xref: /freebsd/sys/dev/ti/if_ti.c (revision 77a0943ded95b9e6438f7db70c4a28e4d93946d4)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include "vlan.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/queue.h>
91 
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 
98 #include <net/bpf.h>
99 
100 #if NVLAN > 0
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103 #endif
104 
105 #include <netinet/in_systm.h>
106 #include <netinet/in.h>
107 #include <netinet/ip.h>
108 
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/bus_memio.h>
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 #include <pci/pcireg.h>
118 #include <pci/pcivar.h>
119 
120 #include <pci/if_tireg.h>
121 #include <pci/ti_fw.h>
122 #include <pci/ti_fw2.h>
123 
124 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
125 
126 #if !defined(lint)
127 static const char rcsid[] =
128   "$FreeBSD$";
129 #endif
130 
131 /*
132  * Various supported device vendors/types and their names.
133  */
134 
135 static struct ti_type ti_devs[] = {
136 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
137 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
138 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
139 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
140 	{ TC_VENDORID,	TC_DEVICEID_3C985,
141 		"3Com 3c985-SX Gigabit Ethernet" },
142 	{ NG_VENDORID, NG_DEVICEID_GA620,
143 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
144 	{ NG_VENDORID, NG_DEVICEID_GA620T,
145 		"Netgear GA620 1000baseT Gigabit Ethernet" },
146 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
147 		"Silicon Graphics Gigabit Ethernet" },
148 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
149 		"Farallon PN9000SX Gigabit Ethernet" },
150 	{ 0, 0, NULL }
151 };
152 
153 static int ti_probe		__P((device_t));
154 static int ti_attach		__P((device_t));
155 static int ti_detach		__P((device_t));
156 static void ti_txeof		__P((struct ti_softc *));
157 static void ti_rxeof		__P((struct ti_softc *));
158 
159 static void ti_stats_update	__P((struct ti_softc *));
160 static int ti_encap		__P((struct ti_softc *, struct mbuf *,
161 					u_int32_t *));
162 
163 static void ti_intr		__P((void *));
164 static void ti_start		__P((struct ifnet *));
165 static int ti_ioctl		__P((struct ifnet *, u_long, caddr_t));
166 static void ti_init		__P((void *));
167 static void ti_init2		__P((struct ti_softc *));
168 static void ti_stop		__P((struct ti_softc *));
169 static void ti_watchdog		__P((struct ifnet *));
170 static void ti_shutdown		__P((device_t));
171 static int ti_ifmedia_upd	__P((struct ifnet *));
172 static void ti_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
173 
174 static u_int32_t ti_eeprom_putbyte	__P((struct ti_softc *, int));
175 static u_int8_t	ti_eeprom_getbyte	__P((struct ti_softc *,
176 						int, u_int8_t *));
177 static int ti_read_eeprom	__P((struct ti_softc *, caddr_t, int, int));
178 
179 static void ti_add_mcast	__P((struct ti_softc *, struct ether_addr *));
180 static void ti_del_mcast	__P((struct ti_softc *, struct ether_addr *));
181 static void ti_setmulti		__P((struct ti_softc *));
182 
183 static void ti_mem		__P((struct ti_softc *, u_int32_t,
184 					u_int32_t, caddr_t));
185 static void ti_loadfw		__P((struct ti_softc *));
186 static void ti_cmd		__P((struct ti_softc *, struct ti_cmd_desc *));
187 static void ti_cmd_ext		__P((struct ti_softc *, struct ti_cmd_desc *,
188 					caddr_t, int));
189 static void ti_handle_events	__P((struct ti_softc *));
190 static int ti_alloc_jumbo_mem	__P((struct ti_softc *));
191 static void *ti_jalloc		__P((struct ti_softc *));
192 static void ti_jfree		__P((caddr_t, void *));
193 static int ti_newbuf_std	__P((struct ti_softc *, int, struct mbuf *));
194 static int ti_newbuf_mini	__P((struct ti_softc *, int, struct mbuf *));
195 static int ti_newbuf_jumbo	__P((struct ti_softc *, int, struct mbuf *));
196 static int ti_init_rx_ring_std	__P((struct ti_softc *));
197 static void ti_free_rx_ring_std	__P((struct ti_softc *));
198 static int ti_init_rx_ring_jumbo	__P((struct ti_softc *));
199 static void ti_free_rx_ring_jumbo	__P((struct ti_softc *));
200 static int ti_init_rx_ring_mini	__P((struct ti_softc *));
201 static void ti_free_rx_ring_mini	__P((struct ti_softc *));
202 static void ti_free_tx_ring	__P((struct ti_softc *));
203 static int ti_init_tx_ring	__P((struct ti_softc *));
204 
205 static int ti_64bitslot_war	__P((struct ti_softc *));
206 static int ti_chipinit		__P((struct ti_softc *));
207 static int ti_gibinit		__P((struct ti_softc *));
208 
209 static device_method_t ti_methods[] = {
210 	/* Device interface */
211 	DEVMETHOD(device_probe,		ti_probe),
212 	DEVMETHOD(device_attach,	ti_attach),
213 	DEVMETHOD(device_detach,	ti_detach),
214 	DEVMETHOD(device_shutdown,	ti_shutdown),
215 	{ 0, 0 }
216 };
217 
218 static driver_t ti_driver = {
219 	"ti",
220 	ti_methods,
221 	sizeof(struct ti_softc)
222 };
223 
224 static devclass_t ti_devclass;
225 
226 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
227 
228 /*
229  * Send an instruction or address to the EEPROM, check for ACK.
230  */
231 static u_int32_t ti_eeprom_putbyte(sc, byte)
232 	struct ti_softc		*sc;
233 	int			byte;
234 {
235 	register int		i, ack = 0;
236 
237 	/*
238 	 * Make sure we're in TX mode.
239 	 */
240 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241 
242 	/*
243 	 * Feed in each bit and stobe the clock.
244 	 */
245 	for (i = 0x80; i; i >>= 1) {
246 		if (byte & i) {
247 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 		} else {
249 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
250 		}
251 		DELAY(1);
252 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
253 		DELAY(1);
254 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255 	}
256 
257 	/*
258 	 * Turn off TX mode.
259 	 */
260 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
261 
262 	/*
263 	 * Check for ack.
264 	 */
265 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
267 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
268 
269 	return(ack);
270 }
271 
272 /*
273  * Read a byte of data stored in the EEPROM at address 'addr.'
274  * We have to send two address bytes since the EEPROM can hold
275  * more than 256 bytes of data.
276  */
277 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
278 	struct ti_softc		*sc;
279 	int			addr;
280 	u_int8_t		*dest;
281 {
282 	register int		i;
283 	u_int8_t		byte = 0;
284 
285 	EEPROM_START;
286 
287 	/*
288 	 * Send write control code to EEPROM.
289 	 */
290 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
291 		printf("ti%d: failed to send write command, status: %x\n",
292 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
293 		return(1);
294 	}
295 
296 	/*
297 	 * Send first byte of address of byte we want to read.
298 	 */
299 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
300 		printf("ti%d: failed to send address, status: %x\n",
301 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
302 		return(1);
303 	}
304 	/*
305 	 * Send second byte address of byte we want to read.
306 	 */
307 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
308 		printf("ti%d: failed to send address, status: %x\n",
309 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310 		return(1);
311 	}
312 
313 	EEPROM_STOP;
314 	EEPROM_START;
315 	/*
316 	 * Send read control code to EEPROM.
317 	 */
318 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
319 		printf("ti%d: failed to send read command, status: %x\n",
320 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
321 		return(1);
322 	}
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
328 	for (i = 0x80; i; i >>= 1) {
329 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330 		DELAY(1);
331 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
332 			byte |= i;
333 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
334 		DELAY(1);
335 	}
336 
337 	EEPROM_STOP;
338 
339 	/*
340 	 * No ACK generated for read, so just return byte.
341 	 */
342 
343 	*dest = byte;
344 
345 	return(0);
346 }
347 
348 /*
349  * Read a sequence of bytes from the EEPROM.
350  */
351 static int ti_read_eeprom(sc, dest, off, cnt)
352 	struct ti_softc		*sc;
353 	caddr_t			dest;
354 	int			off;
355 	int			cnt;
356 {
357 	int			err = 0, i;
358 	u_int8_t		byte = 0;
359 
360 	for (i = 0; i < cnt; i++) {
361 		err = ti_eeprom_getbyte(sc, off + i, &byte);
362 		if (err)
363 			break;
364 		*(dest + i) = byte;
365 	}
366 
367 	return(err ? 1 : 0);
368 }
369 
370 /*
371  * NIC memory access function. Can be used to either clear a section
372  * of NIC local memory or (if buf is non-NULL) copy data into it.
373  */
374 static void ti_mem(sc, addr, len, buf)
375 	struct ti_softc		*sc;
376 	u_int32_t		addr, len;
377 	caddr_t			buf;
378 {
379 	int			segptr, segsize, cnt;
380 	caddr_t			ti_winbase, ptr;
381 
382 	segptr = addr;
383 	cnt = len;
384 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
385 	ptr = buf;
386 
387 	while(cnt) {
388 		if (cnt < TI_WINLEN)
389 			segsize = cnt;
390 		else
391 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
392 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
393 		if (buf == NULL)
394 			bzero((char *)ti_winbase + (segptr &
395 			    (TI_WINLEN - 1)), segsize);
396 		else {
397 			bcopy((char *)ptr, (char *)ti_winbase +
398 			    (segptr & (TI_WINLEN - 1)), segsize);
399 			ptr += segsize;
400 		}
401 		segptr += segsize;
402 		cnt -= segsize;
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Load firmware image into the NIC. Check that the firmware revision
410  * is acceptable and see if we want the firmware for the Tigon 1 or
411  * Tigon 2.
412  */
413 static void ti_loadfw(sc)
414 	struct ti_softc		*sc;
415 {
416 	switch(sc->ti_hwrev) {
417 	case TI_HWREV_TIGON:
418 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
419 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
420 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
421 			printf("ti%d: firmware revision mismatch; want "
422 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
423 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
424 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
425 			    tigonFwReleaseMinor, tigonFwReleaseFix);
426 			return;
427 		}
428 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
429 		    (caddr_t)tigonFwText);
430 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
431 		    (caddr_t)tigonFwData);
432 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
433 		    (caddr_t)tigonFwRodata);
434 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
435 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
436 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
437 		break;
438 	case TI_HWREV_TIGON_II:
439 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
440 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
441 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
442 			printf("ti%d: firmware revision mismatch; want "
443 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
444 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
445 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
446 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
447 			return;
448 		}
449 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
450 		    (caddr_t)tigon2FwText);
451 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
452 		    (caddr_t)tigon2FwData);
453 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
454 		    (caddr_t)tigon2FwRodata);
455 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
456 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
457 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
458 		break;
459 	default:
460 		printf("ti%d: can't load firmware: unknown hardware rev\n",
461 		    sc->ti_unit);
462 		break;
463 	}
464 
465 	return;
466 }
467 
468 /*
469  * Send the NIC a command via the command ring.
470  */
471 static void ti_cmd(sc, cmd)
472 	struct ti_softc		*sc;
473 	struct ti_cmd_desc	*cmd;
474 {
475 	u_int32_t		index;
476 
477 	if (sc->ti_rdata->ti_cmd_ring == NULL)
478 		return;
479 
480 	index = sc->ti_cmd_saved_prodidx;
481 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
482 	TI_INC(index, TI_CMD_RING_CNT);
483 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
484 	sc->ti_cmd_saved_prodidx = index;
485 
486 	return;
487 }
488 
489 /*
490  * Send the NIC an extended command. The 'len' parameter specifies the
491  * number of command slots to include after the initial command.
492  */
493 static void ti_cmd_ext(sc, cmd, arg, len)
494 	struct ti_softc		*sc;
495 	struct ti_cmd_desc	*cmd;
496 	caddr_t			arg;
497 	int			len;
498 {
499 	u_int32_t		index;
500 	register int		i;
501 
502 	if (sc->ti_rdata->ti_cmd_ring == NULL)
503 		return;
504 
505 	index = sc->ti_cmd_saved_prodidx;
506 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
507 	TI_INC(index, TI_CMD_RING_CNT);
508 	for (i = 0; i < len; i++) {
509 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
510 		    *(u_int32_t *)(&arg[i * 4]));
511 		TI_INC(index, TI_CMD_RING_CNT);
512 	}
513 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
514 	sc->ti_cmd_saved_prodidx = index;
515 
516 	return;
517 }
518 
519 /*
520  * Handle events that have triggered interrupts.
521  */
522 static void ti_handle_events(sc)
523 	struct ti_softc		*sc;
524 {
525 	struct ti_event_desc	*e;
526 
527 	if (sc->ti_rdata->ti_event_ring == NULL)
528 		return;
529 
530 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
531 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
532 		switch(e->ti_event) {
533 		case TI_EV_LINKSTAT_CHANGED:
534 			sc->ti_linkstat = e->ti_code;
535 			if (e->ti_code == TI_EV_CODE_LINK_UP)
536 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
537 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
538 				printf("ti%d: gigabit link up\n", sc->ti_unit);
539 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
540 				printf("ti%d: link down\n", sc->ti_unit);
541 			break;
542 		case TI_EV_ERROR:
543 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
544 				printf("ti%d: invalid command\n", sc->ti_unit);
545 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
546 				printf("ti%d: unknown command\n", sc->ti_unit);
547 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
548 				printf("ti%d: bad config data\n", sc->ti_unit);
549 			break;
550 		case TI_EV_FIRMWARE_UP:
551 			ti_init2(sc);
552 			break;
553 		case TI_EV_STATS_UPDATED:
554 			ti_stats_update(sc);
555 			break;
556 		case TI_EV_RESET_JUMBO_RING:
557 		case TI_EV_MCAST_UPDATED:
558 			/* Who cares. */
559 			break;
560 		default:
561 			printf("ti%d: unknown event: %d\n",
562 			    sc->ti_unit, e->ti_event);
563 			break;
564 		}
565 		/* Advance the consumer index. */
566 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
567 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
568 	}
569 
570 	return;
571 }
572 
573 /*
574  * Memory management for the jumbo receive ring is a pain in the
575  * butt. We need to allocate at least 9018 bytes of space per frame,
576  * _and_ it has to be contiguous (unless you use the extended
577  * jumbo descriptor format). Using malloc() all the time won't
578  * work: malloc() allocates memory in powers of two, which means we
579  * would end up wasting a considerable amount of space by allocating
580  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
581  * to do our own memory management.
582  *
583  * The driver needs to allocate a contiguous chunk of memory at boot
584  * time. We then chop this up ourselves into 9K pieces and use them
585  * as external mbuf storage.
586  *
587  * One issue here is how much memory to allocate. The jumbo ring has
588  * 256 slots in it, but at 9K per slot than can consume over 2MB of
589  * RAM. This is a bit much, especially considering we also need
590  * RAM for the standard ring and mini ring (on the Tigon 2). To
591  * save space, we only actually allocate enough memory for 64 slots
592  * by default, which works out to between 500 and 600K. This can
593  * be tuned by changing a #define in if_tireg.h.
594  */
595 
596 static int ti_alloc_jumbo_mem(sc)
597 	struct ti_softc		*sc;
598 {
599 	caddr_t			ptr;
600 	register int		i;
601 	struct ti_jpool_entry   *entry;
602 
603 	/* Grab a big chunk o' storage. */
604 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
605 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
606 
607 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
608 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
609 		return(ENOBUFS);
610 	}
611 
612 	SLIST_INIT(&sc->ti_jfree_listhead);
613 	SLIST_INIT(&sc->ti_jinuse_listhead);
614 
615 	/*
616 	 * Now divide it up into 9K pieces and save the addresses
617 	 * in an array.
618 	 */
619 	ptr = sc->ti_cdata.ti_jumbo_buf;
620 	for (i = 0; i < TI_JSLOTS; i++) {
621 		sc->ti_cdata.ti_jslots[i] = ptr;
622 		ptr += TI_JLEN;
623 		entry = malloc(sizeof(struct ti_jpool_entry),
624 			       M_DEVBUF, M_NOWAIT);
625 		if (entry == NULL) {
626 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
627 			           M_DEVBUF);
628 			sc->ti_cdata.ti_jumbo_buf = NULL;
629 			printf("ti%d: no memory for jumbo "
630 			    "buffer queue!\n", sc->ti_unit);
631 			return(ENOBUFS);
632 		}
633 		entry->slot = i;
634 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
635 	}
636 
637 	return(0);
638 }
639 
640 /*
641  * Allocate a jumbo buffer.
642  */
643 static void *ti_jalloc(sc)
644 	struct ti_softc		*sc;
645 {
646 	struct ti_jpool_entry   *entry;
647 
648 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
649 
650 	if (entry == NULL) {
651 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
652 		return(NULL);
653 	}
654 
655 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
656 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
657 	return(sc->ti_cdata.ti_jslots[entry->slot]);
658 }
659 
660 /*
661  * Release a jumbo buffer.
662  */
663 static void ti_jfree(buf, args)
664 	caddr_t			buf;
665 	void			*args;
666 {
667 	struct ti_softc		*sc;
668 	int		        i;
669 	struct ti_jpool_entry   *entry;
670 
671 	/* Extract the softc struct pointer. */
672 	sc = (struct ti_softc *)args;
673 
674 	if (sc == NULL)
675 		panic("ti_jfree: didn't get softc pointer!");
676 
677 	/* calculate the slot this buffer belongs to */
678 	i = ((vm_offset_t)buf
679 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
680 
681 	if ((i < 0) || (i >= TI_JSLOTS))
682 		panic("ti_jfree: asked to free buffer that we don't manage!");
683 
684 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
685 	if (entry == NULL)
686 		panic("ti_jfree: buffer not in use!");
687 	entry->slot = i;
688 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
689 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
690 
691 	return;
692 }
693 
694 
695 /*
696  * Intialize a standard receive ring descriptor.
697  */
698 static int ti_newbuf_std(sc, i, m)
699 	struct ti_softc		*sc;
700 	int			i;
701 	struct mbuf		*m;
702 {
703 	struct mbuf		*m_new = NULL;
704 	struct ti_rx_desc	*r;
705 
706 	if (m == NULL) {
707 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
708 		if (m_new == NULL) {
709 			printf("ti%d: mbuf allocation failed "
710 			    "-- packet dropped!\n", sc->ti_unit);
711 			return(ENOBUFS);
712 		}
713 
714 		MCLGET(m_new, M_DONTWAIT);
715 		if (!(m_new->m_flags & M_EXT)) {
716 			printf("ti%d: cluster allocation failed "
717 			    "-- packet dropped!\n", sc->ti_unit);
718 			m_freem(m_new);
719 			return(ENOBUFS);
720 		}
721 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
722 	} else {
723 		m_new = m;
724 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
725 		m_new->m_data = m_new->m_ext.ext_buf;
726 	}
727 
728 	m_adj(m_new, ETHER_ALIGN);
729 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
730 	r = &sc->ti_rdata->ti_rx_std_ring[i];
731 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
732 	r->ti_type = TI_BDTYPE_RECV_BD;
733 	r->ti_flags = 0;
734 	if (sc->arpcom.ac_if.if_hwassist)
735 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
736 	r->ti_len = m_new->m_len;
737 	r->ti_idx = i;
738 
739 	return(0);
740 }
741 
742 /*
743  * Intialize a mini receive ring descriptor. This only applies to
744  * the Tigon 2.
745  */
746 static int ti_newbuf_mini(sc, i, m)
747 	struct ti_softc		*sc;
748 	int			i;
749 	struct mbuf		*m;
750 {
751 	struct mbuf		*m_new = NULL;
752 	struct ti_rx_desc	*r;
753 
754 	if (m == NULL) {
755 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
756 		if (m_new == NULL) {
757 			printf("ti%d: mbuf allocation failed "
758 			    "-- packet dropped!\n", sc->ti_unit);
759 			return(ENOBUFS);
760 		}
761 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
762 	} else {
763 		m_new = m;
764 		m_new->m_data = m_new->m_pktdat;
765 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
766 	}
767 
768 	m_adj(m_new, ETHER_ALIGN);
769 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
770 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
771 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
772 	r->ti_type = TI_BDTYPE_RECV_BD;
773 	r->ti_flags = TI_BDFLAG_MINI_RING;
774 	if (sc->arpcom.ac_if.if_hwassist)
775 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
776 	r->ti_len = m_new->m_len;
777 	r->ti_idx = i;
778 
779 	return(0);
780 }
781 
782 /*
783  * Initialize a jumbo receive ring descriptor. This allocates
784  * a jumbo buffer from the pool managed internally by the driver.
785  */
786 static int ti_newbuf_jumbo(sc, i, m)
787 	struct ti_softc		*sc;
788 	int			i;
789 	struct mbuf		*m;
790 {
791 	struct mbuf		*m_new = NULL;
792 	struct ti_rx_desc	*r;
793 
794 	if (m == NULL) {
795 		caddr_t			*buf = NULL;
796 
797 		/* Allocate the mbuf. */
798 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
799 		if (m_new == NULL) {
800 			printf("ti%d: mbuf allocation failed "
801 			    "-- packet dropped!\n", sc->ti_unit);
802 			return(ENOBUFS);
803 		}
804 
805 		/* Allocate the jumbo buffer */
806 		buf = ti_jalloc(sc);
807 		if (buf == NULL) {
808 			m_freem(m_new);
809 			printf("ti%d: jumbo allocation failed "
810 			    "-- packet dropped!\n", sc->ti_unit);
811 			return(ENOBUFS);
812 		}
813 
814 		/* Attach the buffer to the mbuf. */
815 		m_new->m_data = (void *) buf;
816 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
817 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
818 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
819 	} else {
820 		m_new = m;
821 		m_new->m_data = m_new->m_ext.ext_buf;
822 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
823 	}
824 
825 	m_adj(m_new, ETHER_ALIGN);
826 	/* Set up the descriptor. */
827 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
828 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
829 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
830 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
831 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
832 	if (sc->arpcom.ac_if.if_hwassist)
833 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
834 	r->ti_len = m_new->m_len;
835 	r->ti_idx = i;
836 
837 	return(0);
838 }
839 
840 /*
841  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
842  * that's 1MB or memory, which is a lot. For now, we fill only the first
843  * 256 ring entries and hope that our CPU is fast enough to keep up with
844  * the NIC.
845  */
846 static int ti_init_rx_ring_std(sc)
847 	struct ti_softc		*sc;
848 {
849 	register int		i;
850 	struct ti_cmd_desc	cmd;
851 
852 	for (i = 0; i < TI_SSLOTS; i++) {
853 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
854 			return(ENOBUFS);
855 	};
856 
857 	TI_UPDATE_STDPROD(sc, i - 1);
858 	sc->ti_std = i - 1;
859 
860 	return(0);
861 }
862 
863 static void ti_free_rx_ring_std(sc)
864 	struct ti_softc		*sc;
865 {
866 	register int		i;
867 
868 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
869 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
870 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
871 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
872 		}
873 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
874 		    sizeof(struct ti_rx_desc));
875 	}
876 
877 	return;
878 }
879 
880 static int ti_init_rx_ring_jumbo(sc)
881 	struct ti_softc		*sc;
882 {
883 	register int		i;
884 	struct ti_cmd_desc	cmd;
885 
886 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
887 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
888 			return(ENOBUFS);
889 	};
890 
891 	TI_UPDATE_JUMBOPROD(sc, i - 1);
892 	sc->ti_jumbo = i - 1;
893 
894 	return(0);
895 }
896 
897 static void ti_free_rx_ring_jumbo(sc)
898 	struct ti_softc		*sc;
899 {
900 	register int		i;
901 
902 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
903 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
904 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
905 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
906 		}
907 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
908 		    sizeof(struct ti_rx_desc));
909 	}
910 
911 	return;
912 }
913 
914 static int ti_init_rx_ring_mini(sc)
915 	struct ti_softc		*sc;
916 {
917 	register int		i;
918 
919 	for (i = 0; i < TI_MSLOTS; i++) {
920 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
921 			return(ENOBUFS);
922 	};
923 
924 	TI_UPDATE_MINIPROD(sc, i - 1);
925 	sc->ti_mini = i - 1;
926 
927 	return(0);
928 }
929 
930 static void ti_free_rx_ring_mini(sc)
931 	struct ti_softc		*sc;
932 {
933 	register int		i;
934 
935 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
936 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
937 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
938 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
939 		}
940 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
941 		    sizeof(struct ti_rx_desc));
942 	}
943 
944 	return;
945 }
946 
947 static void ti_free_tx_ring(sc)
948 	struct ti_softc		*sc;
949 {
950 	register int		i;
951 
952 	if (sc->ti_rdata->ti_tx_ring == NULL)
953 		return;
954 
955 	for (i = 0; i < TI_TX_RING_CNT; i++) {
956 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
957 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
958 			sc->ti_cdata.ti_tx_chain[i] = NULL;
959 		}
960 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
961 		    sizeof(struct ti_tx_desc));
962 	}
963 
964 	return;
965 }
966 
967 static int ti_init_tx_ring(sc)
968 	struct ti_softc		*sc;
969 {
970 	sc->ti_txcnt = 0;
971 	sc->ti_tx_saved_considx = 0;
972 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
973 	return(0);
974 }
975 
976 /*
977  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
978  * but we have to support the old way too so that Tigon 1 cards will
979  * work.
980  */
981 void ti_add_mcast(sc, addr)
982 	struct ti_softc		*sc;
983 	struct ether_addr	*addr;
984 {
985 	struct ti_cmd_desc	cmd;
986 	u_int16_t		*m;
987 	u_int32_t		ext[2] = {0, 0};
988 
989 	m = (u_int16_t *)&addr->octet[0];
990 
991 	switch(sc->ti_hwrev) {
992 	case TI_HWREV_TIGON:
993 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
994 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
995 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
996 		break;
997 	case TI_HWREV_TIGON_II:
998 		ext[0] = htons(m[0]);
999 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1000 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1001 		break;
1002 	default:
1003 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1004 		break;
1005 	}
1006 
1007 	return;
1008 }
1009 
1010 void ti_del_mcast(sc, addr)
1011 	struct ti_softc		*sc;
1012 	struct ether_addr	*addr;
1013 {
1014 	struct ti_cmd_desc	cmd;
1015 	u_int16_t		*m;
1016 	u_int32_t		ext[2] = {0, 0};
1017 
1018 	m = (u_int16_t *)&addr->octet[0];
1019 
1020 	switch(sc->ti_hwrev) {
1021 	case TI_HWREV_TIGON:
1022 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1023 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1024 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1025 		break;
1026 	case TI_HWREV_TIGON_II:
1027 		ext[0] = htons(m[0]);
1028 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1029 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1030 		break;
1031 	default:
1032 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1033 		break;
1034 	}
1035 
1036 	return;
1037 }
1038 
1039 /*
1040  * Configure the Tigon's multicast address filter.
1041  *
1042  * The actual multicast table management is a bit of a pain, thanks to
1043  * slight brain damage on the part of both Alteon and us. With our
1044  * multicast code, we are only alerted when the multicast address table
1045  * changes and at that point we only have the current list of addresses:
1046  * we only know the current state, not the previous state, so we don't
1047  * actually know what addresses were removed or added. The firmware has
1048  * state, but we can't get our grubby mits on it, and there is no 'delete
1049  * all multicast addresses' command. Hence, we have to maintain our own
1050  * state so we know what addresses have been programmed into the NIC at
1051  * any given time.
1052  */
1053 static void ti_setmulti(sc)
1054 	struct ti_softc		*sc;
1055 {
1056 	struct ifnet		*ifp;
1057 	struct ifmultiaddr	*ifma;
1058 	struct ti_cmd_desc	cmd;
1059 	struct ti_mc_entry	*mc;
1060 	u_int32_t		intrs;
1061 
1062 	ifp = &sc->arpcom.ac_if;
1063 
1064 	if (ifp->if_flags & IFF_ALLMULTI) {
1065 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1066 		return;
1067 	} else {
1068 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1069 	}
1070 
1071 	/* Disable interrupts. */
1072 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1073 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1074 
1075 	/* First, zot all the existing filters. */
1076 	while (sc->ti_mc_listhead.slh_first != NULL) {
1077 		mc = sc->ti_mc_listhead.slh_first;
1078 		ti_del_mcast(sc, &mc->mc_addr);
1079 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1080 		free(mc, M_DEVBUF);
1081 	}
1082 
1083 	/* Now program new ones. */
1084 	for (ifma = ifp->if_multiaddrs.lh_first;
1085 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1086 		if (ifma->ifma_addr->sa_family != AF_LINK)
1087 			continue;
1088 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1089 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1090 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1091 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1092 		ti_add_mcast(sc, &mc->mc_addr);
1093 	}
1094 
1095 	/* Re-enable interrupts. */
1096 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1097 
1098 	return;
1099 }
1100 
1101 /*
1102  * Check to see if the BIOS has configured us for a 64 bit slot when
1103  * we aren't actually in one. If we detect this condition, we can work
1104  * around it on the Tigon 2 by setting a bit in the PCI state register,
1105  * but for the Tigon 1 we must give up and abort the interface attach.
1106  */
1107 static int ti_64bitslot_war(sc)
1108 	struct ti_softc		*sc;
1109 {
1110 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1111 		CSR_WRITE_4(sc, 0x600, 0);
1112 		CSR_WRITE_4(sc, 0x604, 0);
1113 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1114 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1115 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1116 				return(EINVAL);
1117 			else {
1118 				TI_SETBIT(sc, TI_PCI_STATE,
1119 				    TI_PCISTATE_32BIT_BUS);
1120 				return(0);
1121 			}
1122 		}
1123 	}
1124 
1125 	return(0);
1126 }
1127 
1128 /*
1129  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1130  * self-test results.
1131  */
1132 static int ti_chipinit(sc)
1133 	struct ti_softc		*sc;
1134 {
1135 	u_int32_t		cacheline;
1136 	u_int32_t		pci_writemax = 0;
1137 
1138 	/* Initialize link to down state. */
1139 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1140 
1141 	sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1142 
1143 	/* Set endianness before we access any non-PCI registers. */
1144 #if BYTE_ORDER == BIG_ENDIAN
1145 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1146 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1147 #else
1148 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1149 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1150 #endif
1151 
1152 	/* Check the ROM failed bit to see if self-tests passed. */
1153 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1154 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1155 		return(ENODEV);
1156 	}
1157 
1158 	/* Halt the CPU. */
1159 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1160 
1161 	/* Figure out the hardware revision. */
1162 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1163 	case TI_REV_TIGON_I:
1164 		sc->ti_hwrev = TI_HWREV_TIGON;
1165 		break;
1166 	case TI_REV_TIGON_II:
1167 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1168 		break;
1169 	default:
1170 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1171 		return(ENODEV);
1172 	}
1173 
1174 	/* Do special setup for Tigon 2. */
1175 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1176 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1177 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1178 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1179 	}
1180 
1181 	/* Set up the PCI state register. */
1182 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1183 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1184 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1185 	}
1186 
1187 	/* Clear the read/write max DMA parameters. */
1188 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1189 	    TI_PCISTATE_READ_MAXDMA));
1190 
1191 	/* Get cache line size. */
1192 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1193 
1194 	/*
1195 	 * If the system has set enabled the PCI memory write
1196 	 * and invalidate command in the command register, set
1197 	 * the write max parameter accordingly. This is necessary
1198 	 * to use MWI with the Tigon 2.
1199 	 */
1200 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1201 		switch(cacheline) {
1202 		case 1:
1203 		case 4:
1204 		case 8:
1205 		case 16:
1206 		case 32:
1207 		case 64:
1208 			break;
1209 		default:
1210 		/* Disable PCI memory write and invalidate. */
1211 			if (bootverbose)
1212 				printf("ti%d: cache line size %d not "
1213 				    "supported; disabling PCI MWI\n",
1214 				    sc->ti_unit, cacheline);
1215 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1216 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1217 			break;
1218 		}
1219 	}
1220 
1221 #ifdef __brokenalpha__
1222 	/*
1223 	 * From the Alteon sample driver:
1224 	 * Must insure that we do not cross an 8K (bytes) boundary
1225 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1226 	 * restriction on some ALPHA platforms with early revision
1227 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1228 	 */
1229 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1230 #else
1231 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1232 #endif
1233 
1234 	/* This sets the min dma param all the way up (0xff). */
1235 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1236 
1237 	/* Configure DMA variables. */
1238 #if BYTE_ORDER == BIG_ENDIAN
1239 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1240 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1241 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1242 	    TI_OPMODE_DONT_FRAG_JUMBO);
1243 #else
1244 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1245 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1246 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1247 #endif
1248 
1249 	/*
1250 	 * Only allow 1 DMA channel to be active at a time.
1251 	 * I don't think this is a good idea, but without it
1252 	 * the firmware racks up lots of nicDmaReadRingFull
1253 	 * errors.  This is not compatible with hardware checksums.
1254 	 */
1255 	if (sc->arpcom.ac_if.if_hwassist == 0)
1256 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1257 
1258 	/* Recommended settings from Tigon manual. */
1259 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1260 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1261 
1262 	if (ti_64bitslot_war(sc)) {
1263 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1264 		    "but we aren't", sc->ti_unit);
1265 		return(EINVAL);
1266 	}
1267 
1268 	return(0);
1269 }
1270 
1271 /*
1272  * Initialize the general information block and firmware, and
1273  * start the CPU(s) running.
1274  */
1275 static int ti_gibinit(sc)
1276 	struct ti_softc		*sc;
1277 {
1278 	struct ti_rcb		*rcb;
1279 	int			i;
1280 	struct ifnet		*ifp;
1281 
1282 	ifp = &sc->arpcom.ac_if;
1283 
1284 	/* Disable interrupts for now. */
1285 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1286 
1287 	/* Tell the chip where to find the general information block. */
1288 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1289 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1290 
1291 	/* Load the firmware into SRAM. */
1292 	ti_loadfw(sc);
1293 
1294 	/* Set up the contents of the general info and ring control blocks. */
1295 
1296 	/* Set up the event ring and producer pointer. */
1297 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1298 
1299 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1300 	rcb->ti_flags = 0;
1301 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1302 	    vtophys(&sc->ti_ev_prodidx);
1303 	sc->ti_ev_prodidx.ti_idx = 0;
1304 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1305 	sc->ti_ev_saved_considx = 0;
1306 
1307 	/* Set up the command ring and producer mailbox. */
1308 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1309 
1310 	sc->ti_rdata->ti_cmd_ring =
1311 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1312 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1313 	rcb->ti_flags = 0;
1314 	rcb->ti_max_len = 0;
1315 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1316 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1317 	}
1318 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1319 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1320 	sc->ti_cmd_saved_prodidx = 0;
1321 
1322 	/*
1323 	 * Assign the address of the stats refresh buffer.
1324 	 * We re-use the current stats buffer for this to
1325 	 * conserve memory.
1326 	 */
1327 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1328 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1329 
1330 	/* Set up the standard receive ring. */
1331 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1332 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1333 	rcb->ti_max_len = TI_FRAMELEN;
1334 	rcb->ti_flags = 0;
1335 	if (sc->arpcom.ac_if.if_hwassist)
1336 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1337 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1338 #if NVLAN > 0
1339 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1340 #endif
1341 
1342 	/* Set up the jumbo receive ring. */
1343 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1344 	TI_HOSTADDR(rcb->ti_hostaddr) =
1345 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1346 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1347 	rcb->ti_flags = 0;
1348 	if (sc->arpcom.ac_if.if_hwassist)
1349 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1350 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1351 #if NVLAN > 0
1352 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1353 #endif
1354 
1355 	/*
1356 	 * Set up the mini ring. Only activated on the
1357 	 * Tigon 2 but the slot in the config block is
1358 	 * still there on the Tigon 1.
1359 	 */
1360 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1361 	TI_HOSTADDR(rcb->ti_hostaddr) =
1362 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1363 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1364 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1365 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1366 	else
1367 		rcb->ti_flags = 0;
1368 	if (sc->arpcom.ac_if.if_hwassist)
1369 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1370 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1371 #if NVLAN > 0
1372 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1373 #endif
1374 
1375 	/*
1376 	 * Set up the receive return ring.
1377 	 */
1378 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1379 	TI_HOSTADDR(rcb->ti_hostaddr) =
1380 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1381 	rcb->ti_flags = 0;
1382 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1383 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1384 	    vtophys(&sc->ti_return_prodidx);
1385 
1386 	/*
1387 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1388 	 * of putting the transmit ring in the host's address space and
1389 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1390 	 * memory and accessing it through the shared memory region. We
1391 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1392 	 * so we have to revert to the shared memory scheme if we detect
1393 	 * a Tigon 1 chip.
1394 	 */
1395 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1396 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1397 		sc->ti_rdata->ti_tx_ring_nic =
1398 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1399 	}
1400 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1401 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1402 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1403 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1404 		rcb->ti_flags = 0;
1405 	else
1406 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1407 #if NVLAN > 0
1408 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1409 #endif
1410 	if (sc->arpcom.ac_if.if_hwassist)
1411 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1412 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1413 	rcb->ti_max_len = TI_TX_RING_CNT;
1414 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1415 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1416 	else
1417 		TI_HOSTADDR(rcb->ti_hostaddr) =
1418 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1419 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1420 	    vtophys(&sc->ti_tx_considx);
1421 
1422 	/* Set up tuneables */
1423 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1424 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1425 		    (sc->ti_rx_coal_ticks / 10));
1426 	else
1427 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1428 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1429 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1430 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1431 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1432 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1433 
1434 	/* Turn interrupts on. */
1435 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1436 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1437 
1438 	/* Start CPU. */
1439 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1440 
1441 	return(0);
1442 }
1443 
1444 /*
1445  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1446  * against our list and return its name if we find a match.
1447  */
1448 static int ti_probe(dev)
1449 	device_t		dev;
1450 {
1451 	struct ti_type		*t;
1452 
1453 	t = ti_devs;
1454 
1455 	while(t->ti_name != NULL) {
1456 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1457 		    (pci_get_device(dev) == t->ti_did)) {
1458 			device_set_desc(dev, t->ti_name);
1459 			return(0);
1460 		}
1461 		t++;
1462 	}
1463 
1464 	return(ENXIO);
1465 }
1466 
1467 static int ti_attach(dev)
1468 	device_t		dev;
1469 {
1470 	u_int32_t		command;
1471 	struct ifnet		*ifp;
1472 	struct ti_softc		*sc;
1473 	int			unit, error = 0, rid;
1474 
1475 	sc = device_get_softc(dev);
1476 	unit = device_get_unit(dev);
1477 	bzero(sc, sizeof(struct ti_softc));
1478 
1479 	/*
1480 	 * Map control/status registers.
1481 	 */
1482 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1483 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1484 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1485 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1486 
1487 	if (!(command & PCIM_CMD_MEMEN)) {
1488 		printf("ti%d: failed to enable memory mapping!\n", unit);
1489 		error = ENXIO;
1490 		goto fail;
1491 	}
1492 
1493 	rid = TI_PCI_LOMEM;
1494 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1495 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
1496 
1497 	if (sc->ti_res == NULL) {
1498 		printf ("ti%d: couldn't map memory\n", unit);
1499 		error = ENXIO;
1500 		goto fail;
1501 	}
1502 
1503 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1504 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1505 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1506 
1507 	/* Allocate interrupt */
1508 	rid = 0;
1509 
1510 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1511 	    RF_SHAREABLE | RF_ACTIVE);
1512 
1513 	if (sc->ti_irq == NULL) {
1514 		printf("ti%d: couldn't map interrupt\n", unit);
1515 		error = ENXIO;
1516 		goto fail;
1517 	}
1518 
1519 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1520 	   ti_intr, sc, &sc->ti_intrhand);
1521 
1522 	if (error) {
1523 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1524 		bus_release_resource(dev, SYS_RES_MEMORY,
1525 		    TI_PCI_LOMEM, sc->ti_res);
1526 		printf("ti%d: couldn't set up irq\n", unit);
1527 		goto fail;
1528 	}
1529 
1530 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF);
1531 	TI_LOCK(sc);
1532 
1533 	sc->ti_unit = unit;
1534 
1535 	if (ti_chipinit(sc)) {
1536 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1537 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1538 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1539 		bus_release_resource(dev, SYS_RES_MEMORY,
1540 		    TI_PCI_LOMEM, sc->ti_res);
1541 		error = ENXIO;
1542 		goto fail;
1543 	}
1544 
1545 	/* Zero out the NIC's on-board SRAM. */
1546 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1547 
1548 	/* Init again -- zeroing memory may have clobbered some registers. */
1549 	if (ti_chipinit(sc)) {
1550 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1551 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1552 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1553 		bus_release_resource(dev, SYS_RES_MEMORY,
1554 		    TI_PCI_LOMEM, sc->ti_res);
1555 		error = ENXIO;
1556 		goto fail;
1557 	}
1558 
1559 	/*
1560 	 * Get station address from the EEPROM. Note: the manual states
1561 	 * that the MAC address is at offset 0x8c, however the data is
1562 	 * stored as two longwords (since that's how it's loaded into
1563 	 * the NIC). This means the MAC address is actually preceeded
1564 	 * by two zero bytes. We need to skip over those.
1565 	 */
1566 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1567 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1568 		printf("ti%d: failed to read station address\n", unit);
1569 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1570 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1571 		bus_release_resource(dev, SYS_RES_MEMORY,
1572 		    TI_PCI_LOMEM, sc->ti_res);
1573 		error = ENXIO;
1574 		goto fail;
1575 	}
1576 
1577 	/*
1578 	 * A Tigon chip was detected. Inform the world.
1579 	 */
1580 	printf("ti%d: Ethernet address: %6D\n", unit,
1581 				sc->arpcom.ac_enaddr, ":");
1582 
1583 	/* Allocate the general information block and ring buffers. */
1584 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1585 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1586 
1587 	if (sc->ti_rdata == NULL) {
1588 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1589 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1590 		bus_release_resource(dev, SYS_RES_MEMORY,
1591 		    TI_PCI_LOMEM, sc->ti_res);
1592 		error = ENXIO;
1593 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1594 		goto fail;
1595 	}
1596 
1597 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1598 
1599 	/* Try to allocate memory for jumbo buffers. */
1600 	if (ti_alloc_jumbo_mem(sc)) {
1601 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1602 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1603 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1604 		bus_release_resource(dev, SYS_RES_MEMORY,
1605 		    TI_PCI_LOMEM, sc->ti_res);
1606 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1607 		    M_DEVBUF);
1608 		error = ENXIO;
1609 		goto fail;
1610 	}
1611 
1612 	/*
1613 	 * We really need a better way to tell a 1000baseTX card
1614 	 * from a 1000baseSX one, since in theory there could be
1615 	 * OEMed 1000baseTX cards from lame vendors who aren't
1616 	 * clever enough to change the PCI ID. For the moment
1617 	 * though, the AceNIC is the only copper card available.
1618 	 */
1619 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1620 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1621 		sc->ti_copper = 1;
1622 	/* Ok, it's not the only copper card available. */
1623 	if (pci_get_vendor(dev) == NG_VENDORID &&
1624 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1625 		sc->ti_copper = 1;
1626 
1627 	/* Set default tuneable values. */
1628 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1629 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1630 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1631 	sc->ti_rx_max_coal_bds = 64;
1632 	sc->ti_tx_max_coal_bds = 128;
1633 	sc->ti_tx_buf_ratio = 21;
1634 
1635 	/* Set up ifnet structure */
1636 	ifp = &sc->arpcom.ac_if;
1637 	ifp->if_softc = sc;
1638 	ifp->if_unit = sc->ti_unit;
1639 	ifp->if_name = "ti";
1640 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641 	ifp->if_ioctl = ti_ioctl;
1642 	ifp->if_output = ether_output;
1643 	ifp->if_start = ti_start;
1644 	ifp->if_watchdog = ti_watchdog;
1645 	ifp->if_init = ti_init;
1646 	ifp->if_mtu = ETHERMTU;
1647 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1648 
1649 	/* Set up ifmedia support. */
1650 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1651 	if (sc->ti_copper) {
1652 		/*
1653 		 * Copper cards allow manual 10/100 mode selection,
1654 		 * but not manual 1000baseTX mode selection. Why?
1655 		 * Becuase currently there's no way to specify the
1656 		 * master/slave setting through the firmware interface,
1657 		 * so Alteon decided to just bag it and handle it
1658 		 * via autonegotiation.
1659 		 */
1660 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1661 		ifmedia_add(&sc->ifmedia,
1662 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1663 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1664 		ifmedia_add(&sc->ifmedia,
1665 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1666 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
1667 		ifmedia_add(&sc->ifmedia,
1668 		    IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
1669 	} else {
1670 		/* Fiber cards don't support 10/100 modes. */
1671 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1672 		ifmedia_add(&sc->ifmedia,
1673 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1674 	}
1675 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1676 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1677 
1678 	/*
1679 	 * Call MI attach routine.
1680 	 */
1681 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1682 	TI_UNLOCK(sc);
1683 	return(0);
1684 
1685 fail:
1686 	TI_UNLOCK(sc);
1687 	mtx_destroy(&sc->ti_mtx);
1688 	return(error);
1689 }
1690 
1691 static int ti_detach(dev)
1692 	device_t		dev;
1693 {
1694 	struct ti_softc		*sc;
1695 	struct ifnet		*ifp;
1696 
1697 
1698 	sc = device_get_softc(dev);
1699 	TI_LOCK(sc);
1700 	ifp = &sc->arpcom.ac_if;
1701 
1702 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1703 	ti_stop(sc);
1704 
1705 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1706 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1707 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1708 
1709 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1710 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1711 	ifmedia_removeall(&sc->ifmedia);
1712 
1713 	TI_UNLOCK(sc);
1714 	mtx_destroy(&sc->ti_mtx);
1715 
1716 	return(0);
1717 }
1718 
1719 /*
1720  * Frame reception handling. This is called if there's a frame
1721  * on the receive return list.
1722  *
1723  * Note: we have to be able to handle three possibilities here:
1724  * 1) the frame is from the mini receive ring (can only happen)
1725  *    on Tigon 2 boards)
1726  * 2) the frame is from the jumbo recieve ring
1727  * 3) the frame is from the standard receive ring
1728  */
1729 
1730 static void ti_rxeof(sc)
1731 	struct ti_softc		*sc;
1732 {
1733 	struct ifnet		*ifp;
1734 	struct ti_cmd_desc	cmd;
1735 
1736 	ifp = &sc->arpcom.ac_if;
1737 
1738 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1739 		struct ti_rx_desc	*cur_rx;
1740 		u_int32_t		rxidx;
1741 		struct ether_header	*eh;
1742 		struct mbuf		*m = NULL;
1743 #if NVLAN > 0
1744 		u_int16_t		vlan_tag = 0;
1745 		int			have_tag = 0;
1746 #endif
1747 
1748 		cur_rx =
1749 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1750 		rxidx = cur_rx->ti_idx;
1751 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1752 
1753 #if NVLAN > 0
1754 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1755 			have_tag = 1;
1756 			vlan_tag = cur_rx->ti_vlan_tag;
1757 		}
1758 #endif
1759 
1760 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1761 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1762 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1763 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1764 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1765 				ifp->if_ierrors++;
1766 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1767 				continue;
1768 			}
1769 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1770 				ifp->if_ierrors++;
1771 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1772 				continue;
1773 			}
1774 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1775 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1776 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1777 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1778 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1779 				ifp->if_ierrors++;
1780 				ti_newbuf_mini(sc, sc->ti_mini, m);
1781 				continue;
1782 			}
1783 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1784 				ifp->if_ierrors++;
1785 				ti_newbuf_mini(sc, sc->ti_mini, m);
1786 				continue;
1787 			}
1788 		} else {
1789 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1790 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1791 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1792 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1793 				ifp->if_ierrors++;
1794 				ti_newbuf_std(sc, sc->ti_std, m);
1795 				continue;
1796 			}
1797 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1798 				ifp->if_ierrors++;
1799 				ti_newbuf_std(sc, sc->ti_std, m);
1800 				continue;
1801 			}
1802 		}
1803 
1804 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1805 		ifp->if_ipackets++;
1806 		eh = mtod(m, struct ether_header *);
1807 		m->m_pkthdr.rcvif = ifp;
1808 
1809 		/* Remove header from mbuf and pass it on. */
1810 		m_adj(m, sizeof(struct ether_header));
1811 
1812 		if (ifp->if_hwassist) {
1813 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1814 			    CSUM_DATA_VALID;
1815 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1816 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1817 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1818 		}
1819 
1820 #if NVLAN > 0
1821 		/*
1822 		 * If we received a packet with a vlan tag, pass it
1823 		 * to vlan_input() instead of ether_input().
1824 		 */
1825 		if (have_tag) {
1826 			vlan_input_tag(eh, m, vlan_tag);
1827 			have_tag = vlan_tag = 0;
1828 			continue;
1829 		}
1830 #endif
1831 		ether_input(ifp, eh, m);
1832 	}
1833 
1834 	/* Only necessary on the Tigon 1. */
1835 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1836 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1837 		    sc->ti_rx_saved_considx);
1838 
1839 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1840 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1841 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1842 
1843 	return;
1844 }
1845 
1846 static void ti_txeof(sc)
1847 	struct ti_softc		*sc;
1848 {
1849 	struct ti_tx_desc	*cur_tx = NULL;
1850 	struct ifnet		*ifp;
1851 
1852 	ifp = &sc->arpcom.ac_if;
1853 
1854 	/*
1855 	 * Go through our tx ring and free mbufs for those
1856 	 * frames that have been sent.
1857 	 */
1858 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1859 		u_int32_t		idx = 0;
1860 
1861 		idx = sc->ti_tx_saved_considx;
1862 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1863 			if (idx > 383)
1864 				CSR_WRITE_4(sc, TI_WINBASE,
1865 				    TI_TX_RING_BASE + 6144);
1866 			else if (idx > 255)
1867 				CSR_WRITE_4(sc, TI_WINBASE,
1868 				    TI_TX_RING_BASE + 4096);
1869 			else if (idx > 127)
1870 				CSR_WRITE_4(sc, TI_WINBASE,
1871 				    TI_TX_RING_BASE + 2048);
1872 			else
1873 				CSR_WRITE_4(sc, TI_WINBASE,
1874 				    TI_TX_RING_BASE);
1875 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1876 		} else
1877 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1878 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1879 			ifp->if_opackets++;
1880 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1881 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1882 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1883 		}
1884 		sc->ti_txcnt--;
1885 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1886 		ifp->if_timer = 0;
1887 	}
1888 
1889 	if (cur_tx != NULL)
1890 		ifp->if_flags &= ~IFF_OACTIVE;
1891 
1892 	return;
1893 }
1894 
1895 static void ti_intr(xsc)
1896 	void			*xsc;
1897 {
1898 	struct ti_softc		*sc;
1899 	struct ifnet		*ifp;
1900 
1901 	sc = xsc;
1902 	TI_LOCK(sc);
1903 	ifp = &sc->arpcom.ac_if;
1904 
1905 #ifdef notdef
1906 	/* Avoid this for now -- checking this register is expensive. */
1907 	/* Make sure this is really our interrupt. */
1908 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
1909 		TI_UNLOCK(sc);
1910 		return;
1911 	}
1912 #endif
1913 
1914 	/* Ack interrupt and stop others from occuring. */
1915 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1916 
1917 	if (ifp->if_flags & IFF_RUNNING) {
1918 		/* Check RX return ring producer/consumer */
1919 		ti_rxeof(sc);
1920 
1921 		/* Check TX ring producer/consumer */
1922 		ti_txeof(sc);
1923 	}
1924 
1925 	ti_handle_events(sc);
1926 
1927 	/* Re-enable interrupts. */
1928 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1929 
1930 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1931 		ti_start(ifp);
1932 
1933 	TI_UNLOCK(sc);
1934 
1935 	return;
1936 }
1937 
1938 static void ti_stats_update(sc)
1939 	struct ti_softc		*sc;
1940 {
1941 	struct ifnet		*ifp;
1942 
1943 	ifp = &sc->arpcom.ac_if;
1944 
1945 	ifp->if_collisions +=
1946 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1947 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1948 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1949 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1950 	   ifp->if_collisions;
1951 
1952 	return;
1953 }
1954 
1955 /*
1956  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1957  * pointers to descriptors.
1958  */
1959 static int ti_encap(sc, m_head, txidx)
1960 	struct ti_softc		*sc;
1961 	struct mbuf		*m_head;
1962 	u_int32_t		*txidx;
1963 {
1964 	struct ti_tx_desc	*f = NULL;
1965 	struct mbuf		*m;
1966 	u_int32_t		frag, cur, cnt = 0;
1967 	u_int16_t		csum_flags = 0;
1968 #if NVLAN > 0
1969 	struct ifvlan		*ifv = NULL;
1970 
1971 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1972 	    m_head->m_pkthdr.rcvif != NULL &&
1973 	    m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
1974 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1975 #endif
1976 
1977 	m = m_head;
1978 	cur = frag = *txidx;
1979 
1980 	if (m_head->m_pkthdr.csum_flags) {
1981 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1982 			csum_flags |= TI_BDFLAG_IP_CKSUM;
1983 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1984 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1985 		if (m_head->m_flags & M_LASTFRAG)
1986 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
1987 		else if (m_head->m_flags & M_FRAG)
1988 			csum_flags |= TI_BDFLAG_IP_FRAG;
1989 	}
1990 	/*
1991  	 * Start packing the mbufs in this chain into
1992 	 * the fragment pointers. Stop when we run out
1993  	 * of fragments or hit the end of the mbuf chain.
1994 	 */
1995 	for (m = m_head; m != NULL; m = m->m_next) {
1996 		if (m->m_len != 0) {
1997 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
1998 				if (frag > 383)
1999 					CSR_WRITE_4(sc, TI_WINBASE,
2000 					    TI_TX_RING_BASE + 6144);
2001 				else if (frag > 255)
2002 					CSR_WRITE_4(sc, TI_WINBASE,
2003 					    TI_TX_RING_BASE + 4096);
2004 				else if (frag > 127)
2005 					CSR_WRITE_4(sc, TI_WINBASE,
2006 					    TI_TX_RING_BASE + 2048);
2007 				else
2008 					CSR_WRITE_4(sc, TI_WINBASE,
2009 					    TI_TX_RING_BASE);
2010 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2011 			} else
2012 				f = &sc->ti_rdata->ti_tx_ring[frag];
2013 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2014 				break;
2015 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2016 			f->ti_len = m->m_len;
2017 			f->ti_flags = csum_flags;
2018 #if NVLAN > 0
2019 			if (ifv != NULL) {
2020 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2021 				f->ti_vlan_tag = ifv->ifv_tag;
2022 			} else {
2023 				f->ti_vlan_tag = 0;
2024 			}
2025 #endif
2026 			/*
2027 			 * Sanity check: avoid coming within 16 descriptors
2028 			 * of the end of the ring.
2029 			 */
2030 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2031 				return(ENOBUFS);
2032 			cur = frag;
2033 			TI_INC(frag, TI_TX_RING_CNT);
2034 			cnt++;
2035 		}
2036 	}
2037 
2038 	if (m != NULL)
2039 		return(ENOBUFS);
2040 
2041 	if (frag == sc->ti_tx_saved_considx)
2042 		return(ENOBUFS);
2043 
2044 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2045 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2046 		    TI_BDFLAG_END;
2047 	else
2048 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2049 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2050 	sc->ti_txcnt += cnt;
2051 
2052 	*txidx = frag;
2053 
2054 	return(0);
2055 }
2056 
2057 /*
2058  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2059  * to the mbuf data regions directly in the transmit descriptors.
2060  */
2061 static void ti_start(ifp)
2062 	struct ifnet		*ifp;
2063 {
2064 	struct ti_softc		*sc;
2065 	struct mbuf		*m_head = NULL;
2066 	u_int32_t		prodidx = 0;
2067 
2068 	sc = ifp->if_softc;
2069 	TI_LOCK(sc);
2070 
2071 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2072 
2073 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2074 		IF_DEQUEUE(&ifp->if_snd, m_head);
2075 		if (m_head == NULL)
2076 			break;
2077 
2078 		/*
2079 		 * XXX
2080 		 * safety overkill.  If this is a fragmented packet chain
2081 		 * with delayed TCP/UDP checksums, then only encapsulate
2082 		 * it if we have enough descriptors to handle the entire
2083 		 * chain at once.
2084 		 * (paranoia -- may not actually be needed)
2085 		 */
2086 		if (m_head->m_flags & M_FIRSTFRAG &&
2087 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2088 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2089 			    m_head->m_pkthdr.csum_data + 16) {
2090 				IF_PREPEND(&ifp->if_snd, m_head);
2091 				ifp->if_flags |= IFF_OACTIVE;
2092 				break;
2093 			}
2094 		}
2095 
2096 		/*
2097 		 * Pack the data into the transmit ring. If we
2098 		 * don't have room, set the OACTIVE flag and wait
2099 		 * for the NIC to drain the ring.
2100 		 */
2101 		if (ti_encap(sc, m_head, &prodidx)) {
2102 			IF_PREPEND(&ifp->if_snd, m_head);
2103 			ifp->if_flags |= IFF_OACTIVE;
2104 			break;
2105 		}
2106 
2107 		/*
2108 		 * If there's a BPF listener, bounce a copy of this frame
2109 		 * to him.
2110 		 */
2111 		if (ifp->if_bpf)
2112 			bpf_mtap(ifp, m_head);
2113 	}
2114 
2115 	/* Transmit */
2116 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2117 
2118 	/*
2119 	 * Set a timeout in case the chip goes out to lunch.
2120 	 */
2121 	ifp->if_timer = 5;
2122 	TI_UNLOCK(sc);
2123 
2124 	return;
2125 }
2126 
2127 static void ti_init(xsc)
2128 	void			*xsc;
2129 {
2130 	struct ti_softc		*sc = xsc;
2131 
2132 	/* Cancel pending I/O and flush buffers. */
2133 	ti_stop(sc);
2134 
2135 	TI_LOCK(sc);
2136 	/* Init the gen info block, ring control blocks and firmware. */
2137 	if (ti_gibinit(sc)) {
2138 		printf("ti%d: initialization failure\n", sc->ti_unit);
2139 		TI_UNLOCK(sc);
2140 		return;
2141 	}
2142 
2143 	TI_UNLOCK(sc);
2144 
2145 	return;
2146 }
2147 
2148 static void ti_init2(sc)
2149 	struct ti_softc		*sc;
2150 {
2151 	struct ti_cmd_desc	cmd;
2152 	struct ifnet		*ifp;
2153 	u_int16_t		*m;
2154 	struct ifmedia		*ifm;
2155 	int			tmp;
2156 
2157 	ifp = &sc->arpcom.ac_if;
2158 
2159 	/* Specify MTU and interface index. */
2160 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2161 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2162 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2163 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2164 
2165 	/* Load our MAC address. */
2166 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2167 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2168 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2169 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2170 
2171 	/* Enable or disable promiscuous mode as needed. */
2172 	if (ifp->if_flags & IFF_PROMISC) {
2173 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2174 	} else {
2175 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2176 	}
2177 
2178 	/* Program multicast filter. */
2179 	ti_setmulti(sc);
2180 
2181 	/*
2182 	 * If this is a Tigon 1, we should tell the
2183 	 * firmware to use software packet filtering.
2184 	 */
2185 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2186 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2187 	}
2188 
2189 	/* Init RX ring. */
2190 	ti_init_rx_ring_std(sc);
2191 
2192 	/* Init jumbo RX ring. */
2193 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2194 		ti_init_rx_ring_jumbo(sc);
2195 
2196 	/*
2197 	 * If this is a Tigon 2, we can also configure the
2198 	 * mini ring.
2199 	 */
2200 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2201 		ti_init_rx_ring_mini(sc);
2202 
2203 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2204 	sc->ti_rx_saved_considx = 0;
2205 
2206 	/* Init TX ring. */
2207 	ti_init_tx_ring(sc);
2208 
2209 	/* Tell firmware we're alive. */
2210 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2211 
2212 	/* Enable host interrupts. */
2213 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2214 
2215 	ifp->if_flags |= IFF_RUNNING;
2216 	ifp->if_flags &= ~IFF_OACTIVE;
2217 
2218 	/*
2219 	 * Make sure to set media properly. We have to do this
2220 	 * here since we have to issue commands in order to set
2221 	 * the link negotiation and we can't issue commands until
2222 	 * the firmware is running.
2223 	 */
2224 	ifm = &sc->ifmedia;
2225 	tmp = ifm->ifm_media;
2226 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2227 	ti_ifmedia_upd(ifp);
2228 	ifm->ifm_media = tmp;
2229 
2230 	return;
2231 }
2232 
2233 /*
2234  * Set media options.
2235  */
2236 static int ti_ifmedia_upd(ifp)
2237 	struct ifnet		*ifp;
2238 {
2239 	struct ti_softc		*sc;
2240 	struct ifmedia		*ifm;
2241 	struct ti_cmd_desc	cmd;
2242 
2243 	sc = ifp->if_softc;
2244 	ifm = &sc->ifmedia;
2245 
2246 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2247 		return(EINVAL);
2248 
2249 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2250 	case IFM_AUTO:
2251 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2252 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2253 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2254 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2255 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2256 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2257 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2258 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2259 		break;
2260 	case IFM_1000_SX:
2261 	case IFM_1000_TX:
2262 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2263 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2264 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2265 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2266 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2267 		}
2268 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2269 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2270 		break;
2271 	case IFM_100_FX:
2272 	case IFM_10_FL:
2273 	case IFM_100_TX:
2274 	case IFM_10_T:
2275 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2276 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2277 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2278 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2279 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2280 		} else {
2281 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2282 		}
2283 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2284 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2285 		} else {
2286 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2287 		}
2288 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2289 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2290 		break;
2291 	}
2292 
2293 	return(0);
2294 }
2295 
2296 /*
2297  * Report current media status.
2298  */
2299 static void ti_ifmedia_sts(ifp, ifmr)
2300 	struct ifnet		*ifp;
2301 	struct ifmediareq	*ifmr;
2302 {
2303 	struct ti_softc		*sc;
2304 	u_int32_t		media = 0;
2305 
2306 	sc = ifp->if_softc;
2307 
2308 	ifmr->ifm_status = IFM_AVALID;
2309 	ifmr->ifm_active = IFM_ETHER;
2310 
2311 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2312 		return;
2313 
2314 	ifmr->ifm_status |= IFM_ACTIVE;
2315 
2316 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2317 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2318 		if (sc->ti_copper)
2319 			ifmr->ifm_active |= IFM_1000_TX;
2320 		else
2321 			ifmr->ifm_active |= IFM_1000_SX;
2322 		if (media & TI_GLNK_FULL_DUPLEX)
2323 			ifmr->ifm_active |= IFM_FDX;
2324 		else
2325 			ifmr->ifm_active |= IFM_HDX;
2326 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2327 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2328 		if (sc->ti_copper) {
2329 			if (media & TI_LNK_100MB)
2330 				ifmr->ifm_active |= IFM_100_TX;
2331 			if (media & TI_LNK_10MB)
2332 				ifmr->ifm_active |= IFM_10_T;
2333 		} else {
2334 			if (media & TI_LNK_100MB)
2335 				ifmr->ifm_active |= IFM_100_FX;
2336 			if (media & TI_LNK_10MB)
2337 				ifmr->ifm_active |= IFM_10_FL;
2338 		}
2339 		if (media & TI_LNK_FULL_DUPLEX)
2340 			ifmr->ifm_active |= IFM_FDX;
2341 		if (media & TI_LNK_HALF_DUPLEX)
2342 			ifmr->ifm_active |= IFM_HDX;
2343 	}
2344 
2345 	return;
2346 }
2347 
2348 static int ti_ioctl(ifp, command, data)
2349 	struct ifnet		*ifp;
2350 	u_long			command;
2351 	caddr_t			data;
2352 {
2353 	struct ti_softc		*sc = ifp->if_softc;
2354 	struct ifreq		*ifr = (struct ifreq *) data;
2355 	int			error = 0;
2356 	struct ti_cmd_desc	cmd;
2357 
2358 	TI_LOCK(sc);
2359 
2360 	switch(command) {
2361 	case SIOCSIFADDR:
2362 	case SIOCGIFADDR:
2363 		error = ether_ioctl(ifp, command, data);
2364 		break;
2365 	case SIOCSIFMTU:
2366 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2367 			error = EINVAL;
2368 		else {
2369 			ifp->if_mtu = ifr->ifr_mtu;
2370 			ti_init(sc);
2371 		}
2372 		break;
2373 	case SIOCSIFFLAGS:
2374 		if (ifp->if_flags & IFF_UP) {
2375 			/*
2376 			 * If only the state of the PROMISC flag changed,
2377 			 * then just use the 'set promisc mode' command
2378 			 * instead of reinitializing the entire NIC. Doing
2379 			 * a full re-init means reloading the firmware and
2380 			 * waiting for it to start up, which may take a
2381 			 * second or two.
2382 			 */
2383 			if (ifp->if_flags & IFF_RUNNING &&
2384 			    ifp->if_flags & IFF_PROMISC &&
2385 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2386 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2387 				    TI_CMD_CODE_PROMISC_ENB, 0);
2388 			} else if (ifp->if_flags & IFF_RUNNING &&
2389 			    !(ifp->if_flags & IFF_PROMISC) &&
2390 			    sc->ti_if_flags & IFF_PROMISC) {
2391 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2392 				    TI_CMD_CODE_PROMISC_DIS, 0);
2393 			} else
2394 				ti_init(sc);
2395 		} else {
2396 			if (ifp->if_flags & IFF_RUNNING) {
2397 				ti_stop(sc);
2398 			}
2399 		}
2400 		sc->ti_if_flags = ifp->if_flags;
2401 		error = 0;
2402 		break;
2403 	case SIOCADDMULTI:
2404 	case SIOCDELMULTI:
2405 		if (ifp->if_flags & IFF_RUNNING) {
2406 			ti_setmulti(sc);
2407 			error = 0;
2408 		}
2409 		break;
2410 	case SIOCSIFMEDIA:
2411 	case SIOCGIFMEDIA:
2412 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2413 		break;
2414 	default:
2415 		error = EINVAL;
2416 		break;
2417 	}
2418 
2419 	TI_UNLOCK(sc);
2420 
2421 	return(error);
2422 }
2423 
2424 static void ti_watchdog(ifp)
2425 	struct ifnet		*ifp;
2426 {
2427 	struct ti_softc		*sc;
2428 
2429 	sc = ifp->if_softc;
2430 	TI_LOCK(sc);
2431 
2432 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2433 	ti_stop(sc);
2434 	ti_init(sc);
2435 
2436 	ifp->if_oerrors++;
2437 	TI_UNLOCK(sc);
2438 
2439 	return;
2440 }
2441 
2442 /*
2443  * Stop the adapter and free any mbufs allocated to the
2444  * RX and TX lists.
2445  */
2446 static void ti_stop(sc)
2447 	struct ti_softc		*sc;
2448 {
2449 	struct ifnet		*ifp;
2450 	struct ti_cmd_desc	cmd;
2451 
2452 	TI_LOCK(sc);
2453 
2454 	ifp = &sc->arpcom.ac_if;
2455 
2456 	/* Disable host interrupts. */
2457 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2458 	/*
2459 	 * Tell firmware we're shutting down.
2460 	 */
2461 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2462 
2463 	/* Halt and reinitialize. */
2464 	ti_chipinit(sc);
2465 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2466 	ti_chipinit(sc);
2467 
2468 	/* Free the RX lists. */
2469 	ti_free_rx_ring_std(sc);
2470 
2471 	/* Free jumbo RX list. */
2472 	ti_free_rx_ring_jumbo(sc);
2473 
2474 	/* Free mini RX list. */
2475 	ti_free_rx_ring_mini(sc);
2476 
2477 	/* Free TX buffers. */
2478 	ti_free_tx_ring(sc);
2479 
2480 	sc->ti_ev_prodidx.ti_idx = 0;
2481 	sc->ti_return_prodidx.ti_idx = 0;
2482 	sc->ti_tx_considx.ti_idx = 0;
2483 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2484 
2485 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2486 	TI_UNLOCK(sc);
2487 
2488 	return;
2489 }
2490 
2491 /*
2492  * Stop all chip I/O so that the kernel's probe routines don't
2493  * get confused by errant DMAs when rebooting.
2494  */
2495 static void ti_shutdown(dev)
2496 	device_t		dev;
2497 {
2498 	struct ti_softc		*sc;
2499 
2500 	sc = device_get_softc(dev);
2501 	TI_LOCK(sc);
2502 	ti_chipinit(sc);
2503 	TI_UNLOCK(sc);
2504 
2505 	return;
2506 }
2507