1 /* 2 * Copyright (c) 1997, 1998, 1999 3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD. 35 * Manuals, sample driver and firmware source kits are available 36 * from http://www.alteon.com/support/openkits. 37 * 38 * Written by Bill Paul <wpaul@ctr.columbia.edu> 39 * Electrical Engineering Department 40 * Columbia University, New York City 41 */ 42 43 /* 44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU, 45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs 46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The 47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast 48 * filtering and jumbo (9014 byte) frames. The hardware is largely 49 * controlled by firmware, which must be loaded into the NIC during 50 * initialization. 51 * 52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware 53 * revision, which supports new features such as extended commands, 54 * extended jumbo receive ring desciptors and a mini receive ring. 55 * 56 * Alteon Networks is to be commended for releasing such a vast amount 57 * of development material for the Tigon NIC without requiring an NDA 58 * (although they really should have done it a long time ago). With 59 * any luck, the other vendors will finally wise up and follow Alteon's 60 * stellar example. 61 * 62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into 63 * this driver by #including it as a C header file. This bloats the 64 * driver somewhat, but it's the easiest method considering that the 65 * driver code and firmware code need to be kept in sync. The source 66 * for the firmware is not provided with the FreeBSD distribution since 67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3. 68 * 69 * The following people deserve special thanks: 70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board 71 * for testing 72 * - Raymond Lee of Netgear, for providing a pair of Netgear 73 * GA620 Tigon 2 boards for testing 74 * - Ulf Zimmermann, for bringing the GA260 to my attention and 75 * convincing me to write this driver. 76 * - Andrew Gallatin for providing FreeBSD/Alpha support. 77 */ 78 79 #include <sys/cdefs.h> 80 __FBSDID("$FreeBSD$"); 81 82 #include "opt_ti.h" 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/sockio.h> 87 #include <sys/mbuf.h> 88 #include <sys/malloc.h> 89 #include <sys/kernel.h> 90 #include <sys/socket.h> 91 #include <sys/queue.h> 92 #include <sys/conf.h> 93 94 #include <net/if.h> 95 #include <net/if_arp.h> 96 #include <net/ethernet.h> 97 #include <net/if_dl.h> 98 #include <net/if_media.h> 99 #include <net/if_types.h> 100 #include <net/if_vlan_var.h> 101 102 #include <net/bpf.h> 103 104 #include <netinet/in_systm.h> 105 #include <netinet/in.h> 106 #include <netinet/ip.h> 107 108 #include <vm/vm.h> /* for vtophys */ 109 #include <vm/pmap.h> /* for vtophys */ 110 #include <machine/bus_memio.h> 111 #include <machine/bus.h> 112 #include <machine/resource.h> 113 #include <sys/bus.h> 114 #include <sys/rman.h> 115 116 /* #define TI_PRIVATE_JUMBOS */ 117 118 #if !defined(TI_PRIVATE_JUMBOS) 119 #include <sys/sockio.h> 120 #include <sys/uio.h> 121 #include <sys/lock.h> 122 #include <vm/vm_extern.h> 123 #include <vm/pmap.h> 124 #include <vm/vm_map.h> 125 #include <vm/vm_map.h> 126 #include <vm/vm_param.h> 127 #include <vm/vm_pageout.h> 128 #include <sys/vmmeter.h> 129 #include <vm/vm_page.h> 130 #include <vm/vm_object.h> 131 #include <vm/vm_kern.h> 132 #include <sys/proc.h> 133 #include <sys/jumbo.h> 134 #endif /* !TI_PRIVATE_JUMBOS */ 135 #include <sys/vnode.h> /* for vfindev, vgone */ 136 137 #include <pci/pcireg.h> 138 #include <pci/pcivar.h> 139 140 #include <sys/tiio.h> 141 #include <pci/if_tireg.h> 142 #include <pci/ti_fw.h> 143 #include <pci/ti_fw2.h> 144 145 #define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS) 146 /* 147 * We can only turn on header splitting if we're using extended receive 148 * BDs. 149 */ 150 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS) 151 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive" 152 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */ 153 154 struct ti_softc *tis[8]; 155 156 typedef enum { 157 TI_SWAP_HTON, 158 TI_SWAP_NTOH 159 } ti_swap_type; 160 161 162 /* 163 * Various supported device vendors/types and their names. 164 */ 165 166 static struct ti_type ti_devs[] = { 167 { ALT_VENDORID, ALT_DEVICEID_ACENIC, 168 "Alteon AceNIC 1000baseSX Gigabit Ethernet" }, 169 { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER, 170 "Alteon AceNIC 1000baseT Gigabit Ethernet" }, 171 { TC_VENDORID, TC_DEVICEID_3C985, 172 "3Com 3c985-SX Gigabit Ethernet" }, 173 { NG_VENDORID, NG_DEVICEID_GA620, 174 "Netgear GA620 1000baseSX Gigabit Ethernet" }, 175 { NG_VENDORID, NG_DEVICEID_GA620T, 176 "Netgear GA620 1000baseT Gigabit Ethernet" }, 177 { SGI_VENDORID, SGI_DEVICEID_TIGON, 178 "Silicon Graphics Gigabit Ethernet" }, 179 { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX, 180 "Farallon PN9000SX Gigabit Ethernet" }, 181 { 0, 0, NULL } 182 }; 183 184 #define TI_CDEV_MAJOR 153 185 186 static d_open_t ti_open; 187 static d_close_t ti_close; 188 static d_ioctl_t ti_ioctl2; 189 190 static struct cdevsw ti_cdevsw = { 191 .d_open = ti_open, 192 .d_close = ti_close, 193 .d_ioctl = ti_ioctl2, 194 .d_name = "ti", 195 .d_maj = TI_CDEV_MAJOR, 196 }; 197 198 static int ti_probe (device_t); 199 static int ti_attach (device_t); 200 static int ti_detach (device_t); 201 static void ti_txeof (struct ti_softc *); 202 static void ti_rxeof (struct ti_softc *); 203 204 static void ti_stats_update (struct ti_softc *); 205 static int ti_encap (struct ti_softc *, struct mbuf *, u_int32_t *); 206 207 static void ti_intr (void *); 208 static void ti_start (struct ifnet *); 209 static int ti_ioctl (struct ifnet *, u_long, caddr_t); 210 static void ti_init (void *); 211 static void ti_init2 (struct ti_softc *); 212 static void ti_stop (struct ti_softc *); 213 static void ti_watchdog (struct ifnet *); 214 static void ti_shutdown (device_t); 215 static int ti_ifmedia_upd (struct ifnet *); 216 static void ti_ifmedia_sts (struct ifnet *, struct ifmediareq *); 217 218 static u_int32_t ti_eeprom_putbyte (struct ti_softc *, int); 219 static u_int8_t ti_eeprom_getbyte (struct ti_softc *, int, u_int8_t *); 220 static int ti_read_eeprom (struct ti_softc *, caddr_t, int, int); 221 222 static void ti_add_mcast (struct ti_softc *, struct ether_addr *); 223 static void ti_del_mcast (struct ti_softc *, struct ether_addr *); 224 static void ti_setmulti (struct ti_softc *); 225 226 static void ti_mem (struct ti_softc *, u_int32_t, 227 u_int32_t, caddr_t); 228 static int ti_copy_mem (struct ti_softc *, u_int32_t, 229 u_int32_t, caddr_t, int, int); 230 static int ti_copy_scratch (struct ti_softc *, u_int32_t, 231 u_int32_t, caddr_t, int, int, int); 232 static int ti_bcopy_swap (const void *, void *, size_t, 233 ti_swap_type); 234 static void ti_loadfw (struct ti_softc *); 235 static void ti_cmd (struct ti_softc *, struct ti_cmd_desc *); 236 static void ti_cmd_ext (struct ti_softc *, struct ti_cmd_desc *, 237 caddr_t, int); 238 static void ti_handle_events (struct ti_softc *); 239 #ifdef TI_PRIVATE_JUMBOS 240 static int ti_alloc_jumbo_mem (struct ti_softc *); 241 static void *ti_jalloc (struct ti_softc *); 242 static void ti_jfree (void *, void *); 243 #endif /* TI_PRIVATE_JUMBOS */ 244 static int ti_newbuf_std (struct ti_softc *, int, struct mbuf *); 245 static int ti_newbuf_mini (struct ti_softc *, int, struct mbuf *); 246 static int ti_newbuf_jumbo (struct ti_softc *, int, struct mbuf *); 247 static int ti_init_rx_ring_std (struct ti_softc *); 248 static void ti_free_rx_ring_std (struct ti_softc *); 249 static int ti_init_rx_ring_jumbo (struct ti_softc *); 250 static void ti_free_rx_ring_jumbo (struct ti_softc *); 251 static int ti_init_rx_ring_mini (struct ti_softc *); 252 static void ti_free_rx_ring_mini (struct ti_softc *); 253 static void ti_free_tx_ring (struct ti_softc *); 254 static int ti_init_tx_ring (struct ti_softc *); 255 256 static int ti_64bitslot_war (struct ti_softc *); 257 static int ti_chipinit (struct ti_softc *); 258 static int ti_gibinit (struct ti_softc *); 259 260 #ifdef TI_JUMBO_HDRSPLIT 261 static __inline void ti_hdr_split (struct mbuf *top, int hdr_len, 262 int pkt_len, int idx); 263 #endif /* TI_JUMBO_HDRSPLIT */ 264 265 static device_method_t ti_methods[] = { 266 /* Device interface */ 267 DEVMETHOD(device_probe, ti_probe), 268 DEVMETHOD(device_attach, ti_attach), 269 DEVMETHOD(device_detach, ti_detach), 270 DEVMETHOD(device_shutdown, ti_shutdown), 271 { 0, 0 } 272 }; 273 274 static driver_t ti_driver = { 275 "ti", 276 ti_methods, 277 sizeof(struct ti_softc) 278 }; 279 280 static devclass_t ti_devclass; 281 282 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0); 283 MODULE_DEPEND(ti, pci, 1, 1, 1); 284 MODULE_DEPEND(ti, ether, 1, 1, 1); 285 286 /* List of Tigon softcs */ 287 static STAILQ_HEAD(ti_softc_list, ti_softc) ti_sc_list; 288 289 static struct ti_softc * 290 ti_lookup_softc(int unit) 291 { 292 struct ti_softc *sc; 293 for (sc = STAILQ_FIRST(&ti_sc_list); sc != NULL; 294 sc = STAILQ_NEXT(sc, ti_links)) 295 if (sc->ti_unit == unit) 296 return(sc); 297 return(NULL); 298 } 299 300 /* 301 * Send an instruction or address to the EEPROM, check for ACK. 302 */ 303 static u_int32_t ti_eeprom_putbyte(sc, byte) 304 struct ti_softc *sc; 305 int byte; 306 { 307 register int i, ack = 0; 308 309 /* 310 * Make sure we're in TX mode. 311 */ 312 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 313 314 /* 315 * Feed in each bit and stobe the clock. 316 */ 317 for (i = 0x80; i; i >>= 1) { 318 if (byte & i) { 319 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); 320 } else { 321 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); 322 } 323 DELAY(1); 324 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 325 DELAY(1); 326 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 327 } 328 329 /* 330 * Turn off TX mode. 331 */ 332 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 333 334 /* 335 * Check for ack. 336 */ 337 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 338 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN; 339 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 340 341 return(ack); 342 } 343 344 /* 345 * Read a byte of data stored in the EEPROM at address 'addr.' 346 * We have to send two address bytes since the EEPROM can hold 347 * more than 256 bytes of data. 348 */ 349 static u_int8_t ti_eeprom_getbyte(sc, addr, dest) 350 struct ti_softc *sc; 351 int addr; 352 u_int8_t *dest; 353 { 354 register int i; 355 u_int8_t byte = 0; 356 357 EEPROM_START; 358 359 /* 360 * Send write control code to EEPROM. 361 */ 362 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { 363 printf("ti%d: failed to send write command, status: %x\n", 364 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 365 return(1); 366 } 367 368 /* 369 * Send first byte of address of byte we want to read. 370 */ 371 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) { 372 printf("ti%d: failed to send address, status: %x\n", 373 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 374 return(1); 375 } 376 /* 377 * Send second byte address of byte we want to read. 378 */ 379 if (ti_eeprom_putbyte(sc, addr & 0xFF)) { 380 printf("ti%d: failed to send address, status: %x\n", 381 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 382 return(1); 383 } 384 385 EEPROM_STOP; 386 EEPROM_START; 387 /* 388 * Send read control code to EEPROM. 389 */ 390 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) { 391 printf("ti%d: failed to send read command, status: %x\n", 392 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); 393 return(1); 394 } 395 396 /* 397 * Start reading bits from EEPROM. 398 */ 399 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); 400 for (i = 0x80; i; i >>= 1) { 401 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 402 DELAY(1); 403 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN) 404 byte |= i; 405 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); 406 DELAY(1); 407 } 408 409 EEPROM_STOP; 410 411 /* 412 * No ACK generated for read, so just return byte. 413 */ 414 415 *dest = byte; 416 417 return(0); 418 } 419 420 /* 421 * Read a sequence of bytes from the EEPROM. 422 */ 423 static int 424 ti_read_eeprom(sc, dest, off, cnt) 425 struct ti_softc *sc; 426 caddr_t dest; 427 int off; 428 int cnt; 429 { 430 int err = 0, i; 431 u_int8_t byte = 0; 432 433 for (i = 0; i < cnt; i++) { 434 err = ti_eeprom_getbyte(sc, off + i, &byte); 435 if (err) 436 break; 437 *(dest + i) = byte; 438 } 439 440 return(err ? 1 : 0); 441 } 442 443 /* 444 * NIC memory access function. Can be used to either clear a section 445 * of NIC local memory or (if buf is non-NULL) copy data into it. 446 */ 447 static void 448 ti_mem(sc, addr, len, buf) 449 struct ti_softc *sc; 450 u_int32_t addr, len; 451 caddr_t buf; 452 { 453 int segptr, segsize, cnt; 454 caddr_t ti_winbase, ptr; 455 456 segptr = addr; 457 cnt = len; 458 ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW); 459 ptr = buf; 460 461 while(cnt) { 462 if (cnt < TI_WINLEN) 463 segsize = cnt; 464 else 465 segsize = TI_WINLEN - (segptr % TI_WINLEN); 466 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); 467 if (buf == NULL) 468 bzero((char *)ti_winbase + (segptr & 469 (TI_WINLEN - 1)), segsize); 470 else { 471 bcopy((char *)ptr, (char *)ti_winbase + 472 (segptr & (TI_WINLEN - 1)), segsize); 473 ptr += segsize; 474 } 475 segptr += segsize; 476 cnt -= segsize; 477 } 478 479 return; 480 } 481 482 static int 483 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata) 484 struct ti_softc *sc; 485 u_int32_t tigon_addr, len; 486 caddr_t buf; 487 int useraddr, readdata; 488 { 489 int segptr, segsize, cnt; 490 caddr_t ptr; 491 u_int32_t origwin; 492 u_int8_t tmparray[TI_WINLEN], tmparray2[TI_WINLEN]; 493 int resid, segresid; 494 int first_pass; 495 496 /* 497 * At the moment, we don't handle non-aligned cases, we just bail. 498 * If this proves to be a problem, it will be fixed. 499 */ 500 if ((readdata == 0) 501 && (tigon_addr & 0x3)) { 502 printf("ti%d: ti_copy_mem: tigon address %#x isn't " 503 "word-aligned\n", sc->ti_unit, tigon_addr); 504 printf("ti%d: ti_copy_mem: unaligned writes aren't yet " 505 "supported\n", sc->ti_unit); 506 return(EINVAL); 507 } 508 509 segptr = tigon_addr & ~0x3; 510 segresid = tigon_addr - segptr; 511 512 /* 513 * This is the non-aligned amount left over that we'll need to 514 * copy. 515 */ 516 resid = len & 0x3; 517 518 /* Add in the left over amount at the front of the buffer */ 519 resid += segresid; 520 521 cnt = len & ~0x3; 522 /* 523 * If resid + segresid is >= 4, add multiples of 4 to the count and 524 * decrease the residual by that much. 525 */ 526 cnt += resid & ~0x3; 527 resid -= resid & ~0x3; 528 529 ptr = buf; 530 531 first_pass = 1; 532 533 /* 534 * Make sure we aren't interrupted while we're changing the window 535 * pointer. 536 */ 537 TI_LOCK(sc); 538 539 /* 540 * Save the old window base value. 541 */ 542 origwin = CSR_READ_4(sc, TI_WINBASE); 543 544 while(cnt) { 545 bus_size_t ti_offset; 546 547 if (cnt < TI_WINLEN) 548 segsize = cnt; 549 else 550 segsize = TI_WINLEN - (segptr % TI_WINLEN); 551 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); 552 553 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1)); 554 555 if (readdata) { 556 557 bus_space_read_region_4(sc->ti_btag, 558 sc->ti_bhandle, ti_offset, 559 (u_int32_t *)tmparray, 560 segsize >> 2); 561 if (useraddr) { 562 /* 563 * Yeah, this is a little on the kludgy 564 * side, but at least this code is only 565 * used for debugging. 566 */ 567 ti_bcopy_swap(tmparray, tmparray2, segsize, 568 TI_SWAP_NTOH); 569 570 if (first_pass) { 571 copyout(&tmparray2[segresid], ptr, 572 segsize - segresid); 573 first_pass = 0; 574 } else 575 copyout(tmparray2, ptr, segsize); 576 } else { 577 if (first_pass) { 578 579 ti_bcopy_swap(tmparray, tmparray2, 580 segsize, TI_SWAP_NTOH); 581 bcopy(&tmparray2[segresid], ptr, 582 segsize - segresid); 583 first_pass = 0; 584 } else 585 ti_bcopy_swap(tmparray, ptr, segsize, 586 TI_SWAP_NTOH); 587 } 588 589 } else { 590 if (useraddr) { 591 copyin(ptr, tmparray2, segsize); 592 ti_bcopy_swap(tmparray2, tmparray, segsize, 593 TI_SWAP_HTON); 594 } else 595 ti_bcopy_swap(ptr, tmparray, segsize, 596 TI_SWAP_HTON); 597 598 bus_space_write_region_4(sc->ti_btag, 599 sc->ti_bhandle, ti_offset, 600 (u_int32_t *)tmparray, 601 segsize >> 2); 602 } 603 segptr += segsize; 604 ptr += segsize; 605 cnt -= segsize; 606 } 607 608 /* 609 * Handle leftover, non-word-aligned bytes. 610 */ 611 if (resid != 0) { 612 u_int32_t tmpval, tmpval2; 613 bus_size_t ti_offset; 614 615 /* 616 * Set the segment pointer. 617 */ 618 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); 619 620 ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1)); 621 622 /* 623 * First, grab whatever is in our source/destination. 624 * We'll obviously need this for reads, but also for 625 * writes, since we'll be doing read/modify/write. 626 */ 627 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle, 628 ti_offset, &tmpval, 1); 629 630 /* 631 * Next, translate this from little-endian to big-endian 632 * (at least on i386 boxes). 633 */ 634 tmpval2 = ntohl(tmpval); 635 636 if (readdata) { 637 /* 638 * If we're reading, just copy the leftover number 639 * of bytes from the host byte order buffer to 640 * the user's buffer. 641 */ 642 if (useraddr) 643 copyout(&tmpval2, ptr, resid); 644 else 645 bcopy(&tmpval2, ptr, resid); 646 } else { 647 /* 648 * If we're writing, first copy the bytes to be 649 * written into the network byte order buffer, 650 * leaving the rest of the buffer with whatever was 651 * originally in there. Then, swap the bytes 652 * around into host order and write them out. 653 * 654 * XXX KDM the read side of this has been verified 655 * to work, but the write side of it has not been 656 * verified. So user beware. 657 */ 658 if (useraddr) 659 copyin(ptr, &tmpval2, resid); 660 else 661 bcopy(ptr, &tmpval2, resid); 662 663 tmpval = htonl(tmpval2); 664 665 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, 666 ti_offset, &tmpval, 1); 667 } 668 } 669 670 CSR_WRITE_4(sc, TI_WINBASE, origwin); 671 672 TI_UNLOCK(sc); 673 674 return(0); 675 } 676 677 static int 678 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu) 679 struct ti_softc *sc; 680 u_int32_t tigon_addr, len; 681 caddr_t buf; 682 int useraddr, readdata; 683 int cpu; 684 { 685 u_int32_t segptr; 686 int cnt; 687 u_int32_t tmpval, tmpval2; 688 caddr_t ptr; 689 690 /* 691 * At the moment, we don't handle non-aligned cases, we just bail. 692 * If this proves to be a problem, it will be fixed. 693 */ 694 if (tigon_addr & 0x3) { 695 printf("ti%d: ti_copy_scratch: tigon address %#x isn't " 696 "word-aligned\n", sc->ti_unit, tigon_addr); 697 return(EINVAL); 698 } 699 700 if (len & 0x3) { 701 printf("ti%d: ti_copy_scratch: transfer length %d isn't " 702 "word-aligned\n", sc->ti_unit, len); 703 return(EINVAL); 704 } 705 706 segptr = tigon_addr; 707 cnt = len; 708 ptr = buf; 709 710 TI_LOCK(sc); 711 712 while (cnt) { 713 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr); 714 715 if (readdata) { 716 tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu)); 717 718 tmpval = ntohl(tmpval2); 719 720 /* 721 * Note: I've used this debugging interface 722 * extensively with Alteon's 12.3.15 firmware, 723 * compiled with GCC 2.7.2.1 and binutils 2.9.1. 724 * 725 * When you compile the firmware without 726 * optimization, which is necessary sometimes in 727 * order to properly step through it, you sometimes 728 * read out a bogus value of 0xc0017c instead of 729 * whatever was supposed to be in that scratchpad 730 * location. That value is on the stack somewhere, 731 * but I've never been able to figure out what was 732 * causing the problem. 733 * 734 * The address seems to pop up in random places, 735 * often not in the same place on two subsequent 736 * reads. 737 * 738 * In any case, the underlying data doesn't seem 739 * to be affected, just the value read out. 740 * 741 * KDM, 3/7/2000 742 */ 743 744 if (tmpval2 == 0xc0017c) 745 printf("ti%d: found 0xc0017c at %#x " 746 "(tmpval2)\n", sc->ti_unit, segptr); 747 748 if (tmpval == 0xc0017c) 749 printf("ti%d: found 0xc0017c at %#x " 750 "(tmpval)\n", sc->ti_unit, segptr); 751 752 if (useraddr) 753 copyout(&tmpval, ptr, 4); 754 else 755 bcopy(&tmpval, ptr, 4); 756 } else { 757 if (useraddr) 758 copyin(ptr, &tmpval2, 4); 759 else 760 bcopy(ptr, &tmpval2, 4); 761 762 tmpval = htonl(tmpval2); 763 764 CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval); 765 } 766 767 cnt -= 4; 768 segptr += 4; 769 ptr += 4; 770 } 771 772 TI_UNLOCK(sc); 773 774 return(0); 775 } 776 777 static int 778 ti_bcopy_swap(src, dst, len, swap_type) 779 const void *src; 780 void *dst; 781 size_t len; 782 ti_swap_type swap_type; 783 { 784 const u_int8_t *tmpsrc; 785 u_int8_t *tmpdst; 786 size_t tmplen; 787 788 if (len & 0x3) { 789 printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", 790 len); 791 return(-1); 792 } 793 794 tmpsrc = src; 795 tmpdst = dst; 796 tmplen = len; 797 798 while (tmplen) { 799 if (swap_type == TI_SWAP_NTOH) 800 *(u_int32_t *)tmpdst = 801 ntohl(*(const u_int32_t *)tmpsrc); 802 else 803 *(u_int32_t *)tmpdst = 804 htonl(*(const u_int32_t *)tmpsrc); 805 806 tmpsrc += 4; 807 tmpdst += 4; 808 tmplen -= 4; 809 } 810 811 return(0); 812 } 813 814 /* 815 * Load firmware image into the NIC. Check that the firmware revision 816 * is acceptable and see if we want the firmware for the Tigon 1 or 817 * Tigon 2. 818 */ 819 static void 820 ti_loadfw(sc) 821 struct ti_softc *sc; 822 { 823 switch(sc->ti_hwrev) { 824 case TI_HWREV_TIGON: 825 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR || 826 tigonFwReleaseMinor != TI_FIRMWARE_MINOR || 827 tigonFwReleaseFix != TI_FIRMWARE_FIX) { 828 printf("ti%d: firmware revision mismatch; want " 829 "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, 830 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, 831 TI_FIRMWARE_FIX, tigonFwReleaseMajor, 832 tigonFwReleaseMinor, tigonFwReleaseFix); 833 return; 834 } 835 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, 836 (caddr_t)tigonFwText); 837 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, 838 (caddr_t)tigonFwData); 839 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, 840 (caddr_t)tigonFwRodata); 841 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL); 842 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL); 843 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr); 844 break; 845 case TI_HWREV_TIGON_II: 846 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR || 847 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR || 848 tigon2FwReleaseFix != TI_FIRMWARE_FIX) { 849 printf("ti%d: firmware revision mismatch; want " 850 "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit, 851 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, 852 TI_FIRMWARE_FIX, tigon2FwReleaseMajor, 853 tigon2FwReleaseMinor, tigon2FwReleaseFix); 854 return; 855 } 856 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, 857 (caddr_t)tigon2FwText); 858 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, 859 (caddr_t)tigon2FwData); 860 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen, 861 (caddr_t)tigon2FwRodata); 862 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL); 863 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL); 864 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr); 865 break; 866 default: 867 printf("ti%d: can't load firmware: unknown hardware rev\n", 868 sc->ti_unit); 869 break; 870 } 871 872 return; 873 } 874 875 /* 876 * Send the NIC a command via the command ring. 877 */ 878 static void 879 ti_cmd(sc, cmd) 880 struct ti_softc *sc; 881 struct ti_cmd_desc *cmd; 882 { 883 u_int32_t index; 884 885 if (sc->ti_rdata->ti_cmd_ring == NULL) 886 return; 887 888 index = sc->ti_cmd_saved_prodidx; 889 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); 890 TI_INC(index, TI_CMD_RING_CNT); 891 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); 892 sc->ti_cmd_saved_prodidx = index; 893 894 return; 895 } 896 897 /* 898 * Send the NIC an extended command. The 'len' parameter specifies the 899 * number of command slots to include after the initial command. 900 */ 901 static void 902 ti_cmd_ext(sc, cmd, arg, len) 903 struct ti_softc *sc; 904 struct ti_cmd_desc *cmd; 905 caddr_t arg; 906 int len; 907 { 908 u_int32_t index; 909 register int i; 910 911 if (sc->ti_rdata->ti_cmd_ring == NULL) 912 return; 913 914 index = sc->ti_cmd_saved_prodidx; 915 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd)); 916 TI_INC(index, TI_CMD_RING_CNT); 917 for (i = 0; i < len; i++) { 918 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), 919 *(u_int32_t *)(&arg[i * 4])); 920 TI_INC(index, TI_CMD_RING_CNT); 921 } 922 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); 923 sc->ti_cmd_saved_prodidx = index; 924 925 return; 926 } 927 928 /* 929 * Handle events that have triggered interrupts. 930 */ 931 static void 932 ti_handle_events(sc) 933 struct ti_softc *sc; 934 { 935 struct ti_event_desc *e; 936 937 if (sc->ti_rdata->ti_event_ring == NULL) 938 return; 939 940 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) { 941 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx]; 942 switch(e->ti_event) { 943 case TI_EV_LINKSTAT_CHANGED: 944 sc->ti_linkstat = e->ti_code; 945 if (e->ti_code == TI_EV_CODE_LINK_UP) 946 printf("ti%d: 10/100 link up\n", sc->ti_unit); 947 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) 948 printf("ti%d: gigabit link up\n", sc->ti_unit); 949 else if (e->ti_code == TI_EV_CODE_LINK_DOWN) 950 printf("ti%d: link down\n", sc->ti_unit); 951 break; 952 case TI_EV_ERROR: 953 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) 954 printf("ti%d: invalid command\n", sc->ti_unit); 955 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) 956 printf("ti%d: unknown command\n", sc->ti_unit); 957 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) 958 printf("ti%d: bad config data\n", sc->ti_unit); 959 break; 960 case TI_EV_FIRMWARE_UP: 961 ti_init2(sc); 962 break; 963 case TI_EV_STATS_UPDATED: 964 ti_stats_update(sc); 965 break; 966 case TI_EV_RESET_JUMBO_RING: 967 case TI_EV_MCAST_UPDATED: 968 /* Who cares. */ 969 break; 970 default: 971 printf("ti%d: unknown event: %d\n", 972 sc->ti_unit, e->ti_event); 973 break; 974 } 975 /* Advance the consumer index. */ 976 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT); 977 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx); 978 } 979 980 return; 981 } 982 983 #ifdef TI_PRIVATE_JUMBOS 984 985 /* 986 * Memory management for the jumbo receive ring is a pain in the 987 * butt. We need to allocate at least 9018 bytes of space per frame, 988 * _and_ it has to be contiguous (unless you use the extended 989 * jumbo descriptor format). Using malloc() all the time won't 990 * work: malloc() allocates memory in powers of two, which means we 991 * would end up wasting a considerable amount of space by allocating 992 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have 993 * to do our own memory management. 994 * 995 * The driver needs to allocate a contiguous chunk of memory at boot 996 * time. We then chop this up ourselves into 9K pieces and use them 997 * as external mbuf storage. 998 * 999 * One issue here is how much memory to allocate. The jumbo ring has 1000 * 256 slots in it, but at 9K per slot than can consume over 2MB of 1001 * RAM. This is a bit much, especially considering we also need 1002 * RAM for the standard ring and mini ring (on the Tigon 2). To 1003 * save space, we only actually allocate enough memory for 64 slots 1004 * by default, which works out to between 500 and 600K. This can 1005 * be tuned by changing a #define in if_tireg.h. 1006 */ 1007 1008 static int 1009 ti_alloc_jumbo_mem(sc) 1010 struct ti_softc *sc; 1011 { 1012 caddr_t ptr; 1013 register int i; 1014 struct ti_jpool_entry *entry; 1015 1016 /* Grab a big chunk o' storage. */ 1017 sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF, 1018 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 1019 1020 if (sc->ti_cdata.ti_jumbo_buf == NULL) { 1021 printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit); 1022 return(ENOBUFS); 1023 } 1024 1025 SLIST_INIT(&sc->ti_jfree_listhead); 1026 SLIST_INIT(&sc->ti_jinuse_listhead); 1027 1028 /* 1029 * Now divide it up into 9K pieces and save the addresses 1030 * in an array. 1031 */ 1032 ptr = sc->ti_cdata.ti_jumbo_buf; 1033 for (i = 0; i < TI_JSLOTS; i++) { 1034 sc->ti_cdata.ti_jslots[i] = ptr; 1035 ptr += TI_JLEN; 1036 entry = malloc(sizeof(struct ti_jpool_entry), 1037 M_DEVBUF, M_NOWAIT); 1038 if (entry == NULL) { 1039 contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, 1040 M_DEVBUF); 1041 sc->ti_cdata.ti_jumbo_buf = NULL; 1042 printf("ti%d: no memory for jumbo " 1043 "buffer queue!\n", sc->ti_unit); 1044 return(ENOBUFS); 1045 } 1046 entry->slot = i; 1047 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); 1048 } 1049 1050 return(0); 1051 } 1052 1053 /* 1054 * Allocate a jumbo buffer. 1055 */ 1056 static void *ti_jalloc(sc) 1057 struct ti_softc *sc; 1058 { 1059 struct ti_jpool_entry *entry; 1060 1061 entry = SLIST_FIRST(&sc->ti_jfree_listhead); 1062 1063 if (entry == NULL) { 1064 printf("ti%d: no free jumbo buffers\n", sc->ti_unit); 1065 return(NULL); 1066 } 1067 1068 SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries); 1069 SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries); 1070 return(sc->ti_cdata.ti_jslots[entry->slot]); 1071 } 1072 1073 /* 1074 * Release a jumbo buffer. 1075 */ 1076 static void 1077 ti_jfree(buf, args) 1078 void *buf; 1079 void *args; 1080 { 1081 struct ti_softc *sc; 1082 int i; 1083 struct ti_jpool_entry *entry; 1084 1085 /* Extract the softc struct pointer. */ 1086 sc = (struct ti_softc *)args; 1087 1088 if (sc == NULL) 1089 panic("ti_jfree: didn't get softc pointer!"); 1090 1091 /* calculate the slot this buffer belongs to */ 1092 i = ((vm_offset_t)buf 1093 - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; 1094 1095 if ((i < 0) || (i >= TI_JSLOTS)) 1096 panic("ti_jfree: asked to free buffer that we don't manage!"); 1097 1098 entry = SLIST_FIRST(&sc->ti_jinuse_listhead); 1099 if (entry == NULL) 1100 panic("ti_jfree: buffer not in use!"); 1101 entry->slot = i; 1102 SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries); 1103 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); 1104 1105 return; 1106 } 1107 1108 #endif /* TI_PRIVATE_JUMBOS */ 1109 1110 /* 1111 * Intialize a standard receive ring descriptor. 1112 */ 1113 static int 1114 ti_newbuf_std(sc, i, m) 1115 struct ti_softc *sc; 1116 int i; 1117 struct mbuf *m; 1118 { 1119 struct mbuf *m_new = NULL; 1120 struct ti_rx_desc *r; 1121 1122 if (m == NULL) { 1123 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1124 if (m_new == NULL) 1125 return(ENOBUFS); 1126 1127 MCLGET(m_new, M_DONTWAIT); 1128 if (!(m_new->m_flags & M_EXT)) { 1129 m_freem(m_new); 1130 return(ENOBUFS); 1131 } 1132 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 1133 } else { 1134 m_new = m; 1135 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 1136 m_new->m_data = m_new->m_ext.ext_buf; 1137 } 1138 1139 m_adj(m_new, ETHER_ALIGN); 1140 sc->ti_cdata.ti_rx_std_chain[i] = m_new; 1141 r = &sc->ti_rdata->ti_rx_std_ring[i]; 1142 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); 1143 r->ti_type = TI_BDTYPE_RECV_BD; 1144 r->ti_flags = 0; 1145 if (sc->arpcom.ac_if.if_hwassist) 1146 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; 1147 r->ti_len = m_new->m_len; 1148 r->ti_idx = i; 1149 1150 return(0); 1151 } 1152 1153 /* 1154 * Intialize a mini receive ring descriptor. This only applies to 1155 * the Tigon 2. 1156 */ 1157 static int 1158 ti_newbuf_mini(sc, i, m) 1159 struct ti_softc *sc; 1160 int i; 1161 struct mbuf *m; 1162 { 1163 struct mbuf *m_new = NULL; 1164 struct ti_rx_desc *r; 1165 1166 if (m == NULL) { 1167 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1168 if (m_new == NULL) { 1169 return(ENOBUFS); 1170 } 1171 m_new->m_len = m_new->m_pkthdr.len = MHLEN; 1172 } else { 1173 m_new = m; 1174 m_new->m_data = m_new->m_pktdat; 1175 m_new->m_len = m_new->m_pkthdr.len = MHLEN; 1176 } 1177 1178 m_adj(m_new, ETHER_ALIGN); 1179 r = &sc->ti_rdata->ti_rx_mini_ring[i]; 1180 sc->ti_cdata.ti_rx_mini_chain[i] = m_new; 1181 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); 1182 r->ti_type = TI_BDTYPE_RECV_BD; 1183 r->ti_flags = TI_BDFLAG_MINI_RING; 1184 if (sc->arpcom.ac_if.if_hwassist) 1185 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; 1186 r->ti_len = m_new->m_len; 1187 r->ti_idx = i; 1188 1189 return(0); 1190 } 1191 1192 #ifdef TI_PRIVATE_JUMBOS 1193 1194 /* 1195 * Initialize a jumbo receive ring descriptor. This allocates 1196 * a jumbo buffer from the pool managed internally by the driver. 1197 */ 1198 static int 1199 ti_newbuf_jumbo(sc, i, m) 1200 struct ti_softc *sc; 1201 int i; 1202 struct mbuf *m; 1203 { 1204 struct mbuf *m_new = NULL; 1205 struct ti_rx_desc *r; 1206 1207 if (m == NULL) { 1208 caddr_t *buf = NULL; 1209 1210 /* Allocate the mbuf. */ 1211 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1212 if (m_new == NULL) { 1213 return(ENOBUFS); 1214 } 1215 1216 /* Allocate the jumbo buffer */ 1217 buf = ti_jalloc(sc); 1218 if (buf == NULL) { 1219 m_freem(m_new); 1220 printf("ti%d: jumbo allocation failed " 1221 "-- packet dropped!\n", sc->ti_unit); 1222 return(ENOBUFS); 1223 } 1224 1225 /* Attach the buffer to the mbuf. */ 1226 m_new->m_data = (void *) buf; 1227 m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN; 1228 MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, 1229 (struct ti_softc *)sc, 0, EXT_NET_DRV); 1230 } else { 1231 m_new = m; 1232 m_new->m_data = m_new->m_ext.ext_buf; 1233 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN; 1234 } 1235 1236 m_adj(m_new, ETHER_ALIGN); 1237 /* Set up the descriptor. */ 1238 r = &sc->ti_rdata->ti_rx_jumbo_ring[i]; 1239 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new; 1240 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t)); 1241 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; 1242 r->ti_flags = TI_BDFLAG_JUMBO_RING; 1243 if (sc->arpcom.ac_if.if_hwassist) 1244 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM; 1245 r->ti_len = m_new->m_len; 1246 r->ti_idx = i; 1247 1248 return(0); 1249 } 1250 1251 #else 1252 #include <vm/vm_page.h> 1253 1254 #if (PAGE_SIZE == 4096) 1255 #define NPAYLOAD 2 1256 #else 1257 #define NPAYLOAD 1 1258 #endif 1259 1260 #define TCP_HDR_LEN (52 + sizeof(struct ether_header)) 1261 #define UDP_HDR_LEN (28 + sizeof(struct ether_header)) 1262 #define NFS_HDR_LEN (UDP_HDR_LEN) 1263 static int HDR_LEN = TCP_HDR_LEN; 1264 1265 1266 /* 1267 * Initialize a jumbo receive ring descriptor. This allocates 1268 * a jumbo buffer from the pool managed internally by the driver. 1269 */ 1270 static int 1271 ti_newbuf_jumbo(sc, idx, m_old) 1272 struct ti_softc *sc; 1273 int idx; 1274 struct mbuf *m_old; 1275 { 1276 struct mbuf *cur, *m_new = NULL; 1277 struct mbuf *m[3] = {NULL, NULL, NULL}; 1278 struct ti_rx_desc_ext *r; 1279 vm_page_t frame; 1280 /* 1 extra buf to make nobufs easy*/ 1281 caddr_t buf[3] = {NULL, NULL, NULL}; 1282 int i; 1283 1284 if (m_old != NULL) { 1285 m_new = m_old; 1286 cur = m_old->m_next; 1287 for (i = 0; i <= NPAYLOAD; i++){ 1288 m[i] = cur; 1289 cur = cur->m_next; 1290 } 1291 } else { 1292 /* Allocate the mbufs. */ 1293 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1294 if (m_new == NULL) { 1295 printf("ti%d: mbuf allocation failed " 1296 "-- packet dropped!\n", sc->ti_unit); 1297 goto nobufs; 1298 } 1299 MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA); 1300 if (m[NPAYLOAD] == NULL) { 1301 printf("ti%d: cluster mbuf allocation failed " 1302 "-- packet dropped!\n", sc->ti_unit); 1303 goto nobufs; 1304 } 1305 MCLGET(m[NPAYLOAD], M_DONTWAIT); 1306 if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) { 1307 printf("ti%d: mbuf allocation failed " 1308 "-- packet dropped!\n", sc->ti_unit); 1309 goto nobufs; 1310 } 1311 m[NPAYLOAD]->m_len = MCLBYTES; 1312 1313 for (i = 0; i < NPAYLOAD; i++){ 1314 MGET(m[i], M_DONTWAIT, MT_DATA); 1315 if (m[i] == NULL) { 1316 printf("ti%d: mbuf allocation failed " 1317 "-- packet dropped!\n", sc->ti_unit); 1318 goto nobufs; 1319 } 1320 if (!(frame = jumbo_pg_alloc())){ 1321 printf("ti%d: buffer allocation failed " 1322 "-- packet dropped!\n", sc->ti_unit); 1323 printf(" index %d page %d\n", idx, i); 1324 goto nobufs; 1325 } 1326 buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame)); 1327 } 1328 for (i = 0; i < NPAYLOAD; i++){ 1329 /* Attach the buffer to the mbuf. */ 1330 m[i]->m_data = (void *)buf[i]; 1331 m[i]->m_len = PAGE_SIZE; 1332 MEXTADD(m[i], (void *)buf[i], PAGE_SIZE, 1333 jumbo_freem, NULL, 0, EXT_DISPOSABLE); 1334 m[i]->m_next = m[i+1]; 1335 } 1336 /* link the buffers to the header */ 1337 m_new->m_next = m[0]; 1338 m_new->m_data += ETHER_ALIGN; 1339 if (sc->ti_hdrsplit) 1340 m_new->m_len = MHLEN - ETHER_ALIGN; 1341 else 1342 m_new->m_len = HDR_LEN; 1343 m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len; 1344 } 1345 1346 /* Set up the descriptor. */ 1347 r = &sc->ti_rdata->ti_rx_jumbo_ring[idx]; 1348 sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new; 1349 TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t)); 1350 r->ti_len0 = m_new->m_len; 1351 1352 TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t)); 1353 r->ti_len1 = PAGE_SIZE; 1354 1355 TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t)); 1356 r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */ 1357 1358 if (PAGE_SIZE == 4096) { 1359 TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t)); 1360 r->ti_len3 = MCLBYTES; 1361 } else { 1362 r->ti_len3 = 0; 1363 } 1364 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; 1365 1366 r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD; 1367 1368 if (sc->arpcom.ac_if.if_hwassist) 1369 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM; 1370 1371 r->ti_idx = idx; 1372 1373 return(0); 1374 1375 nobufs: 1376 1377 /* 1378 * Warning! : 1379 * This can only be called before the mbufs are strung together. 1380 * If the mbufs are strung together, m_freem() will free the chain, 1381 * so that the later mbufs will be freed multiple times. 1382 */ 1383 if (m_new) 1384 m_freem(m_new); 1385 1386 for(i = 0; i < 3; i++){ 1387 if (m[i]) 1388 m_freem(m[i]); 1389 if (buf[i]) 1390 jumbo_pg_free((vm_offset_t)buf[i]); 1391 } 1392 return ENOBUFS; 1393 } 1394 #endif 1395 1396 1397 1398 /* 1399 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 1400 * that's 1MB or memory, which is a lot. For now, we fill only the first 1401 * 256 ring entries and hope that our CPU is fast enough to keep up with 1402 * the NIC. 1403 */ 1404 static int 1405 ti_init_rx_ring_std(sc) 1406 struct ti_softc *sc; 1407 { 1408 register int i; 1409 struct ti_cmd_desc cmd; 1410 1411 for (i = 0; i < TI_SSLOTS; i++) { 1412 if (ti_newbuf_std(sc, i, NULL) == ENOBUFS) 1413 return(ENOBUFS); 1414 }; 1415 1416 TI_UPDATE_STDPROD(sc, i - 1); 1417 sc->ti_std = i - 1; 1418 1419 return(0); 1420 } 1421 1422 static void 1423 ti_free_rx_ring_std(sc) 1424 struct ti_softc *sc; 1425 { 1426 register int i; 1427 1428 for (i = 0; i < TI_STD_RX_RING_CNT; i++) { 1429 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) { 1430 m_freem(sc->ti_cdata.ti_rx_std_chain[i]); 1431 sc->ti_cdata.ti_rx_std_chain[i] = NULL; 1432 } 1433 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i], 1434 sizeof(struct ti_rx_desc)); 1435 } 1436 1437 return; 1438 } 1439 1440 static int 1441 ti_init_rx_ring_jumbo(sc) 1442 struct ti_softc *sc; 1443 { 1444 register int i; 1445 struct ti_cmd_desc cmd; 1446 1447 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { 1448 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 1449 return(ENOBUFS); 1450 }; 1451 1452 TI_UPDATE_JUMBOPROD(sc, i - 1); 1453 sc->ti_jumbo = i - 1; 1454 1455 return(0); 1456 } 1457 1458 static void 1459 ti_free_rx_ring_jumbo(sc) 1460 struct ti_softc *sc; 1461 { 1462 register int i; 1463 1464 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { 1465 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) { 1466 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]); 1467 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL; 1468 } 1469 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 1470 sizeof(struct ti_rx_desc)); 1471 } 1472 1473 return; 1474 } 1475 1476 static int 1477 ti_init_rx_ring_mini(sc) 1478 struct ti_softc *sc; 1479 { 1480 register int i; 1481 1482 for (i = 0; i < TI_MSLOTS; i++) { 1483 if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS) 1484 return(ENOBUFS); 1485 }; 1486 1487 TI_UPDATE_MINIPROD(sc, i - 1); 1488 sc->ti_mini = i - 1; 1489 1490 return(0); 1491 } 1492 1493 static void 1494 ti_free_rx_ring_mini(sc) 1495 struct ti_softc *sc; 1496 { 1497 register int i; 1498 1499 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) { 1500 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) { 1501 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]); 1502 sc->ti_cdata.ti_rx_mini_chain[i] = NULL; 1503 } 1504 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 1505 sizeof(struct ti_rx_desc)); 1506 } 1507 1508 return; 1509 } 1510 1511 static void 1512 ti_free_tx_ring(sc) 1513 struct ti_softc *sc; 1514 { 1515 register int i; 1516 1517 if (sc->ti_rdata->ti_tx_ring == NULL) 1518 return; 1519 1520 for (i = 0; i < TI_TX_RING_CNT; i++) { 1521 if (sc->ti_cdata.ti_tx_chain[i] != NULL) { 1522 m_freem(sc->ti_cdata.ti_tx_chain[i]); 1523 sc->ti_cdata.ti_tx_chain[i] = NULL; 1524 } 1525 bzero((char *)&sc->ti_rdata->ti_tx_ring[i], 1526 sizeof(struct ti_tx_desc)); 1527 } 1528 1529 return; 1530 } 1531 1532 static int 1533 ti_init_tx_ring(sc) 1534 struct ti_softc *sc; 1535 { 1536 sc->ti_txcnt = 0; 1537 sc->ti_tx_saved_considx = 0; 1538 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0); 1539 return(0); 1540 } 1541 1542 /* 1543 * The Tigon 2 firmware has a new way to add/delete multicast addresses, 1544 * but we have to support the old way too so that Tigon 1 cards will 1545 * work. 1546 */ 1547 static void 1548 ti_add_mcast(sc, addr) 1549 struct ti_softc *sc; 1550 struct ether_addr *addr; 1551 { 1552 struct ti_cmd_desc cmd; 1553 u_int16_t *m; 1554 u_int32_t ext[2] = {0, 0}; 1555 1556 m = (u_int16_t *)&addr->octet[0]; 1557 1558 switch(sc->ti_hwrev) { 1559 case TI_HWREV_TIGON: 1560 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); 1561 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); 1562 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0); 1563 break; 1564 case TI_HWREV_TIGON_II: 1565 ext[0] = htons(m[0]); 1566 ext[1] = (htons(m[1]) << 16) | htons(m[2]); 1567 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2); 1568 break; 1569 default: 1570 printf("ti%d: unknown hwrev\n", sc->ti_unit); 1571 break; 1572 } 1573 1574 return; 1575 } 1576 1577 static void 1578 ti_del_mcast(sc, addr) 1579 struct ti_softc *sc; 1580 struct ether_addr *addr; 1581 { 1582 struct ti_cmd_desc cmd; 1583 u_int16_t *m; 1584 u_int32_t ext[2] = {0, 0}; 1585 1586 m = (u_int16_t *)&addr->octet[0]; 1587 1588 switch(sc->ti_hwrev) { 1589 case TI_HWREV_TIGON: 1590 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); 1591 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); 1592 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0); 1593 break; 1594 case TI_HWREV_TIGON_II: 1595 ext[0] = htons(m[0]); 1596 ext[1] = (htons(m[1]) << 16) | htons(m[2]); 1597 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2); 1598 break; 1599 default: 1600 printf("ti%d: unknown hwrev\n", sc->ti_unit); 1601 break; 1602 } 1603 1604 return; 1605 } 1606 1607 /* 1608 * Configure the Tigon's multicast address filter. 1609 * 1610 * The actual multicast table management is a bit of a pain, thanks to 1611 * slight brain damage on the part of both Alteon and us. With our 1612 * multicast code, we are only alerted when the multicast address table 1613 * changes and at that point we only have the current list of addresses: 1614 * we only know the current state, not the previous state, so we don't 1615 * actually know what addresses were removed or added. The firmware has 1616 * state, but we can't get our grubby mits on it, and there is no 'delete 1617 * all multicast addresses' command. Hence, we have to maintain our own 1618 * state so we know what addresses have been programmed into the NIC at 1619 * any given time. 1620 */ 1621 static void 1622 ti_setmulti(sc) 1623 struct ti_softc *sc; 1624 { 1625 struct ifnet *ifp; 1626 struct ifmultiaddr *ifma; 1627 struct ti_cmd_desc cmd; 1628 struct ti_mc_entry *mc; 1629 u_int32_t intrs; 1630 1631 ifp = &sc->arpcom.ac_if; 1632 1633 if (ifp->if_flags & IFF_ALLMULTI) { 1634 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0); 1635 return; 1636 } else { 1637 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0); 1638 } 1639 1640 /* Disable interrupts. */ 1641 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR); 1642 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 1643 1644 /* First, zot all the existing filters. */ 1645 while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) { 1646 mc = SLIST_FIRST(&sc->ti_mc_listhead); 1647 ti_del_mcast(sc, &mc->mc_addr); 1648 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); 1649 free(mc, M_DEVBUF); 1650 } 1651 1652 /* Now program new ones. */ 1653 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1654 if (ifma->ifma_addr->sa_family != AF_LINK) 1655 continue; 1656 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT); 1657 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 1658 (char *)&mc->mc_addr, ETHER_ADDR_LEN); 1659 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries); 1660 ti_add_mcast(sc, &mc->mc_addr); 1661 } 1662 1663 /* Re-enable interrupts. */ 1664 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); 1665 1666 return; 1667 } 1668 1669 /* 1670 * Check to see if the BIOS has configured us for a 64 bit slot when 1671 * we aren't actually in one. If we detect this condition, we can work 1672 * around it on the Tigon 2 by setting a bit in the PCI state register, 1673 * but for the Tigon 1 we must give up and abort the interface attach. 1674 */ 1675 static int ti_64bitslot_war(sc) 1676 struct ti_softc *sc; 1677 { 1678 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) { 1679 CSR_WRITE_4(sc, 0x600, 0); 1680 CSR_WRITE_4(sc, 0x604, 0); 1681 CSR_WRITE_4(sc, 0x600, 0x5555AAAA); 1682 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) { 1683 if (sc->ti_hwrev == TI_HWREV_TIGON) 1684 return(EINVAL); 1685 else { 1686 TI_SETBIT(sc, TI_PCI_STATE, 1687 TI_PCISTATE_32BIT_BUS); 1688 return(0); 1689 } 1690 } 1691 } 1692 1693 return(0); 1694 } 1695 1696 /* 1697 * Do endian, PCI and DMA initialization. Also check the on-board ROM 1698 * self-test results. 1699 */ 1700 static int 1701 ti_chipinit(sc) 1702 struct ti_softc *sc; 1703 { 1704 u_int32_t cacheline; 1705 u_int32_t pci_writemax = 0; 1706 u_int32_t hdrsplit; 1707 1708 /* Initialize link to down state. */ 1709 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN; 1710 1711 if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM) 1712 sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES; 1713 else 1714 sc->arpcom.ac_if.if_hwassist = 0; 1715 1716 /* Set endianness before we access any non-PCI registers. */ 1717 #if BYTE_ORDER == BIG_ENDIAN 1718 CSR_WRITE_4(sc, TI_MISC_HOST_CTL, 1719 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24)); 1720 #else 1721 CSR_WRITE_4(sc, TI_MISC_HOST_CTL, 1722 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24)); 1723 #endif 1724 1725 /* Check the ROM failed bit to see if self-tests passed. */ 1726 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) { 1727 printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit); 1728 return(ENODEV); 1729 } 1730 1731 /* Halt the CPU. */ 1732 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT); 1733 1734 /* Figure out the hardware revision. */ 1735 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) { 1736 case TI_REV_TIGON_I: 1737 sc->ti_hwrev = TI_HWREV_TIGON; 1738 break; 1739 case TI_REV_TIGON_II: 1740 sc->ti_hwrev = TI_HWREV_TIGON_II; 1741 break; 1742 default: 1743 printf("ti%d: unsupported chip revision\n", sc->ti_unit); 1744 return(ENODEV); 1745 } 1746 1747 /* Do special setup for Tigon 2. */ 1748 if (sc->ti_hwrev == TI_HWREV_TIGON_II) { 1749 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT); 1750 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K); 1751 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS); 1752 } 1753 1754 /* 1755 * We don't have firmware source for the Tigon 1, so Tigon 1 boards 1756 * can't do header splitting. 1757 */ 1758 #ifdef TI_JUMBO_HDRSPLIT 1759 if (sc->ti_hwrev != TI_HWREV_TIGON) 1760 sc->ti_hdrsplit = 1; 1761 else 1762 printf("ti%d: can't do header splitting on a Tigon I board\n", 1763 sc->ti_unit); 1764 #endif /* TI_JUMBO_HDRSPLIT */ 1765 1766 /* Set up the PCI state register. */ 1767 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD); 1768 if (sc->ti_hwrev == TI_HWREV_TIGON_II) { 1769 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT); 1770 } 1771 1772 /* Clear the read/write max DMA parameters. */ 1773 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA| 1774 TI_PCISTATE_READ_MAXDMA)); 1775 1776 /* Get cache line size. */ 1777 cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF; 1778 1779 /* 1780 * If the system has set enabled the PCI memory write 1781 * and invalidate command in the command register, set 1782 * the write max parameter accordingly. This is necessary 1783 * to use MWI with the Tigon 2. 1784 */ 1785 if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) { 1786 switch(cacheline) { 1787 case 1: 1788 case 4: 1789 case 8: 1790 case 16: 1791 case 32: 1792 case 64: 1793 break; 1794 default: 1795 /* Disable PCI memory write and invalidate. */ 1796 if (bootverbose) 1797 printf("ti%d: cache line size %d not " 1798 "supported; disabling PCI MWI\n", 1799 sc->ti_unit, cacheline); 1800 CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc, 1801 TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN); 1802 break; 1803 } 1804 } 1805 1806 #ifdef __brokenalpha__ 1807 /* 1808 * From the Alteon sample driver: 1809 * Must insure that we do not cross an 8K (bytes) boundary 1810 * for DMA reads. Our highest limit is 1K bytes. This is a 1811 * restriction on some ALPHA platforms with early revision 1812 * 21174 PCI chipsets, such as the AlphaPC 164lx 1813 */ 1814 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024); 1815 #else 1816 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax); 1817 #endif 1818 1819 /* This sets the min dma param all the way up (0xff). */ 1820 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA); 1821 1822 if (sc->ti_hdrsplit) 1823 hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT; 1824 else 1825 hdrsplit = 0; 1826 1827 /* Configure DMA variables. */ 1828 #if BYTE_ORDER == BIG_ENDIAN 1829 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD | 1830 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | 1831 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB | 1832 TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit); 1833 #else /* BYTE_ORDER */ 1834 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA| 1835 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO| 1836 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit); 1837 #endif /* BYTE_ORDER */ 1838 1839 /* 1840 * Only allow 1 DMA channel to be active at a time. 1841 * I don't think this is a good idea, but without it 1842 * the firmware racks up lots of nicDmaReadRingFull 1843 * errors. This is not compatible with hardware checksums. 1844 */ 1845 if (sc->arpcom.ac_if.if_hwassist == 0) 1846 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE); 1847 1848 /* Recommended settings from Tigon manual. */ 1849 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W); 1850 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W); 1851 1852 if (ti_64bitslot_war(sc)) { 1853 printf("ti%d: bios thinks we're in a 64 bit slot, " 1854 "but we aren't", sc->ti_unit); 1855 return(EINVAL); 1856 } 1857 1858 return(0); 1859 } 1860 1861 /* 1862 * Initialize the general information block and firmware, and 1863 * start the CPU(s) running. 1864 */ 1865 static int 1866 ti_gibinit(sc) 1867 struct ti_softc *sc; 1868 { 1869 struct ti_rcb *rcb; 1870 int i; 1871 struct ifnet *ifp; 1872 1873 ifp = &sc->arpcom.ac_if; 1874 1875 /* Disable interrupts for now. */ 1876 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 1877 1878 /* Tell the chip where to find the general information block. */ 1879 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0); 1880 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info)); 1881 1882 /* Load the firmware into SRAM. */ 1883 ti_loadfw(sc); 1884 1885 /* Set up the contents of the general info and ring control blocks. */ 1886 1887 /* Set up the event ring and producer pointer. */ 1888 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb; 1889 1890 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring); 1891 rcb->ti_flags = 0; 1892 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) = 1893 vtophys(&sc->ti_ev_prodidx); 1894 sc->ti_ev_prodidx.ti_idx = 0; 1895 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0); 1896 sc->ti_ev_saved_considx = 0; 1897 1898 /* Set up the command ring and producer mailbox. */ 1899 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb; 1900 1901 sc->ti_rdata->ti_cmd_ring = 1902 (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING); 1903 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING); 1904 rcb->ti_flags = 0; 1905 rcb->ti_max_len = 0; 1906 for (i = 0; i < TI_CMD_RING_CNT; i++) { 1907 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0); 1908 } 1909 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0); 1910 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0); 1911 sc->ti_cmd_saved_prodidx = 0; 1912 1913 /* 1914 * Assign the address of the stats refresh buffer. 1915 * We re-use the current stats buffer for this to 1916 * conserve memory. 1917 */ 1918 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) = 1919 vtophys(&sc->ti_rdata->ti_info.ti_stats); 1920 1921 /* Set up the standard receive ring. */ 1922 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb; 1923 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring); 1924 rcb->ti_max_len = TI_FRAMELEN; 1925 rcb->ti_flags = 0; 1926 if (sc->arpcom.ac_if.if_hwassist) 1927 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | 1928 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; 1929 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1930 1931 /* Set up the jumbo receive ring. */ 1932 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb; 1933 TI_HOSTADDR(rcb->ti_hostaddr) = 1934 vtophys(&sc->ti_rdata->ti_rx_jumbo_ring); 1935 1936 #ifdef TI_PRIVATE_JUMBOS 1937 rcb->ti_max_len = TI_JUMBO_FRAMELEN; 1938 rcb->ti_flags = 0; 1939 #else 1940 rcb->ti_max_len = PAGE_SIZE; 1941 rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD; 1942 #endif 1943 if (sc->arpcom.ac_if.if_hwassist) 1944 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | 1945 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; 1946 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1947 1948 /* 1949 * Set up the mini ring. Only activated on the 1950 * Tigon 2 but the slot in the config block is 1951 * still there on the Tigon 1. 1952 */ 1953 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb; 1954 TI_HOSTADDR(rcb->ti_hostaddr) = 1955 vtophys(&sc->ti_rdata->ti_rx_mini_ring); 1956 rcb->ti_max_len = MHLEN - ETHER_ALIGN; 1957 if (sc->ti_hwrev == TI_HWREV_TIGON) 1958 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED; 1959 else 1960 rcb->ti_flags = 0; 1961 if (sc->arpcom.ac_if.if_hwassist) 1962 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | 1963 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; 1964 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1965 1966 /* 1967 * Set up the receive return ring. 1968 */ 1969 rcb = &sc->ti_rdata->ti_info.ti_return_rcb; 1970 TI_HOSTADDR(rcb->ti_hostaddr) = 1971 vtophys(&sc->ti_rdata->ti_rx_return_ring); 1972 rcb->ti_flags = 0; 1973 rcb->ti_max_len = TI_RETURN_RING_CNT; 1974 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) = 1975 vtophys(&sc->ti_return_prodidx); 1976 1977 /* 1978 * Set up the tx ring. Note: for the Tigon 2, we have the option 1979 * of putting the transmit ring in the host's address space and 1980 * letting the chip DMA it instead of leaving the ring in the NIC's 1981 * memory and accessing it through the shared memory region. We 1982 * do this for the Tigon 2, but it doesn't work on the Tigon 1, 1983 * so we have to revert to the shared memory scheme if we detect 1984 * a Tigon 1 chip. 1985 */ 1986 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); 1987 if (sc->ti_hwrev == TI_HWREV_TIGON) { 1988 sc->ti_rdata->ti_tx_ring_nic = 1989 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW); 1990 } 1991 bzero((char *)sc->ti_rdata->ti_tx_ring, 1992 TI_TX_RING_CNT * sizeof(struct ti_tx_desc)); 1993 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb; 1994 if (sc->ti_hwrev == TI_HWREV_TIGON) 1995 rcb->ti_flags = 0; 1996 else 1997 rcb->ti_flags = TI_RCB_FLAG_HOST_RING; 1998 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; 1999 if (sc->arpcom.ac_if.if_hwassist) 2000 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | 2001 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; 2002 rcb->ti_max_len = TI_TX_RING_CNT; 2003 if (sc->ti_hwrev == TI_HWREV_TIGON) 2004 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE; 2005 else 2006 TI_HOSTADDR(rcb->ti_hostaddr) = 2007 vtophys(&sc->ti_rdata->ti_tx_ring); 2008 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) = 2009 vtophys(&sc->ti_tx_considx); 2010 2011 /* Set up tuneables */ 2012 #if 0 2013 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2014 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, 2015 (sc->ti_rx_coal_ticks / 10)); 2016 else 2017 #endif 2018 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); 2019 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); 2020 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); 2021 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); 2022 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); 2023 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); 2024 2025 /* Turn interrupts on. */ 2026 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0); 2027 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 2028 2029 /* Start CPU. */ 2030 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP)); 2031 2032 return(0); 2033 } 2034 2035 /* 2036 * Probe for a Tigon chip. Check the PCI vendor and device IDs 2037 * against our list and return its name if we find a match. 2038 */ 2039 static int 2040 ti_probe(dev) 2041 device_t dev; 2042 { 2043 struct ti_type *t; 2044 2045 t = ti_devs; 2046 2047 while(t->ti_name != NULL) { 2048 if ((pci_get_vendor(dev) == t->ti_vid) && 2049 (pci_get_device(dev) == t->ti_did)) { 2050 device_set_desc(dev, t->ti_name); 2051 return(0); 2052 } 2053 t++; 2054 } 2055 2056 return(ENXIO); 2057 } 2058 2059 #ifdef KLD_MODULE 2060 static int 2061 log2rndup(int len) 2062 { 2063 int log2size = 0, t = len; 2064 while (t > 1) { 2065 log2size++; 2066 t >>= 1; 2067 } 2068 if (len != (1 << log2size)) 2069 log2size++; 2070 return log2size; 2071 } 2072 2073 static int 2074 ti_mbuf_sanity(device_t dev) 2075 { 2076 if ((mbstat.m_msize != MSIZE) || mbstat.m_mclbytes != MCLBYTES){ 2077 device_printf(dev, "\n"); 2078 device_printf(dev, "This module was compiled with " 2079 "-DMCLSHIFT=%d -DMSIZE=%d\n", MCLSHIFT, 2080 MSIZE); 2081 device_printf(dev, "The kernel was compiled with MCLSHIFT=%d," 2082 " MSIZE=%d\n", log2rndup(mbstat.m_mclbytes), 2083 (int)mbstat.m_msize); 2084 return(EINVAL); 2085 } 2086 return(0); 2087 } 2088 #endif 2089 2090 2091 static int 2092 ti_attach(dev) 2093 device_t dev; 2094 { 2095 struct ifnet *ifp; 2096 struct ti_softc *sc; 2097 int unit, error = 0, rid; 2098 2099 sc = NULL; 2100 2101 #ifdef KLD_MODULE 2102 if (ti_mbuf_sanity(dev)){ 2103 device_printf(dev, "Module mbuf constants do not match " 2104 "kernel constants!\n"); 2105 device_printf(dev, "Rebuild the module or the kernel so " 2106 "they match\n"); 2107 device_printf(dev, "\n"); 2108 error = EINVAL; 2109 goto fail; 2110 } 2111 #endif 2112 2113 sc = device_get_softc(dev); 2114 unit = device_get_unit(dev); 2115 2116 mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 2117 MTX_DEF | MTX_RECURSE); 2118 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts); 2119 sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING; 2120 sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities; 2121 2122 /* 2123 * Map control/status registers. 2124 */ 2125 pci_enable_busmaster(dev); 2126 2127 rid = TI_PCI_LOMEM; 2128 sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 2129 0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE); 2130 2131 if (sc->ti_res == NULL) { 2132 printf ("ti%d: couldn't map memory\n", unit); 2133 error = ENXIO; 2134 goto fail; 2135 } 2136 2137 sc->ti_btag = rman_get_bustag(sc->ti_res); 2138 sc->ti_bhandle = rman_get_bushandle(sc->ti_res); 2139 sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res); 2140 2141 /* Allocate interrupt */ 2142 rid = 0; 2143 2144 sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 2145 RF_SHAREABLE | RF_ACTIVE); 2146 2147 if (sc->ti_irq == NULL) { 2148 printf("ti%d: couldn't map interrupt\n", unit); 2149 error = ENXIO; 2150 goto fail; 2151 } 2152 2153 sc->ti_unit = unit; 2154 2155 if (ti_chipinit(sc)) { 2156 printf("ti%d: chip initialization failed\n", sc->ti_unit); 2157 error = ENXIO; 2158 goto fail; 2159 } 2160 2161 /* Zero out the NIC's on-board SRAM. */ 2162 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); 2163 2164 /* Init again -- zeroing memory may have clobbered some registers. */ 2165 if (ti_chipinit(sc)) { 2166 printf("ti%d: chip initialization failed\n", sc->ti_unit); 2167 error = ENXIO; 2168 goto fail; 2169 } 2170 2171 /* 2172 * Get station address from the EEPROM. Note: the manual states 2173 * that the MAC address is at offset 0x8c, however the data is 2174 * stored as two longwords (since that's how it's loaded into 2175 * the NIC). This means the MAC address is actually preceded 2176 * by two zero bytes. We need to skip over those. 2177 */ 2178 if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 2179 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { 2180 printf("ti%d: failed to read station address\n", unit); 2181 error = ENXIO; 2182 goto fail; 2183 } 2184 2185 /* 2186 * A Tigon chip was detected. Inform the world. 2187 */ 2188 printf("ti%d: Ethernet address: %6D\n", unit, 2189 sc->arpcom.ac_enaddr, ":"); 2190 2191 /* Allocate the general information block and ring buffers. */ 2192 sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF, 2193 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 2194 2195 if (sc->ti_rdata == NULL) { 2196 printf("ti%d: no memory for list buffers!\n", sc->ti_unit); 2197 error = ENXIO; 2198 goto fail; 2199 } 2200 2201 bzero(sc->ti_rdata, sizeof(struct ti_ring_data)); 2202 2203 /* Try to allocate memory for jumbo buffers. */ 2204 #ifdef TI_PRIVATE_JUMBOS 2205 if (ti_alloc_jumbo_mem(sc)) { 2206 printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit); 2207 error = ENXIO; 2208 goto fail; 2209 } 2210 #else 2211 if (!jumbo_vm_init()) { 2212 printf("ti%d: VM initialization failed!\n", sc->ti_unit); 2213 error = ENOMEM; 2214 goto fail; 2215 } 2216 #endif 2217 2218 /* 2219 * We really need a better way to tell a 1000baseTX card 2220 * from a 1000baseSX one, since in theory there could be 2221 * OEMed 1000baseTX cards from lame vendors who aren't 2222 * clever enough to change the PCI ID. For the moment 2223 * though, the AceNIC is the only copper card available. 2224 */ 2225 if (pci_get_vendor(dev) == ALT_VENDORID && 2226 pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER) 2227 sc->ti_copper = 1; 2228 /* Ok, it's not the only copper card available. */ 2229 if (pci_get_vendor(dev) == NG_VENDORID && 2230 pci_get_device(dev) == NG_DEVICEID_GA620T) 2231 sc->ti_copper = 1; 2232 2233 /* Set default tuneable values. */ 2234 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC; 2235 #if 0 2236 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000; 2237 #endif 2238 sc->ti_rx_coal_ticks = 170; 2239 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500; 2240 sc->ti_rx_max_coal_bds = 64; 2241 #if 0 2242 sc->ti_tx_max_coal_bds = 128; 2243 #endif 2244 sc->ti_tx_max_coal_bds = 32; 2245 sc->ti_tx_buf_ratio = 21; 2246 2247 /* Set up ifnet structure */ 2248 ifp = &sc->arpcom.ac_if; 2249 ifp->if_softc = sc; 2250 ifp->if_unit = sc->ti_unit; 2251 ifp->if_name = "ti"; 2252 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2253 tis[unit] = sc; 2254 ifp->if_ioctl = ti_ioctl; 2255 ifp->if_output = ether_output; 2256 ifp->if_start = ti_start; 2257 ifp->if_watchdog = ti_watchdog; 2258 ifp->if_init = ti_init; 2259 ifp->if_mtu = ETHERMTU; 2260 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1; 2261 2262 /* Set up ifmedia support. */ 2263 if (sc->ti_copper) { 2264 /* 2265 * Copper cards allow manual 10/100 mode selection, 2266 * but not manual 1000baseTX mode selection. Why? 2267 * Becuase currently there's no way to specify the 2268 * master/slave setting through the firmware interface, 2269 * so Alteon decided to just bag it and handle it 2270 * via autonegotiation. 2271 */ 2272 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); 2273 ifmedia_add(&sc->ifmedia, 2274 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 2275 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); 2276 ifmedia_add(&sc->ifmedia, 2277 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 2278 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL); 2279 ifmedia_add(&sc->ifmedia, 2280 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL); 2281 } else { 2282 /* Fiber cards don't support 10/100 modes. */ 2283 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); 2284 ifmedia_add(&sc->ifmedia, 2285 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); 2286 } 2287 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); 2288 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO); 2289 2290 /* 2291 * We're assuming here that card initialization is a sequential 2292 * thing. If it isn't, multiple cards probing at the same time 2293 * could stomp on the list of softcs here. 2294 */ 2295 /* 2296 * If this is the first card to be initialized, initialize the 2297 * softc queue. 2298 */ 2299 if (unit == 0) 2300 STAILQ_INIT(&ti_sc_list); 2301 2302 STAILQ_INSERT_TAIL(&ti_sc_list, sc, ti_links); 2303 2304 /* Register the device */ 2305 sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR, 2306 0600, "ti%d", sc->ti_unit); 2307 2308 /* 2309 * Call MI attach routine. 2310 */ 2311 ether_ifattach(ifp, sc->arpcom.ac_enaddr); 2312 2313 /* Hook interrupt last to avoid having to lock softc */ 2314 error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET, 2315 ti_intr, sc, &sc->ti_intrhand); 2316 2317 if (error) { 2318 printf("ti%d: couldn't set up irq\n", unit); 2319 ether_ifdetach(ifp); 2320 goto fail; 2321 } 2322 2323 fail: 2324 if (sc && error) 2325 ti_detach(dev); 2326 2327 return(error); 2328 } 2329 2330 /* 2331 * Verify that our character special device is not currently 2332 * open. Also track down any cached vnodes & kill them before 2333 * the module is unloaded 2334 */ 2335 static int 2336 ti_unref_special(device_t dev) 2337 { 2338 struct vnode *ti_vn; 2339 int count; 2340 struct ti_softc *sc = sc = device_get_softc(dev); 2341 2342 if (!vfinddev(sc->dev, VCHR, &ti_vn)) { 2343 return 0; 2344 } 2345 2346 if ((count = vcount(ti_vn))) { 2347 device_printf(dev, "%d refs to special device, " 2348 "denying unload\n", count); 2349 return count; 2350 } 2351 /* now we know that there's a vnode in the cache. We hunt it 2352 down and kill it now, before unloading */ 2353 vgone(ti_vn); 2354 return(0); 2355 } 2356 2357 /* 2358 * Shutdown hardware and free up resources. This can be called any 2359 * time after the mutex has been initialized. It is called in both 2360 * the error case in attach and the normal detach case so it needs 2361 * to be careful about only freeing resources that have actually been 2362 * allocated. 2363 */ 2364 static int 2365 ti_detach(dev) 2366 device_t dev; 2367 { 2368 struct ti_softc *sc; 2369 struct ifnet *ifp; 2370 2371 if (ti_unref_special(dev)) 2372 return EBUSY; 2373 2374 sc = device_get_softc(dev); 2375 KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized")); 2376 TI_LOCK(sc); 2377 ifp = &sc->arpcom.ac_if; 2378 2379 /* These should only be active if attach succeeded */ 2380 if (device_is_attached(dev)) { 2381 ti_stop(sc); 2382 ether_ifdetach(ifp); 2383 bus_generic_detach(dev); 2384 } 2385 ifmedia_removeall(&sc->ifmedia); 2386 2387 if (sc->ti_intrhand) 2388 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand); 2389 if (sc->ti_irq) 2390 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq); 2391 if (sc->ti_res) { 2392 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, 2393 sc->ti_res); 2394 } 2395 2396 #ifdef TI_PRIVATE_JUMBOS 2397 if (sc->ti_cdata.ti_jumbo_buf) 2398 contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF); 2399 #endif 2400 if (sc->ti_rdata) 2401 contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF); 2402 2403 TI_UNLOCK(sc); 2404 mtx_destroy(&sc->ti_mtx); 2405 2406 return(0); 2407 } 2408 2409 #ifdef TI_JUMBO_HDRSPLIT 2410 /* 2411 * If hdr_len is 0, that means that header splitting wasn't done on 2412 * this packet for some reason. The two most likely reasons are that 2413 * the protocol isn't a supported protocol for splitting, or this 2414 * packet had a fragment offset that wasn't 0. 2415 * 2416 * The header length, if it is non-zero, will always be the length of 2417 * the headers on the packet, but that length could be longer than the 2418 * first mbuf. So we take the minimum of the two as the actual 2419 * length. 2420 */ 2421 static __inline void 2422 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx) 2423 { 2424 int i = 0; 2425 int lengths[4] = {0, 0, 0, 0}; 2426 struct mbuf *m, *mp; 2427 2428 if (hdr_len != 0) 2429 top->m_len = min(hdr_len, top->m_len); 2430 pkt_len -= top->m_len; 2431 lengths[i++] = top->m_len; 2432 2433 mp = top; 2434 for (m = top->m_next; m && pkt_len; m = m->m_next) { 2435 m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len); 2436 pkt_len -= m->m_len; 2437 lengths[i++] = m->m_len; 2438 mp = m; 2439 } 2440 2441 #if 0 2442 if (hdr_len != 0) 2443 printf("got split packet: "); 2444 else 2445 printf("got non-split packet: "); 2446 2447 printf("%d,%d,%d,%d = %d\n", lengths[0], 2448 lengths[1], lengths[2], lengths[3], 2449 lengths[0] + lengths[1] + lengths[2] + 2450 lengths[3]); 2451 #endif 2452 2453 if (pkt_len) 2454 panic("header splitting didn't"); 2455 2456 if (m) { 2457 m_freem(m); 2458 mp->m_next = NULL; 2459 2460 } 2461 if (mp->m_next != NULL) 2462 panic("ti_hdr_split: last mbuf in chain should be null"); 2463 } 2464 #endif /* TI_JUMBO_HDRSPLIT */ 2465 2466 /* 2467 * Frame reception handling. This is called if there's a frame 2468 * on the receive return list. 2469 * 2470 * Note: we have to be able to handle three possibilities here: 2471 * 1) the frame is from the mini receive ring (can only happen) 2472 * on Tigon 2 boards) 2473 * 2) the frame is from the jumbo recieve ring 2474 * 3) the frame is from the standard receive ring 2475 */ 2476 2477 static void 2478 ti_rxeof(sc) 2479 struct ti_softc *sc; 2480 { 2481 struct ifnet *ifp; 2482 struct ti_cmd_desc cmd; 2483 2484 ifp = &sc->arpcom.ac_if; 2485 2486 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) { 2487 struct ti_rx_desc *cur_rx; 2488 u_int32_t rxidx; 2489 struct ether_header *eh; 2490 struct mbuf *m = NULL; 2491 u_int16_t vlan_tag = 0; 2492 int have_tag = 0; 2493 2494 cur_rx = 2495 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx]; 2496 rxidx = cur_rx->ti_idx; 2497 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT); 2498 2499 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) { 2500 have_tag = 1; 2501 vlan_tag = cur_rx->ti_vlan_tag & 0xfff; 2502 } 2503 2504 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) { 2505 2506 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT); 2507 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx]; 2508 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL; 2509 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 2510 ifp->if_ierrors++; 2511 ti_newbuf_jumbo(sc, sc->ti_jumbo, m); 2512 continue; 2513 } 2514 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) { 2515 ifp->if_ierrors++; 2516 ti_newbuf_jumbo(sc, sc->ti_jumbo, m); 2517 continue; 2518 } 2519 #ifdef TI_PRIVATE_JUMBOS 2520 m->m_len = cur_rx->ti_len; 2521 #else /* TI_PRIVATE_JUMBOS */ 2522 #ifdef TI_JUMBO_HDRSPLIT 2523 if (sc->ti_hdrsplit) 2524 ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr), 2525 cur_rx->ti_len, rxidx); 2526 else 2527 #endif /* TI_JUMBO_HDRSPLIT */ 2528 m_adj(m, cur_rx->ti_len - m->m_pkthdr.len); 2529 #endif /* TI_PRIVATE_JUMBOS */ 2530 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) { 2531 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT); 2532 m = sc->ti_cdata.ti_rx_mini_chain[rxidx]; 2533 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL; 2534 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 2535 ifp->if_ierrors++; 2536 ti_newbuf_mini(sc, sc->ti_mini, m); 2537 continue; 2538 } 2539 if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) { 2540 ifp->if_ierrors++; 2541 ti_newbuf_mini(sc, sc->ti_mini, m); 2542 continue; 2543 } 2544 m->m_len = cur_rx->ti_len; 2545 } else { 2546 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT); 2547 m = sc->ti_cdata.ti_rx_std_chain[rxidx]; 2548 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL; 2549 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { 2550 ifp->if_ierrors++; 2551 ti_newbuf_std(sc, sc->ti_std, m); 2552 continue; 2553 } 2554 if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) { 2555 ifp->if_ierrors++; 2556 ti_newbuf_std(sc, sc->ti_std, m); 2557 continue; 2558 } 2559 m->m_len = cur_rx->ti_len; 2560 } 2561 2562 m->m_pkthdr.len = cur_rx->ti_len; 2563 ifp->if_ipackets++; 2564 eh = mtod(m, struct ether_header *); 2565 m->m_pkthdr.rcvif = ifp; 2566 2567 if (ifp->if_hwassist) { 2568 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | 2569 CSUM_DATA_VALID; 2570 if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0) 2571 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2572 m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum; 2573 } 2574 2575 /* 2576 * If we received a packet with a vlan tag, 2577 * tag it before passing the packet upward. 2578 */ 2579 if (have_tag) 2580 VLAN_INPUT_TAG(ifp, m, vlan_tag, continue); 2581 (*ifp->if_input)(ifp, m); 2582 } 2583 2584 /* Only necessary on the Tigon 1. */ 2585 if (sc->ti_hwrev == TI_HWREV_TIGON) 2586 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 2587 sc->ti_rx_saved_considx); 2588 2589 TI_UPDATE_STDPROD(sc, sc->ti_std); 2590 TI_UPDATE_MINIPROD(sc, sc->ti_mini); 2591 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo); 2592 2593 return; 2594 } 2595 2596 static void 2597 ti_txeof(sc) 2598 struct ti_softc *sc; 2599 { 2600 struct ti_tx_desc *cur_tx = NULL; 2601 struct ifnet *ifp; 2602 2603 ifp = &sc->arpcom.ac_if; 2604 2605 /* 2606 * Go through our tx ring and free mbufs for those 2607 * frames that have been sent. 2608 */ 2609 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { 2610 u_int32_t idx = 0; 2611 2612 idx = sc->ti_tx_saved_considx; 2613 if (sc->ti_hwrev == TI_HWREV_TIGON) { 2614 if (idx > 383) 2615 CSR_WRITE_4(sc, TI_WINBASE, 2616 TI_TX_RING_BASE + 6144); 2617 else if (idx > 255) 2618 CSR_WRITE_4(sc, TI_WINBASE, 2619 TI_TX_RING_BASE + 4096); 2620 else if (idx > 127) 2621 CSR_WRITE_4(sc, TI_WINBASE, 2622 TI_TX_RING_BASE + 2048); 2623 else 2624 CSR_WRITE_4(sc, TI_WINBASE, 2625 TI_TX_RING_BASE); 2626 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128]; 2627 } else 2628 cur_tx = &sc->ti_rdata->ti_tx_ring[idx]; 2629 if (cur_tx->ti_flags & TI_BDFLAG_END) 2630 ifp->if_opackets++; 2631 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { 2632 m_freem(sc->ti_cdata.ti_tx_chain[idx]); 2633 sc->ti_cdata.ti_tx_chain[idx] = NULL; 2634 } 2635 sc->ti_txcnt--; 2636 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); 2637 ifp->if_timer = 0; 2638 } 2639 2640 if (cur_tx != NULL) 2641 ifp->if_flags &= ~IFF_OACTIVE; 2642 2643 return; 2644 } 2645 2646 static void 2647 ti_intr(xsc) 2648 void *xsc; 2649 { 2650 struct ti_softc *sc; 2651 struct ifnet *ifp; 2652 2653 sc = xsc; 2654 TI_LOCK(sc); 2655 ifp = &sc->arpcom.ac_if; 2656 2657 /*#ifdef notdef*/ 2658 /* Avoid this for now -- checking this register is expensive. */ 2659 /* Make sure this is really our interrupt. */ 2660 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) { 2661 TI_UNLOCK(sc); 2662 return; 2663 } 2664 /*#endif*/ 2665 2666 /* Ack interrupt and stop others from occuring. */ 2667 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 2668 2669 if (ifp->if_flags & IFF_RUNNING) { 2670 /* Check RX return ring producer/consumer */ 2671 ti_rxeof(sc); 2672 2673 /* Check TX ring producer/consumer */ 2674 ti_txeof(sc); 2675 } 2676 2677 ti_handle_events(sc); 2678 2679 /* Re-enable interrupts. */ 2680 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 2681 2682 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL) 2683 ti_start(ifp); 2684 2685 TI_UNLOCK(sc); 2686 2687 return; 2688 } 2689 2690 static void 2691 ti_stats_update(sc) 2692 struct ti_softc *sc; 2693 { 2694 struct ifnet *ifp; 2695 2696 ifp = &sc->arpcom.ac_if; 2697 2698 ifp->if_collisions += 2699 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames + 2700 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames + 2701 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions + 2702 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) - 2703 ifp->if_collisions; 2704 2705 return; 2706 } 2707 2708 /* 2709 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 2710 * pointers to descriptors. 2711 */ 2712 static int 2713 ti_encap(sc, m_head, txidx) 2714 struct ti_softc *sc; 2715 struct mbuf *m_head; 2716 u_int32_t *txidx; 2717 { 2718 struct ti_tx_desc *f = NULL; 2719 struct mbuf *m; 2720 u_int32_t frag, cur, cnt = 0; 2721 u_int16_t csum_flags = 0; 2722 struct m_tag *mtag; 2723 2724 m = m_head; 2725 cur = frag = *txidx; 2726 2727 if (m_head->m_pkthdr.csum_flags) { 2728 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 2729 csum_flags |= TI_BDFLAG_IP_CKSUM; 2730 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) 2731 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM; 2732 if (m_head->m_flags & M_LASTFRAG) 2733 csum_flags |= TI_BDFLAG_IP_FRAG_END; 2734 else if (m_head->m_flags & M_FRAG) 2735 csum_flags |= TI_BDFLAG_IP_FRAG; 2736 } 2737 2738 mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m); 2739 2740 /* 2741 * Start packing the mbufs in this chain into 2742 * the fragment pointers. Stop when we run out 2743 * of fragments or hit the end of the mbuf chain. 2744 */ 2745 for (m = m_head; m != NULL; m = m->m_next) { 2746 if (m->m_len != 0) { 2747 if (sc->ti_hwrev == TI_HWREV_TIGON) { 2748 if (frag > 383) 2749 CSR_WRITE_4(sc, TI_WINBASE, 2750 TI_TX_RING_BASE + 6144); 2751 else if (frag > 255) 2752 CSR_WRITE_4(sc, TI_WINBASE, 2753 TI_TX_RING_BASE + 4096); 2754 else if (frag > 127) 2755 CSR_WRITE_4(sc, TI_WINBASE, 2756 TI_TX_RING_BASE + 2048); 2757 else 2758 CSR_WRITE_4(sc, TI_WINBASE, 2759 TI_TX_RING_BASE); 2760 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128]; 2761 } else 2762 f = &sc->ti_rdata->ti_tx_ring[frag]; 2763 if (sc->ti_cdata.ti_tx_chain[frag] != NULL) 2764 break; 2765 TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t)); 2766 f->ti_len = m->m_len; 2767 f->ti_flags = csum_flags; 2768 2769 if (mtag != NULL) { 2770 f->ti_flags |= TI_BDFLAG_VLAN_TAG; 2771 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff; 2772 } else { 2773 f->ti_vlan_tag = 0; 2774 } 2775 2776 /* 2777 * Sanity check: avoid coming within 16 descriptors 2778 * of the end of the ring. 2779 */ 2780 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) 2781 return(ENOBUFS); 2782 cur = frag; 2783 TI_INC(frag, TI_TX_RING_CNT); 2784 cnt++; 2785 } 2786 } 2787 2788 if (m != NULL) 2789 return(ENOBUFS); 2790 2791 if (frag == sc->ti_tx_saved_considx) 2792 return(ENOBUFS); 2793 2794 if (sc->ti_hwrev == TI_HWREV_TIGON) 2795 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |= 2796 TI_BDFLAG_END; 2797 else 2798 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END; 2799 sc->ti_cdata.ti_tx_chain[cur] = m_head; 2800 sc->ti_txcnt += cnt; 2801 2802 *txidx = frag; 2803 2804 return(0); 2805 } 2806 2807 /* 2808 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 2809 * to the mbuf data regions directly in the transmit descriptors. 2810 */ 2811 static void 2812 ti_start(ifp) 2813 struct ifnet *ifp; 2814 { 2815 struct ti_softc *sc; 2816 struct mbuf *m_head = NULL; 2817 u_int32_t prodidx = 0; 2818 2819 sc = ifp->if_softc; 2820 TI_LOCK(sc); 2821 2822 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX); 2823 2824 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) { 2825 IF_DEQUEUE(&ifp->if_snd, m_head); 2826 if (m_head == NULL) 2827 break; 2828 2829 /* 2830 * XXX 2831 * safety overkill. If this is a fragmented packet chain 2832 * with delayed TCP/UDP checksums, then only encapsulate 2833 * it if we have enough descriptors to handle the entire 2834 * chain at once. 2835 * (paranoia -- may not actually be needed) 2836 */ 2837 if (m_head->m_flags & M_FIRSTFRAG && 2838 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 2839 if ((TI_TX_RING_CNT - sc->ti_txcnt) < 2840 m_head->m_pkthdr.csum_data + 16) { 2841 IF_PREPEND(&ifp->if_snd, m_head); 2842 ifp->if_flags |= IFF_OACTIVE; 2843 break; 2844 } 2845 } 2846 2847 /* 2848 * Pack the data into the transmit ring. If we 2849 * don't have room, set the OACTIVE flag and wait 2850 * for the NIC to drain the ring. 2851 */ 2852 if (ti_encap(sc, m_head, &prodidx)) { 2853 IF_PREPEND(&ifp->if_snd, m_head); 2854 ifp->if_flags |= IFF_OACTIVE; 2855 break; 2856 } 2857 2858 /* 2859 * If there's a BPF listener, bounce a copy of this frame 2860 * to him. 2861 */ 2862 BPF_MTAP(ifp, m_head); 2863 } 2864 2865 /* Transmit */ 2866 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx); 2867 2868 /* 2869 * Set a timeout in case the chip goes out to lunch. 2870 */ 2871 ifp->if_timer = 5; 2872 TI_UNLOCK(sc); 2873 2874 return; 2875 } 2876 2877 static void 2878 ti_init(xsc) 2879 void *xsc; 2880 { 2881 struct ti_softc *sc = xsc; 2882 2883 /* Cancel pending I/O and flush buffers. */ 2884 ti_stop(sc); 2885 2886 TI_LOCK(sc); 2887 /* Init the gen info block, ring control blocks and firmware. */ 2888 if (ti_gibinit(sc)) { 2889 printf("ti%d: initialization failure\n", sc->ti_unit); 2890 TI_UNLOCK(sc); 2891 return; 2892 } 2893 2894 TI_UNLOCK(sc); 2895 2896 return; 2897 } 2898 2899 static void ti_init2(sc) 2900 struct ti_softc *sc; 2901 { 2902 struct ti_cmd_desc cmd; 2903 struct ifnet *ifp; 2904 u_int16_t *m; 2905 struct ifmedia *ifm; 2906 int tmp; 2907 2908 ifp = &sc->arpcom.ac_if; 2909 2910 /* Specify MTU and interface index. */ 2911 CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit); 2912 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu + 2913 ETHER_HDR_LEN + ETHER_CRC_LEN); 2914 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0); 2915 2916 /* Load our MAC address. */ 2917 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; 2918 CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0])); 2919 CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2])); 2920 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0); 2921 2922 /* Enable or disable promiscuous mode as needed. */ 2923 if (ifp->if_flags & IFF_PROMISC) { 2924 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); 2925 } else { 2926 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); 2927 } 2928 2929 /* Program multicast filter. */ 2930 ti_setmulti(sc); 2931 2932 /* 2933 * If this is a Tigon 1, we should tell the 2934 * firmware to use software packet filtering. 2935 */ 2936 if (sc->ti_hwrev == TI_HWREV_TIGON) { 2937 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0); 2938 } 2939 2940 /* Init RX ring. */ 2941 ti_init_rx_ring_std(sc); 2942 2943 /* Init jumbo RX ring. */ 2944 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2945 ti_init_rx_ring_jumbo(sc); 2946 2947 /* 2948 * If this is a Tigon 2, we can also configure the 2949 * mini ring. 2950 */ 2951 if (sc->ti_hwrev == TI_HWREV_TIGON_II) 2952 ti_init_rx_ring_mini(sc); 2953 2954 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0); 2955 sc->ti_rx_saved_considx = 0; 2956 2957 /* Init TX ring. */ 2958 ti_init_tx_ring(sc); 2959 2960 /* Tell firmware we're alive. */ 2961 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0); 2962 2963 /* Enable host interrupts. */ 2964 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); 2965 2966 ifp->if_flags |= IFF_RUNNING; 2967 ifp->if_flags &= ~IFF_OACTIVE; 2968 2969 /* 2970 * Make sure to set media properly. We have to do this 2971 * here since we have to issue commands in order to set 2972 * the link negotiation and we can't issue commands until 2973 * the firmware is running. 2974 */ 2975 ifm = &sc->ifmedia; 2976 tmp = ifm->ifm_media; 2977 ifm->ifm_media = ifm->ifm_cur->ifm_media; 2978 ti_ifmedia_upd(ifp); 2979 ifm->ifm_media = tmp; 2980 2981 return; 2982 } 2983 2984 /* 2985 * Set media options. 2986 */ 2987 static int 2988 ti_ifmedia_upd(ifp) 2989 struct ifnet *ifp; 2990 { 2991 struct ti_softc *sc; 2992 struct ifmedia *ifm; 2993 struct ti_cmd_desc cmd; 2994 u_int32_t flowctl; 2995 2996 sc = ifp->if_softc; 2997 ifm = &sc->ifmedia; 2998 2999 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 3000 return(EINVAL); 3001 3002 flowctl = 0; 3003 3004 switch(IFM_SUBTYPE(ifm->ifm_media)) { 3005 case IFM_AUTO: 3006 /* 3007 * Transmit flow control doesn't work on the Tigon 1. 3008 */ 3009 flowctl = TI_GLNK_RX_FLOWCTL_Y; 3010 3011 /* 3012 * Transmit flow control can also cause problems on the 3013 * Tigon 2, apparantly with both the copper and fiber 3014 * boards. The symptom is that the interface will just 3015 * hang. This was reproduced with Alteon 180 switches. 3016 */ 3017 #if 0 3018 if (sc->ti_hwrev != TI_HWREV_TIGON) 3019 flowctl |= TI_GLNK_TX_FLOWCTL_Y; 3020 #endif 3021 3022 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| 3023 TI_GLNK_FULL_DUPLEX| flowctl | 3024 TI_GLNK_AUTONEGENB|TI_GLNK_ENB); 3025 3026 flowctl = TI_LNK_RX_FLOWCTL_Y; 3027 #if 0 3028 if (sc->ti_hwrev != TI_HWREV_TIGON) 3029 flowctl |= TI_LNK_TX_FLOWCTL_Y; 3030 #endif 3031 3032 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB| 3033 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl | 3034 TI_LNK_AUTONEGENB|TI_LNK_ENB); 3035 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 3036 TI_CMD_CODE_NEGOTIATE_BOTH, 0); 3037 break; 3038 case IFM_1000_SX: 3039 case IFM_1000_T: 3040 flowctl = TI_GLNK_RX_FLOWCTL_Y; 3041 #if 0 3042 if (sc->ti_hwrev != TI_HWREV_TIGON) 3043 flowctl |= TI_GLNK_TX_FLOWCTL_Y; 3044 #endif 3045 3046 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB| 3047 flowctl |TI_GLNK_ENB); 3048 CSR_WRITE_4(sc, TI_GCR_LINK, 0); 3049 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 3050 TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX); 3051 } 3052 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 3053 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0); 3054 break; 3055 case IFM_100_FX: 3056 case IFM_10_FL: 3057 case IFM_100_TX: 3058 case IFM_10_T: 3059 flowctl = TI_LNK_RX_FLOWCTL_Y; 3060 #if 0 3061 if (sc->ti_hwrev != TI_HWREV_TIGON) 3062 flowctl |= TI_LNK_TX_FLOWCTL_Y; 3063 #endif 3064 3065 CSR_WRITE_4(sc, TI_GCR_GLINK, 0); 3066 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl); 3067 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX || 3068 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) { 3069 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB); 3070 } else { 3071 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB); 3072 } 3073 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 3074 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX); 3075 } else { 3076 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX); 3077 } 3078 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, 3079 TI_CMD_CODE_NEGOTIATE_10_100, 0); 3080 break; 3081 } 3082 3083 return(0); 3084 } 3085 3086 /* 3087 * Report current media status. 3088 */ 3089 static void 3090 ti_ifmedia_sts(ifp, ifmr) 3091 struct ifnet *ifp; 3092 struct ifmediareq *ifmr; 3093 { 3094 struct ti_softc *sc; 3095 u_int32_t media = 0; 3096 3097 sc = ifp->if_softc; 3098 3099 ifmr->ifm_status = IFM_AVALID; 3100 ifmr->ifm_active = IFM_ETHER; 3101 3102 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) 3103 return; 3104 3105 ifmr->ifm_status |= IFM_ACTIVE; 3106 3107 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) { 3108 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT); 3109 if (sc->ti_copper) 3110 ifmr->ifm_active |= IFM_1000_T; 3111 else 3112 ifmr->ifm_active |= IFM_1000_SX; 3113 if (media & TI_GLNK_FULL_DUPLEX) 3114 ifmr->ifm_active |= IFM_FDX; 3115 else 3116 ifmr->ifm_active |= IFM_HDX; 3117 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) { 3118 media = CSR_READ_4(sc, TI_GCR_LINK_STAT); 3119 if (sc->ti_copper) { 3120 if (media & TI_LNK_100MB) 3121 ifmr->ifm_active |= IFM_100_TX; 3122 if (media & TI_LNK_10MB) 3123 ifmr->ifm_active |= IFM_10_T; 3124 } else { 3125 if (media & TI_LNK_100MB) 3126 ifmr->ifm_active |= IFM_100_FX; 3127 if (media & TI_LNK_10MB) 3128 ifmr->ifm_active |= IFM_10_FL; 3129 } 3130 if (media & TI_LNK_FULL_DUPLEX) 3131 ifmr->ifm_active |= IFM_FDX; 3132 if (media & TI_LNK_HALF_DUPLEX) 3133 ifmr->ifm_active |= IFM_HDX; 3134 } 3135 3136 return; 3137 } 3138 3139 static int 3140 ti_ioctl(ifp, command, data) 3141 struct ifnet *ifp; 3142 u_long command; 3143 caddr_t data; 3144 { 3145 struct ti_softc *sc = ifp->if_softc; 3146 struct ifreq *ifr = (struct ifreq *) data; 3147 int mask, error = 0; 3148 struct ti_cmd_desc cmd; 3149 3150 TI_LOCK(sc); 3151 3152 switch(command) { 3153 case SIOCSIFMTU: 3154 if (ifr->ifr_mtu > TI_JUMBO_MTU) 3155 error = EINVAL; 3156 else { 3157 ifp->if_mtu = ifr->ifr_mtu; 3158 ti_init(sc); 3159 } 3160 break; 3161 case SIOCSIFFLAGS: 3162 if (ifp->if_flags & IFF_UP) { 3163 /* 3164 * If only the state of the PROMISC flag changed, 3165 * then just use the 'set promisc mode' command 3166 * instead of reinitializing the entire NIC. Doing 3167 * a full re-init means reloading the firmware and 3168 * waiting for it to start up, which may take a 3169 * second or two. 3170 */ 3171 if (ifp->if_flags & IFF_RUNNING && 3172 ifp->if_flags & IFF_PROMISC && 3173 !(sc->ti_if_flags & IFF_PROMISC)) { 3174 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, 3175 TI_CMD_CODE_PROMISC_ENB, 0); 3176 } else if (ifp->if_flags & IFF_RUNNING && 3177 !(ifp->if_flags & IFF_PROMISC) && 3178 sc->ti_if_flags & IFF_PROMISC) { 3179 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, 3180 TI_CMD_CODE_PROMISC_DIS, 0); 3181 } else 3182 ti_init(sc); 3183 } else { 3184 if (ifp->if_flags & IFF_RUNNING) { 3185 ti_stop(sc); 3186 } 3187 } 3188 sc->ti_if_flags = ifp->if_flags; 3189 error = 0; 3190 break; 3191 case SIOCADDMULTI: 3192 case SIOCDELMULTI: 3193 if (ifp->if_flags & IFF_RUNNING) { 3194 ti_setmulti(sc); 3195 error = 0; 3196 } 3197 break; 3198 case SIOCSIFMEDIA: 3199 case SIOCGIFMEDIA: 3200 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 3201 break; 3202 case SIOCSIFCAP: 3203 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3204 if (mask & IFCAP_HWCSUM) { 3205 if (IFCAP_HWCSUM & ifp->if_capenable) 3206 ifp->if_capenable &= ~IFCAP_HWCSUM; 3207 else 3208 ifp->if_capenable |= IFCAP_HWCSUM; 3209 if (ifp->if_flags & IFF_RUNNING) 3210 ti_init(sc); 3211 } 3212 error = 0; 3213 break; 3214 default: 3215 error = ether_ioctl(ifp, command, data); 3216 break; 3217 } 3218 3219 TI_UNLOCK(sc); 3220 3221 return(error); 3222 } 3223 3224 static int 3225 ti_open(dev_t dev, int flags, int fmt, struct thread *td) 3226 { 3227 int unit; 3228 struct ti_softc *sc; 3229 3230 unit = minor(dev) & 0xff; 3231 3232 sc = ti_lookup_softc(unit); 3233 3234 if (sc == NULL) 3235 return(ENODEV); 3236 3237 TI_LOCK(sc); 3238 sc->ti_flags |= TI_FLAG_DEBUGING; 3239 TI_UNLOCK(sc); 3240 3241 return(0); 3242 } 3243 3244 static int 3245 ti_close(dev_t dev, int flag, int fmt, struct thread *td) 3246 { 3247 int unit; 3248 struct ti_softc *sc; 3249 3250 unit = minor(dev) & 0xff; 3251 3252 sc = ti_lookup_softc(unit); 3253 3254 if (sc == NULL) 3255 return(ENODEV); 3256 3257 TI_LOCK(sc); 3258 sc->ti_flags &= ~TI_FLAG_DEBUGING; 3259 TI_UNLOCK(sc); 3260 3261 return(0); 3262 } 3263 3264 /* 3265 * This ioctl routine goes along with the Tigon character device. 3266 */ 3267 static int 3268 ti_ioctl2(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 3269 { 3270 int unit, error; 3271 struct ti_softc *sc; 3272 3273 unit = minor(dev) & 0xff; 3274 3275 sc = ti_lookup_softc(unit); 3276 3277 if (sc == NULL) 3278 return(ENODEV); 3279 3280 error = 0; 3281 3282 switch(cmd) { 3283 case TIIOCGETSTATS: 3284 { 3285 struct ti_stats *outstats; 3286 3287 outstats = (struct ti_stats *)addr; 3288 3289 bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats, 3290 sizeof(struct ti_stats)); 3291 break; 3292 } 3293 case TIIOCGETPARAMS: 3294 { 3295 struct ti_params *params; 3296 3297 params = (struct ti_params *)addr; 3298 3299 params->ti_stat_ticks = sc->ti_stat_ticks; 3300 params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks; 3301 params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks; 3302 params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds; 3303 params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds; 3304 params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio; 3305 params->param_mask = TI_PARAM_ALL; 3306 3307 error = 0; 3308 3309 break; 3310 } 3311 case TIIOCSETPARAMS: 3312 { 3313 struct ti_params *params; 3314 3315 params = (struct ti_params *)addr; 3316 3317 if (params->param_mask & TI_PARAM_STAT_TICKS) { 3318 sc->ti_stat_ticks = params->ti_stat_ticks; 3319 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); 3320 } 3321 3322 if (params->param_mask & TI_PARAM_RX_COAL_TICKS) { 3323 sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks; 3324 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, 3325 sc->ti_rx_coal_ticks); 3326 } 3327 3328 if (params->param_mask & TI_PARAM_TX_COAL_TICKS) { 3329 sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks; 3330 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, 3331 sc->ti_tx_coal_ticks); 3332 } 3333 3334 if (params->param_mask & TI_PARAM_RX_COAL_BDS) { 3335 sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds; 3336 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, 3337 sc->ti_rx_max_coal_bds); 3338 } 3339 3340 if (params->param_mask & TI_PARAM_TX_COAL_BDS) { 3341 sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds; 3342 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, 3343 sc->ti_tx_max_coal_bds); 3344 } 3345 3346 if (params->param_mask & TI_PARAM_TX_BUF_RATIO) { 3347 sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio; 3348 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, 3349 sc->ti_tx_buf_ratio); 3350 } 3351 3352 error = 0; 3353 3354 break; 3355 } 3356 case TIIOCSETTRACE: { 3357 ti_trace_type trace_type; 3358 3359 trace_type = *(ti_trace_type *)addr; 3360 3361 /* 3362 * Set tracing to whatever the user asked for. Setting 3363 * this register to 0 should have the effect of disabling 3364 * tracing. 3365 */ 3366 CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type); 3367 3368 error = 0; 3369 3370 break; 3371 } 3372 case TIIOCGETTRACE: { 3373 struct ti_trace_buf *trace_buf; 3374 u_int32_t trace_start, cur_trace_ptr, trace_len; 3375 3376 trace_buf = (struct ti_trace_buf *)addr; 3377 3378 trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START); 3379 cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR); 3380 trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN); 3381 3382 #if 0 3383 printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, " 3384 "trace_len = %d\n", sc->ti_unit, trace_start, 3385 cur_trace_ptr, trace_len); 3386 printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit, 3387 trace_buf->buf_len); 3388 #endif 3389 3390 error = ti_copy_mem(sc, trace_start, min(trace_len, 3391 trace_buf->buf_len), 3392 (caddr_t)trace_buf->buf, 1, 1); 3393 3394 if (error == 0) { 3395 trace_buf->fill_len = min(trace_len, 3396 trace_buf->buf_len); 3397 if (cur_trace_ptr < trace_start) 3398 trace_buf->cur_trace_ptr = 3399 trace_start - cur_trace_ptr; 3400 else 3401 trace_buf->cur_trace_ptr = 3402 cur_trace_ptr - trace_start; 3403 } else 3404 trace_buf->fill_len = 0; 3405 3406 3407 break; 3408 } 3409 3410 /* 3411 * For debugging, five ioctls are needed: 3412 * ALT_ATTACH 3413 * ALT_READ_TG_REG 3414 * ALT_WRITE_TG_REG 3415 * ALT_READ_TG_MEM 3416 * ALT_WRITE_TG_MEM 3417 */ 3418 case ALT_ATTACH: 3419 /* 3420 * From what I can tell, Alteon's Solaris Tigon driver 3421 * only has one character device, so you have to attach 3422 * to the Tigon board you're interested in. This seems 3423 * like a not-so-good way to do things, since unless you 3424 * subsequently specify the unit number of the device 3425 * you're interested in in every ioctl, you'll only be 3426 * able to debug one board at a time. 3427 */ 3428 error = 0; 3429 break; 3430 case ALT_READ_TG_MEM: 3431 case ALT_WRITE_TG_MEM: 3432 { 3433 struct tg_mem *mem_param; 3434 u_int32_t sram_end, scratch_end; 3435 3436 mem_param = (struct tg_mem *)addr; 3437 3438 if (sc->ti_hwrev == TI_HWREV_TIGON) { 3439 sram_end = TI_END_SRAM_I; 3440 scratch_end = TI_END_SCRATCH_I; 3441 } else { 3442 sram_end = TI_END_SRAM_II; 3443 scratch_end = TI_END_SCRATCH_II; 3444 } 3445 3446 /* 3447 * For now, we'll only handle accessing regular SRAM, 3448 * nothing else. 3449 */ 3450 if ((mem_param->tgAddr >= TI_BEG_SRAM) 3451 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) { 3452 /* 3453 * In this instance, we always copy to/from user 3454 * space, so the user space argument is set to 1. 3455 */ 3456 error = ti_copy_mem(sc, mem_param->tgAddr, 3457 mem_param->len, 3458 mem_param->userAddr, 1, 3459 (cmd == ALT_READ_TG_MEM) ? 1 : 0); 3460 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH) 3461 && (mem_param->tgAddr <= scratch_end)) { 3462 error = ti_copy_scratch(sc, mem_param->tgAddr, 3463 mem_param->len, 3464 mem_param->userAddr, 1, 3465 (cmd == ALT_READ_TG_MEM) ? 3466 1 : 0, TI_PROCESSOR_A); 3467 } else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG) 3468 && (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) { 3469 if (sc->ti_hwrev == TI_HWREV_TIGON) { 3470 printf("ti%d: invalid memory range for " 3471 "Tigon I\n", sc->ti_unit); 3472 error = EINVAL; 3473 break; 3474 } 3475 error = ti_copy_scratch(sc, mem_param->tgAddr - 3476 TI_SCRATCH_DEBUG_OFF, 3477 mem_param->len, 3478 mem_param->userAddr, 1, 3479 (cmd == ALT_READ_TG_MEM) ? 3480 1 : 0, TI_PROCESSOR_B); 3481 } else { 3482 printf("ti%d: memory address %#x len %d is out of " 3483 "supported range\n", sc->ti_unit, 3484 mem_param->tgAddr, mem_param->len); 3485 error = EINVAL; 3486 } 3487 3488 break; 3489 } 3490 case ALT_READ_TG_REG: 3491 case ALT_WRITE_TG_REG: 3492 { 3493 struct tg_reg *regs; 3494 u_int32_t tmpval; 3495 3496 regs = (struct tg_reg *)addr; 3497 3498 /* 3499 * Make sure the address in question isn't out of range. 3500 */ 3501 if (regs->addr > TI_REG_MAX) { 3502 error = EINVAL; 3503 break; 3504 } 3505 if (cmd == ALT_READ_TG_REG) { 3506 bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle, 3507 regs->addr, &tmpval, 1); 3508 regs->data = ntohl(tmpval); 3509 #if 0 3510 if ((regs->addr == TI_CPU_STATE) 3511 || (regs->addr == TI_CPU_CTL_B)) { 3512 printf("ti%d: register %#x = %#x\n", 3513 sc->ti_unit, regs->addr, tmpval); 3514 } 3515 #endif 3516 } else { 3517 tmpval = htonl(regs->data); 3518 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, 3519 regs->addr, &tmpval, 1); 3520 } 3521 3522 break; 3523 } 3524 default: 3525 error = ENOTTY; 3526 break; 3527 } 3528 return(error); 3529 } 3530 3531 static void 3532 ti_watchdog(ifp) 3533 struct ifnet *ifp; 3534 { 3535 struct ti_softc *sc; 3536 3537 sc = ifp->if_softc; 3538 TI_LOCK(sc); 3539 3540 /* 3541 * When we're debugging, the chip is often stopped for long periods 3542 * of time, and that would normally cause the watchdog timer to fire. 3543 * Since that impedes debugging, we don't want to do that. 3544 */ 3545 if (sc->ti_flags & TI_FLAG_DEBUGING) { 3546 TI_UNLOCK(sc); 3547 return; 3548 } 3549 3550 printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit); 3551 ti_stop(sc); 3552 ti_init(sc); 3553 3554 ifp->if_oerrors++; 3555 TI_UNLOCK(sc); 3556 3557 return; 3558 } 3559 3560 /* 3561 * Stop the adapter and free any mbufs allocated to the 3562 * RX and TX lists. 3563 */ 3564 static void 3565 ti_stop(sc) 3566 struct ti_softc *sc; 3567 { 3568 struct ifnet *ifp; 3569 struct ti_cmd_desc cmd; 3570 3571 TI_LOCK(sc); 3572 3573 ifp = &sc->arpcom.ac_if; 3574 3575 /* Disable host interrupts. */ 3576 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); 3577 /* 3578 * Tell firmware we're shutting down. 3579 */ 3580 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0); 3581 3582 /* Halt and reinitialize. */ 3583 ti_chipinit(sc); 3584 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); 3585 ti_chipinit(sc); 3586 3587 /* Free the RX lists. */ 3588 ti_free_rx_ring_std(sc); 3589 3590 /* Free jumbo RX list. */ 3591 ti_free_rx_ring_jumbo(sc); 3592 3593 /* Free mini RX list. */ 3594 ti_free_rx_ring_mini(sc); 3595 3596 /* Free TX buffers. */ 3597 ti_free_tx_ring(sc); 3598 3599 sc->ti_ev_prodidx.ti_idx = 0; 3600 sc->ti_return_prodidx.ti_idx = 0; 3601 sc->ti_tx_considx.ti_idx = 0; 3602 sc->ti_tx_saved_considx = TI_TXCONS_UNSET; 3603 3604 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3605 TI_UNLOCK(sc); 3606 3607 return; 3608 } 3609 3610 /* 3611 * Stop all chip I/O so that the kernel's probe routines don't 3612 * get confused by errant DMAs when rebooting. 3613 */ 3614 static void 3615 ti_shutdown(dev) 3616 device_t dev; 3617 { 3618 struct ti_softc *sc; 3619 3620 sc = device_get_softc(dev); 3621 TI_LOCK(sc); 3622 ti_chipinit(sc); 3623 TI_UNLOCK(sc); 3624 3625 return; 3626 } 3627