsize - segresid);
595 					first_pass = 0;
596 				} else
597 					copyout(tmparray2, ptr, segsize);
598 				TI_LOCK(sc);
599 			} else {
600 				if (first_pass) {
601 
602 					ti_bcopy_swap(tmparray, tmparray2,
603 						      segsize, TI_SWAP_NTOH);
604 					TI_UNLOCK(sc);
605 					bcopy(&tmparray2[segresid], ptr,
606 					      segsize - segresid);
607 					TI_LOCK(sc);
608 					first_pass = 0;
609 				} else
610 					ti_bcopy_swap(tmparray, ptr, segsize,
611 						      TI_SWAP_NTOH);
612 			}
613 
614 		} else {
615 			if (useraddr) {
616 				TI_UNLOCK(sc);
617 				copyin(ptr, tmparray2, segsize);
618 				TI_LOCK(sc);
619 				ti_bcopy_swap(tmparray2, tmparray, segsize,
620 					      TI_SWAP_HTON);
621 			} else
622 				ti_bcopy_swap(ptr, tmparray, segsize,
623 					      TI_SWAP_HTON);
624 
625 			bus_space_write_region_4(sc->ti_btag,
626 						 sc->ti_bhandle, ti_offset,
627 						 (u_int32_t *)tmparray,
628 						 segsize >> 2);
629 		}
630 		segptr += segsize;
631 		ptr += segsize;
632 		cnt -= segsize;
633 	}
634 
635 	/*
636 	 * Handle leftover, non-word-aligned bytes.
637 	 */
638 	if (resid != 0) {
639 		u_int32_t	tmpval, tmpval2;
640 		bus_size_t	ti_offset;
641 
642 		/*
643 		 * Set the segment pointer.
644 		 */
645 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
646 
647 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
648 
649 		/*
650 		 * First, grab whatever is in our source/destination.
651 		 * We'll obviously need this for reads, but also for
652 		 * writes, since we'll be doing read/modify/write.
653 		 */
654 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
655 					ti_offset, &tmpval, 1);
656 
657 		/*
658 		 * Next, translate this from little-endian to big-endian
659 		 * (at least on i386 boxes).
660 		 */
661 		tmpval2 = ntohl(tmpval);
662 
663 		if (readdata) {
664 			/*
665 			 * If we're reading, just copy the leftover number
666 			 * of bytes from the host byte order buffer to
667 			 * the user's buffer.
668 			 */
669 			if (useraddr) {
670 				TI_UNLOCK(sc);
671 				copyout(&tmpval2, ptr, resid);
672 				TI_LOCK(sc);
673 			} else
674 				bcopy(&tmpval2, ptr, resid);
675 		} else {
676 			/*
677 			 * If we're writing, first copy the bytes to be
678 			 * written into the network byte order buffer,
679 			 * leaving the rest of the buffer with whatever was
680 			 * originally in there.  Then, swap the bytes
681 			 * around into host order and write them out.
682 			 *
683 			 * XXX KDM the read side of this has been verified
684 			 * to work, but the write side of it has not been
685 			 * verified.  So user beware.
686 			 */
687 			if (useraddr) {
688 				TI_UNLOCK(sc);
689 				copyin(ptr, &tmpval2, resid);
690 				TI_LOCK(sc);
691 			} else
692 				bcopy(ptr, &tmpval2, resid);
693 
694 			tmpval = htonl(tmpval2);
695 
696 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
697 						 ti_offset, &tmpval, 1);
698 		}
699 	}
700 
701 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
702 
703 	return (0);
704 }
705 
706 static int
707 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
708 	struct ti_softc		*sc;
709 	u_int32_t		tigon_addr, len;
710 	caddr_t			buf;
711 	int			useraddr, readdata;
712 	int			cpu;
713 {
714 	u_int32_t	segptr;
715 	int		cnt;
716 	u_int32_t	tmpval, tmpval2;
717 	caddr_t		ptr;
718 
719 	TI_LOCK_ASSERT(sc);
720 
721 	/*
722 	 * At the moment, we don't handle non-aligned cases, we just bail.
723 	 * If this proves to be a problem, it will be fixed.
724 	 */
725 	if (tigon_addr & 0x3) {
726 		device_printf(sc->ti_dev, "%s: tigon address %#x "
727 		    "isn't word-aligned\n", __func__, tigon_addr);
728 		return (EINVAL);
729 	}
730 
731 	if (len & 0x3) {
732 		device_printf(sc->ti_dev, "%s: transfer length %d "
733 		    "isn't word-aligned\n", __func__, len);
734 		return (EINVAL);
735 	}
736 
737 	segptr = tigon_addr;
738 	cnt = len;
739 	ptr = buf;
740 
741 	while (cnt) {
742 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
743 
744 		if (readdata) {
745 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
746 
747 			tmpval = ntohl(tmpval2);
748 
749 			/*
750 			 * Note:  I've used this debugging interface
751 			 * extensively with Alteon's 12.3.15 firmware,
752 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
753 			 *
754 			 * When you compile the firmware without
755 			 * optimization, which is necessary sometimes in
756 			 * order to properly step through it, you sometimes
757 			 * read out a bogus value of 0xc0017c instead of
758 			 * whatever was supposed to be in that scratchpad
759 			 * location.  That value is on the stack somewhere,
760 			 * but I've never been able to figure out what was
761 			 * causing the problem.
762 			 *
763 			 * The address seems to pop up in random places,
764 			 * often not in the same place on two subsequent
765 			 * reads.
766 			 *
767 			 * In any case, the underlying data doesn't seem
768 			 * to be affected, just the value read out.
769 			 *
770 			 * KDM, 3/7/2000
771 			 */
772 
773 			if (tmpval2 == 0xc0017c)
774 				device_printf(sc->ti_dev, "found 0xc0017c at "
775 				    "%#x (tmpval2)\n", segptr);
776 
777 			if (tmpval == 0xc0017c)
778 				device_printf(sc->ti_dev, "found 0xc0017c at "
779 				    "%#x (tmpval)\n", segptr);
780 
781 			if (useraddr)
782 				copyout(&tmpval, ptr, 4);
783 			else
784 				bcopy(&tmpval, ptr, 4);
785 		} else {
786 			if (useraddr)
787 				copyin(ptr, &tmpval2, 4);
788 			else
789 				bcopy(ptr, &tmpval2, 4);
790 
791 			tmpval = htonl(tmpval2);
792 
793 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
794 		}
795 
796 		cnt -= 4;
797 		segptr += 4;
798 		ptr += 4;
799 	}
800 
801 	return (0);
802 }
803 
804 static int
805 ti_bcopy_swap(src, dst, len, swap_type)
806 	const void	*src;
807 	void		*dst;
808 	size_t		len;
809 	ti_swap_type	swap_type;
810 {
811 	const u_int8_t *tmpsrc;
812 	u_int8_t *tmpdst;
813 	size_t tmplen;
814 
815 	if (len & 0x3) {
816 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
817 		       len);
818 		return (-1);
819 	}
820 
821 	tmpsrc = src;
822 	tmpdst = dst;
823 	tmplen = len;
824 
825 	while (tmplen) {
826 		if (swap_type == TI_SWAP_NTOH)
827 			*(u_int32_t *)tmpdst =
828 				ntohl(*(const u_int32_t *)tmpsrc);
829 		else
830 			*(u_int32_t *)tmpdst =
831 				htonl(*(const u_int32_t *)tmpsrc);
832 
833 		tmpsrc += 4;
834 		tmpdst += 4;
835 		tmplen -= 4;
836 	}
837 
838 	return (0);
839 }
840 
841 /*
842  * Load firmware image into the NIC. Check that the firmware revision
843  * is acceptable and see if we want the firmware for the Tigon 1 or
844  * Tigon 2.
845  */
846 static void
847 ti_loadfw(sc)
848 	struct ti_softc		*sc;
849 {
850 
851 	TI_LOCK_ASSERT(sc);
852 
853 	switch (sc->ti_hwrev) {
854 	case TI_HWREV_TIGON:
855 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
856 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
857 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
858 			device_printf(sc->ti_dev, "firmware revision mismatch; "
859 			    "want %d.%d.%d, got %d.%d.%d\n",
860 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
861 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
862 			    tigonFwReleaseMinor, tigonFwReleaseFix);
863 			return;
864 		}
865 		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
866 		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
867 		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
868 		    tigonFwRodata);
869 		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
870 		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
871 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
872 		break;
873 	case TI_HWREV_TIGON_II:
874 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
875 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
876 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
877 			device_printf(sc->ti_dev, "firmware revision mismatch; "
878 			    "want %d.%d.%d, got %d.%d.%d\n",
879 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
880 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
881 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
882 			return;
883 		}
884 		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
885 		    tigon2FwText);
886 		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
887 		    tigon2FwData);
888 		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
889 		    tigon2FwRodata);
890 		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
891 		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
892 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
893 		break;
894 	default:
895 		device_printf(sc->ti_dev,
896 		    "can't load firmware: unknown hardware rev\n");
897 		break;
898 	}
899 }
900 
901 /*
902  * Send the NIC a command via the command ring.
903  */
904 static void
905 ti_cmd(sc, cmd)
906 	struct ti_softc		*sc;
907 	struct ti_cmd_desc	*cmd;
908 {
909 	int			index;
910 
911 	index = sc->ti_cmd_saved_prodidx;
912 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
913 	TI_INC(index, TI_CMD_RING_CNT);
914 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
915 	sc->ti_cmd_saved_prodidx = index;
916 }
917 
918 /*
919  * Send the NIC an extended command. The 'len' parameter specifies the
920  * number of command slots to include after the initial command.
921  */
922 static void
923 ti_cmd_ext(sc, cmd, arg, len)
924 	struct ti_softc		*sc;
925 	struct ti_cmd_desc	*cmd;
926 	caddr_t			arg;
927 	int			len;
928 {
929 	int			index;
930 	int			i;
931 
932 	index = sc->ti_cmd_saved_prodidx;
933 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
934 	TI_INC(index, TI_CMD_RING_CNT);
935 	for (i = 0; i < len; i++) {
936 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
937 		    *(u_int32_t *)(&arg[i * 4]));
938 		TI_INC(index, TI_CMD_RING_CNT);
939 	}
940 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
941 	sc->ti_cmd_saved_prodidx = index;
942 }
943 
944 /*
945  * Handle events that have triggered interrupts.
946  */
947 static void
948 ti_handle_events(sc)
949 	struct ti_softc		*sc;
950 {
951 	struct ti_event_desc	*e;
952 
953 	if (sc->ti_rdata->ti_event_ring == NULL)
954 		return;
955 
956 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
957 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
958 		switch (TI_EVENT_EVENT(e)) {
959 		case TI_EV_LINKSTAT_CHANGED:
960 			sc->ti_linkstat = TI_EVENT_CODE(e);
961 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
962 				device_printf(sc->ti_dev, "10/100 link up\n");
963 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
964 				device_printf(sc->ti_dev, "gigabit link up\n");
965 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
966 				device_printf(sc->ti_dev, "link down\n");
967 			break;
968 		case TI_EV_ERROR:
969 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
970 				device_printf(sc->ti_dev, "invalid command\n");
971 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
972 				device_printf(sc->ti_dev, "unknown command\n");
973 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
974 				device_printf(sc->ti_dev, "bad config data\n");
975 			break;
976 		case TI_EV_FIRMWARE_UP:
977 			ti_init2(sc);
978 			break;
979 		case TI_EV_STATS_UPDATED:
980 			ti_stats_update(sc);
981 			break;
982 		case TI_EV_RESET_JUMBO_RING:
983 		case TI_EV_MCAST_UPDATED:
984 			/* Who cares. */
985 			break;
986 		default:
987 			device_printf(sc->ti_dev, "unknown event: %d\n",
988 			    TI_EVENT_EVENT(e));
989 			break;
990 		}
991 		/* Advance the consumer index. */
992 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
993 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
994 	}
995 }
996 
997 static int
998 ti_alloc_dmamaps(struct ti_softc *sc)
999 {
1000 	int i;
1001 
1002 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1003 		sc->ti_cdata.ti_txdesc[i].tx_m = NULL;
1004 		sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1005 		if (bus_dmamap_create(sc->ti_mbuftx_dmat, 0,
1006 				      &sc->ti_cdata.ti_txdesc[i].tx_dmamap))
1007 			return (ENOBUFS);
1008 	}
1009 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1010 		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1011 				      &sc->ti_cdata.ti_rx_std_maps[i]))
1012 			return (ENOBUFS);
1013 	}
1014 
1015 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1016 		if (bus_dmamap_create(sc->ti_jumbo_dmat, 0,
1017 				      &sc->ti_cdata.ti_rx_jumbo_maps[i]))
1018 			return (ENOBUFS);
1019 	}
1020 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1021 		if (bus_dmamap_create(sc->ti_mbufrx_dmat, 0,
1022 				      &sc->ti_cdata.ti_rx_mini_maps[i]))
1023 			return (ENOBUFS);
1024 	}
1025 
1026 	return (0);
1027 }
1028 
1029 static void
1030 ti_free_dmamaps(struct ti_softc *sc)
1031 {
1032 	int i;
1033 
1034 	if (sc->ti_mbuftx_dmat)
1035 		for (i = 0; i < TI_TX_RING_CNT; i++)
1036 			if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1037 				bus_dmamap_destroy(sc->ti_mbuftx_dmat,
1038 				    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1039 				sc->ti_cdata.ti_txdesc[i].tx_dmamap = 0;
1040 			}
1041 
1042 	if (sc->ti_mbufrx_dmat)
1043 		for (i = 0; i < TI_STD_RX_RING_CNT; i++)
1044 			if (sc->ti_cdata.ti_rx_std_maps[i]) {
1045 				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1046 				    sc->ti_cdata.ti_rx_std_maps[i]);
1047 				sc->ti_cdata.ti_rx_std_maps[i] = 0;
1048 			}
1049 
1050 	if (sc->ti_jumbo_dmat)
1051 		for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++)
1052 			if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1053 				bus_dmamap_destroy(sc->ti_jumbo_dmat,
1054 				    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1055 				sc->ti_cdata.ti_rx_jumbo_maps[i] = 0;
1056 			}
1057 	if (sc->ti_mbufrx_dmat)
1058 		for (i = 0; i < TI_MINI_RX_RING_CNT; i++)
1059 			if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1060 				bus_dmamap_destroy(sc->ti_mbufrx_dmat,
1061 				    sc->ti_cdata.ti_rx_mini_maps[i]);
1062 				sc->ti_cdata.ti_rx_mini_maps[i] = 0;
1063 			}
1064 }
1065 
1066 #ifdef TI_PRIVATE_JUMBOS
1067 
1068 /*
1069  * Memory management for the jumbo receive ring is a pain in the
1070  * butt. We need to allocate at least 9018 bytes of space per frame,
1071  * _and_ it has to be contiguous (unless you use the extended
1072  * jumbo descriptor format). Using malloc() all the time won't
1073  * work: malloc() allocates memory in powers of two, which means we
1074  * would end up wasting a considerable amount of space by allocating
1075  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1076  * to do our own memory management.
1077  *
1078  * The driver needs to allocate a contiguous chunk of memory at boot
1079  * time. We then chop this up ourselves into 9K pieces and use them
1080  * as external mbuf storage.
1081  *
1082  * One issue here is how much memory to allocate. The jumbo ring has
1083  * 256 slots in it, but at 9K per slot than can consume over 2MB of
1084  * RAM. This is a bit much, especially considering we also need
1085  * RAM for the standard ring and mini ring (on the Tigon 2). To
1086  * save space, we only actually allocate enough memory for 64 slots
1087  * by default, which works out to between 500 and 600K. This can
1088  * be tuned by changing a #define in if_tireg.h.
1089  */
1090 
1091 static int
1092 ti_alloc_jumbo_mem(sc)
1093 	struct ti_softc		*sc;
1094 {
1095 	caddr_t			ptr;
1096 	int			i;
1097 	struct ti_jpool_entry   *entry;
1098 
1099 	/*
1100 	 * Grab a big chunk o' storage.  Since we are chopping this pool up
1101 	 * into ~9k chunks, there doesn't appear to be a need to use page
1102 	 * alignment.
1103 	 */
1104 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1105 				1, 0,			/* algnmnt, boundary */
1106 				BUS_SPACE_MAXADDR,	/* lowaddr */
1107 				BUS_SPACE_MAXADDR,	/* highaddr */
1108 				NULL, NULL,		/* filter, filterarg */
1109 				TI_JMEM,		/* maxsize */
1110 				1,			/* nsegments */
1111 				TI_JMEM,		/* maxsegsize */
1112 				0,			/* flags */
1113 				NULL, NULL,		/* lockfunc, lockarg */
1114 				&sc->ti_jumbo_dmat) != 0) {
1115 		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1116 		return (ENOBUFS);
1117 	}
1118 
1119 	if (bus_dmamem_alloc(sc->ti_jumbo_dmat,
1120 			     (void**)&sc->ti_cdata.ti_jumbo_buf,
1121 			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
1122 			     &sc->ti_jumbo_dmamap) != 0) {
1123 		device_printf(sc->ti_dev, "Failed to allocate jumbo memory\n");
1124 		return (ENOBUFS);
1125 	}
1126 
1127 	SLIST_INIT(&sc->ti_jfree_listhead);
1128 	SLIST_INIT(&sc->ti_jinuse_listhead);
1129 
1130 	/*
1131 	 * Now divide it up into 9K pieces and save the addresses
1132 	 * in an array.
1133 	 */
1134 	ptr = sc->ti_cdata.ti_jumbo_buf;
1135 	for (i = 0; i < TI_JSLOTS; i++) {
1136 		sc->ti_cdata.ti_jslots[i] = ptr;
1137 		ptr += TI_JLEN;
1138 		entry = malloc(sizeof(struct ti_jpool_entry),
1139 			       M_DEVBUF, M_NOWAIT);
1140 		if (entry == NULL) {
1141 			device_printf(sc->ti_dev, "no memory for jumbo "
1142 			    "buffer queue!\n");
1143 			return (ENOBUFS);
1144 		}
1145 		entry->slot = i;
1146 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1147 	}
1148 
1149 	return (0);
1150 }
1151 
1152 /*
1153  * Allocate a jumbo buffer.
1154  */
1155 static void *ti_jalloc(sc)
1156 	struct ti_softc		*sc;
1157 {
1158 	struct ti_jpool_entry	*entry;
1159 
1160 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1161 
1162 	if (entry == NULL) {
1163 		device_printf(sc->ti_dev, "no free jumbo buffers\n");
1164 		return (NULL);
1165 	}
1166 
1167 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1168 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1169 	return (sc->ti_cdata.ti_jslots[entry->slot]);
1170 }
1171 
1172 /*
1173  * Release a jumbo buffer.
1174  */
1175 static void
1176 ti_jfree(buf, args)
1177 	void			*buf;
1178 	void			*args;
1179 {
1180 	struct ti_softc		*sc;
1181 	int			i;
1182 	struct ti_jpool_entry	*entry;
1183 
1184 	/* Extract the softc struct pointer. */
1185 	sc = (struct ti_softc *)args;
1186 
1187 	if (sc == NULL)
1188 		panic("ti_jfree: didn't get softc pointer!");
1189 
1190 	/* calculate the slot this buffer belongs to */
1191 	i = ((vm_offset_t)buf
1192 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1193 
1194 	if ((i < 0) || (i >= TI_JSLOTS))
1195 		panic("ti_jfree: asked to free buffer that we don't manage!");
1196 
1197 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1198 	if (entry == NULL)
1199 		panic("ti_jfree: buffer not in use!");
1200 	entry->slot = i;
1201 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1202 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1203 }
1204 
1205 #else
1206 
1207 static int
1208 ti_alloc_jumbo_mem(sc)
1209 	struct ti_softc		*sc;
1210 {
1211 
1212 	/*
1213 	 * The VM system will take care of providing aligned pages.  Alignment
1214 	 * is set to 1 here so that busdma resources won't be wasted.
1215 	 */
1216 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
1217 				1, 0,			/* algnmnt, boundary */
1218 				BUS_SPACE_MAXADDR,	/* lowaddr */
1219 				BUS_SPACE_MAXADDR,	/* highaddr */
1220 				NULL, NULL,		/* filter, filterarg */
1221 				PAGE_SIZE * 4 /*XXX*/,	/* maxsize */
1222 				4,			/* nsegments */
1223 				PAGE_SIZE,		/* maxsegsize */
1224 				0,			/* flags */
1225 				NULL, NULL,		/* lockfunc, lockarg */
1226 				&sc->ti_jumbo_dmat) != 0) {
1227 		device_printf(sc->ti_dev, "Failed to allocate jumbo dmat\n");
1228 		return (ENOBUFS);
1229 	}
1230 
1231 	return (0);
1232 }
1233 
1234 #endif /* TI_PRIVATE_JUMBOS */
1235 
1236 /*
1237  * Intialize a standard receive ring descriptor.
1238  */
1239 static int
1240 ti_newbuf_std(sc, i, m)
1241 	struct ti_softc		*sc;
1242 	int			i;
1243 	struct mbuf		*m;
1244 {
1245 	bus_dmamap_t		map;
1246 	bus_dma_segment_t	segs;
1247 	struct mbuf		*m_new = NULL;
1248 	struct ti_rx_desc	*r;
1249 	int			nsegs;
1250 
1251 	nsegs = 0;
1252 	if (m == NULL) {
1253 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1254 		if (m_new == NULL)
1255 			return (ENOBUFS);
1256 
1257 		MCLGET(m_new, M_DONTWAIT);
1258 		if (!(m_new->m_flags & M_EXT)) {
1259 			m_freem(m_new);
1260 			return (ENOBUFS);
1261 		}
1262 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1263 	} else {
1264 		m_new = m;
1265 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1266 		m_new->m_data = m_new->m_ext.ext_buf;
1267 	}
1268 
1269 	m_adj(m_new, ETHER_ALIGN);
1270 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1271 	r = &sc->ti_rdata->ti_rx_std_ring[i];
1272 	map = sc->ti_cdata.ti_rx_std_maps[i];
1273 	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1274 				    &nsegs, 0))
1275 		return (ENOBUFS);
1276 	if (nsegs != 1)
1277 		return (ENOBUFS);
1278 	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1279 	r->ti_len = segs.ds_len;
1280 	r->ti_type = TI_BDTYPE_RECV_BD;
1281 	r->ti_flags = 0;
1282 	if (sc->ti_ifp->if_hwassist)
1283 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1284 	r->ti_idx = i;
1285 
1286 	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1287 	return (0);
1288 }
1289 
1290 /*
1291  * Intialize a mini receive ring descriptor. This only applies to
1292  * the Tigon 2.
1293  */
1294 static int
1295 ti_newbuf_mini(sc, i, m)
1296 	struct ti_softc		*sc;
1297 	int			i;
1298 	struct mbuf		*m;
1299 {
1300 	bus_dma_segment_t	segs;
1301 	bus_dmamap_t		map;
1302 	struct mbuf		*m_new = NULL;
1303 	struct ti_rx_desc	*r;
1304 	int			nsegs;
1305 
1306 	nsegs = 0;
1307 	if (m == NULL) {
1308 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1309 		if (m_new == NULL) {
1310 			return (ENOBUFS);
1311 		}
1312 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1313 	} else {
1314 		m_new = m;
1315 		m_new->m_data = m_new->m_pktdat;
1316 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1317 	}
1318 
1319 	m_adj(m_new, ETHER_ALIGN);
1320 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1321 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1322 	map = sc->ti_cdata.ti_rx_mini_maps[i];
1323 	if (bus_dmamap_load_mbuf_sg(sc->ti_mbufrx_dmat, map, m_new, &segs,
1324 				    &nsegs, 0))
1325 		return (ENOBUFS);
1326 	if (nsegs != 1)
1327 		return (ENOBUFS);
1328 	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1329 	r->ti_len = segs.ds_len;
1330 	r->ti_type = TI_BDTYPE_RECV_BD;
1331 	r->ti_flags = TI_BDFLAG_MINI_RING;
1332 	if (sc->ti_ifp->if_hwassist)
1333 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1334 	r->ti_idx = i;
1335 
1336 	bus_dmamap_sync(sc->ti_mbufrx_dmat, map, BUS_DMASYNC_PREREAD);
1337 	return (0);
1338 }
1339 
1340 #ifdef TI_PRIVATE_JUMBOS
1341 
1342 /*
1343  * Initialize a jumbo receive ring descriptor. This allocates
1344  * a jumbo buffer from the pool managed internally by the driver.
1345  */
1346 static int
1347 ti_newbuf_jumbo(sc, i, m)
1348 	struct ti_softc		*sc;
1349 	int			i;
1350 	struct mbuf		*m;
1351 {
1352 	bus_dmamap_t		map;
1353 	struct mbuf		*m_new = NULL;
1354 	struct ti_rx_desc	*r;
1355 	int			nsegs;
1356 	bus_dma_segment_t	segs;
1357 
1358 	if (m == NULL) {
1359 		caddr_t			*buf = NULL;
1360 
1361 		/* Allocate the mbuf. */
1362 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1363 		if (m_new == NULL) {
1364 			return (ENOBUFS);
1365 		}
1366 
1367 		/* Allocate the jumbo buffer */
1368 		buf = ti_jalloc(sc);
1369 		if (buf == NULL) {
1370 			m_freem(m_new);
1371 			device_printf(sc->ti_dev, "jumbo allocation failed "
1372 			    "-- packet dropped!\n");
1373 			return (ENOBUFS);
1374 		}
1375 
1376 		/* Attach the buffer to the mbuf. */
1377 		m_new->m_data = (void *) buf;
1378 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1379 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1380 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1381 	} else {
1382 		m_new = m;
1383 		m_new->m_data = m_new->m_ext.ext_buf;
1384 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1385 	}
1386 
1387 	m_adj(m_new, ETHER_ALIGN);
1388 	/* Set up the descriptor. */
1389 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1390 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1391 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1392 	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, &segs,
1393 				    &nsegs, 0))
1394 		return (ENOBUFS);
1395 	if (nsegs != 1)
1396 		return (ENOBUFS);
1397 	ti_hostaddr64(&r->ti_addr, segs.ds_addr);
1398 	r->ti_len = segs.ds_len;
1399 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1400 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1401 	if (sc->ti_ifp->if_hwassist)
1402 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1403 	r->ti_idx = i;
1404 
1405 	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1406 	return (0);
1407 }
1408 
1409 #else
1410 
1411 #if (PAGE_SIZE == 4096)
1412 #define NPAYLOAD 2
1413 #else
1414 #define NPAYLOAD 1
1415 #endif
1416 
1417 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1418 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1419 #define NFS_HDR_LEN (UDP_HDR_LEN)
1420 static int HDR_LEN =  TCP_HDR_LEN;
1421 
1422 
1423 /*
1424  * Initialize a jumbo receive ring descriptor. This allocates
1425  * a jumbo buffer from the pool managed internally by the driver.
1426  */
1427 static int
1428 ti_newbuf_jumbo(sc, idx, m_old)
1429 	struct ti_softc		*sc;
1430 	int			idx;
1431 	struct mbuf		*m_old;
1432 {
1433 	bus_dmamap_t		map;
1434 	struct mbuf		*cur, *m_new = NULL;
1435 	struct mbuf		*m[3] = {NULL, NULL, NULL};
1436 	struct ti_rx_desc_ext	*r;
1437 	vm_page_t		frame;
1438 	static int		color;
1439 				/* 1 extra buf to make nobufs easy*/
1440 	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1441 	int			i;
1442 	bus_dma_segment_t	segs[4];
1443 	int			nsegs;
1444 
1445 	if (m_old != NULL) {
1446 		m_new = m_old;
1447 		cur = m_old->m_next;
1448 		for (i = 0; i <= NPAYLOAD; i++){
1449 			m[i] = cur;
1450 			cur = cur->m_next;
1451 		}
1452 	} else {
1453 		/* Allocate the mbufs. */
1454 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1455 		if (m_new == NULL) {
1456 			device_printf(sc->ti_dev, "mbuf allocation failed "
1457 			    "-- packet dropped!\n");
1458 			goto nobufs;
1459 		}
1460 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1461 		if (m[NPAYLOAD] == NULL) {
1462 			device_printf(sc->ti_dev, "cluster mbuf allocation "
1463 			    "failed -- packet dropped!\n");
1464 			goto nobufs;
1465 		}
1466 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1467 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1468 			device_printf(sc->ti_dev, "mbuf allocation failed "
1469 			    "-- packet dropped!\n");
1470 			goto nobufs;
1471 		}
1472 		m[NPAYLOAD]->m_len = MCLBYTES;
1473 
1474 		for (i = 0; i < NPAYLOAD; i++){
1475 			MGET(m[i], M_DONTWAIT, MT_DATA);
1476 			if (m[i] == NULL) {
1477 				device_printf(sc->ti_dev, "mbuf allocation "
1478 				    "failed -- packet dropped!\n");
1479 				goto nobufs;
1480 			}
1481 			frame = vm_page_alloc(NULL, color++,
1482 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1483 			    VM_ALLOC_WIRED);
1484 			if (frame == NULL) {
1485 				device_printf(sc->ti_dev, "buffer allocation "
1486 				    "failed -- packet dropped!\n");
1487 				printf("      index %d page %d\n", idx, i);
1488 				goto nobufs;
1489 			}
1490 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1491 			if (sf[i] == NULL) {
1492 				vm_page_unwire(frame, 0);
1493 				vm_page_free(frame);
1494 				device_printf(sc->ti_dev, "buffer allocation "
1495 				    "failed -- packet dropped!\n");
1496 				printf("      index %d page %d\n", idx, i);
1497 				goto nobufs;
1498 			}
1499 		}
1500 		for (i = 0; i < NPAYLOAD; i++){
1501 		/* Attach the buffer to the mbuf. */
1502 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1503 			m[i]->m_len = PAGE_SIZE;
1504 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1505 			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1506 			    0, EXT_DISPOSABLE);
1507 			m[i]->m_next = m[i+1];
1508 		}
1509 		/* link the buffers to the header */
1510 		m_new->m_next = m[0];
1511 		m_new->m_data += ETHER_ALIGN;
1512 		if (sc->ti_hdrsplit)
1513 			m_new->m_len = MHLEN - ETHER_ALIGN;
1514 		else
1515 			m_new->m_len = HDR_LEN;
1516 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1517 	}
1518 
1519 	/* Set up the descriptor. */
1520 	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1521 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1522 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1523 	if (bus_dmamap_load_mbuf_sg(sc->ti_jumbo_dmat, map, m_new, segs,
1524 				    &nsegs, 0))
1525 		return (ENOBUFS);
1526 	if ((nsegs < 1) || (nsegs > 4))
1527 		return (ENOBUFS);
1528 	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1529 	r->ti_len0 = m_new->m_len;
1530 
1531 	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1532 	r->ti_len1 = PAGE_SIZE;
1533 
1534 	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1535 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1536 
1537 	if (PAGE_SIZE == 4096) {
1538 		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1539 		r->ti_len3 = MCLBYTES;
1540 	} else {
1541 		r->ti_len3 = 0;
1542 	}
1543 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1544 
1545 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1546 
1547 	if (sc->ti_ifp->if_hwassist)
1548 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1549 
1550 	r->ti_idx = idx;
1551 
1552 	bus_dmamap_sync(sc->ti_jumbo_dmat, map, BUS_DMASYNC_PREREAD);
1553 	return (0);
1554 
1555 nobufs:
1556 
1557 	/*
1558 	 * Warning! :
1559 	 * This can only be called before the mbufs are strung together.
1560 	 * If the mbufs are strung together, m_freem() will free the chain,
1561 	 * so that the later mbufs will be freed multiple times.
1562 	 */
1563 	if (m_new)
1564 		m_freem(m_new);
1565 
1566 	for (i = 0; i < 3; i++) {
1567 		if (m[i])
1568 			m_freem(m[i]);
1569 		if (sf[i])
1570 			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1571 	}
1572 	return (ENOBUFS);
1573 }
1574 #endif
1575 
1576 
1577 
1578 /*
1579  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580  * that's 1MB or memory, which is a lot. For now, we fill only the first
1581  * 256 ring entries and hope that our CPU is fast enough to keep up with
1582  * the NIC.
1583  */
1584 static int
1585 ti_init_rx_ring_std(sc)
1586 	struct ti_softc		*sc;
1587 {
1588 	int			i;
1589 	struct ti_cmd_desc	cmd;
1590 
1591 	for (i = 0; i < TI_SSLOTS; i++) {
1592 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1593 			return (ENOBUFS);
1594 	};
1595 
1596 	TI_UPDATE_STDPROD(sc, i - 1);
1597 	sc->ti_std = i - 1;
1598 
1599 	return (0);
1600 }
1601 
1602 static void
1603 ti_free_rx_ring_std(sc)
1604 	struct ti_softc		*sc;
1605 {
1606 	bus_dmamap_t		map;
1607 	int			i;
1608 
1609 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1610 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1611 			map = sc->ti_cdata.ti_rx_std_maps[i];
1612 			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1613 			    BUS_DMASYNC_POSTREAD);
1614 			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1615 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1616 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1617 		}
1618 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1619 		    sizeof(struct ti_rx_desc));
1620 	}
1621 }
1622 
1623 static int
1624 ti_init_rx_ring_jumbo(sc)
1625 	struct ti_softc		*sc;
1626 {
1627 	int			i;
1628 	struct ti_cmd_desc	cmd;
1629 
1630 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1631 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1632 			return (ENOBUFS);
1633 	};
1634 
1635 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1636 	sc->ti_jumbo = i - 1;
1637 
1638 	return (0);
1639 }
1640 
1641 static void
1642 ti_free_rx_ring_jumbo(sc)
1643 	struct ti_softc		*sc;
1644 {
1645 	bus_dmamap_t		map;
1646 	int			i;
1647 
1648 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1649 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1650 			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1651 			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
1652 			    BUS_DMASYNC_POSTREAD);
1653 			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
1654 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1655 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1656 		}
1657 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1658 		    sizeof(struct ti_rx_desc));
1659 	}
1660 }
1661 
1662 static int
1663 ti_init_rx_ring_mini(sc)
1664 	struct ti_softc		*sc;
1665 {
1666 	int			i;
1667 
1668 	for (i = 0; i < TI_MSLOTS; i++) {
1669 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1670 			return (ENOBUFS);
1671 	};
1672 
1673 	TI_UPDATE_MINIPROD(sc, i - 1);
1674 	sc->ti_mini = i - 1;
1675 
1676 	return (0);
1677 }
1678 
1679 static void
1680 ti_free_rx_ring_mini(sc)
1681 	struct ti_softc		*sc;
1682 {
1683 	bus_dmamap_t		map;
1684 	int			i;
1685 
1686 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1687 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1688 			map = sc->ti_cdata.ti_rx_mini_maps[i];
1689 			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
1690 			    BUS_DMASYNC_POSTREAD);
1691 			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
1692 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1693 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1694 		}
1695 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1696 		    sizeof(struct ti_rx_desc));
1697 	}
1698 }
1699 
1700 static void
1701 ti_free_tx_ring(sc)
1702 	struct ti_softc		*sc;
1703 {
1704 	struct ti_txdesc	*txd;
1705 	int			i;
1706 
1707 	if (sc->ti_rdata->ti_tx_ring == NULL)
1708 		return;
1709 
1710 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1711 		txd = &sc->ti_cdata.ti_txdesc[i];
1712 		if (txd->tx_m != NULL) {
1713 			bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
1714 			    BUS_DMASYNC_POSTWRITE);
1715 			bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
1716 			m_freem(txd->tx_m);
1717 			txd->tx_m = NULL;
1718 		}
1719 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1720 		    sizeof(struct ti_tx_desc));
1721 	}
1722 }
1723 
1724 static int
1725 ti_init_tx_ring(sc)
1726 	struct ti_softc		*sc;
1727 {
1728 	struct ti_txdesc	*txd;
1729 	int			i;
1730 
1731 	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1732 	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1733 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1734 		txd = &sc->ti_cdata.ti_txdesc[i];
1735 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1736 	}
1737 	sc->ti_txcnt = 0;
1738 	sc->ti_tx_saved_considx = 0;
1739 	sc->ti_tx_saved_prodidx = 0;
1740 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1741 	return (0);
1742 }
1743 
1744 /*
1745  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1746  * but we have to support the old way too so that Tigon 1 cards will
1747  * work.
1748  */
1749 static void
1750 ti_add_mcast(sc, addr)
1751 	struct ti_softc		*sc;
1752 	struct ether_addr	*addr;
1753 {
1754 	struct ti_cmd_desc	cmd;
1755 	u_int16_t		*m;
1756 	u_int32_t		ext[2] = {0, 0};
1757 
1758 	m = (u_int16_t *)&addr->octet[0];
1759 
1760 	switch (sc->ti_hwrev) {
1761 	case TI_HWREV_TIGON:
1762 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1763 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1764 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1765 		break;
1766 	case TI_HWREV_TIGON_II:
1767 		ext[0] = htons(m[0]);
1768 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1769 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1770 		break;
1771 	default:
1772 		device_printf(sc->ti_dev, "unknown hwrev\n");
1773 		break;
1774 	}
1775 }
1776 
1777 static void
1778 ti_del_mcast(sc, addr)
1779 	struct ti_softc		*sc;
1780 	struct ether_addr	*addr;
1781 {
1782 	struct ti_cmd_desc	cmd;
1783 	u_int16_t		*m;
1784 	u_int32_t		ext[2] = {0, 0};
1785 
1786 	m = (u_int16_t *)&addr->octet[0];
1787 
1788 	switch (sc->ti_hwrev) {
1789 	case TI_HWREV_TIGON:
1790 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1791 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1792 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1793 		break;
1794 	case TI_HWREV_TIGON_II:
1795 		ext[0] = htons(m[0]);
1796 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1797 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1798 		break;
1799 	default:
1800 		device_printf(sc->ti_dev, "unknown hwrev\n");
1801 		break;
1802 	}
1803 }
1804 
1805 /*
1806  * Configure the Tigon's multicast address filter.
1807  *
1808  * The actual multicast table management is a bit of a pain, thanks to
1809  * slight brain damage on the part of both Alteon and us. With our
1810  * multicast code, we are only alerted when the multicast address table
1811  * changes and at that point we only have the current list of addresses:
1812  * we only know the current state, not the previous state, so we don't
1813  * actually know what addresses were removed or added. The firmware has
1814  * state, but we can't get our grubby mits on it, and there is no 'delete
1815  * all multicast addresses' command. Hence, we have to maintain our own
1816  * state so we know what addresses have been programmed into the NIC at
1817  * any given time.
1818  */
1819 static void
1820 ti_setmulti(sc)
1821 	struct ti_softc		*sc;
1822 {
1823 	struct ifnet		*ifp;
1824 	struct ifmultiaddr	*ifma;
1825 	struct ti_cmd_desc	cmd;
1826 	struct ti_mc_entry	*mc;
1827 	u_int32_t		intrs;
1828 
1829 	TI_LOCK_ASSERT(sc);
1830 
1831 	ifp = sc->ti_ifp;
1832 
1833 	if (ifp->if_flags & IFF_ALLMULTI) {
1834 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1835 		return;
1836 	} else {
1837 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1838 	}
1839 
1840 	/* Disable interrupts. */
1841 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1842 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1843 
1844 	/* First, zot all the existing filters. */
1845 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1846 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1847 		ti_del_mcast(sc, &mc->mc_addr);
1848 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1849 		free(mc, M_DEVBUF);
1850 	}
1851 
1852 	/* Now program new ones. */
1853 	if_maddr_rlock(ifp);
1854 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1855 		if (ifma->ifma_addr->sa_family != AF_LINK)
1856 			continue;
1857 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1858 		if (mc == NULL) {
1859 			device_printf(sc->ti_dev,
1860 			    "no memory for mcast filter entry\n");
1861 			continue;
1862 		}
1863 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1864 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1865 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1866 		ti_add_mcast(sc, &mc->mc_addr);
1867 	}
1868 	if_maddr_runlock(ifp);
1869 
1870 	/* Re-enable interrupts. */
1871 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1872 }
1873 
1874 /*
1875  * Check to see if the BIOS has configured us for a 64 bit slot when
1876  * we aren't actually in one. If we detect this condition, we can work
1877  * around it on the Tigon 2 by setting a bit in the PCI state register,
1878  * but for the Tigon 1 we must give up and abort the interface attach.
1879  */
1880 static int ti_64bitslot_war(sc)
1881 	struct ti_softc		*sc;
1882 {
1883 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1884 		CSR_WRITE_4(sc, 0x600, 0);
1885 		CSR_WRITE_4(sc, 0x604, 0);
1886 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1887 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1888 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1889 				return (EINVAL);
1890 			else {
1891 				TI_SETBIT(sc, TI_PCI_STATE,
1892 				    TI_PCISTATE_32BIT_BUS);
1893 				return (0);
1894 			}
1895 		}
1896 	}
1897 
1898 	return (0);
1899 }
1900 
1901 /*
1902  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1903  * self-test results.
1904  */
1905 static int
1906 ti_chipinit(sc)
1907 	struct ti_softc		*sc;
1908 {
1909 	u_int32_t		cacheline;
1910 	u_int32_t		pci_writemax = 0;
1911 	u_int32_t		hdrsplit;
1912 
1913 	/* Initialize link to down state. */
1914 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1915 
1916 	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1917 		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1918 	else
1919 		sc->ti_ifp->if_hwassist = 0;
1920 
1921 	/* Set endianness before we access any non-PCI registers. */
1922 #if 0 && BYTE_ORDER == BIG_ENDIAN
1923 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1924 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1925 #else
1926 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1927 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1928 #endif
1929 
1930 	/* Check the ROM failed bit to see if self-tests passed. */
1931 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1932 		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
1933 		return (ENODEV);
1934 	}
1935 
1936 	/* Halt the CPU. */
1937 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1938 
1939 	/* Figure out the hardware revision. */
1940 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1941 	case TI_REV_TIGON_I:
1942 		sc->ti_hwrev = TI_HWREV_TIGON;
1943 		break;
1944 	case TI_REV_TIGON_II:
1945 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1946 		break;
1947 	default:
1948 		device_printf(sc->ti_dev, "unsupported chip revision\n");
1949 		return (ENODEV);
1950 	}
1951 
1952 	/* Do special setup for Tigon 2. */
1953 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1954 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1955 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1956 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1957 	}
1958 
1959 	/*
1960 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1961 	 * can't do header splitting.
1962 	 */
1963 #ifdef TI_JUMBO_HDRSPLIT
1964 	if (sc->ti_hwrev != TI_HWREV_TIGON)
1965 		sc->ti_hdrsplit = 1;
1966 	else
1967 		device_printf(sc->ti_dev,
1968 		    "can't do header splitting on a Tigon I board\n");
1969 #endif /* TI_JUMBO_HDRSPLIT */
1970 
1971 	/* Set up the PCI state register. */
1972 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1973 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1974 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1975 	}
1976 
1977 	/* Clear the read/write max DMA parameters. */
1978 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1979 	    TI_PCISTATE_READ_MAXDMA));
1980 
1981 	/* Get cache line size. */
1982 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1983 
1984 	/*
1985 	 * If the system has set enabled the PCI memory write
1986 	 * and invalidate command in the command register, set
1987 	 * the write max parameter accordingly. This is necessary
1988 	 * to use MWI with the Tigon 2.
1989 	 */
1990 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1991 		switch (cacheline) {
1992 		case 1:
1993 		case 4:
1994 		case 8:
1995 		case 16:
1996 		case 32:
1997 		case 64:
1998 			break;
1999 		default:
2000 		/* Disable PCI memory write and invalidate. */
2001 			if (bootverbose)
2002 				device_printf(sc->ti_dev, "cache line size %d"
2003 				    " not supported; disabling PCI MWI\n",
2004 				    cacheline);
2005 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2006 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2007 			break;
2008 		}
2009 	}
2010 
2011 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2012 
2013 	/* This sets the min dma param all the way up (0xff). */
2014 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2015 
2016 	if (sc->ti_hdrsplit)
2017 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2018 	else
2019 		hdrsplit = 0;
2020 
2021 	/* Configure DMA variables. */
2022 #if BYTE_ORDER == BIG_ENDIAN
2023 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2024 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2025 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2026 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2027 #else /* BYTE_ORDER */
2028 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2029 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2030 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2031 #endif /* BYTE_ORDER */
2032 
2033 	/*
2034 	 * Only allow 1 DMA channel to be active at a time.
2035 	 * I don't think this is a good idea, but without it
2036 	 * the firmware racks up lots of nicDmaReadRingFull
2037 	 * errors.  This is not compatible with hardware checksums.
2038 	 */
2039 	if (sc->ti_ifp->if_hwassist == 0)
2040 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2041 
2042 	/* Recommended settings from Tigon manual. */
2043 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2044 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2045 
2046 	if (ti_64bitslot_war(sc)) {
2047 		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2048 		    "but we aren't");
2049 		return (EINVAL);
2050 	}
2051 
2052 	return (0);
2053 }
2054 
2055 /*
2056  * Initialize the general information block and firmware, and
2057  * start the CPU(s) running.
2058  */
2059 static int
2060 ti_gibinit(sc)
2061 	struct ti_softc		*sc;
2062 {
2063 	struct ti_rcb		*rcb;
2064 	int			i;
2065 	struct ifnet		*ifp;
2066 	uint32_t		rdphys;
2067 
2068 	TI_LOCK_ASSERT(sc);
2069 
2070 	ifp = sc->ti_ifp;
2071 	rdphys = sc->ti_rdata_phys;
2072 
2073 	/* Disable interrupts for now. */
2074 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2075 
2076 	/*
2077 	 * Tell the chip where to find the general information block.
2078 	 * While this struct could go into >4GB memory, we allocate it in a
2079 	 * single slab with the other descriptors, and those don't seem to
2080 	 * support being located in a 64-bit region.
2081 	 */
2082 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
2083 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
2084 
2085 	/* Load the firmware into SRAM. */
2086 	ti_loadfw(sc);
2087 
2088 	/* Set up the contents of the general info and ring control blocks. */
2089 
2090 	/* Set up the event ring and producer pointer. */
2091 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
2092 
2093 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
2094 	rcb->ti_flags = 0;
2095 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
2096 	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
2097 	sc->ti_ev_prodidx.ti_idx = 0;
2098 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2099 	sc->ti_ev_saved_considx = 0;
2100 
2101 	/* Set up the command ring and producer mailbox. */
2102 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
2103 
2104 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
2105 	rcb->ti_flags = 0;
2106 	rcb->ti_max_len = 0;
2107 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2108 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2109 	}
2110 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2111 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2112 	sc->ti_cmd_saved_prodidx = 0;
2113 
2114 	/*
2115 	 * Assign the address of the stats refresh buffer.
2116 	 * We re-use the current stats buffer for this to
2117 	 * conserve memory.
2118 	 */
2119 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
2120 	    rdphys + TI_RD_OFF(ti_info.ti_stats);
2121 
2122 	/* Set up the standard receive ring. */
2123 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
2124 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
2125 	rcb->ti_max_len = TI_FRAMELEN;
2126 	rcb->ti_flags = 0;
2127 	if (sc->ti_ifp->if_hwassist)
2128 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2129 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2130 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2131 
2132 	/* Set up the jumbo receive ring. */
2133 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
2134 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
2135 
2136 #ifdef TI_PRIVATE_JUMBOS
2137 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
2138 	rcb->ti_flags = 0;
2139 #else
2140 	rcb->ti_max_len = PAGE_SIZE;
2141 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2142 #endif
2143 	if (sc->ti_ifp->if_hwassist)
2144 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2145 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2146 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2147 
2148 	/*
2149 	 * Set up the mini ring. Only activated on the
2150 	 * Tigon 2 but the slot in the config block is
2151 	 * still there on the Tigon 1.
2152 	 */
2153 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
2154 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
2155 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2156 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2157 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2158 	else
2159 		rcb->ti_flags = 0;
2160 	if (sc->ti_ifp->if_hwassist)
2161 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2162 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2163 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2164 
2165 	/*
2166 	 * Set up the receive return ring.
2167 	 */
2168 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
2169 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
2170 	rcb->ti_flags = 0;
2171 	rcb->ti_max_len = TI_RETURN_RING_CNT;
2172 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
2173 	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
2174 
2175 	/*
2176 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2177 	 * of putting the transmit ring in the host's address space and
2178 	 * letting the chip DMA it instead of leaving the ring in the NIC's
2179 	 * memory and accessing it through the shared memory region. We
2180 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2181 	 * so we have to revert to the shared memory scheme if we detect
2182 	 * a Tigon 1 chip.
2183 	 */
2184 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2185 	bzero((char *)sc->ti_rdata->ti_tx_ring,
2186 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2187 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2188 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2189 		rcb->ti_flags = 0;
2190 	else
2191 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2192 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2193 	if (sc->ti_ifp->if_hwassist)
2194 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2195 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2196 	rcb->ti_max_len = TI_TX_RING_CNT;
2197 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2198 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2199 	else
2200 		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
2201 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2202 	    rdphys + TI_RD_OFF(ti_tx_considx_r);
2203 
2204 	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2205 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2206 
2207 	/* Set up tuneables */
2208 #if 0
2209 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2210 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2211 		    (sc->ti_rx_coal_ticks / 10));
2212 	else
2213 #endif
2214 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2215 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2216 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2217 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2218 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2219 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2220 
2221 	/* Turn interrupts on. */
2222 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2223 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2224 
2225 	/* Start CPU. */
2226 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2227 
2228 	return (0);
2229 }
2230 
2231 static void
2232 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2233 {
2234 	struct ti_softc *sc;
2235 
2236 	sc = arg;
2237 	if (error || nseg != 1)
2238 		return;
2239 
2240 	/*
2241 	 * All of the Tigon data structures need to live at <4GB.  This
2242 	 * cast is fine since busdma was told about this constraint.
2243 	 */
2244 	sc->ti_rdata_phys = segs[0].ds_addr;
2245 	return;
2246 }
2247 
2248 /*
2249  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2250  * against our list and return its name if we find a match.
2251  */
2252 static int
2253 ti_probe(dev)
2254 	device_t		dev;
2255 {
2256 	const struct ti_type	*t;
2257 
2258 	t = ti_devs;
2259 
2260 	while (t->ti_name != NULL) {
2261 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2262 		    (pci_get_device(dev) == t->ti_did)) {
2263 			device_set_desc(dev, t->ti_name);
2264 			return (BUS_PROBE_DEFAULT);
2265 		}
2266 		t++;
2267 	}
2268 
2269 	return (ENXIO);
2270 }
2271 
2272 static int
2273 ti_attach(dev)
2274 	device_t		dev;
2275 {
2276 	struct ifnet		*ifp;
2277 	struct ti_softc		*sc;
2278 	int			error = 0, rid;
2279 	u_char			eaddr[6];
2280 
2281 	sc = device_get_softc(dev);
2282 	sc->ti_unit = device_get_unit(dev);
2283 	sc->ti_dev = dev;
2284 
2285 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2286 	    MTX_DEF);
2287 	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2288 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2289 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2290 	if (ifp == NULL) {
2291 		device_printf(dev, "can not if_alloc()\n");
2292 		error = ENOSPC;
2293 		goto fail;
2294 	}
2295 	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2296 	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2297 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2298 
2299 	/*
2300 	 * Map control/status registers.
2301 	 */
2302 	pci_enable_busmaster(dev);
2303 
2304 	rid = TI_PCI_LOMEM;
2305 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2306 	    RF_ACTIVE);
2307 
2308 	if (sc->ti_res == NULL) {
2309 		device_printf(dev, "couldn't map memory\n");
2310 		error = ENXIO;
2311 		goto fail;
2312 	}
2313 
2314 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2315 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2316 
2317 	/* Allocate interrupt */
2318 	rid = 0;
2319 
2320 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2321 	    RF_SHAREABLE | RF_ACTIVE);
2322 
2323 	if (sc->ti_irq == NULL) {
2324 		device_printf(dev, "couldn't map interrupt\n");
2325 		error = ENXIO;
2326 		goto fail;
2327 	}
2328 
2329 	if (ti_chipinit(sc)) {
2330 		device_printf(dev, "chip initialization failed\n");
2331 		error = ENXIO;
2332 		goto fail;
2333 	}
2334 
2335 	/* Zero out the NIC's on-board SRAM. */
2336 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2337 
2338 	/* Init again -- zeroing memory may have clobbered some registers. */
2339 	if (ti_chipinit(sc)) {
2340 		device_printf(dev, "chip initialization failed\n");
2341 		error = ENXIO;
2342 		goto fail;
2343 	}
2344 
2345 	/*
2346 	 * Get station address from the EEPROM. Note: the manual states
2347 	 * that the MAC address is at offset 0x8c, however the data is
2348 	 * stored as two longwords (since that's how it's loaded into
2349 	 * the NIC). This means the MAC address is actually preceded
2350 	 * by two zero bytes. We need to skip over those.
2351 	 */
2352 	if (ti_read_eeprom(sc, eaddr,
2353 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2354 		device_printf(dev, "failed to read station address\n");
2355 		error = ENXIO;
2356 		goto fail;
2357 	}
2358 
2359 	/* Allocate the general information block and ring buffers. */
2360 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
2361 				1, 0,			/* algnmnt, boundary */
2362 				BUS_SPACE_MAXADDR,	/* lowaddr */
2363 				BUS_SPACE_MAXADDR,	/* highaddr */
2364 				NULL, NULL,		/* filter, filterarg */
2365 				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2366 				0,			/* nsegments */
2367 				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2368 				0,			/* flags */
2369 				NULL, NULL,		/* lockfunc, lockarg */
2370 				&sc->ti_parent_dmat) != 0) {
2371 		device_printf(dev, "Failed to allocate parent dmat\n");
2372 		error = ENOMEM;
2373 		goto fail;
2374 	}
2375 
2376 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2377 				PAGE_SIZE, 0,		/* algnmnt, boundary */
2378 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2379 				BUS_SPACE_MAXADDR,	/* highaddr */
2380 				NULL, NULL,		/* filter, filterarg */
2381 				sizeof(struct ti_ring_data),	/* maxsize */
2382 				1,			/* nsegments */
2383 				sizeof(struct ti_ring_data),	/* maxsegsize */
2384 				0,			/* flags */
2385 				NULL, NULL,		/* lockfunc, lockarg */
2386 				&sc->ti_rdata_dmat) != 0) {
2387 		device_printf(dev, "Failed to allocate rdata dmat\n");
2388 		error = ENOMEM;
2389 		goto fail;
2390 	}
2391 
2392 	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2393 			     BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2394 			     &sc->ti_rdata_dmamap) != 0) {
2395 		device_printf(dev, "Failed to allocate rdata memory\n");
2396 		error = ENOMEM;
2397 		goto fail;
2398 	}
2399 
2400 	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2401 			    sc->ti_rdata, sizeof(struct ti_ring_data),
2402 			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2403 		device_printf(dev, "Failed to load rdata segments\n");
2404 		error = ENOMEM;
2405 		goto fail;
2406 	}
2407 
2408 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2409 
2410 	/* Try to allocate memory for jumbo buffers. */
2411 	if (ti_alloc_jumbo_mem(sc)) {
2412 		device_printf(dev, "jumbo buffer allocation failed\n");
2413 		error = ENXIO;
2414 		goto fail;
2415 	}
2416 
2417 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2418 				1, 0,			/* algnmnt, boundary */
2419 				BUS_SPACE_MAXADDR,	/* lowaddr */
2420 				BUS_SPACE_MAXADDR,	/* highaddr */
2421 				NULL, NULL,		/* filter, filterarg */
2422 				MCLBYTES * TI_MAXTXSEGS,/* maxsize */
2423 				TI_MAXTXSEGS,		/* nsegments */
2424 				MCLBYTES,		/* maxsegsize */
2425 				0,			/* flags */
2426 				NULL, NULL,		/* lockfunc, lockarg */
2427 				&sc->ti_mbuftx_dmat) != 0) {
2428 		device_printf(dev, "Failed to allocate rdata dmat\n");
2429 		error = ENOMEM;
2430 		goto fail;
2431 	}
2432 
2433 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2434 				1, 0,			/* algnmnt, boundary */
2435 				BUS_SPACE_MAXADDR,	/* lowaddr */
2436 				BUS_SPACE_MAXADDR,	/* highaddr */
2437 				NULL, NULL,		/* filter, filterarg */
2438 				MCLBYTES,		/* maxsize */
2439 				1,			/* nsegments */
2440 				MCLBYTES,		/* maxsegsize */
2441 				0,			/* flags */
2442 				NULL, NULL,		/* lockfunc, lockarg */
2443 				&sc->ti_mbufrx_dmat) != 0) {
2444 		device_printf(dev, "Failed to allocate rdata dmat\n");
2445 		error = ENOMEM;
2446 		goto fail;
2447 	}
2448 
2449 	if (ti_alloc_dmamaps(sc)) {
2450 		device_printf(dev, "dma map creation failed\n");
2451 		error = ENXIO;
2452 		goto fail;
2453 	}
2454 
2455 	/*
2456 	 * We really need a better way to tell a 1000baseTX card
2457 	 * from a 1000baseSX one, since in theory there could be
2458 	 * OEMed 1000baseTX cards from lame vendors who aren't
2459 	 * clever enough to change the PCI ID. For the moment
2460 	 * though, the AceNIC is the only copper card available.
2461 	 */
2462 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2463 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2464 		sc->ti_copper = 1;
2465 	/* Ok, it's not the only copper card available. */
2466 	if (pci_get_vendor(dev) == NG_VENDORID &&
2467 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2468 		sc->ti_copper = 1;
2469 
2470 	/* Set default tuneable values. */
2471 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2472 #if 0
2473 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2474 #endif
2475 	sc->ti_rx_coal_ticks = 170;
2476 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2477 	sc->ti_rx_max_coal_bds = 64;
2478 #if 0
2479 	sc->ti_tx_max_coal_bds = 128;
2480 #endif
2481 	sc->ti_tx_max_coal_bds = 32;
2482 	sc->ti_tx_buf_ratio = 21;
2483 
2484 	/* Set up ifnet structure */
2485 	ifp->if_softc = sc;
2486 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2487 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2488 	ifp->if_ioctl = ti_ioctl;
2489 	ifp->if_start = ti_start;
2490 	ifp->if_init = ti_init;
2491 	ifp->if_baudrate = 1000000000;
2492 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2493 
2494 	/* Set up ifmedia support. */
2495 	if (sc->ti_copper) {
2496 		/*
2497 		 * Copper cards allow manual 10/100 mode selection,
2498 		 * but not manual 1000baseTX mode selection. Why?
2499 		 * Becuase currently there's no way to specify the
2500 		 * master/slave setting through the firmware interface,
2501 		 * so Alteon decided to just bag it and handle it
2502 		 * via autonegotiation.
2503 		 */
2504 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2505 		ifmedia_add(&sc->ifmedia,
2506 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2507 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2508 		ifmedia_add(&sc->ifmedia,
2509 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2510 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2511 		ifmedia_add(&sc->ifmedia,
2512 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2513 	} else {
2514 		/* Fiber cards don't support 10/100 modes. */
2515 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2516 		ifmedia_add(&sc->ifmedia,
2517 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2518 	}
2519 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2520 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2521 
2522 	/*
2523 	 * We're assuming here that card initialization is a sequential
2524 	 * thing.  If it isn't, multiple cards probing at the same time
2525 	 * could stomp on the list of softcs here.
2526 	 */
2527 
2528 	/* Register the device */
2529 	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2530 			   0600, "ti%d", sc->ti_unit);
2531 	sc->dev->si_drv1 = sc;
2532 
2533 	/*
2534 	 * Call MI attach routine.
2535 	 */
2536 	ether_ifattach(ifp, eaddr);
2537 
2538 	/* Hook interrupt last to avoid having to lock softc */
2539 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2540 	   NULL, ti_intr, sc, &sc->ti_intrhand);
2541 
2542 	if (error) {
2543 		device_printf(dev, "couldn't set up irq\n");
2544 		goto fail;
2545 	}
2546 
2547 fail:
2548 	if (error)
2549 		ti_detach(dev);
2550 
2551 	return (error);
2552 }
2553 
2554 /*
2555  * Shutdown hardware and free up resources. This can be called any
2556  * time after the mutex has been initialized. It is called in both
2557  * the error case in attach and the normal detach case so it needs
2558  * to be careful about only freeing resources that have actually been
2559  * allocated.
2560  */
2561 static int
2562 ti_detach(dev)
2563 	device_t		dev;
2564 {
2565 	struct ti_softc		*sc;
2566 	struct ifnet		*ifp;
2567 
2568 	sc = device_get_softc(dev);
2569 	if (sc->dev)
2570 		destroy_dev(sc->dev);
2571 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2572 	ifp = sc->ti_ifp;
2573 	if (device_is_attached(dev)) {
2574 		ether_ifdetach(ifp);
2575 		TI_LOCK(sc);
2576 		ti_stop(sc);
2577 		TI_UNLOCK(sc);
2578 	}
2579 
2580 	/* These should only be active if attach succeeded */
2581 	callout_drain(&sc->ti_watchdog);
2582 	bus_generic_detach(dev);
2583 	ti_free_dmamaps(sc);
2584 	ifmedia_removeall(&sc->ifmedia);
2585 
2586 #ifdef TI_PRIVATE_JUMBOS
2587 	if (sc->ti_cdata.ti_jumbo_buf)
2588 		bus_dmamem_free(sc->ti_jumbo_dmat, sc->ti_cdata.ti_jumbo_buf,
2589 		    sc->ti_jumbo_dmamap);
2590 #endif
2591 	if (sc->ti_jumbo_dmat)
2592 		bus_dma_tag_destroy(sc->ti_jumbo_dmat);
2593 	if (sc->ti_mbuftx_dmat)
2594 		bus_dma_tag_destroy(sc->ti_mbuftx_dmat);
2595 	if (sc->ti_mbufrx_dmat)
2596 		bus_dma_tag_destroy(sc->ti_mbufrx_dmat);
2597 	if (sc->ti_rdata)
2598 		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2599 				sc->ti_rdata_dmamap);
2600 	if (sc->ti_rdata_dmat)
2601 		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2602 	if (sc->ti_parent_dmat)
2603 		bus_dma_tag_destroy(sc->ti_parent_dmat);
2604 	if (sc->ti_intrhand)
2605 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2606 	if (sc->ti_irq)
2607 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2608 	if (sc->ti_res) {
2609 		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2610 		    sc->ti_res);
2611 	}
2612 	if (ifp)
2613 		if_free(ifp);
2614 
2615 	mtx_destroy(&sc->ti_mtx);
2616 
2617 	return (0);
2618 }
2619 
2620 #ifdef TI_JUMBO_HDRSPLIT
2621 /*
2622  * If hdr_len is 0, that means that header splitting wasn't done on
2623  * this packet for some reason.  The two most likely reasons are that
2624  * the protocol isn't a supported protocol for splitting, or this
2625  * packet had a fragment offset that wasn't 0.
2626  *
2627  * The header length, if it is non-zero, will always be the length of
2628  * the headers on the packet, but that length could be longer than the
2629  * first mbuf.  So we take the minimum of the two as the actual
2630  * length.
2631  */
2632 static __inline void
2633 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2634 {
2635 	int i = 0;
2636 	int lengths[4] = {0, 0, 0, 0};
2637 	struct mbuf *m, *mp;
2638 
2639 	if (hdr_len != 0)
2640 		top->m_len = min(hdr_len, top->m_len);
2641 	pkt_len -= top->m_len;
2642 	lengths[i++] = top->m_len;
2643 
2644 	mp = top;
2645 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2646 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2647 		pkt_len -= m->m_len;
2648 		lengths[i++] = m->m_len;
2649 		mp = m;
2650 	}
2651 
2652 #if 0
2653 	if (hdr_len != 0)
2654 		printf("got split packet: ");
2655 	else
2656 		printf("got non-split packet: ");
2657 
2658 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2659 	    lengths[1], lengths[2], lengths[3],
2660 	    lengths[0] + lengths[1] + lengths[2] +
2661 	    lengths[3]);
2662 #endif
2663 
2664 	if (pkt_len)
2665 		panic("header splitting didn't");
2666 
2667 	if (m) {
2668 		m_freem(m);
2669 		mp->m_next = NULL;
2670 
2671 	}
2672 	if (mp->m_next != NULL)
2673 		panic("ti_hdr_split: last mbuf in chain should be null");
2674 }
2675 #endif /* TI_JUMBO_HDRSPLIT */
2676 
2677 /*
2678  * Frame reception handling. This is called if there's a frame
2679  * on the receive return list.
2680  *
2681  * Note: we have to be able to handle three possibilities here:
2682  * 1) the frame is from the mini receive ring (can only happen)
2683  *    on Tigon 2 boards)
2684  * 2) the frame is from the jumbo recieve ring
2685  * 3) the frame is from the standard receive ring
2686  */
2687 
2688 static void
2689 ti_rxeof(sc)
2690 	struct ti_softc		*sc;
2691 {
2692 	bus_dmamap_t		map;
2693 	struct ifnet		*ifp;
2694 	struct ti_cmd_desc	cmd;
2695 
2696 	TI_LOCK_ASSERT(sc);
2697 
2698 	ifp = sc->ti_ifp;
2699 
2700 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2701 		struct ti_rx_desc	*cur_rx;
2702 		u_int32_t		rxidx;
2703 		struct mbuf		*m = NULL;
2704 		u_int16_t		vlan_tag = 0;
2705 		int			have_tag = 0;
2706 
2707 		cur_rx =
2708 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2709 		rxidx = cur_rx->ti_idx;
2710 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2711 
2712 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2713 			have_tag = 1;
2714 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2715 		}
2716 
2717 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2718 
2719 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2720 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2721 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2722 			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2723 			bus_dmamap_sync(sc->ti_jumbo_dmat, map,
2724 			    BUS_DMASYNC_POSTREAD);
2725 			bus_dmamap_unload(sc->ti_jumbo_dmat, map);
2726 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2727 				ifp->if_ierrors++;
2728 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2729 				continue;
2730 			}
2731 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2732 				ifp->if_ierrors++;
2733 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2734 				continue;
2735 			}
2736 #ifdef TI_PRIVATE_JUMBOS
2737 			m->m_len = cur_rx->ti_len;
2738 #else /* TI_PRIVATE_JUMBOS */
2739 #ifdef TI_JUMBO_HDRSPLIT
2740 			if (sc->ti_hdrsplit)
2741 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2742 					     cur_rx->ti_len, rxidx);
2743 			else
2744 #endif /* TI_JUMBO_HDRSPLIT */
2745 			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2746 #endif /* TI_PRIVATE_JUMBOS */
2747 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2748 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2749 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2750 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2751 			map = sc->ti_cdata.ti_rx_mini_maps[rxidx];
2752 			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2753 			    BUS_DMASYNC_POSTREAD);
2754 			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2755 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2756 				ifp->if_ierrors++;
2757 				ti_newbuf_mini(sc, sc->ti_mini, m);
2758 				continue;
2759 			}
2760 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2761 				ifp->if_ierrors++;
2762 				ti_newbuf_mini(sc, sc->ti_mini, m);
2763 				continue;
2764 			}
2765 			m->m_len = cur_rx->ti_len;
2766 		} else {
2767 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2768 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2769 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2770 			map = sc->ti_cdata.ti_rx_std_maps[rxidx];
2771 			bus_dmamap_sync(sc->ti_mbufrx_dmat, map,
2772 			    BUS_DMASYNC_POSTREAD);
2773 			bus_dmamap_unload(sc->ti_mbufrx_dmat, map);
2774 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2775 				ifp->if_ierrors++;
2776 				ti_newbuf_std(sc, sc->ti_std, m);
2777 				continue;
2778 			}
2779 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2780 				ifp->if_ierrors++;
2781 				ti_newbuf_std(sc, sc->ti_std, m);
2782 				continue;
2783 			}
2784 			m->m_len = cur_rx->ti_len;
2785 		}
2786 
2787 		m->m_pkthdr.len = cur_rx->ti_len;
2788 		ifp->if_ipackets++;
2789 		m->m_pkthdr.rcvif = ifp;
2790 
2791 		if (ifp->if_hwassist) {
2792 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2793 			    CSUM_DATA_VALID;
2794 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2795 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2796 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2797 		}
2798 
2799 		/*
2800 		 * If we received a packet with a vlan tag,
2801 		 * tag it before passing the packet upward.
2802 		 */
2803 		if (have_tag) {
2804 			m->m_pkthdr.ether_vtag = vlan_tag;
2805 			m->m_flags |= M_VLANTAG;
2806 		}
2807 		TI_UNLOCK(sc);
2808 		(*ifp->if_input)(ifp, m);
2809 		TI_LOCK(sc);
2810 	}
2811 
2812 	/* Only necessary on the Tigon 1. */
2813 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2814 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2815 		    sc->ti_rx_saved_considx);
2816 
2817 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2818 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2819 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2820 }
2821 
2822 static void
2823 ti_txeof(sc)
2824 	struct ti_softc		*sc;
2825 {
2826 	struct ti_txdesc	*txd;
2827 	struct ti_tx_desc	txdesc;
2828 	struct ti_tx_desc	*cur_tx = NULL;
2829 	struct ifnet		*ifp;
2830 	int			idx;
2831 
2832 	ifp = sc->ti_ifp;
2833 
2834 	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2835 	if (txd == NULL)
2836 		return;
2837 	/*
2838 	 * Go through our tx ring and free mbufs for those
2839 	 * frames that have been sent.
2840 	 */
2841 	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2842 	    TI_INC(idx, TI_TX_RING_CNT)) {
2843 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2844 			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2845 			    sizeof(txdesc), &txdesc);
2846 			cur_tx = &txdesc;
2847 		} else
2848 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2849 		sc->ti_txcnt--;
2850 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2851 		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2852 			continue;
2853 		bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2854 		    BUS_DMASYNC_POSTWRITE);
2855 		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2856 
2857 		ifp->if_opackets++;
2858 		m_freem(txd->tx_m);
2859 		txd->tx_m = NULL;
2860 		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2861 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2862 		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2863 	}
2864 	sc->ti_tx_saved_considx = idx;
2865 
2866 	sc->ti_timer = sc->ti_txcnt > 0 ? 5 : 0;
2867 }
2868 
2869 static void
2870 ti_intr(xsc)
2871 	void			*xsc;
2872 {
2873 	struct ti_softc		*sc;
2874 	struct ifnet		*ifp;
2875 
2876 	sc = xsc;
2877 	TI_LOCK(sc);
2878 	ifp = sc->ti_ifp;
2879 
2880 /*#ifdef notdef*/
2881 	/* Avoid this for now -- checking this register is expensive. */
2882 	/* Make sure this is really our interrupt. */
2883 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2884 		TI_UNLOCK(sc);
2885 		return;
2886 	}
2887 /*#endif*/
2888 
2889 	/* Ack interrupt and stop others from occuring. */
2890 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2891 
2892 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2893 		/* Check RX return ring producer/consumer */
2894 		ti_rxeof(sc);
2895 
2896 		/* Check TX ring producer/consumer */
2897 		ti_txeof(sc);
2898 	}
2899 
2900 	ti_handle_events(sc);
2901 
2902 	/* Re-enable interrupts. */
2903 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2904 
2905 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2906 	    ifp->if_snd.ifq_head != NULL)
2907 		ti_start_locked(ifp);
2908 
2909 	TI_UNLOCK(sc);
2910 }
2911 
2912 static void
2913 ti_stats_update(sc)
2914 	struct ti_softc		*sc;
2915 {
2916 	struct ifnet		*ifp;
2917 
2918 	ifp = sc->ti_ifp;
2919 
2920 	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2921 	    BUS_DMASYNC_POSTREAD);
2922 
2923 	ifp->if_collisions +=
2924 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2925 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2926 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2927 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2928 	   ifp->if_collisions;
2929 
2930 	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2931 	    BUS_DMASYNC_PREREAD);
2932 }
2933 
2934 /*
2935  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2936  * pointers to descriptors.
2937  */
2938 static int
2939 ti_encap(sc, m_head)
2940 	struct ti_softc		*sc;
2941 	struct mbuf		**m_head;
2942 {
2943 	struct ti_txdesc	*txd;
2944 	struct ti_tx_desc	*f;
2945 	struct ti_tx_desc	txdesc;
2946 	struct mbuf		*m;
2947 	bus_dma_segment_t	txsegs[TI_MAXTXSEGS];
2948 	u_int16_t		csum_flags;
2949 	int			error, frag, i, nseg;
2950 
2951 	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
2952 		return (ENOBUFS);
2953 
2954 	error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2955 	    *m_head, txsegs, &nseg, 0);
2956 	if (error == EFBIG) {
2957 		m = m_defrag(*m_head, M_DONTWAIT);
2958 		if (m == NULL) {
2959 			m_freem(*m_head);
2960 			*m_head = NULL;
2961 			return (ENOMEM);
2962 		}
2963 		*m_head = m;
2964 		error = bus_dmamap_load_mbuf_sg(sc->ti_mbuftx_dmat,
2965 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
2966 		if (error) {
2967 			m_freem(*m_head);
2968 			*m_head = NULL;
2969 			return (error);
2970 		}
2971 	} else if (error != 0)
2972 		return (error);
2973 	if (nseg == 0) {
2974 		m_freem(*m_head);
2975 		*m_head = NULL;
2976 		return (EIO);
2977 	}
2978 
2979 	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
2980 		bus_dmamap_unload(sc->ti_mbuftx_dmat, txd->tx_dmamap);
2981 		return (ENOBUFS);
2982 	}
2983 
2984 	m = *m_head;
2985 	csum_flags = 0;
2986 	if (m->m_pkthdr.csum_flags) {
2987 		if (m->m_pkthdr.csum_flags & CSUM_IP)
2988 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2989 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2990 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2991 		if (m->m_flags & M_LASTFRAG)
2992 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2993 		else if (m->m_flags & M_FRAG)
2994 			csum_flags |= TI_BDFLAG_IP_FRAG;
2995 	}
2996 
2997 	bus_dmamap_sync(sc->ti_mbuftx_dmat, txd->tx_dmamap,
2998 	    BUS_DMASYNC_PREWRITE);
2999 	bus_dmamap_sync(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
3000 	    BUS_DMASYNC_PREWRITE);
3001 
3002 	frag = sc->ti_tx_saved_prodidx;
3003 	for (i = 0; i < nseg; i++) {
3004 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3005 			bzero(&txdesc, sizeof(txdesc));
3006 			f = &txdesc;
3007 		} else
3008 			f = &sc->ti_rdata->ti_tx_ring[frag];
3009 		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3010 		f->ti_len = txsegs[i].ds_len;
3011 		f->ti_flags = csum_flags;
3012 		if (m->m_flags & M_VLANTAG) {
3013 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3014 			f->ti_vlan_tag = m->m_pkthdr.ether_vtag & 0xfff;
3015 		} else {
3016 			f->ti_vlan_tag = 0;
3017 		}
3018 
3019 		if (sc->ti_hwrev == TI_HWREV_TIGON)
3020 			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3021 			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3022 		TI_INC(frag, TI_TX_RING_CNT);
3023 	}
3024 
3025 	sc->ti_tx_saved_prodidx = frag;
3026 	/* set TI_BDFLAG_END on the last descriptor */
3027 	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3028 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3029 		txdesc.ti_flags |= TI_BDFLAG_END;
3030 		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3031 		    sizeof(txdesc), &txdesc);
3032 	} else
3033 		sc->ti_rdata->ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3034 
3035 	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3036 	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3037 	txd->tx_m = m;
3038 	sc->ti_txcnt += nseg;
3039 
3040 	return (0);
3041 }
3042 
3043 static void
3044 ti_start(ifp)
3045 	struct ifnet		*ifp;
3046 {
3047 	struct ti_softc		*sc;
3048 
3049 	sc = ifp->if_softc;
3050 	TI_LOCK(sc);
3051 	ti_start_locked(ifp);
3052 	TI_UNLOCK(sc);
3053 }
3054 
3055 /*
3056  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3057  * to the mbuf data regions directly in the transmit descriptors.
3058  */
3059 static void
3060 ti_start_locked(ifp)
3061 	struct ifnet		*ifp;
3062 {
3063 	struct ti_softc		*sc;
3064 	struct mbuf		*m_head = NULL;
3065 	int			enq = 0;
3066 
3067 	sc = ifp->if_softc;
3068 
3069 	for (; ifp->if_snd.ifq_head != NULL &&
3070 	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3071 		IF_DEQUEUE(&ifp->if_snd, m_head);
3072 		if (m_head == NULL)
3073 			break;
3074 
3075 		/*
3076 		 * XXX
3077 		 * safety overkill.  If this is a fragmented packet chain
3078 		 * with delayed TCP/UDP checksums, then only encapsulate
3079 		 * it if we have enough descriptors to handle the entire
3080 		 * chain at once.
3081 		 * (paranoia -- may not actually be needed)
3082 		 */
3083 		if (m_head->m_flags & M_FIRSTFRAG &&
3084 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3085 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3086 			    m_head->m_pkthdr.csum_data + 16) {
3087 				IF_PREPEND(&ifp->if_snd, m_head);
3088 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3089 				break;
3090 			}
3091 		}
3092 
3093 		/*
3094 		 * Pack the data into the transmit ring. If we
3095 		 * don't have room, set the OACTIVE flag and wait
3096 		 * for the NIC to drain the ring.
3097 		 */
3098 		if (ti_encap(sc, &m_head)) {
3099 			if (m_head == NULL)
3100 				break;
3101 			IF_PREPEND(&ifp->if_snd, m_head);
3102 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3103 			break;
3104 		}
3105 
3106 		enq++;
3107 		/*
3108 		 * If there's a BPF listener, bounce a copy of this frame
3109 		 * to him.
3110 		 */
3111 		ETHER_BPF_MTAP(ifp, m_head);
3112 	}
3113 
3114 	if (enq > 0) {
3115 		/* Transmit */
3116 		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3117 
3118 		/*
3119 		 * Set a timeout in case the chip goes out to lunch.
3120 		 */
3121 		sc->ti_timer = 5;
3122 	}
3123 }
3124 
3125 static void
3126 ti_init(xsc)
3127 	void			*xsc;
3128 {
3129 	struct ti_softc		*sc;
3130 
3131 	sc = xsc;
3132 	TI_LOCK(sc);
3133 	ti_init_locked(sc);
3134 	TI_UNLOCK(sc);
3135 }
3136 
3137 static void
3138 ti_init_locked(xsc)
3139 	void			*xsc;
3140 {
3141 	struct ti_softc		*sc = xsc;
3142 
3143 	/* Cancel pending I/O and flush buffers. */
3144 	ti_stop(sc);
3145 
3146 	/* Init the gen info block, ring control blocks and firmware. */
3147 	if (ti_gibinit(sc)) {
3148 		device_printf(sc->ti_dev, "initialization failure\n");
3149 		return;
3150 	}
3151 }
3152 
3153 static void ti_init2(sc)
3154 	struct ti_softc		*sc;
3155 {
3156 	struct ti_cmd_desc	cmd;
3157 	struct ifnet		*ifp;
3158 	u_int8_t		*ea;
3159 	struct ifmedia		*ifm;
3160 	int			tmp;
3161 
3162 	TI_LOCK_ASSERT(sc);
3163 
3164 	ifp = sc->ti_ifp;
3165 
3166 	/* Specify MTU and interface index. */
3167 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
3168 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3169 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3170 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3171 
3172 	/* Load our MAC address. */
3173 	ea = IF_LLADDR(sc->ti_ifp);
3174 	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3175 	CSR_WRITE_4(sc, TI_GCR_PAR1,
3176 	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3177 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3178 
3179 	/* Enable or disable promiscuous mode as needed. */
3180 	if (ifp->if_flags & IFF_PROMISC) {
3181 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3182 	} else {
3183 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3184 	}
3185 
3186 	/* Program multicast filter. */
3187 	ti_setmulti(sc);
3188 
3189 	/*
3190 	 * If this is a Tigon 1, we should tell the
3191 	 * firmware to use software packet filtering.
3192 	 */
3193 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3194 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3195 	}
3196 
3197 	/* Init RX ring. */
3198 	ti_init_rx_ring_std(sc);
3199 
3200 	/* Init jumbo RX ring. */
3201 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3202 		ti_init_rx_ring_jumbo(sc);
3203 
3204 	/*
3205 	 * If this is a Tigon 2, we can also configure the
3206 	 * mini ring.
3207 	 */
3208 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
3209 		ti_init_rx_ring_mini(sc);
3210 
3211 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3212 	sc->ti_rx_saved_considx = 0;
3213 
3214 	/* Init TX ring. */
3215 	ti_init_tx_ring(sc);
3216 
3217 	/* Tell firmware we're alive. */
3218 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3219 
3220 	/* Enable host interrupts. */
3221 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3222 
3223 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3224 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3225 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3226 
3227 	/*
3228 	 * Make sure to set media properly. We have to do this
3229 	 * here since we have to issue commands in order to set
3230 	 * the link negotiation and we can't issue commands until
3231 	 * the firmware is running.
3232 	 */
3233 	ifm = &sc->ifmedia;
3234 	tmp = ifm->ifm_media;
3235 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3236 	ti_ifmedia_upd(ifp);
3237 	ifm->ifm_media = tmp;
3238 }
3239 
3240 /*
3241  * Set media options.
3242  */
3243 static int
3244 ti_ifmedia_upd(ifp)
3245 	struct ifnet		*ifp;
3246 {
3247 	struct ti_softc		*sc;
3248 	struct ifmedia		*ifm;
3249 	struct ti_cmd_desc	cmd;
3250 	u_int32_t		flowctl;
3251 
3252 	sc = ifp->if_softc;
3253 	ifm = &sc->ifmedia;
3254 
3255 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3256 		return (EINVAL);
3257 
3258 	flowctl = 0;
3259 
3260 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3261 	case IFM_AUTO:
3262 		/*
3263 		 * Transmit flow control doesn't work on the Tigon 1.
3264 		 */
3265 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3266 
3267 		/*
3268 		 * Transmit flow control can also cause problems on the
3269 		 * Tigon 2, apparantly with both the copper and fiber
3270 		 * boards.  The symptom is that the interface will just
3271 		 * hang.  This was reproduced with Alteon 180 switches.
3272 		 */
3273 #if 0
3274 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3275 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3276 #endif
3277 
3278 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3279 		    TI_GLNK_FULL_DUPLEX| flowctl |
3280 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3281 
3282 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3283 #if 0
3284 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3285 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3286 #endif
3287 
3288 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3289 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3290 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3291 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3292 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3293 		break;
3294 	case IFM_1000_SX:
3295 	case IFM_1000_T:
3296 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3297 #if 0
3298 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3299 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3300 #endif
3301 
3302 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3303 		    flowctl |TI_GLNK_ENB);
3304 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3305 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3306 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3307 		}
3308 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3309 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3310 		break;
3311 	case IFM_100_FX:
3312 	case IFM_10_FL:
3313 	case IFM_100_TX:
3314 	case IFM_10_T:
3315 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3316 #if 0
3317 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3318 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3319 #endif
3320 
3321 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3322 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3323 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3324 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3325 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3326 		} else {
3327 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3328 		}
3329 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3330 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3331 		} else {
3332 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3333 		}
3334 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3335 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3336 		break;
3337 	}
3338 
3339 	return (0);
3340 }
3341 
3342 /*
3343  * Report current media status.
3344  */
3345 static void
3346 ti_ifmedia_sts(ifp, ifmr)
3347 	struct ifnet		*ifp;
3348 	struct ifmediareq	*ifmr;
3349 {
3350 	struct ti_softc		*sc;
3351 	u_int32_t		media = 0;
3352 
3353 	sc = ifp->if_softc;
3354 
3355 	ifmr->ifm_status = IFM_AVALID;
3356 	ifmr->ifm_active = IFM_ETHER;
3357 
3358 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3359 		return;
3360 
3361 	ifmr->ifm_status |= IFM_ACTIVE;
3362 
3363 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3364 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3365 		if (sc->ti_copper)
3366 			ifmr->ifm_active |= IFM_1000_T;
3367 		else
3368 			ifmr->ifm_active |= IFM_1000_SX;
3369 		if (media & TI_GLNK_FULL_DUPLEX)
3370 			ifmr->ifm_active |= IFM_FDX;
3371 		else
3372 			ifmr->ifm_active |= IFM_HDX;
3373 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3374 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3375 		if (sc->ti_copper) {
3376 			if (media & TI_LNK_100MB)
3377 				ifmr->ifm_active |= IFM_100_TX;
3378 			if (media & TI_LNK_10MB)
3379 				ifmr->ifm_active |= IFM_10_T;
3380 		} else {
3381 			if (media & TI_LNK_100MB)
3382 				ifmr->ifm_active |= IFM_100_FX;
3383 			if (media & TI_LNK_10MB)
3384 				ifmr->ifm_active |= IFM_10_FL;
3385 		}
3386 		if (media & TI_LNK_FULL_DUPLEX)
3387 			ifmr->ifm_active |= IFM_FDX;
3388 		if (media & TI_LNK_HALF_DUPLEX)
3389 			ifmr->ifm_active |= IFM_HDX;
3390 	}
3391 }
3392 
3393 static int
3394 ti_ioctl(ifp, command, data)
3395 	struct ifnet		*ifp;
3396 	u_long			command;
3397 	caddr_t			data;
3398 {
3399 	struct ti_softc		*sc = ifp->if_softc;
3400 	struct ifreq		*ifr = (struct ifreq *) data;
3401 	int			mask, error = 0;
3402 	struct ti_cmd_desc	cmd;
3403 
3404 	switch (command) {
3405 	case SIOCSIFMTU:
3406 		TI_LOCK(sc);
3407 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3408 			error = EINVAL;
3409 		else {
3410 			ifp->if_mtu = ifr->ifr_mtu;
3411 			ti_init_locked(sc);
3412 		}
3413 		TI_UNLOCK(sc);
3414 		break;
3415 	case SIOCSIFFLAGS:
3416 		TI_LOCK(sc);
3417 		if (ifp->if_flags & IFF_UP) {
3418 			/*
3419 			 * If only the state of the PROMISC flag changed,
3420 			 * then just use the 'set promisc mode' command
3421 			 * instead of reinitializing the entire NIC. Doing
3422 			 * a full re-init means reloading the firmware and
3423 			 * waiting for it to start up, which may take a
3424 			 * second or two.
3425 			 */
3426 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3427 			    ifp->if_flags & IFF_PROMISC &&
3428 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3429 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3430 				    TI_CMD_CODE_PROMISC_ENB, 0);
3431 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3432 			    !(ifp->if_flags & IFF_PROMISC) &&
3433 			    sc->ti_if_flags & IFF_PROMISC) {
3434 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3435 				    TI_CMD_CODE_PROMISC_DIS, 0);
3436 			} else
3437 				ti_init_locked(sc);
3438 		} else {
3439 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3440 				ti_stop(sc);
3441 			}
3442 		}
3443 		sc->ti_if_flags = ifp->if_flags;
3444 		TI_UNLOCK(sc);
3445 		break;
3446 	case SIOCADDMULTI:
3447 	case SIOCDELMULTI:
3448 		TI_LOCK(sc);
3449 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3450 			ti_setmulti(sc);
3451 		TI_UNLOCK(sc);
3452 		break;
3453 	case SIOCSIFMEDIA:
3454 	case SIOCGIFMEDIA:
3455 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3456 		break;
3457 	case SIOCSIFCAP:
3458 		TI_LOCK(sc);
3459 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3460 		if (mask & IFCAP_HWCSUM) {
3461 			if (IFCAP_HWCSUM & ifp->if_capenable)
3462 				ifp->if_capenable &= ~IFCAP_HWCSUM;
3463 			else
3464 				ifp->if_capenable |= IFCAP_HWCSUM;
3465 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3466 				ti_init_locked(sc);
3467 		}
3468 		TI_UNLOCK(sc);
3469 		break;
3470 	default:
3471 		error = ether_ioctl(ifp, command, data);
3472 		break;
3473 	}
3474 
3475 	return (error);
3476 }
3477 
3478 static int
3479 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3480 {
3481 	struct ti_softc *sc;
3482 
3483 	sc = dev->si_drv1;
3484 	if (sc == NULL)
3485 		return (ENODEV);
3486 
3487 	TI_LOCK(sc);
3488 	sc->ti_flags |= TI_FLAG_DEBUGING;
3489 	TI_UNLOCK(sc);
3490 
3491 	return (0);
3492 }
3493 
3494 static int
3495 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3496 {
3497 	struct ti_softc *sc;
3498 
3499 	sc = dev->si_drv1;
3500 	if (sc == NULL)
3501 		return (ENODEV);
3502 
3503 	TI_LOCK(sc);
3504 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3505 	TI_UNLOCK(sc);
3506 
3507 	return (0);
3508 }
3509 
3510 /*
3511  * This ioctl routine goes along with the Tigon character device.
3512  */
3513 static int
3514 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3515     struct thread *td)
3516 {
3517 	int error;
3518 	struct ti_softc *sc;
3519 
3520 	sc = dev->si_drv1;
3521 	if (sc == NULL)
3522 		return (ENODEV);
3523 
3524 	error = 0;
3525 
3526 	switch (cmd) {
3527 	case TIIOCGETSTATS:
3528 	{
3529 		struct ti_stats *outstats;
3530 
3531 		outstats = (struct ti_stats *)addr;
3532 
3533 		TI_LOCK(sc);
3534 		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3535 		      sizeof(struct ti_stats));
3536 		TI_UNLOCK(sc);
3537 		break;
3538 	}
3539 	case TIIOCGETPARAMS:
3540 	{
3541 		struct ti_params	*params;
3542 
3543 		params = (struct ti_params *)addr;
3544 
3545 		TI_LOCK(sc);
3546 		params->ti_stat_ticks = sc->ti_stat_ticks;
3547 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3548 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3549 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3550 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3551 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3552 		params->param_mask = TI_PARAM_ALL;
3553 		TI_UNLOCK(sc);
3554 
3555 		error = 0;
3556 
3557 		break;
3558 	}
3559 	case TIIOCSETPARAMS:
3560 	{
3561 		struct ti_params *params;
3562 
3563 		params = (struct ti_params *)addr;
3564 
3565 		TI_LOCK(sc);
3566 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3567 			sc->ti_stat_ticks = params->ti_stat_ticks;
3568 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3569 		}
3570 
3571 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3572 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3573 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3574 				    sc->ti_rx_coal_ticks);
3575 		}
3576 
3577 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3578 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3579 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3580 				    sc->ti_tx_coal_ticks);
3581 		}
3582 
3583 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3584 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3585 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3586 				    sc->ti_rx_max_coal_bds);
3587 		}
3588 
3589 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3590 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3591 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3592 				    sc->ti_tx_max_coal_bds);
3593 		}
3594 
3595 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3596 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3597 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3598 				    sc->ti_tx_buf_ratio);
3599 		}
3600 		TI_UNLOCK(sc);
3601 
3602 		error = 0;
3603 
3604 		break;
3605 	}
3606 	case TIIOCSETTRACE: {
3607 		ti_trace_type	trace_type;
3608 
3609 		trace_type = *(ti_trace_type *)addr;
3610 
3611 		/*
3612 		 * Set tracing to whatever the user asked for.  Setting
3613 		 * this register to 0 should have the effect of disabling
3614 		 * tracing.
3615 		 */
3616 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3617 
3618 		error = 0;
3619 
3620 		break;
3621 	}
3622 	case TIIOCGETTRACE: {
3623 		struct ti_trace_buf	*trace_buf;
3624 		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3625 
3626 		trace_buf = (struct ti_trace_buf *)addr;
3627 
3628 		TI_LOCK(sc);
3629 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3630 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3631 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3632 
3633 #if 0
3634 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3635 		       "trace_len = %d\n", trace_start,
3636 		       cur_trace_ptr, trace_len);
3637 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3638 		       trace_buf->buf_len);
3639 #endif
3640 
3641 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3642 				    trace_buf->buf_len),
3643 				    (caddr_t)trace_buf->buf, 1, 1);
3644 
3645 		if (error == 0) {
3646 			trace_buf->fill_len = min(trace_len,
3647 						  trace_buf->buf_len);
3648 			if (cur_trace_ptr < trace_start)
3649 				trace_buf->cur_trace_ptr =
3650 					trace_start - cur_trace_ptr;
3651 			else
3652 				trace_buf->cur_trace_ptr =
3653 					cur_trace_ptr - trace_start;
3654 		} else
3655 			trace_buf->fill_len = 0;
3656 		TI_UNLOCK(sc);
3657 
3658 		break;
3659 	}
3660 
3661 	/*
3662 	 * For debugging, five ioctls are needed:
3663 	 * ALT_ATTACH
3664 	 * ALT_READ_TG_REG
3665 	 * ALT_WRITE_TG_REG
3666 	 * ALT_READ_TG_MEM
3667 	 * ALT_WRITE_TG_MEM
3668 	 */
3669 	case ALT_ATTACH:
3670 		/*
3671 		 * From what I can tell, Alteon's Solaris Tigon driver
3672 		 * only has one character device, so you have to attach
3673 		 * to the Tigon board you're interested in.  This seems
3674 		 * like a not-so-good way to do things, since unless you
3675 		 * subsequently specify the unit number of the device
3676 		 * you're interested in every ioctl, you'll only be
3677 		 * able to debug one board at a time.
3678 		 */
3679 		error = 0;
3680 		break;
3681 	case ALT_READ_TG_MEM:
3682 	case ALT_WRITE_TG_MEM:
3683 	{
3684 		struct tg_mem *mem_param;
3685 		u_int32_t sram_end, scratch_end;
3686 
3687 		mem_param = (struct tg_mem *)addr;
3688 
3689 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3690 			sram_end = TI_END_SRAM_I;
3691 			scratch_end = TI_END_SCRATCH_I;
3692 		} else {
3693 			sram_end = TI_END_SRAM_II;
3694 			scratch_end = TI_END_SCRATCH_II;
3695 		}
3696 
3697 		/*
3698 		 * For now, we'll only handle accessing regular SRAM,
3699 		 * nothing else.
3700 		 */
3701 		TI_LOCK(sc);
3702 		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3703 		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3704 			/*
3705 			 * In this instance, we always copy to/from user
3706 			 * space, so the user space argument is set to 1.
3707 			 */
3708 			error = ti_copy_mem(sc, mem_param->tgAddr,
3709 					    mem_param->len,
3710 					    mem_param->userAddr, 1,
3711 					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3712 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3713 			&& (mem_param->tgAddr <= scratch_end)) {
3714 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3715 						mem_param->len,
3716 						mem_param->userAddr, 1,
3717 						(cmd == ALT_READ_TG_MEM) ?
3718 						1 : 0, TI_PROCESSOR_A);
3719 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3720 			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3721 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3722 				if_printf(sc->ti_ifp,
3723 				    "invalid memory range for Tigon I\n");
3724 				error = EINVAL;
3725 				break;
3726 			}
3727 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3728 						TI_SCRATCH_DEBUG_OFF,
3729 						mem_param->len,
3730 						mem_param->userAddr, 1,
3731 						(cmd == ALT_READ_TG_MEM) ?
3732 						1 : 0, TI_PROCESSOR_B);
3733 		} else {
3734 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3735 			        "out of supported range\n",
3736 			        mem_param->tgAddr, mem_param->len);
3737 			error = EINVAL;
3738 		}
3739 		TI_UNLOCK(sc);
3740 
3741 		break;
3742 	}
3743 	case ALT_READ_TG_REG:
3744 	case ALT_WRITE_TG_REG:
3745 	{
3746 		struct tg_reg	*regs;
3747 		u_int32_t	tmpval;
3748 
3749 		regs = (struct tg_reg *)addr;
3750 
3751 		/*
3752 		 * Make sure the address in question isn't out of range.
3753 		 */
3754 		if (regs->addr > TI_REG_MAX) {
3755 			error = EINVAL;
3756 			break;
3757 		}
3758 		TI_LOCK(sc);
3759 		if (cmd == ALT_READ_TG_REG) {
3760 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3761 						regs->addr, &tmpval, 1);
3762 			regs->data = ntohl(tmpval);
3763 #if 0
3764 			if ((regs->addr == TI_CPU_STATE)
3765 			 || (regs->addr == TI_CPU_CTL_B)) {
3766 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3767 				       regs->addr, tmpval);
3768 			}
3769 #endif
3770 		} else {
3771 			tmpval = htonl(regs->data);
3772 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3773 						 regs->addr, &tmpval, 1);
3774 		}
3775 		TI_UNLOCK(sc);
3776 
3777 		break;
3778 	}
3779 	default:
3780 		error = ENOTTY;
3781 		break;
3782 	}
3783 	return (error);
3784 }
3785 
3786 static void
3787 ti_watchdog(void *arg)
3788 {
3789 	struct ti_softc		*sc;
3790 	struct ifnet		*ifp;
3791 
3792 	sc = arg;
3793 	TI_LOCK_ASSERT(sc);
3794 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3795 	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3796 		return;
3797 
3798 	/*
3799 	 * When we're debugging, the chip is often stopped for long periods
3800 	 * of time, and that would normally cause the watchdog timer to fire.
3801 	 * Since that impedes debugging, we don't want to do that.
3802 	 */
3803 	if (sc->ti_flags & TI_FLAG_DEBUGING)
3804 		return;
3805 
3806 	ifp = sc->ti_ifp;
3807 	if_printf(ifp, "watchdog timeout -- resetting\n");
3808 	ti_stop(sc);
3809 	ti_init_locked(sc);
3810 
3811 	ifp->if_oerrors++;
3812 }
3813 
3814 /*
3815  * Stop the adapter and free any mbufs allocated to the
3816  * RX and TX lists.
3817  */
3818 static void
3819 ti_stop(sc)
3820 	struct ti_softc		*sc;
3821 {
3822 	struct ifnet		*ifp;
3823 	struct ti_cmd_desc	cmd;
3824 
3825 	TI_LOCK_ASSERT(sc);
3826 
3827 	ifp = sc->ti_ifp;
3828 
3829 	/* Disable host interrupts. */
3830 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3831 	/*
3832 	 * Tell firmware we're shutting down.
3833 	 */
3834 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3835 
3836 	/* Halt and reinitialize. */
3837 	if (ti_chipinit(sc) != 0)
3838 		return;
3839 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3840 	if (ti_chipinit(sc) != 0)
3841 		return;
3842 
3843 	/* Free the RX lists. */
3844 	ti_free_rx_ring_std(sc);
3845 
3846 	/* Free jumbo RX list. */
3847 	ti_free_rx_ring_jumbo(sc);
3848 
3849 	/* Free mini RX list. */
3850 	ti_free_rx_ring_mini(sc);
3851 
3852 	/* Free TX buffers. */
3853 	ti_free_tx_ring(sc);
3854 
3855 	sc->ti_ev_prodidx.ti_idx = 0;
3856 	sc->ti_return_prodidx.ti_idx = 0;
3857 	sc->ti_tx_considx.ti_idx = 0;
3858 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3859 
3860 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3861 	callout_stop(&sc->ti_watchdog);
3862 }
3863 
3864 /*
3865  * Stop all chip I/O so that the kernel's probe routines don't
3866  * get confused by errant DMAs when rebooting.
3867  */
3868 static int
3869 ti_shutdown(dev)
3870 	device_t		dev;
3871 {
3872 	struct ti_softc		*sc;
3873 
3874 	sc = device_get_softc(dev);
3875 	TI_LOCK(sc);
3876 	ti_chipinit(sc);
3877 	TI_UNLOCK(sc);
3878 
3879 	return (0);
3880 }
3881