xref: /freebsd/sys/dev/ti/if_ti.c (revision 822923447e454b30d310cb46903c9ddeca9f0a7a)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/ethernet.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_types.h>
101 #include <net/if_vlan_var.h>
102 
103 #include <net/bpf.h>
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>		/* for vtophys */
110 #include <vm/pmap.h>		/* for vtophys */
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 /* #define TI_PRIVATE_JUMBOS */
117 
118 #if !defined(TI_PRIVATE_JUMBOS)
119 #include <sys/sockio.h>
120 #include <sys/uio.h>
121 #include <sys/lock.h>
122 #include <sys/sf_buf.h>
123 #include <vm/vm_extern.h>
124 #include <vm/pmap.h>
125 #include <vm/vm_map.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_param.h>
128 #include <vm/vm_pageout.h>
129 #include <sys/vmmeter.h>
130 #include <vm/vm_page.h>
131 #include <vm/vm_object.h>
132 #include <vm/vm_kern.h>
133 #include <sys/proc.h>
134 #endif /* !TI_PRIVATE_JUMBOS */
135 
136 #include <dev/pci/pcireg.h>
137 #include <dev/pci/pcivar.h>
138 
139 #include <sys/tiio.h>
140 #include <pci/if_tireg.h>
141 #include <pci/ti_fw.h>
142 #include <pci/ti_fw2.h>
143 
144 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145 /*
146  * We can only turn on header splitting if we're using extended receive
147  * BDs.
148  */
149 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152 
153 struct ti_softc *tis[8];
154 
155 typedef enum {
156 	TI_SWAP_HTON,
157 	TI_SWAP_NTOH
158 } ti_swap_type;
159 
160 
161 /*
162  * Various supported device vendors/types and their names.
163  */
164 
165 static struct ti_type ti_devs[] = {
166 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
167 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
168 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
169 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
170 	{ TC_VENDORID,	TC_DEVICEID_3C985,
171 		"3Com 3c985-SX Gigabit Ethernet" },
172 	{ NG_VENDORID, NG_DEVICEID_GA620,
173 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
174 	{ NG_VENDORID, NG_DEVICEID_GA620T,
175 		"Netgear GA620 1000baseT Gigabit Ethernet" },
176 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
177 		"Silicon Graphics Gigabit Ethernet" },
178 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
179 		"Farallon PN9000SX Gigabit Ethernet" },
180 	{ 0, 0, NULL }
181 };
182 
183 
184 static	d_open_t	ti_open;
185 static	d_close_t	ti_close;
186 static	d_ioctl_t	ti_ioctl2;
187 
188 static struct cdevsw ti_cdevsw = {
189 	.d_version =	D_VERSION,
190 	.d_flags =	D_NEEDGIANT,
191 	.d_open =	ti_open,
192 	.d_close =	ti_close,
193 	.d_ioctl =	ti_ioctl2,
194 	.d_name =	"ti",
195 };
196 
197 static int ti_probe(device_t);
198 static int ti_attach(device_t);
199 static int ti_detach(device_t);
200 static void ti_txeof(struct ti_softc *);
201 static void ti_rxeof(struct ti_softc *);
202 
203 static void ti_stats_update(struct ti_softc *);
204 static int ti_encap(struct ti_softc *, struct mbuf *, u_int32_t *);
205 
206 static void ti_intr(void *);
207 static void ti_start(struct ifnet *);
208 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
209 static void ti_init(void *);
210 static void ti_init2(struct ti_softc *);
211 static void ti_stop(struct ti_softc *);
212 static void ti_watchdog(struct ifnet *);
213 static void ti_shutdown(device_t);
214 static int ti_ifmedia_upd(struct ifnet *);
215 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 
217 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
218 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
219 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
220 
221 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
222 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
223 static void ti_setmulti(struct ti_softc *);
224 
225 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t);
226 static int ti_copy_mem(struct ti_softc *, u_int32_t, u_int32_t, caddr_t, int, int);
227 static int ti_copy_scratch(struct ti_softc *, u_int32_t, u_int32_t, caddr_t,
228 		int, int, int);
229 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
230 static void ti_loadfw(struct ti_softc *);
231 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
232 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
233 static void ti_handle_events(struct ti_softc *);
234 #ifdef TI_PRIVATE_JUMBOS
235 static int ti_alloc_jumbo_mem(struct ti_softc *);
236 static void *ti_jalloc(struct ti_softc *);
237 static void ti_jfree(void *, void *);
238 #endif /* TI_PRIVATE_JUMBOS */
239 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
240 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
241 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
242 static int ti_init_rx_ring_std(struct ti_softc *);
243 static void ti_free_rx_ring_std(struct ti_softc *);
244 static int ti_init_rx_ring_jumbo(struct ti_softc *);
245 static void ti_free_rx_ring_jumbo(struct ti_softc *);
246 static int ti_init_rx_ring_mini(struct ti_softc *);
247 static void ti_free_rx_ring_mini(struct ti_softc *);
248 static void ti_free_tx_ring(struct ti_softc *);
249 static int ti_init_tx_ring(struct ti_softc *);
250 
251 static int ti_64bitslot_war(struct ti_softc *);
252 static int ti_chipinit(struct ti_softc *);
253 static int ti_gibinit(struct ti_softc *);
254 
255 #ifdef TI_JUMBO_HDRSPLIT
256 static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
257 					     int pkt_len, int idx);
258 #endif /* TI_JUMBO_HDRSPLIT */
259 
260 static device_method_t ti_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		ti_probe),
263 	DEVMETHOD(device_attach,	ti_attach),
264 	DEVMETHOD(device_detach,	ti_detach),
265 	DEVMETHOD(device_shutdown,	ti_shutdown),
266 	{ 0, 0 }
267 };
268 
269 static driver_t ti_driver = {
270 	"ti",
271 	ti_methods,
272 	sizeof(struct ti_softc)
273 };
274 
275 static devclass_t ti_devclass;
276 
277 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
278 MODULE_DEPEND(ti, pci, 1, 1, 1);
279 MODULE_DEPEND(ti, ether, 1, 1, 1);
280 
281 /*
282  * Send an instruction or address to the EEPROM, check for ACK.
283  */
284 static u_int32_t ti_eeprom_putbyte(sc, byte)
285 	struct ti_softc		*sc;
286 	int			byte;
287 {
288 	register int		i, ack = 0;
289 
290 	/*
291 	 * Make sure we're in TX mode.
292 	 */
293 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
294 
295 	/*
296 	 * Feed in each bit and stobe the clock.
297 	 */
298 	for (i = 0x80; i; i >>= 1) {
299 		if (byte & i) {
300 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301 		} else {
302 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
303 		}
304 		DELAY(1);
305 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 		DELAY(1);
307 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308 	}
309 
310 	/*
311 	 * Turn off TX mode.
312 	 */
313 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
314 
315 	/*
316 	 * Check for ack.
317 	 */
318 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
320 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
321 
322 	return (ack);
323 }
324 
325 /*
326  * Read a byte of data stored in the EEPROM at address 'addr.'
327  * We have to send two address bytes since the EEPROM can hold
328  * more than 256 bytes of data.
329  */
330 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
331 	struct ti_softc		*sc;
332 	int			addr;
333 	u_int8_t		*dest;
334 {
335 	register int		i;
336 	u_int8_t		byte = 0;
337 
338 	EEPROM_START;
339 
340 	/*
341 	 * Send write control code to EEPROM.
342 	 */
343 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
344 		if_printf(sc->ti_ifp,
345 		    "failed to send write command, status: %x\n",
346 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
347 		return (1);
348 	}
349 
350 	/*
351 	 * Send first byte of address of byte we want to read.
352 	 */
353 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
354 		if_printf(sc->ti_ifp, "failed to send address, status: %x\n",
355 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
356 		return (1);
357 	}
358 	/*
359 	 * Send second byte address of byte we want to read.
360 	 */
361 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
362 		if_printf(sc->ti_ifp, "failed to send address, status: %x\n",
363 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
364 		return (1);
365 	}
366 
367 	EEPROM_STOP;
368 	EEPROM_START;
369 	/*
370 	 * Send read control code to EEPROM.
371 	 */
372 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
373 		if_printf(sc->ti_ifp,
374 		    "failed to send read command, status: %x\n",
375 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
376 		return (1);
377 	}
378 
379 	/*
380 	 * Start reading bits from EEPROM.
381 	 */
382 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
383 	for (i = 0x80; i; i >>= 1) {
384 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
385 		DELAY(1);
386 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
387 			byte |= i;
388 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
389 		DELAY(1);
390 	}
391 
392 	EEPROM_STOP;
393 
394 	/*
395 	 * No ACK generated for read, so just return byte.
396 	 */
397 
398 	*dest = byte;
399 
400 	return (0);
401 }
402 
403 /*
404  * Read a sequence of bytes from the EEPROM.
405  */
406 static int
407 ti_read_eeprom(sc, dest, off, cnt)
408 	struct ti_softc		*sc;
409 	caddr_t			dest;
410 	int			off;
411 	int			cnt;
412 {
413 	int			err = 0, i;
414 	u_int8_t		byte = 0;
415 
416 	for (i = 0; i < cnt; i++) {
417 		err = ti_eeprom_getbyte(sc, off + i, &byte);
418 		if (err)
419 			break;
420 		*(dest + i) = byte;
421 	}
422 
423 	return (err ? 1 : 0);
424 }
425 
426 /*
427  * NIC memory access function. Can be used to either clear a section
428  * of NIC local memory or (if buf is non-NULL) copy data into it.
429  */
430 static void
431 ti_mem(sc, addr, len, buf)
432 	struct ti_softc		*sc;
433 	u_int32_t		addr, len;
434 	caddr_t			buf;
435 {
436 	int			segptr, segsize, cnt;
437 	caddr_t			ti_winbase, ptr;
438 
439 	segptr = addr;
440 	cnt = len;
441 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
442 	ptr = buf;
443 
444 	while (cnt) {
445 		if (cnt < TI_WINLEN)
446 			segsize = cnt;
447 		else
448 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
449 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
450 		if (buf == NULL)
451 			bzero((char *)ti_winbase + (segptr &
452 			    (TI_WINLEN - 1)), segsize);
453 		else {
454 			bcopy((char *)ptr, (char *)ti_winbase +
455 			    (segptr & (TI_WINLEN - 1)), segsize);
456 			ptr += segsize;
457 		}
458 		segptr += segsize;
459 		cnt -= segsize;
460 	}
461 }
462 
463 static int
464 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
465 	struct ti_softc		*sc;
466 	u_int32_t		tigon_addr, len;
467 	caddr_t			buf;
468 	int			useraddr, readdata;
469 {
470 	int		segptr, segsize, cnt;
471 	caddr_t		ptr;
472 	u_int32_t	origwin;
473 	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
474 	int		resid, segresid;
475 	int		first_pass;
476 
477 	/*
478 	 * At the moment, we don't handle non-aligned cases, we just bail.
479 	 * If this proves to be a problem, it will be fixed.
480 	 */
481 	if ((readdata == 0)
482 	 && (tigon_addr & 0x3)) {
483 		if_printf(sc->ti_ifp, "ti_copy_mem: tigon address %#x isn't "
484 		    "word-aligned\n", tigon_addr);
485 		if_printf(sc->ti_ifp, "ti_copy_mem: unaligned writes aren't "
486 		    "yet supported\n");
487 		return (EINVAL);
488 	}
489 
490 	segptr = tigon_addr & ~0x3;
491 	segresid = tigon_addr - segptr;
492 
493 	/*
494 	 * This is the non-aligned amount left over that we'll need to
495 	 * copy.
496 	 */
497 	resid = len & 0x3;
498 
499 	/* Add in the left over amount at the front of the buffer */
500 	resid += segresid;
501 
502 	cnt = len & ~0x3;
503 	/*
504 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
505 	 * decrease the residual by that much.
506 	 */
507 	cnt += resid & ~0x3;
508 	resid -= resid & ~0x3;
509 
510 	ptr = buf;
511 
512 	first_pass = 1;
513 
514 	/*
515 	 * Make sure we aren't interrupted while we're changing the window
516 	 * pointer.
517 	 */
518 	TI_LOCK(sc);
519 
520 	/*
521 	 * Save the old window base value.
522 	 */
523 	origwin = CSR_READ_4(sc, TI_WINBASE);
524 
525 	while (cnt) {
526 		bus_size_t ti_offset;
527 
528 		if (cnt < TI_WINLEN)
529 			segsize = cnt;
530 		else
531 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
532 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
533 
534 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
535 
536 		if (readdata) {
537 
538 			bus_space_read_region_4(sc->ti_btag,
539 						sc->ti_bhandle, ti_offset,
540 						(u_int32_t *)tmparray,
541 						segsize >> 2);
542 			if (useraddr) {
543 				/*
544 				 * Yeah, this is a little on the kludgy
545 				 * side, but at least this code is only
546 				 * used for debugging.
547 				 */
548 				ti_bcopy_swap(tmparray, tmparray2, segsize,
549 					      TI_SWAP_NTOH);
550 
551 				if (first_pass) {
552 					copyout(&tmparray2[segresid], ptr,
553 						segsize - segresid);
554 					first_pass = 0;
555 				} else
556 					copyout(tmparray2, ptr, segsize);
557 			} else {
558 				if (first_pass) {
559 
560 					ti_bcopy_swap(tmparray, tmparray2,
561 						      segsize, TI_SWAP_NTOH);
562 					bcopy(&tmparray2[segresid], ptr,
563 					      segsize - segresid);
564 					first_pass = 0;
565 				} else
566 					ti_bcopy_swap(tmparray, ptr, segsize,
567 						      TI_SWAP_NTOH);
568 			}
569 
570 		} else {
571 			if (useraddr) {
572 				copyin(ptr, tmparray2, segsize);
573 				ti_bcopy_swap(tmparray2, tmparray, segsize,
574 					      TI_SWAP_HTON);
575 			} else
576 				ti_bcopy_swap(ptr, tmparray, segsize,
577 					      TI_SWAP_HTON);
578 
579 			bus_space_write_region_4(sc->ti_btag,
580 						 sc->ti_bhandle, ti_offset,
581 						 (u_int32_t *)tmparray,
582 						 segsize >> 2);
583 		}
584 		segptr += segsize;
585 		ptr += segsize;
586 		cnt -= segsize;
587 	}
588 
589 	/*
590 	 * Handle leftover, non-word-aligned bytes.
591 	 */
592 	if (resid != 0) {
593 		u_int32_t	tmpval, tmpval2;
594 		bus_size_t	ti_offset;
595 
596 		/*
597 		 * Set the segment pointer.
598 		 */
599 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
600 
601 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
602 
603 		/*
604 		 * First, grab whatever is in our source/destination.
605 		 * We'll obviously need this for reads, but also for
606 		 * writes, since we'll be doing read/modify/write.
607 		 */
608 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
609 					ti_offset, &tmpval, 1);
610 
611 		/*
612 		 * Next, translate this from little-endian to big-endian
613 		 * (at least on i386 boxes).
614 		 */
615 		tmpval2 = ntohl(tmpval);
616 
617 		if (readdata) {
618 			/*
619 			 * If we're reading, just copy the leftover number
620 			 * of bytes from the host byte order buffer to
621 			 * the user's buffer.
622 			 */
623 			if (useraddr)
624 				copyout(&tmpval2, ptr, resid);
625 			else
626 				bcopy(&tmpval2, ptr, resid);
627 		} else {
628 			/*
629 			 * If we're writing, first copy the bytes to be
630 			 * written into the network byte order buffer,
631 			 * leaving the rest of the buffer with whatever was
632 			 * originally in there.  Then, swap the bytes
633 			 * around into host order and write them out.
634 			 *
635 			 * XXX KDM the read side of this has been verified
636 			 * to work, but the write side of it has not been
637 			 * verified.  So user beware.
638 			 */
639 			if (useraddr)
640 				copyin(ptr, &tmpval2, resid);
641 			else
642 				bcopy(ptr, &tmpval2, resid);
643 
644 			tmpval = htonl(tmpval2);
645 
646 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
647 						 ti_offset, &tmpval, 1);
648 		}
649 	}
650 
651 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
652 
653 	TI_UNLOCK(sc);
654 
655 	return (0);
656 }
657 
658 static int
659 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
660 	struct ti_softc		*sc;
661 	u_int32_t		tigon_addr, len;
662 	caddr_t			buf;
663 	int			useraddr, readdata;
664 	int			cpu;
665 {
666 	u_int32_t	segptr;
667 	int		cnt;
668 	u_int32_t	tmpval, tmpval2;
669 	caddr_t		ptr;
670 
671 	/*
672 	 * At the moment, we don't handle non-aligned cases, we just bail.
673 	 * If this proves to be a problem, it will be fixed.
674 	 */
675 	if (tigon_addr & 0x3) {
676 		if_printf(sc->ti_ifp, "ti_copy_scratch: tigon address %#x "
677 		    "isn't word-aligned\n", tigon_addr);
678 		return (EINVAL);
679 	}
680 
681 	if (len & 0x3) {
682 		if_printf(sc->ti_ifp, "ti_copy_scratch: transfer length %d "
683 		    "isn't word-aligned\n", len);
684 		return (EINVAL);
685 	}
686 
687 	segptr = tigon_addr;
688 	cnt = len;
689 	ptr = buf;
690 
691 	TI_LOCK(sc);
692 
693 	while (cnt) {
694 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
695 
696 		if (readdata) {
697 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
698 
699 			tmpval = ntohl(tmpval2);
700 
701 			/*
702 			 * Note:  I've used this debugging interface
703 			 * extensively with Alteon's 12.3.15 firmware,
704 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
705 			 *
706 			 * When you compile the firmware without
707 			 * optimization, which is necessary sometimes in
708 			 * order to properly step through it, you sometimes
709 			 * read out a bogus value of 0xc0017c instead of
710 			 * whatever was supposed to be in that scratchpad
711 			 * location.  That value is on the stack somewhere,
712 			 * but I've never been able to figure out what was
713 			 * causing the problem.
714 			 *
715 			 * The address seems to pop up in random places,
716 			 * often not in the same place on two subsequent
717 			 * reads.
718 			 *
719 			 * In any case, the underlying data doesn't seem
720 			 * to be affected, just the value read out.
721 			 *
722 			 * KDM, 3/7/2000
723 			 */
724 
725 			if (tmpval2 == 0xc0017c)
726 				if_printf(sc->ti_ifp, "found 0xc0017c at %#x "
727 				       "(tmpval2)\n", segptr);
728 
729 			if (tmpval == 0xc0017c)
730 				if_printf(sc->ti_ifp, "found 0xc0017c at %#x "
731 				       "(tmpval)\n", segptr);
732 
733 			if (useraddr)
734 				copyout(&tmpval, ptr, 4);
735 			else
736 				bcopy(&tmpval, ptr, 4);
737 		} else {
738 			if (useraddr)
739 				copyin(ptr, &tmpval2, 4);
740 			else
741 				bcopy(ptr, &tmpval2, 4);
742 
743 			tmpval = htonl(tmpval2);
744 
745 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
746 		}
747 
748 		cnt -= 4;
749 		segptr += 4;
750 		ptr += 4;
751 	}
752 
753 	TI_UNLOCK(sc);
754 
755 	return (0);
756 }
757 
758 static int
759 ti_bcopy_swap(src, dst, len, swap_type)
760 	const void	*src;
761 	void		*dst;
762 	size_t		len;
763 	ti_swap_type	swap_type;
764 {
765 	const u_int8_t *tmpsrc;
766 	u_int8_t *tmpdst;
767 	size_t tmplen;
768 
769 	if (len & 0x3) {
770 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
771 		       len);
772 		return (-1);
773 	}
774 
775 	tmpsrc = src;
776 	tmpdst = dst;
777 	tmplen = len;
778 
779 	while (tmplen) {
780 		if (swap_type == TI_SWAP_NTOH)
781 			*(u_int32_t *)tmpdst =
782 				ntohl(*(const u_int32_t *)tmpsrc);
783 		else
784 			*(u_int32_t *)tmpdst =
785 				htonl(*(const u_int32_t *)tmpsrc);
786 
787 		tmpsrc += 4;
788 		tmpdst += 4;
789 		tmplen -= 4;
790 	}
791 
792 	return (0);
793 }
794 
795 /*
796  * Load firmware image into the NIC. Check that the firmware revision
797  * is acceptable and see if we want the firmware for the Tigon 1 or
798  * Tigon 2.
799  */
800 static void
801 ti_loadfw(sc)
802 	struct ti_softc		*sc;
803 {
804 	switch (sc->ti_hwrev) {
805 	case TI_HWREV_TIGON:
806 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
807 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
808 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
809 			if_printf(sc->ti_ifp, "firmware revision mismatch; "
810 			    "want %d.%d.%d, got %d.%d.%d\n",
811 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
812 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
813 			    tigonFwReleaseMinor, tigonFwReleaseFix);
814 			return;
815 		}
816 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
817 		    (caddr_t)tigonFwText);
818 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
819 		    (caddr_t)tigonFwData);
820 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
821 		    (caddr_t)tigonFwRodata);
822 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
823 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
824 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
825 		break;
826 	case TI_HWREV_TIGON_II:
827 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
828 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
829 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
830 			if_printf(sc->ti_ifp, "firmware revision mismatch; "
831 			    "want %d.%d.%d, got %d.%d.%d\n",
832 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
833 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
834 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
835 			return;
836 		}
837 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
838 		    (caddr_t)tigon2FwText);
839 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
840 		    (caddr_t)tigon2FwData);
841 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
842 		    (caddr_t)tigon2FwRodata);
843 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
844 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
845 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
846 		break;
847 	default:
848 		if_printf(sc->ti_ifp,
849 		    "can't load firmware: unknown hardware rev\n");
850 		break;
851 	}
852 }
853 
854 /*
855  * Send the NIC a command via the command ring.
856  */
857 static void
858 ti_cmd(sc, cmd)
859 	struct ti_softc		*sc;
860 	struct ti_cmd_desc	*cmd;
861 {
862 	u_int32_t		index;
863 
864 	if (sc->ti_rdata->ti_cmd_ring == NULL)
865 		return;
866 
867 	index = sc->ti_cmd_saved_prodidx;
868 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
869 	TI_INC(index, TI_CMD_RING_CNT);
870 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
871 	sc->ti_cmd_saved_prodidx = index;
872 }
873 
874 /*
875  * Send the NIC an extended command. The 'len' parameter specifies the
876  * number of command slots to include after the initial command.
877  */
878 static void
879 ti_cmd_ext(sc, cmd, arg, len)
880 	struct ti_softc		*sc;
881 	struct ti_cmd_desc	*cmd;
882 	caddr_t			arg;
883 	int			len;
884 {
885 	u_int32_t		index;
886 	register int		i;
887 
888 	if (sc->ti_rdata->ti_cmd_ring == NULL)
889 		return;
890 
891 	index = sc->ti_cmd_saved_prodidx;
892 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
893 	TI_INC(index, TI_CMD_RING_CNT);
894 	for (i = 0; i < len; i++) {
895 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
896 		    *(u_int32_t *)(&arg[i * 4]));
897 		TI_INC(index, TI_CMD_RING_CNT);
898 	}
899 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
900 	sc->ti_cmd_saved_prodidx = index;
901 }
902 
903 /*
904  * Handle events that have triggered interrupts.
905  */
906 static void
907 ti_handle_events(sc)
908 	struct ti_softc		*sc;
909 {
910 	struct ti_event_desc	*e;
911 
912 	if (sc->ti_rdata->ti_event_ring == NULL)
913 		return;
914 
915 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
916 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
917 		switch (e->ti_event) {
918 		case TI_EV_LINKSTAT_CHANGED:
919 			sc->ti_linkstat = e->ti_code;
920 			if (e->ti_code == TI_EV_CODE_LINK_UP)
921 				if_printf(sc->ti_ifp, "10/100 link up\n");
922 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
923 				if_printf(sc->ti_ifp, "gigabit link up\n");
924 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
925 				if_printf(sc->ti_ifp, "link down\n");
926 			break;
927 		case TI_EV_ERROR:
928 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
929 				if_printf(sc->ti_ifp, "invalid command\n");
930 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
931 				if_printf(sc->ti_ifp, "unknown command\n");
932 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
933 				if_printf(sc->ti_ifp, "bad config data\n");
934 			break;
935 		case TI_EV_FIRMWARE_UP:
936 			ti_init2(sc);
937 			break;
938 		case TI_EV_STATS_UPDATED:
939 			ti_stats_update(sc);
940 			break;
941 		case TI_EV_RESET_JUMBO_RING:
942 		case TI_EV_MCAST_UPDATED:
943 			/* Who cares. */
944 			break;
945 		default:
946 			if_printf(sc->ti_ifp, "unknown event: %d\n",
947 			    e->ti_event);
948 			break;
949 		}
950 		/* Advance the consumer index. */
951 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
952 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
953 	}
954 }
955 
956 #ifdef TI_PRIVATE_JUMBOS
957 
958 /*
959  * Memory management for the jumbo receive ring is a pain in the
960  * butt. We need to allocate at least 9018 bytes of space per frame,
961  * _and_ it has to be contiguous (unless you use the extended
962  * jumbo descriptor format). Using malloc() all the time won't
963  * work: malloc() allocates memory in powers of two, which means we
964  * would end up wasting a considerable amount of space by allocating
965  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
966  * to do our own memory management.
967  *
968  * The driver needs to allocate a contiguous chunk of memory at boot
969  * time. We then chop this up ourselves into 9K pieces and use them
970  * as external mbuf storage.
971  *
972  * One issue here is how much memory to allocate. The jumbo ring has
973  * 256 slots in it, but at 9K per slot than can consume over 2MB of
974  * RAM. This is a bit much, especially considering we also need
975  * RAM for the standard ring and mini ring (on the Tigon 2). To
976  * save space, we only actually allocate enough memory for 64 slots
977  * by default, which works out to between 500 and 600K. This can
978  * be tuned by changing a #define in if_tireg.h.
979  */
980 
981 static int
982 ti_alloc_jumbo_mem(sc)
983 	struct ti_softc		*sc;
984 {
985 	caddr_t			ptr;
986 	register int		i;
987 	struct ti_jpool_entry   *entry;
988 
989 	/* Grab a big chunk o' storage. */
990 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
991 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
992 
993 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
994 		if_printf(sc->ti_ifp, "no memory for jumbo buffers!\n");
995 		return (ENOBUFS);
996 	}
997 
998 	SLIST_INIT(&sc->ti_jfree_listhead);
999 	SLIST_INIT(&sc->ti_jinuse_listhead);
1000 
1001 	/*
1002 	 * Now divide it up into 9K pieces and save the addresses
1003 	 * in an array.
1004 	 */
1005 	ptr = sc->ti_cdata.ti_jumbo_buf;
1006 	for (i = 0; i < TI_JSLOTS; i++) {
1007 		sc->ti_cdata.ti_jslots[i] = ptr;
1008 		ptr += TI_JLEN;
1009 		entry = malloc(sizeof(struct ti_jpool_entry),
1010 			       M_DEVBUF, M_NOWAIT);
1011 		if (entry == NULL) {
1012 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1013 			           M_DEVBUF);
1014 			sc->ti_cdata.ti_jumbo_buf = NULL;
1015 			if_printf(sc->ti_ifp, "no memory for jumbo "
1016 			    "buffer queue!\n");
1017 			return (ENOBUFS);
1018 		}
1019 		entry->slot = i;
1020 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1021 	}
1022 
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Allocate a jumbo buffer.
1028  */
1029 static void *ti_jalloc(sc)
1030 	struct ti_softc		*sc;
1031 {
1032 	struct ti_jpool_entry	*entry;
1033 
1034 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1035 
1036 	if (entry == NULL) {
1037 		if_printf(sc->ti_ifp, "no free jumbo buffers\n");
1038 		return (NULL);
1039 	}
1040 
1041 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1042 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1043 	return (sc->ti_cdata.ti_jslots[entry->slot]);
1044 }
1045 
1046 /*
1047  * Release a jumbo buffer.
1048  */
1049 static void
1050 ti_jfree(buf, args)
1051 	void			*buf;
1052 	void			*args;
1053 {
1054 	struct ti_softc		*sc;
1055 	int			i;
1056 	struct ti_jpool_entry	*entry;
1057 
1058 	/* Extract the softc struct pointer. */
1059 	sc = (struct ti_softc *)args;
1060 
1061 	if (sc == NULL)
1062 		panic("ti_jfree: didn't get softc pointer!");
1063 
1064 	/* calculate the slot this buffer belongs to */
1065 	i = ((vm_offset_t)buf
1066 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1067 
1068 	if ((i < 0) || (i >= TI_JSLOTS))
1069 		panic("ti_jfree: asked to free buffer that we don't manage!");
1070 
1071 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1072 	if (entry == NULL)
1073 		panic("ti_jfree: buffer not in use!");
1074 	entry->slot = i;
1075 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1076 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1077 }
1078 
1079 #endif /* TI_PRIVATE_JUMBOS */
1080 
1081 /*
1082  * Intialize a standard receive ring descriptor.
1083  */
1084 static int
1085 ti_newbuf_std(sc, i, m)
1086 	struct ti_softc		*sc;
1087 	int			i;
1088 	struct mbuf		*m;
1089 {
1090 	struct mbuf		*m_new = NULL;
1091 	struct ti_rx_desc	*r;
1092 
1093 	if (m == NULL) {
1094 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1095 		if (m_new == NULL)
1096 			return (ENOBUFS);
1097 
1098 		MCLGET(m_new, M_DONTWAIT);
1099 		if (!(m_new->m_flags & M_EXT)) {
1100 			m_freem(m_new);
1101 			return (ENOBUFS);
1102 		}
1103 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1104 	} else {
1105 		m_new = m;
1106 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1107 		m_new->m_data = m_new->m_ext.ext_buf;
1108 	}
1109 
1110 	m_adj(m_new, ETHER_ALIGN);
1111 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1112 	r = &sc->ti_rdata->ti_rx_std_ring[i];
1113 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1114 	r->ti_type = TI_BDTYPE_RECV_BD;
1115 	r->ti_flags = 0;
1116 	if (sc->ti_ifp->if_hwassist)
1117 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1118 	r->ti_len = m_new->m_len;
1119 	r->ti_idx = i;
1120 
1121 	return (0);
1122 }
1123 
1124 /*
1125  * Intialize a mini receive ring descriptor. This only applies to
1126  * the Tigon 2.
1127  */
1128 static int
1129 ti_newbuf_mini(sc, i, m)
1130 	struct ti_softc		*sc;
1131 	int			i;
1132 	struct mbuf		*m;
1133 {
1134 	struct mbuf		*m_new = NULL;
1135 	struct ti_rx_desc	*r;
1136 
1137 	if (m == NULL) {
1138 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1139 		if (m_new == NULL) {
1140 			return (ENOBUFS);
1141 		}
1142 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1143 	} else {
1144 		m_new = m;
1145 		m_new->m_data = m_new->m_pktdat;
1146 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1147 	}
1148 
1149 	m_adj(m_new, ETHER_ALIGN);
1150 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1151 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1152 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1153 	r->ti_type = TI_BDTYPE_RECV_BD;
1154 	r->ti_flags = TI_BDFLAG_MINI_RING;
1155 	if (sc->ti_ifp->if_hwassist)
1156 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1157 	r->ti_len = m_new->m_len;
1158 	r->ti_idx = i;
1159 
1160 	return (0);
1161 }
1162 
1163 #ifdef TI_PRIVATE_JUMBOS
1164 
1165 /*
1166  * Initialize a jumbo receive ring descriptor. This allocates
1167  * a jumbo buffer from the pool managed internally by the driver.
1168  */
1169 static int
1170 ti_newbuf_jumbo(sc, i, m)
1171 	struct ti_softc		*sc;
1172 	int			i;
1173 	struct mbuf		*m;
1174 {
1175 	struct mbuf		*m_new = NULL;
1176 	struct ti_rx_desc	*r;
1177 
1178 	if (m == NULL) {
1179 		caddr_t			*buf = NULL;
1180 
1181 		/* Allocate the mbuf. */
1182 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1183 		if (m_new == NULL) {
1184 			return (ENOBUFS);
1185 		}
1186 
1187 		/* Allocate the jumbo buffer */
1188 		buf = ti_jalloc(sc);
1189 		if (buf == NULL) {
1190 			m_freem(m_new);
1191 			if_printf(sc->ti_ifp, "jumbo allocation failed "
1192 			    "-- packet dropped!\n");
1193 			return (ENOBUFS);
1194 		}
1195 
1196 		/* Attach the buffer to the mbuf. */
1197 		m_new->m_data = (void *) buf;
1198 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1199 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1200 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1201 	} else {
1202 		m_new = m;
1203 		m_new->m_data = m_new->m_ext.ext_buf;
1204 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1205 	}
1206 
1207 	m_adj(m_new, ETHER_ALIGN);
1208 	/* Set up the descriptor. */
1209 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1210 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1211 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1212 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1213 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1214 	if (sc->ti_ifp->if_hwassist)
1215 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1216 	r->ti_len = m_new->m_len;
1217 	r->ti_idx = i;
1218 
1219 	return (0);
1220 }
1221 
1222 #else
1223 #include <vm/vm_page.h>
1224 
1225 #if (PAGE_SIZE == 4096)
1226 #define NPAYLOAD 2
1227 #else
1228 #define NPAYLOAD 1
1229 #endif
1230 
1231 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1232 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1233 #define NFS_HDR_LEN (UDP_HDR_LEN)
1234 static int HDR_LEN =  TCP_HDR_LEN;
1235 
1236 
1237 /*
1238  * Initialize a jumbo receive ring descriptor. This allocates
1239  * a jumbo buffer from the pool managed internally by the driver.
1240  */
1241 static int
1242 ti_newbuf_jumbo(sc, idx, m_old)
1243 	struct ti_softc		*sc;
1244 	int			idx;
1245 	struct mbuf		*m_old;
1246 {
1247 	struct mbuf		*cur, *m_new = NULL;
1248 	struct mbuf		*m[3] = {NULL, NULL, NULL};
1249 	struct ti_rx_desc_ext	*r;
1250 	vm_page_t		frame;
1251 	static int		color;
1252 				/* 1 extra buf to make nobufs easy*/
1253 	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1254 	int			i;
1255 
1256 	if (m_old != NULL) {
1257 		m_new = m_old;
1258 		cur = m_old->m_next;
1259 		for (i = 0; i <= NPAYLOAD; i++){
1260 			m[i] = cur;
1261 			cur = cur->m_next;
1262 		}
1263 	} else {
1264 		/* Allocate the mbufs. */
1265 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1266 		if (m_new == NULL) {
1267 			if_printf(sc->ti_ifp, "mbuf allocation failed "
1268 			    "-- packet dropped!\n");
1269 			goto nobufs;
1270 		}
1271 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1272 		if (m[NPAYLOAD] == NULL) {
1273 			if_printf(sc->ti_ifp, "cluster mbuf allocation failed "
1274 			    "-- packet dropped!\n");
1275 			goto nobufs;
1276 		}
1277 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1278 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1279 			if_printf(sc->ti_ifp, "mbuf allocation failed "
1280 			    "-- packet dropped!\n");
1281 			goto nobufs;
1282 		}
1283 		m[NPAYLOAD]->m_len = MCLBYTES;
1284 
1285 		for (i = 0; i < NPAYLOAD; i++){
1286 			MGET(m[i], M_DONTWAIT, MT_DATA);
1287 			if (m[i] == NULL) {
1288 				if_printf(sc->ti_ifp, "mbuf allocation failed "
1289 				    "-- packet dropped!\n");
1290 				goto nobufs;
1291 			}
1292 			frame = vm_page_alloc(NULL, color++,
1293 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1294 			    VM_ALLOC_WIRED);
1295 			if (frame == NULL) {
1296 				if_printf(sc->ti_ifp, "buffer allocation "
1297 				    "failed -- packet dropped!\n");
1298 				printf("      index %d page %d\n", idx, i);
1299 				goto nobufs;
1300 			}
1301 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1302 			if (sf[i] == NULL) {
1303 				vm_page_lock_queues();
1304 				vm_page_unwire(frame, 0);
1305 				vm_page_free(frame);
1306 				vm_page_unlock_queues();
1307 				if_printf(sc->ti_ifp, "buffer allocation "
1308 				    "failed -- packet dropped!\n");
1309 				printf("      index %d page %d\n", idx, i);
1310 				goto nobufs;
1311 			}
1312 		}
1313 		for (i = 0; i < NPAYLOAD; i++){
1314 		/* Attach the buffer to the mbuf. */
1315 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1316 			m[i]->m_len = PAGE_SIZE;
1317 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1318 			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1319 			m[i]->m_next = m[i+1];
1320 		}
1321 		/* link the buffers to the header */
1322 		m_new->m_next = m[0];
1323 		m_new->m_data += ETHER_ALIGN;
1324 		if (sc->ti_hdrsplit)
1325 			m_new->m_len = MHLEN - ETHER_ALIGN;
1326 		else
1327 			m_new->m_len = HDR_LEN;
1328 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1329 	}
1330 
1331 	/* Set up the descriptor. */
1332 	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1333 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1334 	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1335 	r->ti_len0 = m_new->m_len;
1336 
1337 	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1338 	r->ti_len1 = PAGE_SIZE;
1339 
1340 	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1341 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1342 
1343 	if (PAGE_SIZE == 4096) {
1344 		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1345 		r->ti_len3 = MCLBYTES;
1346 	} else {
1347 		r->ti_len3 = 0;
1348 	}
1349 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1350 
1351 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1352 
1353 	if (sc->ti_ifp->if_hwassist)
1354 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1355 
1356 	r->ti_idx = idx;
1357 
1358 	return (0);
1359 
1360 nobufs:
1361 
1362 	/*
1363 	 * Warning! :
1364 	 * This can only be called before the mbufs are strung together.
1365 	 * If the mbufs are strung together, m_freem() will free the chain,
1366 	 * so that the later mbufs will be freed multiple times.
1367 	 */
1368 	if (m_new)
1369 		m_freem(m_new);
1370 
1371 	for (i = 0; i < 3; i++) {
1372 		if (m[i])
1373 			m_freem(m[i]);
1374 		if (sf[i])
1375 			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1376 	}
1377 	return (ENOBUFS);
1378 }
1379 #endif
1380 
1381 
1382 
1383 /*
1384  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1385  * that's 1MB or memory, which is a lot. For now, we fill only the first
1386  * 256 ring entries and hope that our CPU is fast enough to keep up with
1387  * the NIC.
1388  */
1389 static int
1390 ti_init_rx_ring_std(sc)
1391 	struct ti_softc		*sc;
1392 {
1393 	register int		i;
1394 	struct ti_cmd_desc	cmd;
1395 
1396 	for (i = 0; i < TI_SSLOTS; i++) {
1397 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1398 			return (ENOBUFS);
1399 	};
1400 
1401 	TI_UPDATE_STDPROD(sc, i - 1);
1402 	sc->ti_std = i - 1;
1403 
1404 	return (0);
1405 }
1406 
1407 static void
1408 ti_free_rx_ring_std(sc)
1409 	struct ti_softc		*sc;
1410 {
1411 	register int		i;
1412 
1413 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1414 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1415 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1416 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1417 		}
1418 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1419 		    sizeof(struct ti_rx_desc));
1420 	}
1421 }
1422 
1423 static int
1424 ti_init_rx_ring_jumbo(sc)
1425 	struct ti_softc		*sc;
1426 {
1427 	register int		i;
1428 	struct ti_cmd_desc	cmd;
1429 
1430 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1431 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1432 			return (ENOBUFS);
1433 	};
1434 
1435 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1436 	sc->ti_jumbo = i - 1;
1437 
1438 	return (0);
1439 }
1440 
1441 static void
1442 ti_free_rx_ring_jumbo(sc)
1443 	struct ti_softc		*sc;
1444 {
1445 	register int		i;
1446 
1447 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1448 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1449 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1450 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1451 		}
1452 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1453 		    sizeof(struct ti_rx_desc));
1454 	}
1455 }
1456 
1457 static int
1458 ti_init_rx_ring_mini(sc)
1459 	struct ti_softc		*sc;
1460 {
1461 	register int		i;
1462 
1463 	for (i = 0; i < TI_MSLOTS; i++) {
1464 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1465 			return (ENOBUFS);
1466 	};
1467 
1468 	TI_UPDATE_MINIPROD(sc, i - 1);
1469 	sc->ti_mini = i - 1;
1470 
1471 	return (0);
1472 }
1473 
1474 static void
1475 ti_free_rx_ring_mini(sc)
1476 	struct ti_softc		*sc;
1477 {
1478 	register int		i;
1479 
1480 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1481 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1482 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1483 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1484 		}
1485 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1486 		    sizeof(struct ti_rx_desc));
1487 	}
1488 }
1489 
1490 static void
1491 ti_free_tx_ring(sc)
1492 	struct ti_softc		*sc;
1493 {
1494 	register int		i;
1495 
1496 	if (sc->ti_rdata->ti_tx_ring == NULL)
1497 		return;
1498 
1499 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1500 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1501 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1502 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1503 		}
1504 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1505 		    sizeof(struct ti_tx_desc));
1506 	}
1507 }
1508 
1509 static int
1510 ti_init_tx_ring(sc)
1511 	struct ti_softc		*sc;
1512 {
1513 	sc->ti_txcnt = 0;
1514 	sc->ti_tx_saved_considx = 0;
1515 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1516 	return (0);
1517 }
1518 
1519 /*
1520  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1521  * but we have to support the old way too so that Tigon 1 cards will
1522  * work.
1523  */
1524 static void
1525 ti_add_mcast(sc, addr)
1526 	struct ti_softc		*sc;
1527 	struct ether_addr	*addr;
1528 {
1529 	struct ti_cmd_desc	cmd;
1530 	u_int16_t		*m;
1531 	u_int32_t		ext[2] = {0, 0};
1532 
1533 	m = (u_int16_t *)&addr->octet[0];
1534 
1535 	switch (sc->ti_hwrev) {
1536 	case TI_HWREV_TIGON:
1537 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1538 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1539 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1540 		break;
1541 	case TI_HWREV_TIGON_II:
1542 		ext[0] = htons(m[0]);
1543 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1544 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1545 		break;
1546 	default:
1547 		if_printf(sc->ti_ifp, "unknown hwrev\n");
1548 		break;
1549 	}
1550 }
1551 
1552 static void
1553 ti_del_mcast(sc, addr)
1554 	struct ti_softc		*sc;
1555 	struct ether_addr	*addr;
1556 {
1557 	struct ti_cmd_desc	cmd;
1558 	u_int16_t		*m;
1559 	u_int32_t		ext[2] = {0, 0};
1560 
1561 	m = (u_int16_t *)&addr->octet[0];
1562 
1563 	switch (sc->ti_hwrev) {
1564 	case TI_HWREV_TIGON:
1565 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1566 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1567 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1568 		break;
1569 	case TI_HWREV_TIGON_II:
1570 		ext[0] = htons(m[0]);
1571 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1572 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1573 		break;
1574 	default:
1575 		if_printf(sc->ti_ifp, "unknown hwrev\n");
1576 		break;
1577 	}
1578 }
1579 
1580 /*
1581  * Configure the Tigon's multicast address filter.
1582  *
1583  * The actual multicast table management is a bit of a pain, thanks to
1584  * slight brain damage on the part of both Alteon and us. With our
1585  * multicast code, we are only alerted when the multicast address table
1586  * changes and at that point we only have the current list of addresses:
1587  * we only know the current state, not the previous state, so we don't
1588  * actually know what addresses were removed or added. The firmware has
1589  * state, but we can't get our grubby mits on it, and there is no 'delete
1590  * all multicast addresses' command. Hence, we have to maintain our own
1591  * state so we know what addresses have been programmed into the NIC at
1592  * any given time.
1593  */
1594 static void
1595 ti_setmulti(sc)
1596 	struct ti_softc		*sc;
1597 {
1598 	struct ifnet		*ifp;
1599 	struct ifmultiaddr	*ifma;
1600 	struct ti_cmd_desc	cmd;
1601 	struct ti_mc_entry	*mc;
1602 	u_int32_t		intrs;
1603 
1604 	ifp = sc->ti_ifp;
1605 
1606 	if (ifp->if_flags & IFF_ALLMULTI) {
1607 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1608 		return;
1609 	} else {
1610 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1611 	}
1612 
1613 	/* Disable interrupts. */
1614 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1615 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1616 
1617 	/* First, zot all the existing filters. */
1618 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1619 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1620 		ti_del_mcast(sc, &mc->mc_addr);
1621 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1622 		free(mc, M_DEVBUF);
1623 	}
1624 
1625 	/* Now program new ones. */
1626 	IF_ADDR_LOCK(ifp);
1627 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1628 		if (ifma->ifma_addr->sa_family != AF_LINK)
1629 			continue;
1630 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1631 		if (mc == NULL) {
1632 			if_printf(ifp, "no memory for mcast filter entry\n");
1633 			continue;
1634 		}
1635 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1636 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1637 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1638 		ti_add_mcast(sc, &mc->mc_addr);
1639 	}
1640 	IF_ADDR_UNLOCK(ifp);
1641 
1642 	/* Re-enable interrupts. */
1643 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1644 }
1645 
1646 /*
1647  * Check to see if the BIOS has configured us for a 64 bit slot when
1648  * we aren't actually in one. If we detect this condition, we can work
1649  * around it on the Tigon 2 by setting a bit in the PCI state register,
1650  * but for the Tigon 1 we must give up and abort the interface attach.
1651  */
1652 static int ti_64bitslot_war(sc)
1653 	struct ti_softc		*sc;
1654 {
1655 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1656 		CSR_WRITE_4(sc, 0x600, 0);
1657 		CSR_WRITE_4(sc, 0x604, 0);
1658 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1659 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1660 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1661 				return (EINVAL);
1662 			else {
1663 				TI_SETBIT(sc, TI_PCI_STATE,
1664 				    TI_PCISTATE_32BIT_BUS);
1665 				return (0);
1666 			}
1667 		}
1668 	}
1669 
1670 	return (0);
1671 }
1672 
1673 /*
1674  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1675  * self-test results.
1676  */
1677 static int
1678 ti_chipinit(sc)
1679 	struct ti_softc		*sc;
1680 {
1681 	u_int32_t		cacheline;
1682 	u_int32_t		pci_writemax = 0;
1683 	u_int32_t		hdrsplit;
1684 
1685 	/* Initialize link to down state. */
1686 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1687 
1688 	if (sc->ti_ifp->if_capenable & IFCAP_HWCSUM)
1689 		sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
1690 	else
1691 		sc->ti_ifp->if_hwassist = 0;
1692 
1693 	/* Set endianness before we access any non-PCI registers. */
1694 #if BYTE_ORDER == BIG_ENDIAN
1695 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1696 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1697 #else
1698 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1699 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1700 #endif
1701 
1702 	/* Check the ROM failed bit to see if self-tests passed. */
1703 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1704 		if_printf(sc->ti_ifp, "board self-diagnostics failed!\n");
1705 		return (ENODEV);
1706 	}
1707 
1708 	/* Halt the CPU. */
1709 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1710 
1711 	/* Figure out the hardware revision. */
1712 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1713 	case TI_REV_TIGON_I:
1714 		sc->ti_hwrev = TI_HWREV_TIGON;
1715 		break;
1716 	case TI_REV_TIGON_II:
1717 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1718 		break;
1719 	default:
1720 		if_printf(sc->ti_ifp, "unsupported chip revision\n");
1721 		return (ENODEV);
1722 	}
1723 
1724 	/* Do special setup for Tigon 2. */
1725 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1726 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1727 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1728 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1729 	}
1730 
1731 	/*
1732 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1733 	 * can't do header splitting.
1734 	 */
1735 #ifdef TI_JUMBO_HDRSPLIT
1736 	if (sc->ti_hwrev != TI_HWREV_TIGON)
1737 		sc->ti_hdrsplit = 1;
1738 	else
1739 		if_printf(sc->ti_ifp,
1740 		    "can't do header splitting on a Tigon I board\n");
1741 #endif /* TI_JUMBO_HDRSPLIT */
1742 
1743 	/* Set up the PCI state register. */
1744 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1745 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1746 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1747 	}
1748 
1749 	/* Clear the read/write max DMA parameters. */
1750 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1751 	    TI_PCISTATE_READ_MAXDMA));
1752 
1753 	/* Get cache line size. */
1754 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1755 
1756 	/*
1757 	 * If the system has set enabled the PCI memory write
1758 	 * and invalidate command in the command register, set
1759 	 * the write max parameter accordingly. This is necessary
1760 	 * to use MWI with the Tigon 2.
1761 	 */
1762 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1763 		switch (cacheline) {
1764 		case 1:
1765 		case 4:
1766 		case 8:
1767 		case 16:
1768 		case 32:
1769 		case 64:
1770 			break;
1771 		default:
1772 		/* Disable PCI memory write and invalidate. */
1773 			if (bootverbose)
1774 				if_printf(sc->ti_ifp, "cache line size %d not "
1775 				    "supported; disabling PCI MWI\n",
1776 				    cacheline);
1777 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1778 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1779 			break;
1780 		}
1781 	}
1782 
1783 #ifdef __brokenalpha__
1784 	/*
1785 	 * From the Alteon sample driver:
1786 	 * Must insure that we do not cross an 8K (bytes) boundary
1787 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1788 	 * restriction on some ALPHA platforms with early revision
1789 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1790 	 */
1791 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1792 #else
1793 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1794 #endif
1795 
1796 	/* This sets the min dma param all the way up (0xff). */
1797 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1798 
1799 	if (sc->ti_hdrsplit)
1800 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1801 	else
1802 		hdrsplit = 0;
1803 
1804 	/* Configure DMA variables. */
1805 #if BYTE_ORDER == BIG_ENDIAN
1806 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1807 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1808 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1809 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1810 #else /* BYTE_ORDER */
1811 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1812 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1813 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1814 #endif /* BYTE_ORDER */
1815 
1816 	/*
1817 	 * Only allow 1 DMA channel to be active at a time.
1818 	 * I don't think this is a good idea, but without it
1819 	 * the firmware racks up lots of nicDmaReadRingFull
1820 	 * errors.  This is not compatible with hardware checksums.
1821 	 */
1822 	if (sc->ti_ifp->if_hwassist == 0)
1823 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1824 
1825 	/* Recommended settings from Tigon manual. */
1826 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1827 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1828 
1829 	if (ti_64bitslot_war(sc)) {
1830 		if_printf(sc->ti_ifp, "bios thinks we're in a 64 bit slot, "
1831 		    "but we aren't");
1832 		return (EINVAL);
1833 	}
1834 
1835 	return (0);
1836 }
1837 
1838 #define	TI_RD_OFF(x)	offsetof(struct ti_ring_data, x)
1839 
1840 /*
1841  * Initialize the general information block and firmware, and
1842  * start the CPU(s) running.
1843  */
1844 static int
1845 ti_gibinit(sc)
1846 	struct ti_softc		*sc;
1847 {
1848 	struct ti_rcb		*rcb;
1849 	int			i;
1850 	struct ifnet		*ifp;
1851 	uint32_t		rdphys;
1852 
1853 	ifp = sc->ti_ifp;
1854 	rdphys = sc->ti_rdata_phys;
1855 
1856 	/* Disable interrupts for now. */
1857 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1858 
1859 	/*
1860 	 * Tell the chip where to find the general information block.
1861 	 * While this struct could go into >4GB memory, we allocate it in a
1862 	 * single slab with the other descriptors, and those don't seem to
1863 	 * support being located in a 64-bit region.
1864 	 */
1865 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1866 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, rdphys + TI_RD_OFF(ti_info));
1867 
1868 	/* Load the firmware into SRAM. */
1869 	ti_loadfw(sc);
1870 
1871 	/* Set up the contents of the general info and ring control blocks. */
1872 
1873 	/* Set up the event ring and producer pointer. */
1874 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1875 
1876 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_event_ring);
1877 	rcb->ti_flags = 0;
1878 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1879 	    rdphys + TI_RD_OFF(ti_ev_prodidx_r);
1880 	sc->ti_ev_prodidx.ti_idx = 0;
1881 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1882 	sc->ti_ev_saved_considx = 0;
1883 
1884 	/* Set up the command ring and producer mailbox. */
1885 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1886 
1887 	sc->ti_rdata->ti_cmd_ring =
1888 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1889 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1890 	rcb->ti_flags = 0;
1891 	rcb->ti_max_len = 0;
1892 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1893 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1894 	}
1895 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1896 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1897 	sc->ti_cmd_saved_prodidx = 0;
1898 
1899 	/*
1900 	 * Assign the address of the stats refresh buffer.
1901 	 * We re-use the current stats buffer for this to
1902 	 * conserve memory.
1903 	 */
1904 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1905 	    rdphys + TI_RD_OFF(ti_info.ti_stats);
1906 
1907 	/* Set up the standard receive ring. */
1908 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1909 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_std_ring);
1910 	rcb->ti_max_len = TI_FRAMELEN;
1911 	rcb->ti_flags = 0;
1912 	if (sc->ti_ifp->if_hwassist)
1913 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1914 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1915 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1916 
1917 	/* Set up the jumbo receive ring. */
1918 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1919 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_jumbo_ring);
1920 
1921 #ifdef TI_PRIVATE_JUMBOS
1922 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1923 	rcb->ti_flags = 0;
1924 #else
1925 	rcb->ti_max_len = PAGE_SIZE;
1926 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1927 #endif
1928 	if (sc->ti_ifp->if_hwassist)
1929 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1930 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1931 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1932 
1933 	/*
1934 	 * Set up the mini ring. Only activated on the
1935 	 * Tigon 2 but the slot in the config block is
1936 	 * still there on the Tigon 1.
1937 	 */
1938 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1939 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_mini_ring);
1940 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1941 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1942 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1943 	else
1944 		rcb->ti_flags = 0;
1945 	if (sc->ti_ifp->if_hwassist)
1946 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1947 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1948 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1949 
1950 	/*
1951 	 * Set up the receive return ring.
1952 	 */
1953 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1954 	TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_rx_return_ring);
1955 	rcb->ti_flags = 0;
1956 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1957 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1958 	    rdphys + TI_RD_OFF(ti_return_prodidx_r);
1959 
1960 	/*
1961 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1962 	 * of putting the transmit ring in the host's address space and
1963 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1964 	 * memory and accessing it through the shared memory region. We
1965 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1966 	 * so we have to revert to the shared memory scheme if we detect
1967 	 * a Tigon 1 chip.
1968 	 */
1969 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1970 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1971 		sc->ti_rdata->ti_tx_ring_nic =
1972 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1973 	}
1974 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1975 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1976 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1977 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1978 		rcb->ti_flags = 0;
1979 	else
1980 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1981 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1982 	if (sc->ti_ifp->if_hwassist)
1983 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1984 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1985 	rcb->ti_max_len = TI_TX_RING_CNT;
1986 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1987 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1988 	else
1989 		TI_HOSTADDR(rcb->ti_hostaddr) = rdphys + TI_RD_OFF(ti_tx_ring);
1990 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1991 	    rdphys + TI_RD_OFF(ti_tx_considx_r);
1992 
1993 	/* Set up tuneables */
1994 #if 0
1995 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1996 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1997 		    (sc->ti_rx_coal_ticks / 10));
1998 	else
1999 #endif
2000 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2001 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2002 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2003 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2004 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2005 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2006 
2007 	/* Turn interrupts on. */
2008 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2009 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2010 
2011 	/* Start CPU. */
2012 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2013 
2014 	return (0);
2015 }
2016 
2017 static void
2018 ti_rdata_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2019 {
2020 	struct ti_softc *sc;
2021 
2022 	sc = arg;
2023 	if (error || nseg != 1)
2024 		return;
2025 
2026 	/*
2027 	 * All of the Tigon data structures need to live at <4GB.  This
2028 	 * cast is fine since busdma was told about this constraint.
2029 	 */
2030 	sc->ti_rdata_phys = (uint32_t)segs[0].ds_addr;
2031 	return;
2032 }
2033 
2034 /*
2035  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2036  * against our list and return its name if we find a match.
2037  */
2038 static int
2039 ti_probe(dev)
2040 	device_t		dev;
2041 {
2042 	struct ti_type		*t;
2043 
2044 	t = ti_devs;
2045 
2046 	while (t->ti_name != NULL) {
2047 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2048 		    (pci_get_device(dev) == t->ti_did)) {
2049 			device_set_desc(dev, t->ti_name);
2050 			return (BUS_PROBE_DEFAULT);
2051 		}
2052 		t++;
2053 	}
2054 
2055 	return (ENXIO);
2056 }
2057 
2058 static int
2059 ti_attach(dev)
2060 	device_t		dev;
2061 {
2062 	struct ifnet		*ifp;
2063 	struct ti_softc		*sc;
2064 	int			error = 0, rid;
2065 	u_char			eaddr[6];
2066 
2067 	sc = device_get_softc(dev);
2068 	sc->ti_unit = device_get_unit(dev);
2069 
2070 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2071 	    MTX_DEF | MTX_RECURSE);
2072 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2073 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2074 	if (ifp == NULL) {
2075 		device_printf(dev, "can not if_alloc()\n");
2076 		error = ENOSPC;
2077 		goto fail;
2078 	}
2079 	sc->ti_ifp->if_capabilities = IFCAP_HWCSUM |
2080 	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2081 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2082 
2083 	/*
2084 	 * Map control/status registers.
2085 	 */
2086 	pci_enable_busmaster(dev);
2087 
2088 	rid = TI_PCI_LOMEM;
2089 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2090 	    RF_ACTIVE|PCI_RF_DENSE);
2091 
2092 	if (sc->ti_res == NULL) {
2093 		device_printf(dev, "couldn't map memory\n");
2094 		error = ENXIO;
2095 		goto fail;
2096 	}
2097 
2098 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2099 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2100 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2101 
2102 	/* Allocate interrupt */
2103 	rid = 0;
2104 
2105 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2106 	    RF_SHAREABLE | RF_ACTIVE);
2107 
2108 	if (sc->ti_irq == NULL) {
2109 		device_printf(dev, "couldn't map interrupt\n");
2110 		error = ENXIO;
2111 		goto fail;
2112 	}
2113 
2114 	if (ti_chipinit(sc)) {
2115 		device_printf(dev, "chip initialization failed\n");
2116 		error = ENXIO;
2117 		goto fail;
2118 	}
2119 
2120 	/* Zero out the NIC's on-board SRAM. */
2121 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2122 
2123 	/* Init again -- zeroing memory may have clobbered some registers. */
2124 	if (ti_chipinit(sc)) {
2125 		device_printf(dev, "chip initialization failed\n");
2126 		error = ENXIO;
2127 		goto fail;
2128 	}
2129 
2130 	/*
2131 	 * Get station address from the EEPROM. Note: the manual states
2132 	 * that the MAC address is at offset 0x8c, however the data is
2133 	 * stored as two longwords (since that's how it's loaded into
2134 	 * the NIC). This means the MAC address is actually preceded
2135 	 * by two zero bytes. We need to skip over those.
2136 	 */
2137 	if (ti_read_eeprom(sc, eaddr,
2138 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2139 		device_printf(dev, "failed to read station address\n");
2140 		error = ENXIO;
2141 		goto fail;
2142 	}
2143 
2144 	/* Allocate the general information block and ring buffers. */
2145 	if (bus_dma_tag_create(NULL,			/* parent */
2146 				1, 0,			/* algnmnt, boundary */
2147 				BUS_SPACE_MAXADDR,	/* lowaddr */
2148 				BUS_SPACE_MAXADDR,	/* highaddr */
2149 				NULL, NULL,		/* filter, filterarg */
2150 				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
2151 				0,			/* nsegments */
2152 				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
2153 				0,			/* flags */
2154 				NULL, NULL,		/* lockfunc, lockarg */
2155 				&sc->ti_parent_dmat) != 0) {
2156 		device_printf(dev, "Failed to allocate parent dmat\n");
2157 		error = ENOMEM;
2158 		goto fail;
2159 	}
2160 
2161 	if (bus_dma_tag_create(sc->ti_parent_dmat,	/* parent */
2162 				PAGE_SIZE, 0,		/* algnmnt, boundary */
2163 				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
2164 				BUS_SPACE_MAXADDR,	/* highaddr */
2165 				NULL, NULL,		/* filter, filterarg */
2166 				sizeof(struct ti_ring_data),	/* maxsize */
2167 				1,			/* nsegments */
2168 				sizeof(struct ti_ring_data),	/* maxsegsize */
2169 				0,			/* flags */
2170 				NULL, NULL,		/* lockfunc, lockarg */
2171 				&sc->ti_rdata_dmat) != 0) {
2172 		device_printf(dev, "Failed to allocate rdata dmat\n");
2173 		error = ENOMEM;
2174 		goto fail;
2175 	}
2176 
2177 	if (bus_dmamem_alloc(sc->ti_rdata_dmat, (void**)&sc->ti_rdata,
2178 			     BUS_DMA_NOWAIT, &sc->ti_rdata_dmamap) != 0) {
2179 		device_printf(dev, "Failed to allocate rdata memory\n");
2180 		error = ENOMEM;
2181 		goto fail;
2182 	}
2183 
2184 	if (bus_dmamap_load(sc->ti_rdata_dmat, sc->ti_rdata_dmamap,
2185 			    sc->ti_rdata, sizeof(struct ti_ring_data),
2186 			    ti_rdata_cb, sc, BUS_DMA_NOWAIT) != 0) {
2187 		device_printf(dev, "Failed to load rdata segments\n");
2188 		error = ENOMEM;
2189 		goto fail;
2190 	}
2191 
2192 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2193 
2194 	/* Try to allocate memory for jumbo buffers. */
2195 #ifdef TI_PRIVATE_JUMBOS
2196 	if (ti_alloc_jumbo_mem(sc)) {
2197 		device_printf(dev, "jumbo buffer allocation failed\n");
2198 		error = ENXIO;
2199 		goto fail;
2200 	}
2201 #endif
2202 
2203 	/*
2204 	 * We really need a better way to tell a 1000baseTX card
2205 	 * from a 1000baseSX one, since in theory there could be
2206 	 * OEMed 1000baseTX cards from lame vendors who aren't
2207 	 * clever enough to change the PCI ID. For the moment
2208 	 * though, the AceNIC is the only copper card available.
2209 	 */
2210 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2211 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2212 		sc->ti_copper = 1;
2213 	/* Ok, it's not the only copper card available. */
2214 	if (pci_get_vendor(dev) == NG_VENDORID &&
2215 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2216 		sc->ti_copper = 1;
2217 
2218 	/* Set default tuneable values. */
2219 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2220 #if 0
2221 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2222 #endif
2223 	sc->ti_rx_coal_ticks = 170;
2224 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2225 	sc->ti_rx_max_coal_bds = 64;
2226 #if 0
2227 	sc->ti_tx_max_coal_bds = 128;
2228 #endif
2229 	sc->ti_tx_max_coal_bds = 32;
2230 	sc->ti_tx_buf_ratio = 21;
2231 
2232 	/* Set up ifnet structure */
2233 	ifp->if_softc = sc;
2234 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2235 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2236 	    IFF_NEEDSGIANT;
2237 	tis[sc->ti_unit] = sc;
2238 	ifp->if_ioctl = ti_ioctl;
2239 	ifp->if_start = ti_start;
2240 	ifp->if_watchdog = ti_watchdog;
2241 	ifp->if_init = ti_init;
2242 	ifp->if_mtu = ETHERMTU;
2243 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2244 
2245 	/* Set up ifmedia support. */
2246 	if (sc->ti_copper) {
2247 		/*
2248 		 * Copper cards allow manual 10/100 mode selection,
2249 		 * but not manual 1000baseTX mode selection. Why?
2250 		 * Becuase currently there's no way to specify the
2251 		 * master/slave setting through the firmware interface,
2252 		 * so Alteon decided to just bag it and handle it
2253 		 * via autonegotiation.
2254 		 */
2255 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2256 		ifmedia_add(&sc->ifmedia,
2257 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2258 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2259 		ifmedia_add(&sc->ifmedia,
2260 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2261 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2262 		ifmedia_add(&sc->ifmedia,
2263 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2264 	} else {
2265 		/* Fiber cards don't support 10/100 modes. */
2266 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2267 		ifmedia_add(&sc->ifmedia,
2268 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2269 	}
2270 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2271 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2272 
2273 	/*
2274 	 * We're assuming here that card initialization is a sequential
2275 	 * thing.  If it isn't, multiple cards probing at the same time
2276 	 * could stomp on the list of softcs here.
2277 	 */
2278 
2279 	/* Register the device */
2280 	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2281 			   0600, "ti%d", sc->ti_unit);
2282 	sc->dev->si_drv1 = sc;
2283 
2284 	/*
2285 	 * Call MI attach routine.
2286 	 */
2287 	ether_ifattach(ifp, eaddr);
2288 
2289 	/* Hook interrupt last to avoid having to lock softc */
2290 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2291 	   ti_intr, sc, &sc->ti_intrhand);
2292 
2293 	if (error) {
2294 		device_printf(dev, "couldn't set up irq\n");
2295 		ether_ifdetach(ifp);
2296 		goto fail;
2297 	}
2298 
2299 fail:
2300 	if (sc && error)
2301 		ti_detach(dev);
2302 
2303 	return (error);
2304 }
2305 
2306 /*
2307  * Shutdown hardware and free up resources. This can be called any
2308  * time after the mutex has been initialized. It is called in both
2309  * the error case in attach and the normal detach case so it needs
2310  * to be careful about only freeing resources that have actually been
2311  * allocated.
2312  */
2313 static int
2314 ti_detach(dev)
2315 	device_t		dev;
2316 {
2317 	struct ti_softc		*sc;
2318 	struct ifnet		*ifp;
2319 
2320 	sc = device_get_softc(dev);
2321 	if (sc->dev)
2322 		destroy_dev(sc->dev);
2323 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2324 	TI_LOCK(sc);
2325 	ifp = sc->ti_ifp;
2326 
2327 	/* These should only be active if attach succeeded */
2328 	if (device_is_attached(dev)) {
2329 		ti_stop(sc);
2330 		ether_ifdetach(ifp);
2331 		bus_generic_detach(dev);
2332 	}
2333 	ifmedia_removeall(&sc->ifmedia);
2334 
2335 	if (sc->ti_rdata)
2336 		bus_dmamem_free(sc->ti_rdata_dmat, sc->ti_rdata,
2337 				sc->ti_rdata_dmamap);
2338 	if (sc->ti_rdata_dmat)
2339 		bus_dma_tag_destroy(sc->ti_rdata_dmat);
2340 	if (sc->ti_parent_dmat)
2341 		bus_dma_tag_destroy(sc->ti_parent_dmat);
2342 	if (sc->ti_intrhand)
2343 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2344 	if (sc->ti_irq)
2345 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2346 	if (sc->ti_res) {
2347 		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2348 		    sc->ti_res);
2349 	}
2350 	if (ifp)
2351 		if_free(ifp);
2352 
2353 #ifdef TI_PRIVATE_JUMBOS
2354 	if (sc->ti_cdata.ti_jumbo_buf)
2355 		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2356 #endif
2357 	if (sc->ti_rdata)
2358 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2359 
2360 	TI_UNLOCK(sc);
2361 	mtx_destroy(&sc->ti_mtx);
2362 
2363 	return (0);
2364 }
2365 
2366 #ifdef TI_JUMBO_HDRSPLIT
2367 /*
2368  * If hdr_len is 0, that means that header splitting wasn't done on
2369  * this packet for some reason.  The two most likely reasons are that
2370  * the protocol isn't a supported protocol for splitting, or this
2371  * packet had a fragment offset that wasn't 0.
2372  *
2373  * The header length, if it is non-zero, will always be the length of
2374  * the headers on the packet, but that length could be longer than the
2375  * first mbuf.  So we take the minimum of the two as the actual
2376  * length.
2377  */
2378 static __inline void
2379 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2380 {
2381 	int i = 0;
2382 	int lengths[4] = {0, 0, 0, 0};
2383 	struct mbuf *m, *mp;
2384 
2385 	if (hdr_len != 0)
2386 		top->m_len = min(hdr_len, top->m_len);
2387 	pkt_len -= top->m_len;
2388 	lengths[i++] = top->m_len;
2389 
2390 	mp = top;
2391 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2392 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2393 		pkt_len -= m->m_len;
2394 		lengths[i++] = m->m_len;
2395 		mp = m;
2396 	}
2397 
2398 #if 0
2399 	if (hdr_len != 0)
2400 		printf("got split packet: ");
2401 	else
2402 		printf("got non-split packet: ");
2403 
2404 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2405 	    lengths[1], lengths[2], lengths[3],
2406 	    lengths[0] + lengths[1] + lengths[2] +
2407 	    lengths[3]);
2408 #endif
2409 
2410 	if (pkt_len)
2411 		panic("header splitting didn't");
2412 
2413 	if (m) {
2414 		m_freem(m);
2415 		mp->m_next = NULL;
2416 
2417 	}
2418 	if (mp->m_next != NULL)
2419 		panic("ti_hdr_split: last mbuf in chain should be null");
2420 }
2421 #endif /* TI_JUMBO_HDRSPLIT */
2422 
2423 /*
2424  * Frame reception handling. This is called if there's a frame
2425  * on the receive return list.
2426  *
2427  * Note: we have to be able to handle three possibilities here:
2428  * 1) the frame is from the mini receive ring (can only happen)
2429  *    on Tigon 2 boards)
2430  * 2) the frame is from the jumbo recieve ring
2431  * 3) the frame is from the standard receive ring
2432  */
2433 
2434 static void
2435 ti_rxeof(sc)
2436 	struct ti_softc		*sc;
2437 {
2438 	struct ifnet		*ifp;
2439 	struct ti_cmd_desc	cmd;
2440 
2441 	TI_LOCK_ASSERT(sc);
2442 
2443 	ifp = sc->ti_ifp;
2444 
2445 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2446 		struct ti_rx_desc	*cur_rx;
2447 		u_int32_t		rxidx;
2448 		struct mbuf		*m = NULL;
2449 		u_int16_t		vlan_tag = 0;
2450 		int			have_tag = 0;
2451 
2452 		cur_rx =
2453 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2454 		rxidx = cur_rx->ti_idx;
2455 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2456 
2457 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2458 			have_tag = 1;
2459 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2460 		}
2461 
2462 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2463 
2464 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2465 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2466 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2467 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2468 				ifp->if_ierrors++;
2469 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2470 				continue;
2471 			}
2472 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2473 				ifp->if_ierrors++;
2474 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2475 				continue;
2476 			}
2477 #ifdef TI_PRIVATE_JUMBOS
2478 			m->m_len = cur_rx->ti_len;
2479 #else /* TI_PRIVATE_JUMBOS */
2480 #ifdef TI_JUMBO_HDRSPLIT
2481 			if (sc->ti_hdrsplit)
2482 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2483 					     cur_rx->ti_len, rxidx);
2484 			else
2485 #endif /* TI_JUMBO_HDRSPLIT */
2486 			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2487 #endif /* TI_PRIVATE_JUMBOS */
2488 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2489 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2490 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2491 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2492 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2493 				ifp->if_ierrors++;
2494 				ti_newbuf_mini(sc, sc->ti_mini, m);
2495 				continue;
2496 			}
2497 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2498 				ifp->if_ierrors++;
2499 				ti_newbuf_mini(sc, sc->ti_mini, m);
2500 				continue;
2501 			}
2502 			m->m_len = cur_rx->ti_len;
2503 		} else {
2504 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2505 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2506 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2507 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2508 				ifp->if_ierrors++;
2509 				ti_newbuf_std(sc, sc->ti_std, m);
2510 				continue;
2511 			}
2512 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2513 				ifp->if_ierrors++;
2514 				ti_newbuf_std(sc, sc->ti_std, m);
2515 				continue;
2516 			}
2517 			m->m_len = cur_rx->ti_len;
2518 		}
2519 
2520 		m->m_pkthdr.len = cur_rx->ti_len;
2521 		ifp->if_ipackets++;
2522 		m->m_pkthdr.rcvif = ifp;
2523 
2524 		if (ifp->if_hwassist) {
2525 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2526 			    CSUM_DATA_VALID;
2527 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2528 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2529 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2530 		}
2531 
2532 		/*
2533 		 * If we received a packet with a vlan tag,
2534 		 * tag it before passing the packet upward.
2535 		 */
2536 		if (have_tag)
2537 			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2538 		TI_UNLOCK(sc);
2539 		(*ifp->if_input)(ifp, m);
2540 		TI_LOCK(sc);
2541 	}
2542 
2543 	/* Only necessary on the Tigon 1. */
2544 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2545 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2546 		    sc->ti_rx_saved_considx);
2547 
2548 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2549 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2550 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2551 }
2552 
2553 static void
2554 ti_txeof(sc)
2555 	struct ti_softc		*sc;
2556 {
2557 	struct ti_tx_desc	*cur_tx = NULL;
2558 	struct ifnet		*ifp;
2559 
2560 	ifp = sc->ti_ifp;
2561 
2562 	/*
2563 	 * Go through our tx ring and free mbufs for those
2564 	 * frames that have been sent.
2565 	 */
2566 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2567 		u_int32_t		idx = 0;
2568 
2569 		idx = sc->ti_tx_saved_considx;
2570 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2571 			if (idx > 383)
2572 				CSR_WRITE_4(sc, TI_WINBASE,
2573 				    TI_TX_RING_BASE + 6144);
2574 			else if (idx > 255)
2575 				CSR_WRITE_4(sc, TI_WINBASE,
2576 				    TI_TX_RING_BASE + 4096);
2577 			else if (idx > 127)
2578 				CSR_WRITE_4(sc, TI_WINBASE,
2579 				    TI_TX_RING_BASE + 2048);
2580 			else
2581 				CSR_WRITE_4(sc, TI_WINBASE,
2582 				    TI_TX_RING_BASE);
2583 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2584 		} else
2585 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2586 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2587 			ifp->if_opackets++;
2588 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2589 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2590 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2591 		}
2592 		sc->ti_txcnt--;
2593 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2594 		ifp->if_timer = 0;
2595 	}
2596 
2597 	if (cur_tx != NULL)
2598 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2599 }
2600 
2601 static void
2602 ti_intr(xsc)
2603 	void			*xsc;
2604 {
2605 	struct ti_softc		*sc;
2606 	struct ifnet		*ifp;
2607 
2608 	sc = xsc;
2609 	TI_LOCK(sc);
2610 	ifp = sc->ti_ifp;
2611 
2612 /*#ifdef notdef*/
2613 	/* Avoid this for now -- checking this register is expensive. */
2614 	/* Make sure this is really our interrupt. */
2615 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2616 		TI_UNLOCK(sc);
2617 		return;
2618 	}
2619 /*#endif*/
2620 
2621 	/* Ack interrupt and stop others from occuring. */
2622 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2623 
2624 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2625 		/* Check RX return ring producer/consumer */
2626 		ti_rxeof(sc);
2627 
2628 		/* Check TX ring producer/consumer */
2629 		ti_txeof(sc);
2630 	}
2631 
2632 	ti_handle_events(sc);
2633 
2634 	/* Re-enable interrupts. */
2635 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2636 
2637 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2638 	    ifp->if_snd.ifq_head != NULL)
2639 		ti_start(ifp);
2640 
2641 	TI_UNLOCK(sc);
2642 }
2643 
2644 static void
2645 ti_stats_update(sc)
2646 	struct ti_softc		*sc;
2647 {
2648 	struct ifnet		*ifp;
2649 
2650 	ifp = sc->ti_ifp;
2651 
2652 	ifp->if_collisions +=
2653 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2654 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2655 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2656 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2657 	   ifp->if_collisions;
2658 }
2659 
2660 /*
2661  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2662  * pointers to descriptors.
2663  */
2664 static int
2665 ti_encap(sc, m_head, txidx)
2666 	struct ti_softc		*sc;
2667 	struct mbuf		*m_head;
2668 	u_int32_t		*txidx;
2669 {
2670 	struct ti_tx_desc	*f = NULL;
2671 	struct mbuf		*m;
2672 	u_int32_t		frag, cur, cnt = 0;
2673 	u_int16_t		csum_flags = 0;
2674 	struct m_tag		*mtag;
2675 
2676 	m = m_head;
2677 	cur = frag = *txidx;
2678 
2679 	if (m_head->m_pkthdr.csum_flags) {
2680 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2681 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2682 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2683 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2684 		if (m_head->m_flags & M_LASTFRAG)
2685 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2686 		else if (m_head->m_flags & M_FRAG)
2687 			csum_flags |= TI_BDFLAG_IP_FRAG;
2688 	}
2689 
2690 	mtag = VLAN_OUTPUT_TAG(sc->ti_ifp, m);
2691 
2692 	/*
2693 	 * Start packing the mbufs in this chain into
2694 	 * the fragment pointers. Stop when we run out
2695 	 * of fragments or hit the end of the mbuf chain.
2696 	 */
2697 	for (m = m_head; m != NULL; m = m->m_next) {
2698 		if (m->m_len != 0) {
2699 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2700 				if (frag > 383)
2701 					CSR_WRITE_4(sc, TI_WINBASE,
2702 					    TI_TX_RING_BASE + 6144);
2703 				else if (frag > 255)
2704 					CSR_WRITE_4(sc, TI_WINBASE,
2705 					    TI_TX_RING_BASE + 4096);
2706 				else if (frag > 127)
2707 					CSR_WRITE_4(sc, TI_WINBASE,
2708 					    TI_TX_RING_BASE + 2048);
2709 				else
2710 					CSR_WRITE_4(sc, TI_WINBASE,
2711 					    TI_TX_RING_BASE);
2712 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2713 			} else
2714 				f = &sc->ti_rdata->ti_tx_ring[frag];
2715 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2716 				break;
2717 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2718 			f->ti_len = m->m_len;
2719 			f->ti_flags = csum_flags;
2720 
2721 			if (mtag != NULL) {
2722 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2723 				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2724 			} else {
2725 				f->ti_vlan_tag = 0;
2726 			}
2727 
2728 			/*
2729 			 * Sanity check: avoid coming within 16 descriptors
2730 			 * of the end of the ring.
2731 			 */
2732 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2733 				return (ENOBUFS);
2734 			cur = frag;
2735 			TI_INC(frag, TI_TX_RING_CNT);
2736 			cnt++;
2737 		}
2738 	}
2739 
2740 	if (m != NULL)
2741 		return (ENOBUFS);
2742 
2743 	if (frag == sc->ti_tx_saved_considx)
2744 		return (ENOBUFS);
2745 
2746 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2747 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2748 	            TI_BDFLAG_END;
2749 	else
2750 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2751 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2752 	sc->ti_txcnt += cnt;
2753 
2754 	*txidx = frag;
2755 
2756 	return (0);
2757 }
2758 
2759 /*
2760  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2761  * to the mbuf data regions directly in the transmit descriptors.
2762  */
2763 static void
2764 ti_start(ifp)
2765 	struct ifnet		*ifp;
2766 {
2767 	struct ti_softc		*sc;
2768 	struct mbuf		*m_head = NULL;
2769 	u_int32_t		prodidx = 0;
2770 
2771 	sc = ifp->if_softc;
2772 	TI_LOCK(sc);
2773 
2774 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2775 
2776 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2777 		IF_DEQUEUE(&ifp->if_snd, m_head);
2778 		if (m_head == NULL)
2779 			break;
2780 
2781 		/*
2782 		 * XXX
2783 		 * safety overkill.  If this is a fragmented packet chain
2784 		 * with delayed TCP/UDP checksums, then only encapsulate
2785 		 * it if we have enough descriptors to handle the entire
2786 		 * chain at once.
2787 		 * (paranoia -- may not actually be needed)
2788 		 */
2789 		if (m_head->m_flags & M_FIRSTFRAG &&
2790 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2791 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2792 			    m_head->m_pkthdr.csum_data + 16) {
2793 				IF_PREPEND(&ifp->if_snd, m_head);
2794 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2795 				break;
2796 			}
2797 		}
2798 
2799 		/*
2800 		 * Pack the data into the transmit ring. If we
2801 		 * don't have room, set the OACTIVE flag and wait
2802 		 * for the NIC to drain the ring.
2803 		 */
2804 		if (ti_encap(sc, m_head, &prodidx)) {
2805 			IF_PREPEND(&ifp->if_snd, m_head);
2806 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2807 			break;
2808 		}
2809 
2810 		/*
2811 		 * If there's a BPF listener, bounce a copy of this frame
2812 		 * to him.
2813 		 */
2814 		BPF_MTAP(ifp, m_head);
2815 	}
2816 
2817 	/* Transmit */
2818 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2819 
2820 	/*
2821 	 * Set a timeout in case the chip goes out to lunch.
2822 	 */
2823 	ifp->if_timer = 5;
2824 	TI_UNLOCK(sc);
2825 }
2826 
2827 static void
2828 ti_init(xsc)
2829 	void			*xsc;
2830 {
2831 	struct ti_softc		*sc = xsc;
2832 
2833 	/* Cancel pending I/O and flush buffers. */
2834 	ti_stop(sc);
2835 
2836 	TI_LOCK(sc);
2837 	/* Init the gen info block, ring control blocks and firmware. */
2838 	if (ti_gibinit(sc)) {
2839 		if_printf(sc->ti_ifp, "initialization failure\n");
2840 		TI_UNLOCK(sc);
2841 		return;
2842 	}
2843 
2844 	TI_UNLOCK(sc);
2845 }
2846 
2847 static void ti_init2(sc)
2848 	struct ti_softc		*sc;
2849 {
2850 	struct ti_cmd_desc	cmd;
2851 	struct ifnet		*ifp;
2852 	u_int16_t		*m;
2853 	struct ifmedia		*ifm;
2854 	int			tmp;
2855 
2856 	ifp = sc->ti_ifp;
2857 
2858 	/* Specify MTU and interface index. */
2859 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2860 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2861 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2862 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2863 
2864 	/* Load our MAC address. */
2865 	m = (u_int16_t *)&IFP2ENADDR(sc->ti_ifp)[0];
2866 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2867 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2868 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2869 
2870 	/* Enable or disable promiscuous mode as needed. */
2871 	if (ifp->if_flags & IFF_PROMISC) {
2872 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2873 	} else {
2874 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2875 	}
2876 
2877 	/* Program multicast filter. */
2878 	ti_setmulti(sc);
2879 
2880 	/*
2881 	 * If this is a Tigon 1, we should tell the
2882 	 * firmware to use software packet filtering.
2883 	 */
2884 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2885 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2886 	}
2887 
2888 	/* Init RX ring. */
2889 	ti_init_rx_ring_std(sc);
2890 
2891 	/* Init jumbo RX ring. */
2892 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2893 		ti_init_rx_ring_jumbo(sc);
2894 
2895 	/*
2896 	 * If this is a Tigon 2, we can also configure the
2897 	 * mini ring.
2898 	 */
2899 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2900 		ti_init_rx_ring_mini(sc);
2901 
2902 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2903 	sc->ti_rx_saved_considx = 0;
2904 
2905 	/* Init TX ring. */
2906 	ti_init_tx_ring(sc);
2907 
2908 	/* Tell firmware we're alive. */
2909 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2910 
2911 	/* Enable host interrupts. */
2912 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2913 
2914 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2915 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2916 
2917 	/*
2918 	 * Make sure to set media properly. We have to do this
2919 	 * here since we have to issue commands in order to set
2920 	 * the link negotiation and we can't issue commands until
2921 	 * the firmware is running.
2922 	 */
2923 	ifm = &sc->ifmedia;
2924 	tmp = ifm->ifm_media;
2925 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2926 	ti_ifmedia_upd(ifp);
2927 	ifm->ifm_media = tmp;
2928 }
2929 
2930 /*
2931  * Set media options.
2932  */
2933 static int
2934 ti_ifmedia_upd(ifp)
2935 	struct ifnet		*ifp;
2936 {
2937 	struct ti_softc		*sc;
2938 	struct ifmedia		*ifm;
2939 	struct ti_cmd_desc	cmd;
2940 	u_int32_t		flowctl;
2941 
2942 	sc = ifp->if_softc;
2943 	ifm = &sc->ifmedia;
2944 
2945 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2946 		return (EINVAL);
2947 
2948 	flowctl = 0;
2949 
2950 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2951 	case IFM_AUTO:
2952 		/*
2953 		 * Transmit flow control doesn't work on the Tigon 1.
2954 		 */
2955 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2956 
2957 		/*
2958 		 * Transmit flow control can also cause problems on the
2959 		 * Tigon 2, apparantly with both the copper and fiber
2960 		 * boards.  The symptom is that the interface will just
2961 		 * hang.  This was reproduced with Alteon 180 switches.
2962 		 */
2963 #if 0
2964 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2965 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2966 #endif
2967 
2968 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2969 		    TI_GLNK_FULL_DUPLEX| flowctl |
2970 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2971 
2972 		flowctl = TI_LNK_RX_FLOWCTL_Y;
2973 #if 0
2974 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2975 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2976 #endif
2977 
2978 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2979 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2980 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2981 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2982 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2983 		break;
2984 	case IFM_1000_SX:
2985 	case IFM_1000_T:
2986 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2987 #if 0
2988 		if (sc->ti_hwrev != TI_HWREV_TIGON)
2989 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2990 #endif
2991 
2992 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2993 		    flowctl |TI_GLNK_ENB);
2994 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2995 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2996 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2997 		}
2998 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2999 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3000 		break;
3001 	case IFM_100_FX:
3002 	case IFM_10_FL:
3003 	case IFM_100_TX:
3004 	case IFM_10_T:
3005 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3006 #if 0
3007 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3008 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3009 #endif
3010 
3011 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3012 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3013 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3014 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3015 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3016 		} else {
3017 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3018 		}
3019 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3020 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3021 		} else {
3022 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3023 		}
3024 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3025 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3026 		break;
3027 	}
3028 
3029 	return (0);
3030 }
3031 
3032 /*
3033  * Report current media status.
3034  */
3035 static void
3036 ti_ifmedia_sts(ifp, ifmr)
3037 	struct ifnet		*ifp;
3038 	struct ifmediareq	*ifmr;
3039 {
3040 	struct ti_softc		*sc;
3041 	u_int32_t		media = 0;
3042 
3043 	sc = ifp->if_softc;
3044 
3045 	ifmr->ifm_status = IFM_AVALID;
3046 	ifmr->ifm_active = IFM_ETHER;
3047 
3048 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3049 		return;
3050 
3051 	ifmr->ifm_status |= IFM_ACTIVE;
3052 
3053 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3054 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3055 		if (sc->ti_copper)
3056 			ifmr->ifm_active |= IFM_1000_T;
3057 		else
3058 			ifmr->ifm_active |= IFM_1000_SX;
3059 		if (media & TI_GLNK_FULL_DUPLEX)
3060 			ifmr->ifm_active |= IFM_FDX;
3061 		else
3062 			ifmr->ifm_active |= IFM_HDX;
3063 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3064 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3065 		if (sc->ti_copper) {
3066 			if (media & TI_LNK_100MB)
3067 				ifmr->ifm_active |= IFM_100_TX;
3068 			if (media & TI_LNK_10MB)
3069 				ifmr->ifm_active |= IFM_10_T;
3070 		} else {
3071 			if (media & TI_LNK_100MB)
3072 				ifmr->ifm_active |= IFM_100_FX;
3073 			if (media & TI_LNK_10MB)
3074 				ifmr->ifm_active |= IFM_10_FL;
3075 		}
3076 		if (media & TI_LNK_FULL_DUPLEX)
3077 			ifmr->ifm_active |= IFM_FDX;
3078 		if (media & TI_LNK_HALF_DUPLEX)
3079 			ifmr->ifm_active |= IFM_HDX;
3080 	}
3081 }
3082 
3083 static int
3084 ti_ioctl(ifp, command, data)
3085 	struct ifnet		*ifp;
3086 	u_long			command;
3087 	caddr_t			data;
3088 {
3089 	struct ti_softc		*sc = ifp->if_softc;
3090 	struct ifreq		*ifr = (struct ifreq *) data;
3091 	int			mask, error = 0;
3092 	struct ti_cmd_desc	cmd;
3093 
3094 	TI_LOCK(sc);
3095 
3096 	switch (command) {
3097 	case SIOCSIFMTU:
3098 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3099 			error = EINVAL;
3100 		else {
3101 			ifp->if_mtu = ifr->ifr_mtu;
3102 			ti_init(sc);
3103 		}
3104 		break;
3105 	case SIOCSIFFLAGS:
3106 		if (ifp->if_flags & IFF_UP) {
3107 			/*
3108 			 * If only the state of the PROMISC flag changed,
3109 			 * then just use the 'set promisc mode' command
3110 			 * instead of reinitializing the entire NIC. Doing
3111 			 * a full re-init means reloading the firmware and
3112 			 * waiting for it to start up, which may take a
3113 			 * second or two.
3114 			 */
3115 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3116 			    ifp->if_flags & IFF_PROMISC &&
3117 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3118 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3119 				    TI_CMD_CODE_PROMISC_ENB, 0);
3120 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3121 			    !(ifp->if_flags & IFF_PROMISC) &&
3122 			    sc->ti_if_flags & IFF_PROMISC) {
3123 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3124 				    TI_CMD_CODE_PROMISC_DIS, 0);
3125 			} else
3126 				ti_init(sc);
3127 		} else {
3128 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3129 				ti_stop(sc);
3130 			}
3131 		}
3132 		sc->ti_if_flags = ifp->if_flags;
3133 		error = 0;
3134 		break;
3135 	case SIOCADDMULTI:
3136 	case SIOCDELMULTI:
3137 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3138 			ti_setmulti(sc);
3139 			error = 0;
3140 		}
3141 		break;
3142 	case SIOCSIFMEDIA:
3143 	case SIOCGIFMEDIA:
3144 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3145 		break;
3146 	case SIOCSIFCAP:
3147 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3148 		if (mask & IFCAP_HWCSUM) {
3149 			if (IFCAP_HWCSUM & ifp->if_capenable)
3150 				ifp->if_capenable &= ~IFCAP_HWCSUM;
3151 			else
3152 				ifp->if_capenable |= IFCAP_HWCSUM;
3153 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3154 				ti_init(sc);
3155 		}
3156 		error = 0;
3157 		break;
3158 	default:
3159 		error = ether_ioctl(ifp, command, data);
3160 		break;
3161 	}
3162 
3163 	TI_UNLOCK(sc);
3164 
3165 	return (error);
3166 }
3167 
3168 static int
3169 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3170 {
3171 	struct ti_softc *sc;
3172 
3173 	sc = dev->si_drv1;
3174 	if (sc == NULL)
3175 		return (ENODEV);
3176 
3177 	TI_LOCK(sc);
3178 	sc->ti_flags |= TI_FLAG_DEBUGING;
3179 	TI_UNLOCK(sc);
3180 
3181 	return (0);
3182 }
3183 
3184 static int
3185 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3186 {
3187 	struct ti_softc *sc;
3188 
3189 	sc = dev->si_drv1;
3190 	if (sc == NULL)
3191 		return (ENODEV);
3192 
3193 	TI_LOCK(sc);
3194 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3195 	TI_UNLOCK(sc);
3196 
3197 	return (0);
3198 }
3199 
3200 /*
3201  * This ioctl routine goes along with the Tigon character device.
3202  */
3203 static int
3204 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3205     struct thread *td)
3206 {
3207 	int error;
3208 	struct ti_softc *sc;
3209 
3210 	sc = dev->si_drv1;
3211 	if (sc == NULL)
3212 		return (ENODEV);
3213 
3214 	error = 0;
3215 
3216 	switch (cmd) {
3217 	case TIIOCGETSTATS:
3218 	{
3219 		struct ti_stats *outstats;
3220 
3221 		outstats = (struct ti_stats *)addr;
3222 
3223 		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3224 		      sizeof(struct ti_stats));
3225 		break;
3226 	}
3227 	case TIIOCGETPARAMS:
3228 	{
3229 		struct ti_params	*params;
3230 
3231 		params = (struct ti_params *)addr;
3232 
3233 		params->ti_stat_ticks = sc->ti_stat_ticks;
3234 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3235 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3236 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3237 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3238 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3239 		params->param_mask = TI_PARAM_ALL;
3240 
3241 		error = 0;
3242 
3243 		break;
3244 	}
3245 	case TIIOCSETPARAMS:
3246 	{
3247 		struct ti_params *params;
3248 
3249 		params = (struct ti_params *)addr;
3250 
3251 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3252 			sc->ti_stat_ticks = params->ti_stat_ticks;
3253 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3254 		}
3255 
3256 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3257 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3258 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3259 				    sc->ti_rx_coal_ticks);
3260 		}
3261 
3262 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3263 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3264 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3265 				    sc->ti_tx_coal_ticks);
3266 		}
3267 
3268 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3269 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3270 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3271 				    sc->ti_rx_max_coal_bds);
3272 		}
3273 
3274 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3275 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3276 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3277 				    sc->ti_tx_max_coal_bds);
3278 		}
3279 
3280 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3281 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3282 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3283 				    sc->ti_tx_buf_ratio);
3284 		}
3285 
3286 		error = 0;
3287 
3288 		break;
3289 	}
3290 	case TIIOCSETTRACE: {
3291 		ti_trace_type	trace_type;
3292 
3293 		trace_type = *(ti_trace_type *)addr;
3294 
3295 		/*
3296 		 * Set tracing to whatever the user asked for.  Setting
3297 		 * this register to 0 should have the effect of disabling
3298 		 * tracing.
3299 		 */
3300 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3301 
3302 		error = 0;
3303 
3304 		break;
3305 	}
3306 	case TIIOCGETTRACE: {
3307 		struct ti_trace_buf	*trace_buf;
3308 		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3309 
3310 		trace_buf = (struct ti_trace_buf *)addr;
3311 
3312 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3313 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3314 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3315 
3316 #if 0
3317 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3318 		       "trace_len = %d\n", trace_start,
3319 		       cur_trace_ptr, trace_len);
3320 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3321 		       trace_buf->buf_len);
3322 #endif
3323 
3324 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3325 				    trace_buf->buf_len),
3326 				    (caddr_t)trace_buf->buf, 1, 1);
3327 
3328 		if (error == 0) {
3329 			trace_buf->fill_len = min(trace_len,
3330 						  trace_buf->buf_len);
3331 			if (cur_trace_ptr < trace_start)
3332 				trace_buf->cur_trace_ptr =
3333 					trace_start - cur_trace_ptr;
3334 			else
3335 				trace_buf->cur_trace_ptr =
3336 					cur_trace_ptr - trace_start;
3337 		} else
3338 			trace_buf->fill_len = 0;
3339 
3340 		break;
3341 	}
3342 
3343 	/*
3344 	 * For debugging, five ioctls are needed:
3345 	 * ALT_ATTACH
3346 	 * ALT_READ_TG_REG
3347 	 * ALT_WRITE_TG_REG
3348 	 * ALT_READ_TG_MEM
3349 	 * ALT_WRITE_TG_MEM
3350 	 */
3351 	case ALT_ATTACH:
3352 		/*
3353 		 * From what I can tell, Alteon's Solaris Tigon driver
3354 		 * only has one character device, so you have to attach
3355 		 * to the Tigon board you're interested in.  This seems
3356 		 * like a not-so-good way to do things, since unless you
3357 		 * subsequently specify the unit number of the device
3358 		 * you're interested in in every ioctl, you'll only be
3359 		 * able to debug one board at a time.
3360 		 */
3361 		error = 0;
3362 		break;
3363 	case ALT_READ_TG_MEM:
3364 	case ALT_WRITE_TG_MEM:
3365 	{
3366 		struct tg_mem *mem_param;
3367 		u_int32_t sram_end, scratch_end;
3368 
3369 		mem_param = (struct tg_mem *)addr;
3370 
3371 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3372 			sram_end = TI_END_SRAM_I;
3373 			scratch_end = TI_END_SCRATCH_I;
3374 		} else {
3375 			sram_end = TI_END_SRAM_II;
3376 			scratch_end = TI_END_SCRATCH_II;
3377 		}
3378 
3379 		/*
3380 		 * For now, we'll only handle accessing regular SRAM,
3381 		 * nothing else.
3382 		 */
3383 		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3384 		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3385 			/*
3386 			 * In this instance, we always copy to/from user
3387 			 * space, so the user space argument is set to 1.
3388 			 */
3389 			error = ti_copy_mem(sc, mem_param->tgAddr,
3390 					    mem_param->len,
3391 					    mem_param->userAddr, 1,
3392 					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3393 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3394 			&& (mem_param->tgAddr <= scratch_end)) {
3395 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3396 						mem_param->len,
3397 						mem_param->userAddr, 1,
3398 						(cmd == ALT_READ_TG_MEM) ?
3399 						1 : 0, TI_PROCESSOR_A);
3400 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3401 			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3402 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3403 				if_printf(sc->ti_ifp,
3404 				    "invalid memory range for Tigon I\n");
3405 				error = EINVAL;
3406 				break;
3407 			}
3408 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3409 						TI_SCRATCH_DEBUG_OFF,
3410 						mem_param->len,
3411 						mem_param->userAddr, 1,
3412 						(cmd == ALT_READ_TG_MEM) ?
3413 						1 : 0, TI_PROCESSOR_B);
3414 		} else {
3415 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3416 			        "out of supported range\n",
3417 			        mem_param->tgAddr, mem_param->len);
3418 			error = EINVAL;
3419 		}
3420 
3421 		break;
3422 	}
3423 	case ALT_READ_TG_REG:
3424 	case ALT_WRITE_TG_REG:
3425 	{
3426 		struct tg_reg	*regs;
3427 		u_int32_t	tmpval;
3428 
3429 		regs = (struct tg_reg *)addr;
3430 
3431 		/*
3432 		 * Make sure the address in question isn't out of range.
3433 		 */
3434 		if (regs->addr > TI_REG_MAX) {
3435 			error = EINVAL;
3436 			break;
3437 		}
3438 		if (cmd == ALT_READ_TG_REG) {
3439 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3440 						regs->addr, &tmpval, 1);
3441 			regs->data = ntohl(tmpval);
3442 #if 0
3443 			if ((regs->addr == TI_CPU_STATE)
3444 			 || (regs->addr == TI_CPU_CTL_B)) {
3445 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3446 				       regs->addr, tmpval);
3447 			}
3448 #endif
3449 		} else {
3450 			tmpval = htonl(regs->data);
3451 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3452 						 regs->addr, &tmpval, 1);
3453 		}
3454 
3455 		break;
3456 	}
3457 	default:
3458 		error = ENOTTY;
3459 		break;
3460 	}
3461 	return (error);
3462 }
3463 
3464 static void
3465 ti_watchdog(ifp)
3466 	struct ifnet		*ifp;
3467 {
3468 	struct ti_softc		*sc;
3469 
3470 	sc = ifp->if_softc;
3471 	TI_LOCK(sc);
3472 
3473 	/*
3474 	 * When we're debugging, the chip is often stopped for long periods
3475 	 * of time, and that would normally cause the watchdog timer to fire.
3476 	 * Since that impedes debugging, we don't want to do that.
3477 	 */
3478 	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3479 		TI_UNLOCK(sc);
3480 		return;
3481 	}
3482 
3483 	if_printf(ifp, "watchdog timeout -- resetting\n");
3484 	ti_stop(sc);
3485 	ti_init(sc);
3486 
3487 	ifp->if_oerrors++;
3488 	TI_UNLOCK(sc);
3489 }
3490 
3491 /*
3492  * Stop the adapter and free any mbufs allocated to the
3493  * RX and TX lists.
3494  */
3495 static void
3496 ti_stop(sc)
3497 	struct ti_softc		*sc;
3498 {
3499 	struct ifnet		*ifp;
3500 	struct ti_cmd_desc	cmd;
3501 
3502 	TI_LOCK(sc);
3503 
3504 	ifp = sc->ti_ifp;
3505 
3506 	/* Disable host interrupts. */
3507 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3508 	/*
3509 	 * Tell firmware we're shutting down.
3510 	 */
3511 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3512 
3513 	/* Halt and reinitialize. */
3514 	ti_chipinit(sc);
3515 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3516 	ti_chipinit(sc);
3517 
3518 	/* Free the RX lists. */
3519 	ti_free_rx_ring_std(sc);
3520 
3521 	/* Free jumbo RX list. */
3522 	ti_free_rx_ring_jumbo(sc);
3523 
3524 	/* Free mini RX list. */
3525 	ti_free_rx_ring_mini(sc);
3526 
3527 	/* Free TX buffers. */
3528 	ti_free_tx_ring(sc);
3529 
3530 	sc->ti_ev_prodidx.ti_idx = 0;
3531 	sc->ti_return_prodidx.ti_idx = 0;
3532 	sc->ti_tx_considx.ti_idx = 0;
3533 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3534 
3535 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3536 	TI_UNLOCK(sc);
3537 }
3538 
3539 /*
3540  * Stop all chip I/O so that the kernel's probe routines don't
3541  * get confused by errant DMAs when rebooting.
3542  */
3543 static void
3544 ti_shutdown(dev)
3545 	device_t		dev;
3546 {
3547 	struct ti_softc		*sc;
3548 
3549 	sc = device_get_softc(dev);
3550 	TI_LOCK(sc);
3551 	ti_chipinit(sc);
3552 	TI_UNLOCK(sc);
3553 }
3554