xref: /freebsd/sys/dev/ti/if_ti.c (revision 71fe318b852b8dfb3e799cb12ef184750f7f8eac)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include "opt_ti.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/queue.h>
91 #include <sys/conf.h>
92 
93 #include <net/if.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 #include <net/if_vlan_var.h>
100 
101 #include <net/bpf.h>
102 
103 #include <netinet/in_systm.h>
104 #include <netinet/in.h>
105 #include <netinet/ip.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/bus_memio.h>
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 /* #define TI_PRIVATE_JUMBOS */
116 
117 #if !defined(TI_PRIVATE_JUMBOS)
118 #include <sys/sockio.h>
119 #include <sys/uio.h>
120 #include <sys/lock.h>
121 #include <vm/vm_extern.h>
122 #include <vm/pmap.h>
123 #include <vm/vm_map.h>
124 #include <vm/vm_map.h>
125 #include <vm/vm_param.h>
126 #include <vm/vm_pageout.h>
127 #include <sys/vmmeter.h>
128 #include <vm/vm_page.h>
129 #include <vm/vm_object.h>
130 #include <vm/vm_kern.h>
131 #include <sys/proc.h>
132 #include <sys/jumbo.h>
133 #endif /* !TI_PRIVATE_JUMBOS */
134 #include <sys/vnode.h> /* for vfindev, vgone */
135 
136 #include <pci/pcireg.h>
137 #include <pci/pcivar.h>
138 
139 #include <sys/tiio.h>
140 #include <pci/if_tireg.h>
141 #include <pci/ti_fw.h>
142 #include <pci/ti_fw2.h>
143 
144 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145 /*
146  * We can only turn on header splitting if we're using extended receive
147  * BDs.
148  */
149 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152 
153 #if !defined(lint)
154 static const char rcsid[] =
155   "$FreeBSD$";
156 #endif
157 
158 struct ti_softc *tis[8];
159 
160 typedef enum {
161 	TI_SWAP_HTON,
162 	TI_SWAP_NTOH
163 } ti_swap_type;
164 
165 
166 /*
167  * Various supported device vendors/types and their names.
168  */
169 
170 static struct ti_type ti_devs[] = {
171 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
172 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
173 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
174 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
175 	{ TC_VENDORID,	TC_DEVICEID_3C985,
176 		"3Com 3c985-SX Gigabit Ethernet" },
177 	{ NG_VENDORID, NG_DEVICEID_GA620,
178 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
179 	{ NG_VENDORID, NG_DEVICEID_GA620T,
180 		"Netgear GA620 1000baseT Gigabit Ethernet" },
181 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
182 		"Silicon Graphics Gigabit Ethernet" },
183 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
184 		"Farallon PN9000SX Gigabit Ethernet" },
185 	{ 0, 0, NULL }
186 };
187 
188 #define	TI_CDEV_MAJOR	153
189 
190 static	d_open_t	ti_open;
191 static	d_close_t	ti_close;
192 static	d_ioctl_t	ti_ioctl2;
193 
194 static struct cdevsw ti_cdevsw = {
195         /* open */      ti_open,
196         /* close */     ti_close,
197         /* read */      NULL,
198         /* write */     NULL,
199         /* ioctl */     ti_ioctl2,
200         /* poll */      seltrue,
201         /* mmap */      nommap,
202         /* strategy */  nostrategy,
203         /* name */      "ti",
204         /* maj */       TI_CDEV_MAJOR,
205         /* dump */      nodump,
206         /* psize */     nopsize,
207         /* flags */     0,
208 };
209 
210 static int ti_probe		(device_t);
211 static int ti_attach		(device_t);
212 static int ti_detach		(device_t);
213 static void ti_txeof		(struct ti_softc *);
214 static void ti_rxeof		(struct ti_softc *);
215 
216 static void ti_stats_update	(struct ti_softc *);
217 static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
218 
219 static void ti_intr		(void *);
220 static void ti_start		(struct ifnet *);
221 static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
222 static void ti_init		(void *);
223 static void ti_init2		(struct ti_softc *);
224 static void ti_stop		(struct ti_softc *);
225 static void ti_watchdog		(struct ifnet *);
226 static void ti_shutdown		(device_t);
227 static int ti_ifmedia_upd	(struct ifnet *);
228 static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
229 
230 static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
231 static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
232 static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
233 
234 static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
235 static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
236 static void ti_setmulti		(struct ti_softc *);
237 
238 static void ti_mem		(struct ti_softc *, u_int32_t,
239 					u_int32_t, caddr_t);
240 static int ti_copy_mem		(struct ti_softc *, u_int32_t,
241 					u_int32_t, caddr_t, int, int);
242 static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
243 					u_int32_t, caddr_t, int, int, int);
244 static int ti_bcopy_swap	(const void *, void *, size_t,
245 					ti_swap_type);
246 static void ti_loadfw		(struct ti_softc *);
247 static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
248 static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
249 					caddr_t, int);
250 static void ti_handle_events	(struct ti_softc *);
251 #ifdef TI_PRIVATE_JUMBOS
252 static int ti_alloc_jumbo_mem	(struct ti_softc *);
253 static void *ti_jalloc		(struct ti_softc *);
254 static void ti_jfree		(void *, void *);
255 #endif /* TI_PRIVATE_JUMBOS */
256 static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
257 static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
258 static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
259 static int ti_init_rx_ring_std	(struct ti_softc *);
260 static void ti_free_rx_ring_std	(struct ti_softc *);
261 static int ti_init_rx_ring_jumbo	(struct ti_softc *);
262 static void ti_free_rx_ring_jumbo	(struct ti_softc *);
263 static int ti_init_rx_ring_mini	(struct ti_softc *);
264 static void ti_free_rx_ring_mini	(struct ti_softc *);
265 static void ti_free_tx_ring	(struct ti_softc *);
266 static int ti_init_tx_ring	(struct ti_softc *);
267 
268 static int ti_64bitslot_war	(struct ti_softc *);
269 static int ti_chipinit		(struct ti_softc *);
270 static int ti_gibinit		(struct ti_softc *);
271 
272 #ifdef TI_JUMBO_HDRSPLIT
273 static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
274 					     int pkt_len, int idx);
275 #endif /* TI_JUMBO_HDRSPLIT */
276 
277 static device_method_t ti_methods[] = {
278 	/* Device interface */
279 	DEVMETHOD(device_probe,		ti_probe),
280 	DEVMETHOD(device_attach,	ti_attach),
281 	DEVMETHOD(device_detach,	ti_detach),
282 	DEVMETHOD(device_shutdown,	ti_shutdown),
283 	{ 0, 0 }
284 };
285 
286 static driver_t ti_driver = {
287 	"ti",
288 	ti_methods,
289 	sizeof(struct ti_softc)
290 };
291 
292 static devclass_t ti_devclass;
293 
294 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
295 
296 /* List of Tigon softcs */
297 static STAILQ_HEAD(ti_softc_list, ti_softc) ti_sc_list;
298 
299 static struct ti_softc *
300 ti_lookup_softc(int unit)
301 {
302 	struct ti_softc *sc;
303 	for (sc = STAILQ_FIRST(&ti_sc_list); sc != NULL;
304 	     sc = STAILQ_NEXT(sc, ti_links))
305 		if (sc->ti_unit == unit)
306 			return(sc);
307 	return(NULL);
308 }
309 
310 /*
311  * Send an instruction or address to the EEPROM, check for ACK.
312  */
313 static u_int32_t ti_eeprom_putbyte(sc, byte)
314 	struct ti_softc		*sc;
315 	int			byte;
316 {
317 	register int		i, ack = 0;
318 
319 	/*
320 	 * Make sure we're in TX mode.
321 	 */
322 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323 
324 	/*
325 	 * Feed in each bit and stobe the clock.
326 	 */
327 	for (i = 0x80; i; i >>= 1) {
328 		if (byte & i) {
329 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
330 		} else {
331 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
332 		}
333 		DELAY(1);
334 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
335 		DELAY(1);
336 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
337 	}
338 
339 	/*
340 	 * Turn off TX mode.
341 	 */
342 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
343 
344 	/*
345 	 * Check for ack.
346 	 */
347 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
348 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
349 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
350 
351 	return(ack);
352 }
353 
354 /*
355  * Read a byte of data stored in the EEPROM at address 'addr.'
356  * We have to send two address bytes since the EEPROM can hold
357  * more than 256 bytes of data.
358  */
359 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
360 	struct ti_softc		*sc;
361 	int			addr;
362 	u_int8_t		*dest;
363 {
364 	register int		i;
365 	u_int8_t		byte = 0;
366 
367 	EEPROM_START;
368 
369 	/*
370 	 * Send write control code to EEPROM.
371 	 */
372 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
373 		printf("ti%d: failed to send write command, status: %x\n",
374 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
375 		return(1);
376 	}
377 
378 	/*
379 	 * Send first byte of address of byte we want to read.
380 	 */
381 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
382 		printf("ti%d: failed to send address, status: %x\n",
383 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
384 		return(1);
385 	}
386 	/*
387 	 * Send second byte address of byte we want to read.
388 	 */
389 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
390 		printf("ti%d: failed to send address, status: %x\n",
391 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
392 		return(1);
393 	}
394 
395 	EEPROM_STOP;
396 	EEPROM_START;
397 	/*
398 	 * Send read control code to EEPROM.
399 	 */
400 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
401 		printf("ti%d: failed to send read command, status: %x\n",
402 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
403 		return(1);
404 	}
405 
406 	/*
407 	 * Start reading bits from EEPROM.
408 	 */
409 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
410 	for (i = 0x80; i; i >>= 1) {
411 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
412 		DELAY(1);
413 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
414 			byte |= i;
415 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
416 		DELAY(1);
417 	}
418 
419 	EEPROM_STOP;
420 
421 	/*
422 	 * No ACK generated for read, so just return byte.
423 	 */
424 
425 	*dest = byte;
426 
427 	return(0);
428 }
429 
430 /*
431  * Read a sequence of bytes from the EEPROM.
432  */
433 static int
434 ti_read_eeprom(sc, dest, off, cnt)
435 	struct ti_softc		*sc;
436 	caddr_t			dest;
437 	int			off;
438 	int			cnt;
439 {
440 	int			err = 0, i;
441 	u_int8_t		byte = 0;
442 
443 	for (i = 0; i < cnt; i++) {
444 		err = ti_eeprom_getbyte(sc, off + i, &byte);
445 		if (err)
446 			break;
447 		*(dest + i) = byte;
448 	}
449 
450 	return(err ? 1 : 0);
451 }
452 
453 /*
454  * NIC memory access function. Can be used to either clear a section
455  * of NIC local memory or (if buf is non-NULL) copy data into it.
456  */
457 static void
458 ti_mem(sc, addr, len, buf)
459 	struct ti_softc		*sc;
460 	u_int32_t		addr, len;
461 	caddr_t			buf;
462 {
463 	int			segptr, segsize, cnt;
464 	caddr_t			ti_winbase, ptr;
465 
466 	segptr = addr;
467 	cnt = len;
468 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
469 	ptr = buf;
470 
471 	while(cnt) {
472 		if (cnt < TI_WINLEN)
473 			segsize = cnt;
474 		else
475 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
476 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
477 		if (buf == NULL)
478 			bzero((char *)ti_winbase + (segptr &
479 			    (TI_WINLEN - 1)), segsize);
480 		else {
481 			bcopy((char *)ptr, (char *)ti_winbase +
482 			    (segptr & (TI_WINLEN - 1)), segsize);
483 			ptr += segsize;
484 		}
485 		segptr += segsize;
486 		cnt -= segsize;
487 	}
488 
489 	return;
490 }
491 
492 static int
493 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
494 	struct ti_softc		*sc;
495 	u_int32_t		tigon_addr, len;
496 	caddr_t			buf;
497 	int			useraddr, readdata;
498 {
499 	int		segptr, segsize, cnt;
500 	caddr_t		ptr;
501 	u_int32_t	origwin;
502 	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
503 	int		resid, segresid;
504 	int		first_pass;
505 
506 	/*
507 	 * At the moment, we don't handle non-aligned cases, we just bail.
508 	 * If this proves to be a problem, it will be fixed.
509 	 */
510 	if ((readdata == 0)
511 	 && (tigon_addr & 0x3)) {
512 		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
513 		       "word-aligned\n", sc->ti_unit, tigon_addr);
514 		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
515 		       "supported\n", sc->ti_unit);
516 		return(EINVAL);
517 	}
518 
519 	segptr = tigon_addr & ~0x3;
520 	segresid = tigon_addr - segptr;
521 
522 	/*
523 	 * This is the non-aligned amount left over that we'll need to
524 	 * copy.
525 	 */
526 	resid = len & 0x3;
527 
528 	/* Add in the left over amount at the front of the buffer */
529 	resid += segresid;
530 
531 	cnt = len & ~0x3;
532 	/*
533 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
534 	 * decrease the residual by that much.
535 	 */
536 	cnt += resid & ~0x3;
537 	resid -= resid & ~0x3;
538 
539 	ptr = buf;
540 
541 	first_pass = 1;
542 
543 	/*
544 	 * Make sure we aren't interrupted while we're changing the window
545 	 * pointer.
546 	 */
547 	TI_LOCK(sc);
548 
549 	/*
550 	 * Save the old window base value.
551 	 */
552 	origwin = CSR_READ_4(sc, TI_WINBASE);
553 
554 	while(cnt) {
555 		bus_size_t ti_offset;
556 
557 		if (cnt < TI_WINLEN)
558 			segsize = cnt;
559 		else
560 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
561 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
562 
563 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
564 
565 		if (readdata) {
566 
567 			bus_space_read_region_4(sc->ti_btag,
568 						sc->ti_bhandle, ti_offset,
569 						(u_int32_t *)tmparray,
570 						segsize >> 2);
571 			if (useraddr) {
572 				/*
573 				 * Yeah, this is a little on the kludgy
574 				 * side, but at least this code is only
575 				 * used for debugging.
576 				 */
577 				ti_bcopy_swap(tmparray, tmparray2, segsize,
578 					      TI_SWAP_NTOH);
579 
580 				if (first_pass) {
581 					copyout(&tmparray2[segresid], ptr,
582 						segsize - segresid);
583 					first_pass = 0;
584 				} else
585 					copyout(tmparray2, ptr, segsize);
586 			} else {
587 				if (first_pass) {
588 
589 					ti_bcopy_swap(tmparray, tmparray2,
590 						      segsize, TI_SWAP_NTOH);
591 					bcopy(&tmparray2[segresid], ptr,
592 					      segsize - segresid);
593 					first_pass = 0;
594 				} else
595 					ti_bcopy_swap(tmparray, ptr, segsize,
596 						      TI_SWAP_NTOH);
597 			}
598 
599 		} else {
600 			if (useraddr) {
601 				copyin(ptr, tmparray2, segsize);
602 				ti_bcopy_swap(tmparray2, tmparray, segsize,
603 					      TI_SWAP_HTON);
604 			} else
605 				ti_bcopy_swap(ptr, tmparray, segsize,
606 					      TI_SWAP_HTON);
607 
608 			bus_space_write_region_4(sc->ti_btag,
609 						 sc->ti_bhandle, ti_offset,
610 						 (u_int32_t *)tmparray,
611 						 segsize >> 2);
612 		}
613 		segptr += segsize;
614 		ptr += segsize;
615 		cnt -= segsize;
616 	}
617 
618 	/*
619 	 * Handle leftover, non-word-aligned bytes.
620 	 */
621 	if (resid != 0) {
622 		u_int32_t	tmpval, tmpval2;
623 		bus_size_t	ti_offset;
624 
625 		/*
626 		 * Set the segment pointer.
627 		 */
628 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
629 
630 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
631 
632 		/*
633 		 * First, grab whatever is in our source/destination.
634 		 * We'll obviously need this for reads, but also for
635 		 * writes, since we'll be doing read/modify/write.
636 		 */
637 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
638 					ti_offset, &tmpval, 1);
639 
640 		/*
641 		 * Next, translate this from little-endian to big-endian
642 		 * (at least on i386 boxes).
643 		 */
644 		tmpval2 = ntohl(tmpval);
645 
646 		if (readdata) {
647 			/*
648 			 * If we're reading, just copy the leftover number
649 			 * of bytes from the host byte order buffer to
650 			 * the user's buffer.
651 			 */
652 			if (useraddr)
653 				copyout(&tmpval2, ptr, resid);
654 			else
655 				bcopy(&tmpval2, ptr, resid);
656 		} else {
657 			/*
658 			 * If we're writing, first copy the bytes to be
659 			 * written into the network byte order buffer,
660 			 * leaving the rest of the buffer with whatever was
661 			 * originally in there.  Then, swap the bytes
662 			 * around into host order and write them out.
663 			 *
664 			 * XXX KDM the read side of this has been verified
665 			 * to work, but the write side of it has not been
666 			 * verified.  So user beware.
667 			 */
668 			if (useraddr)
669 				copyin(ptr, &tmpval2, resid);
670 			else
671 				bcopy(ptr, &tmpval2, resid);
672 
673 			tmpval = htonl(tmpval2);
674 
675 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
676 						 ti_offset, &tmpval, 1);
677 		}
678 	}
679 
680 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
681 
682 	TI_UNLOCK(sc);
683 
684 	return(0);
685 }
686 
687 static int
688 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
689 	struct ti_softc		*sc;
690 	u_int32_t		tigon_addr, len;
691 	caddr_t			buf;
692 	int			useraddr, readdata;
693 	int			cpu;
694 {
695 	u_int32_t	segptr;
696 	int		cnt;
697 	u_int32_t	tmpval, tmpval2;
698 	caddr_t		ptr;
699 
700 	/*
701 	 * At the moment, we don't handle non-aligned cases, we just bail.
702 	 * If this proves to be a problem, it will be fixed.
703 	 */
704 	if (tigon_addr & 0x3) {
705 		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
706 		       "word-aligned\n", sc->ti_unit, tigon_addr);
707 		return(EINVAL);
708 	}
709 
710 	if (len & 0x3) {
711 		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
712 		       "word-aligned\n", sc->ti_unit, len);
713 		return(EINVAL);
714 	}
715 
716 	segptr = tigon_addr;
717 	cnt = len;
718 	ptr = buf;
719 
720 	TI_LOCK(sc);
721 
722 	while (cnt) {
723 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
724 
725 		if (readdata) {
726 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
727 
728 			tmpval = ntohl(tmpval2);
729 
730 			/*
731 			 * Note:  I've used this debugging interface
732 			 * extensively with Alteon's 12.3.15 firmware,
733 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
734 			 *
735 			 * When you compile the firmware without
736 			 * optimization, which is necessary sometimes in
737 			 * order to properly step through it, you sometimes
738 			 * read out a bogus value of 0xc0017c instead of
739 			 * whatever was supposed to be in that scratchpad
740 			 * location.  That value is on the stack somewhere,
741 			 * but I've never been able to figure out what was
742 			 * causing the problem.
743 			 *
744 			 * The address seems to pop up in random places,
745 			 * often not in the same place on two subsequent
746 			 * reads.
747 			 *
748 			 * In any case, the underlying data doesn't seem
749 			 * to be affected, just the value read out.
750 			 *
751 			 * KDM, 3/7/2000
752 			 */
753 
754 			if (tmpval2 == 0xc0017c)
755 				printf("ti%d: found 0xc0017c at %#x "
756 				       "(tmpval2)\n", sc->ti_unit, segptr);
757 
758 			if (tmpval == 0xc0017c)
759 				printf("ti%d: found 0xc0017c at %#x "
760 				       "(tmpval)\n", sc->ti_unit, segptr);
761 
762 			if (useraddr)
763 				copyout(&tmpval, ptr, 4);
764 			else
765 				bcopy(&tmpval, ptr, 4);
766 		} else {
767 			if (useraddr)
768 				copyin(ptr, &tmpval2, 4);
769 			else
770 				bcopy(ptr, &tmpval2, 4);
771 
772 			tmpval = htonl(tmpval2);
773 
774 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
775 		}
776 
777 		cnt -= 4;
778 		segptr += 4;
779 		ptr += 4;
780 	}
781 
782 	TI_UNLOCK(sc);
783 
784 	return(0);
785 }
786 
787 static int
788 ti_bcopy_swap(src, dst, len, swap_type)
789 	const void	*src;
790 	void		*dst;
791 	size_t		len;
792 	ti_swap_type	swap_type;
793 {
794 	const u_int8_t *tmpsrc;
795 	u_int8_t *tmpdst;
796 	size_t tmplen;
797 
798 	if (len & 0x3) {
799 		printf("ti_bcopy_swap: length %d isn't 32-bit aligned\n",
800 		       len);
801 		return(-1);
802 	}
803 
804 	tmpsrc = src;
805 	tmpdst = dst;
806 	tmplen = len;
807 
808 	while (tmplen) {
809 		if (swap_type == TI_SWAP_NTOH)
810 			*(u_int32_t *)tmpdst =
811 				ntohl(*(const u_int32_t *)tmpsrc);
812 		else
813 			*(u_int32_t *)tmpdst =
814 				htonl(*(const u_int32_t *)tmpsrc);
815 
816 		tmpsrc += 4;
817 		tmpdst += 4;
818 		tmplen -= 4;
819 	}
820 
821 	return(0);
822 }
823 
824 /*
825  * Load firmware image into the NIC. Check that the firmware revision
826  * is acceptable and see if we want the firmware for the Tigon 1 or
827  * Tigon 2.
828  */
829 static void
830 ti_loadfw(sc)
831 	struct ti_softc		*sc;
832 {
833 	switch(sc->ti_hwrev) {
834 	case TI_HWREV_TIGON:
835 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
836 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
837 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
838 			printf("ti%d: firmware revision mismatch; want "
839 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
840 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
841 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
842 			    tigonFwReleaseMinor, tigonFwReleaseFix);
843 			return;
844 		}
845 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
846 		    (caddr_t)tigonFwText);
847 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
848 		    (caddr_t)tigonFwData);
849 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
850 		    (caddr_t)tigonFwRodata);
851 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
852 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
853 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
854 		break;
855 	case TI_HWREV_TIGON_II:
856 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
857 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
858 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
859 			printf("ti%d: firmware revision mismatch; want "
860 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
861 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
862 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
863 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
864 			return;
865 		}
866 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
867 		    (caddr_t)tigon2FwText);
868 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
869 		    (caddr_t)tigon2FwData);
870 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
871 		    (caddr_t)tigon2FwRodata);
872 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
873 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
874 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
875 		break;
876 	default:
877 		printf("ti%d: can't load firmware: unknown hardware rev\n",
878 		    sc->ti_unit);
879 		break;
880 	}
881 
882 	return;
883 }
884 
885 /*
886  * Send the NIC a command via the command ring.
887  */
888 static void
889 ti_cmd(sc, cmd)
890 	struct ti_softc		*sc;
891 	struct ti_cmd_desc	*cmd;
892 {
893 	u_int32_t		index;
894 
895 	if (sc->ti_rdata->ti_cmd_ring == NULL)
896 		return;
897 
898 	index = sc->ti_cmd_saved_prodidx;
899 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
900 	TI_INC(index, TI_CMD_RING_CNT);
901 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
902 	sc->ti_cmd_saved_prodidx = index;
903 
904 	return;
905 }
906 
907 /*
908  * Send the NIC an extended command. The 'len' parameter specifies the
909  * number of command slots to include after the initial command.
910  */
911 static void
912 ti_cmd_ext(sc, cmd, arg, len)
913 	struct ti_softc		*sc;
914 	struct ti_cmd_desc	*cmd;
915 	caddr_t			arg;
916 	int			len;
917 {
918 	u_int32_t		index;
919 	register int		i;
920 
921 	if (sc->ti_rdata->ti_cmd_ring == NULL)
922 		return;
923 
924 	index = sc->ti_cmd_saved_prodidx;
925 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
926 	TI_INC(index, TI_CMD_RING_CNT);
927 	for (i = 0; i < len; i++) {
928 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
929 		    *(u_int32_t *)(&arg[i * 4]));
930 		TI_INC(index, TI_CMD_RING_CNT);
931 	}
932 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
933 	sc->ti_cmd_saved_prodidx = index;
934 
935 	return;
936 }
937 
938 /*
939  * Handle events that have triggered interrupts.
940  */
941 static void
942 ti_handle_events(sc)
943 	struct ti_softc		*sc;
944 {
945 	struct ti_event_desc	*e;
946 
947 	if (sc->ti_rdata->ti_event_ring == NULL)
948 		return;
949 
950 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
951 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
952 		switch(e->ti_event) {
953 		case TI_EV_LINKSTAT_CHANGED:
954 			sc->ti_linkstat = e->ti_code;
955 			if (e->ti_code == TI_EV_CODE_LINK_UP)
956 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
957 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
958 				printf("ti%d: gigabit link up\n", sc->ti_unit);
959 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
960 				printf("ti%d: link down\n", sc->ti_unit);
961 			break;
962 		case TI_EV_ERROR:
963 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
964 				printf("ti%d: invalid command\n", sc->ti_unit);
965 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
966 				printf("ti%d: unknown command\n", sc->ti_unit);
967 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
968 				printf("ti%d: bad config data\n", sc->ti_unit);
969 			break;
970 		case TI_EV_FIRMWARE_UP:
971 			ti_init2(sc);
972 			break;
973 		case TI_EV_STATS_UPDATED:
974 			ti_stats_update(sc);
975 			break;
976 		case TI_EV_RESET_JUMBO_RING:
977 		case TI_EV_MCAST_UPDATED:
978 			/* Who cares. */
979 			break;
980 		default:
981 			printf("ti%d: unknown event: %d\n",
982 			    sc->ti_unit, e->ti_event);
983 			break;
984 		}
985 		/* Advance the consumer index. */
986 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
987 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
988 	}
989 
990 	return;
991 }
992 
993 #ifdef TI_PRIVATE_JUMBOS
994 
995 /*
996  * Memory management for the jumbo receive ring is a pain in the
997  * butt. We need to allocate at least 9018 bytes of space per frame,
998  * _and_ it has to be contiguous (unless you use the extended
999  * jumbo descriptor format). Using malloc() all the time won't
1000  * work: malloc() allocates memory in powers of two, which means we
1001  * would end up wasting a considerable amount of space by allocating
1002  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
1003  * to do our own memory management.
1004  *
1005  * The driver needs to allocate a contiguous chunk of memory at boot
1006  * time. We then chop this up ourselves into 9K pieces and use them
1007  * as external mbuf storage.
1008  *
1009  * One issue here is how much memory to allocate. The jumbo ring has
1010  * 256 slots in it, but at 9K per slot than can consume over 2MB of
1011  * RAM. This is a bit much, especially considering we also need
1012  * RAM for the standard ring and mini ring (on the Tigon 2). To
1013  * save space, we only actually allocate enough memory for 64 slots
1014  * by default, which works out to between 500 and 600K. This can
1015  * be tuned by changing a #define in if_tireg.h.
1016  */
1017 
1018 static int
1019 ti_alloc_jumbo_mem(sc)
1020 	struct ti_softc		*sc;
1021 {
1022 	caddr_t			ptr;
1023 	register int		i;
1024 	struct ti_jpool_entry   *entry;
1025 
1026 	/* Grab a big chunk o' storage. */
1027 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
1028 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1029 
1030 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
1031 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
1032 		return(ENOBUFS);
1033 	}
1034 
1035 	SLIST_INIT(&sc->ti_jfree_listhead);
1036 	SLIST_INIT(&sc->ti_jinuse_listhead);
1037 
1038 	/*
1039 	 * Now divide it up into 9K pieces and save the addresses
1040 	 * in an array.
1041 	 */
1042 	ptr = sc->ti_cdata.ti_jumbo_buf;
1043 	for (i = 0; i < TI_JSLOTS; i++) {
1044 		sc->ti_cdata.ti_jslots[i] = ptr;
1045 		ptr += TI_JLEN;
1046 		entry = malloc(sizeof(struct ti_jpool_entry),
1047 			       M_DEVBUF, M_NOWAIT);
1048 		if (entry == NULL) {
1049 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1050 			           M_DEVBUF);
1051 			sc->ti_cdata.ti_jumbo_buf = NULL;
1052 			printf("ti%d: no memory for jumbo "
1053 			    "buffer queue!\n", sc->ti_unit);
1054 			return(ENOBUFS);
1055 		}
1056 		entry->slot = i;
1057 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1058 	}
1059 
1060 	return(0);
1061 }
1062 
1063 /*
1064  * Allocate a jumbo buffer.
1065  */
1066 static void *ti_jalloc(sc)
1067 	struct ti_softc		*sc;
1068 {
1069 	struct ti_jpool_entry   *entry;
1070 
1071 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1072 
1073 	if (entry == NULL) {
1074 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1075 		return(NULL);
1076 	}
1077 
1078 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1079 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1080 	return(sc->ti_cdata.ti_jslots[entry->slot]);
1081 }
1082 
1083 /*
1084  * Release a jumbo buffer.
1085  */
1086 static void
1087 ti_jfree(buf, args)
1088 	void			*buf;
1089 	void			*args;
1090 {
1091 	struct ti_softc		*sc;
1092 	int		        i;
1093 	struct ti_jpool_entry   *entry;
1094 
1095 	/* Extract the softc struct pointer. */
1096 	sc = (struct ti_softc *)args;
1097 
1098 	if (sc == NULL)
1099 		panic("ti_jfree: didn't get softc pointer!");
1100 
1101 	/* calculate the slot this buffer belongs to */
1102 	i = ((vm_offset_t)buf
1103 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1104 
1105 	if ((i < 0) || (i >= TI_JSLOTS))
1106 		panic("ti_jfree: asked to free buffer that we don't manage!");
1107 
1108 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1109 	if (entry == NULL)
1110 		panic("ti_jfree: buffer not in use!");
1111 	entry->slot = i;
1112 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1113 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1114 
1115 	return;
1116 }
1117 
1118 #endif /* TI_PRIVATE_JUMBOS */
1119 
1120 /*
1121  * Intialize a standard receive ring descriptor.
1122  */
1123 static int
1124 ti_newbuf_std(sc, i, m)
1125 	struct ti_softc		*sc;
1126 	int			i;
1127 	struct mbuf		*m;
1128 {
1129 	struct mbuf		*m_new = NULL;
1130 	struct ti_rx_desc	*r;
1131 
1132 	if (m == NULL) {
1133 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1134 		if (m_new == NULL)
1135 			return(ENOBUFS);
1136 
1137 		MCLGET(m_new, M_DONTWAIT);
1138 		if (!(m_new->m_flags & M_EXT)) {
1139 			m_freem(m_new);
1140 			return(ENOBUFS);
1141 		}
1142 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1143 	} else {
1144 		m_new = m;
1145 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1146 		m_new->m_data = m_new->m_ext.ext_buf;
1147 	}
1148 
1149 	m_adj(m_new, ETHER_ALIGN);
1150 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1151 	r = &sc->ti_rdata->ti_rx_std_ring[i];
1152 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1153 	r->ti_type = TI_BDTYPE_RECV_BD;
1154 	r->ti_flags = 0;
1155 	if (sc->arpcom.ac_if.if_hwassist)
1156 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1157 	r->ti_len = m_new->m_len;
1158 	r->ti_idx = i;
1159 
1160 	return(0);
1161 }
1162 
1163 /*
1164  * Intialize a mini receive ring descriptor. This only applies to
1165  * the Tigon 2.
1166  */
1167 static int
1168 ti_newbuf_mini(sc, i, m)
1169 	struct ti_softc		*sc;
1170 	int			i;
1171 	struct mbuf		*m;
1172 {
1173 	struct mbuf		*m_new = NULL;
1174 	struct ti_rx_desc	*r;
1175 
1176 	if (m == NULL) {
1177 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1178 		if (m_new == NULL) {
1179 			return(ENOBUFS);
1180 		}
1181 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1182 	} else {
1183 		m_new = m;
1184 		m_new->m_data = m_new->m_pktdat;
1185 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1186 	}
1187 
1188 	m_adj(m_new, ETHER_ALIGN);
1189 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1190 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1191 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1192 	r->ti_type = TI_BDTYPE_RECV_BD;
1193 	r->ti_flags = TI_BDFLAG_MINI_RING;
1194 	if (sc->arpcom.ac_if.if_hwassist)
1195 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1196 	r->ti_len = m_new->m_len;
1197 	r->ti_idx = i;
1198 
1199 	return(0);
1200 }
1201 
1202 #ifdef TI_PRIVATE_JUMBOS
1203 
1204 /*
1205  * Initialize a jumbo receive ring descriptor. This allocates
1206  * a jumbo buffer from the pool managed internally by the driver.
1207  */
1208 static int
1209 ti_newbuf_jumbo(sc, i, m)
1210 	struct ti_softc		*sc;
1211 	int			i;
1212 	struct mbuf		*m;
1213 {
1214 	struct mbuf		*m_new = NULL;
1215 	struct ti_rx_desc	*r;
1216 
1217 	if (m == NULL) {
1218 		caddr_t			*buf = NULL;
1219 
1220 		/* Allocate the mbuf. */
1221 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1222 		if (m_new == NULL) {
1223 			return(ENOBUFS);
1224 		}
1225 
1226 		/* Allocate the jumbo buffer */
1227 		buf = ti_jalloc(sc);
1228 		if (buf == NULL) {
1229 			m_freem(m_new);
1230 			printf("ti%d: jumbo allocation failed "
1231 			    "-- packet dropped!\n", sc->ti_unit);
1232 			return(ENOBUFS);
1233 		}
1234 
1235 		/* Attach the buffer to the mbuf. */
1236 		m_new->m_data = (void *) buf;
1237 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1238 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1239 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1240 	} else {
1241 		m_new = m;
1242 		m_new->m_data = m_new->m_ext.ext_buf;
1243 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1244 	}
1245 
1246 	m_adj(m_new, ETHER_ALIGN);
1247 	/* Set up the descriptor. */
1248 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1249 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1250 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1251 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1252 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1253 	if (sc->arpcom.ac_if.if_hwassist)
1254 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1255 	r->ti_len = m_new->m_len;
1256 	r->ti_idx = i;
1257 
1258 	return(0);
1259 }
1260 
1261 #else
1262 #include <vm/vm_page.h>
1263 
1264 #if (PAGE_SIZE == 4096)
1265 #define NPAYLOAD 2
1266 #else
1267 #define NPAYLOAD 1
1268 #endif
1269 
1270 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1271 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1272 #define NFS_HDR_LEN (UDP_HDR_LEN)
1273 static int HDR_LEN =  TCP_HDR_LEN;
1274 
1275 
1276  /*
1277   * Initialize a jumbo receive ring descriptor. This allocates
1278   * a jumbo buffer from the pool managed internally by the driver.
1279   */
1280 static int
1281 ti_newbuf_jumbo(sc, idx, m_old)
1282         struct ti_softc         *sc;
1283         int                     idx;
1284         struct mbuf             *m_old;
1285 {
1286 	struct mbuf		*cur, *m_new = NULL;
1287 	struct mbuf		*m[3] = {NULL, NULL, NULL};
1288 	struct ti_rx_desc_ext	*r;
1289 	vm_page_t		frame;
1290 				/* 1 extra buf to make nobufs easy*/
1291 	caddr_t			buf[3] = {NULL, NULL, NULL};
1292 	int			i;
1293 
1294 	if (m_old != NULL) {
1295 		m_new = m_old;
1296 		cur = m_old->m_next;
1297 		for (i = 0; i <= NPAYLOAD; i++){
1298 			m[i] = cur;
1299 			cur = cur->m_next;
1300 		}
1301 	} else {
1302 		/* Allocate the mbufs. */
1303 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1304 		if (m_new == NULL) {
1305 			printf("ti%d: mbuf allocation failed "
1306    			       "-- packet dropped!\n", sc->ti_unit);
1307 			goto nobufs;
1308 		}
1309 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1310 		if (m[NPAYLOAD] == NULL) {
1311 			printf("ti%d: cluster mbuf allocation failed "
1312 			       "-- packet dropped!\n", sc->ti_unit);
1313 			goto nobufs;
1314 		}
1315 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1316 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1317 			printf("ti%d: mbuf allocation failed "
1318 			       "-- packet dropped!\n", sc->ti_unit);
1319 			goto nobufs;
1320 		}
1321 		m[NPAYLOAD]->m_len = MCLBYTES;
1322 
1323 		for (i = 0; i < NPAYLOAD; i++){
1324 			MGET(m[i], M_DONTWAIT, MT_DATA);
1325 			if (m[i] == NULL) {
1326 				printf("ti%d: mbuf allocation failed "
1327 				       "-- packet dropped!\n", sc->ti_unit);
1328 				goto nobufs;
1329 			}
1330 			if (!(frame = jumbo_pg_alloc())){
1331   				printf("ti%d: buffer allocation failed "
1332    				       "-- packet dropped!\n", sc->ti_unit);
1333 				printf("      index %d page %d\n", idx, i);
1334    				goto nobufs;
1335 			}
1336 			buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame));
1337 		}
1338 		for (i = 0; i < NPAYLOAD; i++){
1339   		/* Attach the buffer to the mbuf. */
1340    			m[i]->m_data = (void *)buf[i];
1341 			m[i]->m_len = PAGE_SIZE;
1342 			MEXTADD(m[i], (void *)buf[i], PAGE_SIZE,
1343 				jumbo_freem, NULL, 0, EXT_DISPOSABLE);
1344 			m[i]->m_next = m[i+1];
1345 		}
1346 		/* link the buffers to the header */
1347 		m_new->m_next = m[0];
1348 		m_new->m_data += ETHER_ALIGN;
1349 		if (sc->ti_hdrsplit)
1350 			m_new->m_len = MHLEN - ETHER_ALIGN;
1351 		else
1352    			m_new->m_len = HDR_LEN;
1353 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1354 	}
1355 
1356 	/* Set up the descriptor. */
1357 	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1358 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1359 	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1360 	r->ti_len0 = m_new->m_len;
1361 
1362 	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1363 	r->ti_len1 = PAGE_SIZE;
1364 
1365 	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1366 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1367 
1368 	if (PAGE_SIZE == 4096) {
1369 		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1370 		r->ti_len3 = MCLBYTES;
1371 	} else {
1372 		r->ti_len3 = 0;
1373 	}
1374         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1375 
1376         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1377 
1378 	if (sc->arpcom.ac_if.if_hwassist)
1379 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1380 
1381         r->ti_idx = idx;
1382 
1383         return(0);
1384 
1385  nobufs:
1386 
1387 	/*
1388 	 * Warning! :
1389 	 * This can only be called before the mbufs are strung together.
1390 	 * If the mbufs are strung together, m_freem() will free the chain,
1391 	 * so that the later mbufs will be freed multiple times.
1392 	 */
1393         if (m_new)
1394                 m_freem(m_new);
1395 
1396         for(i = 0; i < 3; i++){
1397                 if (m[i])
1398                         m_freem(m[i]);
1399                 if (buf[i])
1400                         jumbo_pg_free((vm_offset_t)buf[i]);
1401         }
1402         return ENOBUFS;
1403 }
1404 #endif
1405 
1406 
1407 
1408 /*
1409  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1410  * that's 1MB or memory, which is a lot. For now, we fill only the first
1411  * 256 ring entries and hope that our CPU is fast enough to keep up with
1412  * the NIC.
1413  */
1414 static int
1415 ti_init_rx_ring_std(sc)
1416 	struct ti_softc		*sc;
1417 {
1418 	register int		i;
1419 	struct ti_cmd_desc	cmd;
1420 
1421 	for (i = 0; i < TI_SSLOTS; i++) {
1422 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1423 			return(ENOBUFS);
1424 	};
1425 
1426 	TI_UPDATE_STDPROD(sc, i - 1);
1427 	sc->ti_std = i - 1;
1428 
1429 	return(0);
1430 }
1431 
1432 static void
1433 ti_free_rx_ring_std(sc)
1434 	struct ti_softc		*sc;
1435 {
1436 	register int		i;
1437 
1438 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1439 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1440 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1441 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1442 		}
1443 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1444 		    sizeof(struct ti_rx_desc));
1445 	}
1446 
1447 	return;
1448 }
1449 
1450 static int
1451 ti_init_rx_ring_jumbo(sc)
1452 	struct ti_softc		*sc;
1453 {
1454 	register int		i;
1455 	struct ti_cmd_desc	cmd;
1456 
1457 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1458 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1459 			return(ENOBUFS);
1460 	};
1461 
1462 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1463 	sc->ti_jumbo = i - 1;
1464 
1465 	return(0);
1466 }
1467 
1468 static void
1469 ti_free_rx_ring_jumbo(sc)
1470 	struct ti_softc		*sc;
1471 {
1472 	register int		i;
1473 
1474 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1475 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1476 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1477 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1478 		}
1479 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1480 		    sizeof(struct ti_rx_desc));
1481 	}
1482 
1483 	return;
1484 }
1485 
1486 static int
1487 ti_init_rx_ring_mini(sc)
1488 	struct ti_softc		*sc;
1489 {
1490 	register int		i;
1491 
1492 	for (i = 0; i < TI_MSLOTS; i++) {
1493 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1494 			return(ENOBUFS);
1495 	};
1496 
1497 	TI_UPDATE_MINIPROD(sc, i - 1);
1498 	sc->ti_mini = i - 1;
1499 
1500 	return(0);
1501 }
1502 
1503 static void
1504 ti_free_rx_ring_mini(sc)
1505 	struct ti_softc		*sc;
1506 {
1507 	register int		i;
1508 
1509 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1510 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1511 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1512 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1513 		}
1514 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1515 		    sizeof(struct ti_rx_desc));
1516 	}
1517 
1518 	return;
1519 }
1520 
1521 static void
1522 ti_free_tx_ring(sc)
1523 	struct ti_softc		*sc;
1524 {
1525 	register int		i;
1526 
1527 	if (sc->ti_rdata->ti_tx_ring == NULL)
1528 		return;
1529 
1530 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1531 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1532 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1533 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1534 		}
1535 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1536 		    sizeof(struct ti_tx_desc));
1537 	}
1538 
1539 	return;
1540 }
1541 
1542 static int
1543 ti_init_tx_ring(sc)
1544 	struct ti_softc		*sc;
1545 {
1546 	sc->ti_txcnt = 0;
1547 	sc->ti_tx_saved_considx = 0;
1548 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1549 	return(0);
1550 }
1551 
1552 /*
1553  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1554  * but we have to support the old way too so that Tigon 1 cards will
1555  * work.
1556  */
1557 static void
1558 ti_add_mcast(sc, addr)
1559 	struct ti_softc		*sc;
1560 	struct ether_addr	*addr;
1561 {
1562 	struct ti_cmd_desc	cmd;
1563 	u_int16_t		*m;
1564 	u_int32_t		ext[2] = {0, 0};
1565 
1566 	m = (u_int16_t *)&addr->octet[0];
1567 
1568 	switch(sc->ti_hwrev) {
1569 	case TI_HWREV_TIGON:
1570 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1571 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1572 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1573 		break;
1574 	case TI_HWREV_TIGON_II:
1575 		ext[0] = htons(m[0]);
1576 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1577 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1578 		break;
1579 	default:
1580 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1581 		break;
1582 	}
1583 
1584 	return;
1585 }
1586 
1587 static void
1588 ti_del_mcast(sc, addr)
1589 	struct ti_softc		*sc;
1590 	struct ether_addr	*addr;
1591 {
1592 	struct ti_cmd_desc	cmd;
1593 	u_int16_t		*m;
1594 	u_int32_t		ext[2] = {0, 0};
1595 
1596 	m = (u_int16_t *)&addr->octet[0];
1597 
1598 	switch(sc->ti_hwrev) {
1599 	case TI_HWREV_TIGON:
1600 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1601 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1602 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1603 		break;
1604 	case TI_HWREV_TIGON_II:
1605 		ext[0] = htons(m[0]);
1606 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1607 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1608 		break;
1609 	default:
1610 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1611 		break;
1612 	}
1613 
1614 	return;
1615 }
1616 
1617 /*
1618  * Configure the Tigon's multicast address filter.
1619  *
1620  * The actual multicast table management is a bit of a pain, thanks to
1621  * slight brain damage on the part of both Alteon and us. With our
1622  * multicast code, we are only alerted when the multicast address table
1623  * changes and at that point we only have the current list of addresses:
1624  * we only know the current state, not the previous state, so we don't
1625  * actually know what addresses were removed or added. The firmware has
1626  * state, but we can't get our grubby mits on it, and there is no 'delete
1627  * all multicast addresses' command. Hence, we have to maintain our own
1628  * state so we know what addresses have been programmed into the NIC at
1629  * any given time.
1630  */
1631 static void
1632 ti_setmulti(sc)
1633 	struct ti_softc		*sc;
1634 {
1635 	struct ifnet		*ifp;
1636 	struct ifmultiaddr	*ifma;
1637 	struct ti_cmd_desc	cmd;
1638 	struct ti_mc_entry	*mc;
1639 	u_int32_t		intrs;
1640 
1641 	ifp = &sc->arpcom.ac_if;
1642 
1643 	if (ifp->if_flags & IFF_ALLMULTI) {
1644 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1645 		return;
1646 	} else {
1647 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1648 	}
1649 
1650 	/* Disable interrupts. */
1651 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1652 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1653 
1654 	/* First, zot all the existing filters. */
1655 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1656 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1657 		ti_del_mcast(sc, &mc->mc_addr);
1658 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1659 		free(mc, M_DEVBUF);
1660 	}
1661 
1662 	/* Now program new ones. */
1663 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1664 		if (ifma->ifma_addr->sa_family != AF_LINK)
1665 			continue;
1666 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1667 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1668 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1669 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1670 		ti_add_mcast(sc, &mc->mc_addr);
1671 	}
1672 
1673 	/* Re-enable interrupts. */
1674 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1675 
1676 	return;
1677 }
1678 
1679 /*
1680  * Check to see if the BIOS has configured us for a 64 bit slot when
1681  * we aren't actually in one. If we detect this condition, we can work
1682  * around it on the Tigon 2 by setting a bit in the PCI state register,
1683  * but for the Tigon 1 we must give up and abort the interface attach.
1684  */
1685 static int ti_64bitslot_war(sc)
1686 	struct ti_softc		*sc;
1687 {
1688 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1689 		CSR_WRITE_4(sc, 0x600, 0);
1690 		CSR_WRITE_4(sc, 0x604, 0);
1691 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1692 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1693 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1694 				return(EINVAL);
1695 			else {
1696 				TI_SETBIT(sc, TI_PCI_STATE,
1697 				    TI_PCISTATE_32BIT_BUS);
1698 				return(0);
1699 			}
1700 		}
1701 	}
1702 
1703 	return(0);
1704 }
1705 
1706 /*
1707  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1708  * self-test results.
1709  */
1710 static int
1711 ti_chipinit(sc)
1712 	struct ti_softc		*sc;
1713 {
1714 	u_int32_t		cacheline;
1715 	u_int32_t		pci_writemax = 0;
1716 	u_int32_t		hdrsplit;
1717 
1718 	/* Initialize link to down state. */
1719 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1720 
1721 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1722 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1723 	else
1724 		sc->arpcom.ac_if.if_hwassist = 0;
1725 
1726 	/* Set endianness before we access any non-PCI registers. */
1727 #if BYTE_ORDER == BIG_ENDIAN
1728 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1729 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1730 #else
1731 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1732 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1733 #endif
1734 
1735 	/* Check the ROM failed bit to see if self-tests passed. */
1736 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1737 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1738 		return(ENODEV);
1739 	}
1740 
1741 	/* Halt the CPU. */
1742 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1743 
1744 	/* Figure out the hardware revision. */
1745 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1746 	case TI_REV_TIGON_I:
1747 		sc->ti_hwrev = TI_HWREV_TIGON;
1748 		break;
1749 	case TI_REV_TIGON_II:
1750 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1751 		break;
1752 	default:
1753 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1754 		return(ENODEV);
1755 	}
1756 
1757 	/* Do special setup for Tigon 2. */
1758 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1759 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1760 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1761 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1762 	}
1763 
1764 	/*
1765 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1766 	 * can't do header splitting.
1767 	 */
1768 #ifdef TI_JUMBO_HDRSPLIT
1769 	if (sc->ti_hwrev != TI_HWREV_TIGON)
1770 		sc->ti_hdrsplit = 1;
1771 	else
1772 		printf("ti%d: can't do header splitting on a Tigon I board\n",
1773 		       sc->ti_unit);
1774 #endif /* TI_JUMBO_HDRSPLIT */
1775 
1776 	/* Set up the PCI state register. */
1777 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1778 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1779 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1780 	}
1781 
1782 	/* Clear the read/write max DMA parameters. */
1783 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1784 	    TI_PCISTATE_READ_MAXDMA));
1785 
1786 	/* Get cache line size. */
1787 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1788 
1789 	/*
1790 	 * If the system has set enabled the PCI memory write
1791 	 * and invalidate command in the command register, set
1792 	 * the write max parameter accordingly. This is necessary
1793 	 * to use MWI with the Tigon 2.
1794 	 */
1795 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1796 		switch(cacheline) {
1797 		case 1:
1798 		case 4:
1799 		case 8:
1800 		case 16:
1801 		case 32:
1802 		case 64:
1803 			break;
1804 		default:
1805 		/* Disable PCI memory write and invalidate. */
1806 			if (bootverbose)
1807 				printf("ti%d: cache line size %d not "
1808 				    "supported; disabling PCI MWI\n",
1809 				    sc->ti_unit, cacheline);
1810 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1811 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1812 			break;
1813 		}
1814 	}
1815 
1816 #ifdef __brokenalpha__
1817 	/*
1818 	 * From the Alteon sample driver:
1819 	 * Must insure that we do not cross an 8K (bytes) boundary
1820 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1821 	 * restriction on some ALPHA platforms with early revision
1822 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1823 	 */
1824 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1825 #else
1826 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1827 #endif
1828 
1829 	/* This sets the min dma param all the way up (0xff). */
1830 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1831 
1832 	if (sc->ti_hdrsplit)
1833 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1834 	else
1835 		hdrsplit = 0;
1836 
1837 	/* Configure DMA variables. */
1838 #if BYTE_ORDER == BIG_ENDIAN
1839 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1840 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1841 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1842 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1843 #else /* BYTE_ORDER */
1844 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1845 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1846 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1847 #endif /* BYTE_ORDER */
1848 
1849 	/*
1850 	 * Only allow 1 DMA channel to be active at a time.
1851 	 * I don't think this is a good idea, but without it
1852 	 * the firmware racks up lots of nicDmaReadRingFull
1853 	 * errors.  This is not compatible with hardware checksums.
1854 	 */
1855 	if (sc->arpcom.ac_if.if_hwassist == 0)
1856 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1857 
1858 	/* Recommended settings from Tigon manual. */
1859 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1860 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1861 
1862 	if (ti_64bitslot_war(sc)) {
1863 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1864 		    "but we aren't", sc->ti_unit);
1865 		return(EINVAL);
1866 	}
1867 
1868 	return(0);
1869 }
1870 
1871 /*
1872  * Initialize the general information block and firmware, and
1873  * start the CPU(s) running.
1874  */
1875 static int
1876 ti_gibinit(sc)
1877 	struct ti_softc		*sc;
1878 {
1879 	struct ti_rcb		*rcb;
1880 	int			i;
1881 	struct ifnet		*ifp;
1882 
1883 	ifp = &sc->arpcom.ac_if;
1884 
1885 	/* Disable interrupts for now. */
1886 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1887 
1888 	/* Tell the chip where to find the general information block. */
1889 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1890 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1891 
1892 	/* Load the firmware into SRAM. */
1893 	ti_loadfw(sc);
1894 
1895 	/* Set up the contents of the general info and ring control blocks. */
1896 
1897 	/* Set up the event ring and producer pointer. */
1898 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1899 
1900 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1901 	rcb->ti_flags = 0;
1902 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1903 	    vtophys(&sc->ti_ev_prodidx);
1904 	sc->ti_ev_prodidx.ti_idx = 0;
1905 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1906 	sc->ti_ev_saved_considx = 0;
1907 
1908 	/* Set up the command ring and producer mailbox. */
1909 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1910 
1911 	sc->ti_rdata->ti_cmd_ring =
1912 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1913 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1914 	rcb->ti_flags = 0;
1915 	rcb->ti_max_len = 0;
1916 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1917 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1918 	}
1919 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1920 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1921 	sc->ti_cmd_saved_prodidx = 0;
1922 
1923 	/*
1924 	 * Assign the address of the stats refresh buffer.
1925 	 * We re-use the current stats buffer for this to
1926 	 * conserve memory.
1927 	 */
1928 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1929 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1930 
1931 	/* Set up the standard receive ring. */
1932 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1933 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1934 	rcb->ti_max_len = TI_FRAMELEN;
1935 	rcb->ti_flags = 0;
1936 	if (sc->arpcom.ac_if.if_hwassist)
1937 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1938 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1939 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1940 
1941 	/* Set up the jumbo receive ring. */
1942 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1943 	TI_HOSTADDR(rcb->ti_hostaddr) =
1944 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1945 
1946 #ifdef TI_PRIVATE_JUMBOS
1947 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1948 	rcb->ti_flags = 0;
1949 #else
1950 	rcb->ti_max_len = PAGE_SIZE;
1951 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1952 #endif
1953 	if (sc->arpcom.ac_if.if_hwassist)
1954 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1955 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1956 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1957 
1958 	/*
1959 	 * Set up the mini ring. Only activated on the
1960 	 * Tigon 2 but the slot in the config block is
1961 	 * still there on the Tigon 1.
1962 	 */
1963 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1964 	TI_HOSTADDR(rcb->ti_hostaddr) =
1965 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1966 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1967 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1968 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1969 	else
1970 		rcb->ti_flags = 0;
1971 	if (sc->arpcom.ac_if.if_hwassist)
1972 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1973 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1974 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1975 
1976 	/*
1977 	 * Set up the receive return ring.
1978 	 */
1979 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1980 	TI_HOSTADDR(rcb->ti_hostaddr) =
1981 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1982 	rcb->ti_flags = 0;
1983 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1984 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1985 	    vtophys(&sc->ti_return_prodidx);
1986 
1987 	/*
1988 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1989 	 * of putting the transmit ring in the host's address space and
1990 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1991 	 * memory and accessing it through the shared memory region. We
1992 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1993 	 * so we have to revert to the shared memory scheme if we detect
1994 	 * a Tigon 1 chip.
1995 	 */
1996 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1997 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1998 		sc->ti_rdata->ti_tx_ring_nic =
1999 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
2000 	}
2001 	bzero((char *)sc->ti_rdata->ti_tx_ring,
2002 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
2003 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
2004 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2005 		rcb->ti_flags = 0;
2006 	else
2007 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2008 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2009 	if (sc->arpcom.ac_if.if_hwassist)
2010 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2011 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2012 	rcb->ti_max_len = TI_TX_RING_CNT;
2013 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2014 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
2015 	else
2016 		TI_HOSTADDR(rcb->ti_hostaddr) =
2017 		    vtophys(&sc->ti_rdata->ti_tx_ring);
2018 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
2019 	    vtophys(&sc->ti_tx_considx);
2020 
2021 	/* Set up tuneables */
2022 #if 0
2023 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2024 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2025 		    (sc->ti_rx_coal_ticks / 10));
2026 	else
2027 #endif
2028 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2029 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2030 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2031 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2032 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2033 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2034 
2035 	/* Turn interrupts on. */
2036 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2037 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2038 
2039 	/* Start CPU. */
2040 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2041 
2042 	return(0);
2043 }
2044 
2045 /*
2046  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2047  * against our list and return its name if we find a match.
2048  */
2049 static int
2050 ti_probe(dev)
2051 	device_t		dev;
2052 {
2053 	struct ti_type		*t;
2054 
2055 	t = ti_devs;
2056 
2057 	while(t->ti_name != NULL) {
2058 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2059 		    (pci_get_device(dev) == t->ti_did)) {
2060 			device_set_desc(dev, t->ti_name);
2061 			return(0);
2062 		}
2063 		t++;
2064 	}
2065 
2066 	return(ENXIO);
2067 }
2068 
2069 #ifdef KLD_MODULE
2070 static int
2071 log2rndup(int len)
2072 {
2073 	int log2size = 0, t = len;
2074 	while (t > 1) {
2075 		log2size++;
2076 		t >>= 1;
2077 	}
2078 	if (len != (1 << log2size))
2079 		log2size++;
2080 	return log2size;
2081 }
2082 
2083 static int
2084 ti_mbuf_sanity(device_t dev)
2085 {
2086 	if ((mbstat.m_msize != MSIZE) || mbstat.m_mclbytes != MCLBYTES){
2087 		device_printf(dev, "\n");
2088 		device_printf(dev, "This module was compiled with "
2089 				   "-DMCLSHIFT=%d -DMSIZE=%d\n", MCLSHIFT,
2090 				   MSIZE);
2091 		device_printf(dev, "The kernel was compiled with MCLSHIFT=%d,"
2092 			      " MSIZE=%d\n", log2rndup(mbstat.m_mclbytes),
2093 			      (int)mbstat.m_msize);
2094 		return(EINVAL);
2095 	}
2096 	return(0);
2097 }
2098 #endif
2099 
2100 
2101 static int
2102 ti_attach(dev)
2103 	device_t		dev;
2104 {
2105 	u_int32_t		command;
2106 	struct ifnet		*ifp;
2107 	struct ti_softc		*sc;
2108 	int			unit, error = 0, rid;
2109 
2110 	sc = NULL;
2111 
2112 #ifdef KLD_MODULE
2113 	if (ti_mbuf_sanity(dev)){
2114 		device_printf(dev, "Module mbuf constants do not match "
2115 			      "kernel constants!\n");
2116 		device_printf(dev, "Rebuild the module or the kernel so "
2117 			      "they match\n");
2118 		device_printf(dev, "\n");
2119 		error = EINVAL;
2120 		goto fail;
2121 	}
2122 #endif
2123 
2124 	sc = device_get_softc(dev);
2125 	unit = device_get_unit(dev);
2126 	bzero(sc, sizeof(struct ti_softc));
2127 
2128 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2129 	    MTX_DEF | MTX_RECURSE);
2130 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
2131 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2132 
2133 	/*
2134 	 * Map control/status registers.
2135 	 */
2136 	pci_enable_busmaster(dev);
2137 	pci_enable_io(dev, SYS_RES_MEMORY);
2138 	command = pci_read_config(dev, PCIR_COMMAND, 4);
2139 
2140 	if (!(command & PCIM_CMD_MEMEN)) {
2141 		printf("ti%d: failed to enable memory mapping!\n", unit);
2142 		error = ENXIO;
2143 		goto fail;
2144 	}
2145 
2146 	rid = TI_PCI_LOMEM;
2147 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
2148 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
2149 
2150 	if (sc->ti_res == NULL) {
2151 		printf ("ti%d: couldn't map memory\n", unit);
2152 		error = ENXIO;
2153 		goto fail;
2154 	}
2155 
2156 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2157 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2158 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2159 
2160 	/* Allocate interrupt */
2161 	rid = 0;
2162 
2163 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
2164 	    RF_SHAREABLE | RF_ACTIVE);
2165 
2166 	if (sc->ti_irq == NULL) {
2167 		printf("ti%d: couldn't map interrupt\n", unit);
2168 		error = ENXIO;
2169 		goto fail;
2170 	}
2171 
2172 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2173 	   ti_intr, sc, &sc->ti_intrhand);
2174 
2175 	if (error) {
2176 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2177 		bus_release_resource(dev, SYS_RES_MEMORY,
2178 		    TI_PCI_LOMEM, sc->ti_res);
2179 		printf("ti%d: couldn't set up irq\n", unit);
2180 		goto fail;
2181 	}
2182 
2183 	sc->ti_unit = unit;
2184 
2185 	if (ti_chipinit(sc)) {
2186 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2187 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2188 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2189 		bus_release_resource(dev, SYS_RES_MEMORY,
2190 		    TI_PCI_LOMEM, sc->ti_res);
2191 		error = ENXIO;
2192 		goto fail;
2193 	}
2194 
2195 	/* Zero out the NIC's on-board SRAM. */
2196 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2197 
2198 	/* Init again -- zeroing memory may have clobbered some registers. */
2199 	if (ti_chipinit(sc)) {
2200 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2201 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2202 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2203 		bus_release_resource(dev, SYS_RES_MEMORY,
2204 		    TI_PCI_LOMEM, sc->ti_res);
2205 		error = ENXIO;
2206 		goto fail;
2207 	}
2208 
2209 	/*
2210 	 * Get station address from the EEPROM. Note: the manual states
2211 	 * that the MAC address is at offset 0x8c, however the data is
2212 	 * stored as two longwords (since that's how it's loaded into
2213 	 * the NIC). This means the MAC address is actually preceded
2214 	 * by two zero bytes. We need to skip over those.
2215 	 */
2216 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2217 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2218 		printf("ti%d: failed to read station address\n", unit);
2219 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2220 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2221 		bus_release_resource(dev, SYS_RES_MEMORY,
2222 		    TI_PCI_LOMEM, sc->ti_res);
2223 		error = ENXIO;
2224 		goto fail;
2225 	}
2226 
2227 	/*
2228 	 * A Tigon chip was detected. Inform the world.
2229 	 */
2230 	printf("ti%d: Ethernet address: %6D\n", unit,
2231 				sc->arpcom.ac_enaddr, ":");
2232 
2233 	/* Allocate the general information block and ring buffers. */
2234 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2235 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2236 
2237 	if (sc->ti_rdata == NULL) {
2238 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2239 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2240 		bus_release_resource(dev, SYS_RES_MEMORY,
2241 		    TI_PCI_LOMEM, sc->ti_res);
2242 		error = ENXIO;
2243 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2244 		goto fail;
2245 	}
2246 
2247 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2248 
2249 	/* Try to allocate memory for jumbo buffers. */
2250 #ifdef TI_PRIVATE_JUMBOS
2251 	if (ti_alloc_jumbo_mem(sc)) {
2252 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2253 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2254 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2255 		bus_release_resource(dev, SYS_RES_MEMORY,
2256 		    TI_PCI_LOMEM, sc->ti_res);
2257 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
2258 		    M_DEVBUF);
2259 		error = ENXIO;
2260 		goto fail;
2261 	}
2262 #else
2263 	if (!jumbo_vm_init()) {
2264 		printf("ti%d: VM initialization failed!\n", sc->ti_unit);
2265 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2266 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2267 		bus_release_resource(dev, SYS_RES_MEMORY,
2268 		    TI_PCI_LOMEM, sc->ti_res);
2269 		free(sc->ti_rdata, M_DEVBUF);
2270 		error = ENOMEM;
2271 		goto fail;
2272 	}
2273 #endif
2274 
2275 	/*
2276 	 * We really need a better way to tell a 1000baseTX card
2277 	 * from a 1000baseSX one, since in theory there could be
2278 	 * OEMed 1000baseTX cards from lame vendors who aren't
2279 	 * clever enough to change the PCI ID. For the moment
2280 	 * though, the AceNIC is the only copper card available.
2281 	 */
2282 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2283 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2284 		sc->ti_copper = 1;
2285 	/* Ok, it's not the only copper card available. */
2286 	if (pci_get_vendor(dev) == NG_VENDORID &&
2287 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2288 		sc->ti_copper = 1;
2289 
2290 	/* Set default tuneable values. */
2291 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2292 #if 0
2293 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2294 #endif
2295 	sc->ti_rx_coal_ticks = 170;
2296 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2297 	sc->ti_rx_max_coal_bds = 64;
2298 #if 0
2299 	sc->ti_tx_max_coal_bds = 128;
2300 #endif
2301 	sc->ti_tx_max_coal_bds = 32;
2302 	sc->ti_tx_buf_ratio = 21;
2303 
2304 	/* Set up ifnet structure */
2305 	ifp = &sc->arpcom.ac_if;
2306 	ifp->if_softc = sc;
2307 	ifp->if_unit = sc->ti_unit;
2308 	ifp->if_name = "ti";
2309 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2310 	tis[unit] = sc;
2311 	ifp->if_ioctl = ti_ioctl;
2312 	ifp->if_output = ether_output;
2313 	ifp->if_start = ti_start;
2314 	ifp->if_watchdog = ti_watchdog;
2315 	ifp->if_init = ti_init;
2316 	ifp->if_mtu = ETHERMTU;
2317 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2318 
2319 	/* Set up ifmedia support. */
2320 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2321 	if (sc->ti_copper) {
2322 		/*
2323 		 * Copper cards allow manual 10/100 mode selection,
2324 		 * but not manual 1000baseTX mode selection. Why?
2325 		 * Becuase currently there's no way to specify the
2326 		 * master/slave setting through the firmware interface,
2327 		 * so Alteon decided to just bag it and handle it
2328 		 * via autonegotiation.
2329 		 */
2330 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2331 		ifmedia_add(&sc->ifmedia,
2332 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2333 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2334 		ifmedia_add(&sc->ifmedia,
2335 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2336 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2337 		ifmedia_add(&sc->ifmedia,
2338 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2339 	} else {
2340 		/* Fiber cards don't support 10/100 modes. */
2341 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2342 		ifmedia_add(&sc->ifmedia,
2343 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2344 	}
2345 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2346 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2347 
2348 	/*
2349 	 * We're assuming here that card initialization is a sequential
2350 	 * thing.  If it isn't, multiple cards probing at the same time
2351 	 * could stomp on the list of softcs here.
2352 	 */
2353 	/*
2354 	 * If this is the first card to be initialized, initialize the
2355 	 * softc queue.
2356 	 */
2357 	if (unit == 0)
2358 		STAILQ_INIT(&ti_sc_list);
2359 
2360 	STAILQ_INSERT_TAIL(&ti_sc_list, sc, ti_links);
2361 
2362 	/* Register the device */
2363 	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2364 			   0600, "ti%d", sc->ti_unit);
2365 
2366 	/*
2367 	 * Call MI attach routine.
2368 	 */
2369 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
2370 	return(0);
2371 
2372 fail:
2373 	mtx_destroy(&sc->ti_mtx);
2374 	return(error);
2375 }
2376 
2377 /*
2378  * Verify that our character special device is not currently
2379  * open.  Also track down any cached vnodes & kill them before
2380  * the module is unloaded
2381  */
2382 static int
2383 ti_unref_special(device_t dev)
2384 {
2385 	struct vnode *ti_vn;
2386 	int count;
2387 	struct ti_softc *sc = sc = device_get_softc(dev);
2388 
2389 	if (!vfinddev(sc->dev, VCHR, &ti_vn)) {
2390 		return 0;
2391 	}
2392 
2393 	if ((count = vcount(ti_vn))) {
2394 		device_printf(dev, "%d refs to special device, "
2395 			      "denying unload\n", count);
2396 		return count;
2397 	}
2398 	/* now we know that there's a vnode in the cache. We hunt it
2399 	   down and kill it now, before unloading */
2400 	vgone(ti_vn);
2401 	return(0);
2402 }
2403 
2404 
2405 static int
2406 ti_detach(dev)
2407 	device_t		dev;
2408 {
2409 	struct ti_softc		*sc;
2410 	struct ifnet		*ifp;
2411 
2412 	if (ti_unref_special(dev))
2413 		return EBUSY;
2414 
2415 	sc = device_get_softc(dev);
2416 	TI_LOCK(sc);
2417 	ifp = &sc->arpcom.ac_if;
2418 
2419 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
2420 	ti_stop(sc);
2421 
2422 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2423 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2424 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
2425 
2426 #ifdef TI_PRIVATE_JUMBOS
2427 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2428 #endif
2429 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2430 	ifmedia_removeall(&sc->ifmedia);
2431 
2432 	TI_UNLOCK(sc);
2433 	mtx_destroy(&sc->ti_mtx);
2434 
2435 	return(0);
2436 }
2437 
2438 #ifdef TI_JUMBO_HDRSPLIT
2439 /*
2440  * If hdr_len is 0, that means that header splitting wasn't done on
2441  * this packet for some reason.  The two most likely reasons are that
2442  * the protocol isn't a supported protocol for splitting, or this
2443  * packet had a fragment offset that wasn't 0.
2444  *
2445  * The header length, if it is non-zero, will always be the length of
2446  * the headers on the packet, but that length could be longer than the
2447  * first mbuf.  So we take the minimum of the two as the actual
2448  * length.
2449  */
2450 static __inline void
2451 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2452 {
2453 	int i = 0;
2454 	int lengths[4] = {0, 0, 0, 0};
2455 	struct mbuf *m, *mp;
2456 
2457 	if (hdr_len != 0)
2458 		top->m_len = min(hdr_len, top->m_len);
2459 	pkt_len -= top->m_len;
2460 	lengths[i++] = top->m_len;
2461 
2462 	mp = top;
2463 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2464 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2465 		pkt_len -= m->m_len;
2466 		lengths[i++] = m->m_len;
2467 		mp = m;
2468 	}
2469 
2470 #if 0
2471 	if (hdr_len != 0)
2472 		printf("got split packet: ");
2473 	else
2474 		printf("got non-split packet: ");
2475 
2476 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2477 	    lengths[1], lengths[2], lengths[3],
2478 	    lengths[0] + lengths[1] + lengths[2] +
2479 	    lengths[3]);
2480 #endif
2481 
2482 	if (pkt_len)
2483 		panic("header splitting didn't");
2484 
2485 	if (m) {
2486 		m_freem(m);
2487 		mp->m_next = NULL;
2488 
2489 	}
2490 	if (mp->m_next != NULL)
2491 		panic("ti_hdr_split: last mbuf in chain should be null");
2492 }
2493 #endif /* TI_JUMBO_HDRSPLIT */
2494 
2495 /*
2496  * Frame reception handling. This is called if there's a frame
2497  * on the receive return list.
2498  *
2499  * Note: we have to be able to handle three possibilities here:
2500  * 1) the frame is from the mini receive ring (can only happen)
2501  *    on Tigon 2 boards)
2502  * 2) the frame is from the jumbo recieve ring
2503  * 3) the frame is from the standard receive ring
2504  */
2505 
2506 static void
2507 ti_rxeof(sc)
2508 	struct ti_softc		*sc;
2509 {
2510 	struct ifnet		*ifp;
2511 	struct ti_cmd_desc	cmd;
2512 
2513 	ifp = &sc->arpcom.ac_if;
2514 
2515 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2516 		struct ti_rx_desc	*cur_rx;
2517 		u_int32_t		rxidx;
2518 		struct ether_header	*eh;
2519 		struct mbuf		*m = NULL;
2520 		u_int16_t		vlan_tag = 0;
2521 		int			have_tag = 0;
2522 
2523 		cur_rx =
2524 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2525 		rxidx = cur_rx->ti_idx;
2526 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2527 
2528 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2529 			have_tag = 1;
2530 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2531 		}
2532 
2533 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2534 
2535 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2536 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2537 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2538 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2539 				ifp->if_ierrors++;
2540 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2541 				continue;
2542 			}
2543 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2544 				ifp->if_ierrors++;
2545 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2546 				continue;
2547 			}
2548 #ifdef TI_PRIVATE_JUMBOS
2549                         m->m_len = cur_rx->ti_len;
2550 #else /* TI_PRIVATE_JUMBOS */
2551 #ifdef TI_JUMBO_HDRSPLIT
2552 			if (sc->ti_hdrsplit)
2553 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2554 					     cur_rx->ti_len, rxidx);
2555 			else
2556 #endif /* TI_JUMBO_HDRSPLIT */
2557                         	m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2558 #endif /* TI_PRIVATE_JUMBOS */
2559 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2560 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2561 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2562 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2563 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2564 				ifp->if_ierrors++;
2565 				ti_newbuf_mini(sc, sc->ti_mini, m);
2566 				continue;
2567 			}
2568 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2569 				ifp->if_ierrors++;
2570 				ti_newbuf_mini(sc, sc->ti_mini, m);
2571 				continue;
2572 			}
2573 			m->m_len = cur_rx->ti_len;
2574 		} else {
2575 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2576 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2577 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2578 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2579 				ifp->if_ierrors++;
2580 				ti_newbuf_std(sc, sc->ti_std, m);
2581 				continue;
2582 			}
2583 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2584 				ifp->if_ierrors++;
2585 				ti_newbuf_std(sc, sc->ti_std, m);
2586 				continue;
2587 			}
2588 			m->m_len = cur_rx->ti_len;
2589 		}
2590 
2591 		m->m_pkthdr.len = cur_rx->ti_len;
2592 		ifp->if_ipackets++;
2593 		eh = mtod(m, struct ether_header *);
2594 		m->m_pkthdr.rcvif = ifp;
2595 
2596 		/* Remove header from mbuf and pass it on. */
2597 		m_adj(m, sizeof(struct ether_header));
2598 
2599 		if (ifp->if_hwassist) {
2600 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2601 			    CSUM_DATA_VALID;
2602 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2603 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2604 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2605 		}
2606 
2607 		/*
2608 		 * If we received a packet with a vlan tag, pass it
2609 		 * to vlan_input() instead of ether_input().
2610 		 */
2611 		if (have_tag) {
2612 			VLAN_INPUT_TAG(eh, m, vlan_tag);
2613 			have_tag = vlan_tag = 0;
2614 			continue;
2615 		}
2616 		ether_input(ifp, eh, m);
2617 	}
2618 
2619 	/* Only necessary on the Tigon 1. */
2620 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2621 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2622 		    sc->ti_rx_saved_considx);
2623 
2624 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2625 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2626 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2627 
2628 	return;
2629 }
2630 
2631 static void
2632 ti_txeof(sc)
2633 	struct ti_softc		*sc;
2634 {
2635 	struct ti_tx_desc	*cur_tx = NULL;
2636 	struct ifnet		*ifp;
2637 
2638 	ifp = &sc->arpcom.ac_if;
2639 
2640 	/*
2641 	 * Go through our tx ring and free mbufs for those
2642 	 * frames that have been sent.
2643 	 */
2644 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2645 		u_int32_t		idx = 0;
2646 
2647 		idx = sc->ti_tx_saved_considx;
2648 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2649 			if (idx > 383)
2650 				CSR_WRITE_4(sc, TI_WINBASE,
2651 				    TI_TX_RING_BASE + 6144);
2652 			else if (idx > 255)
2653 				CSR_WRITE_4(sc, TI_WINBASE,
2654 				    TI_TX_RING_BASE + 4096);
2655 			else if (idx > 127)
2656 				CSR_WRITE_4(sc, TI_WINBASE,
2657 				    TI_TX_RING_BASE + 2048);
2658 			else
2659 				CSR_WRITE_4(sc, TI_WINBASE,
2660 				    TI_TX_RING_BASE);
2661 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2662 		} else
2663 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2664 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2665 			ifp->if_opackets++;
2666 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2667 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2668 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2669 		}
2670 		sc->ti_txcnt--;
2671 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2672 		ifp->if_timer = 0;
2673 	}
2674 
2675 	if (cur_tx != NULL)
2676 		ifp->if_flags &= ~IFF_OACTIVE;
2677 
2678 	return;
2679 }
2680 
2681 static void
2682 ti_intr(xsc)
2683 	void			*xsc;
2684 {
2685 	struct ti_softc		*sc;
2686 	struct ifnet		*ifp;
2687 
2688 	sc = xsc;
2689 	TI_LOCK(sc);
2690 	ifp = &sc->arpcom.ac_if;
2691 
2692 /*#ifdef notdef*/
2693 	/* Avoid this for now -- checking this register is expensive. */
2694 	/* Make sure this is really our interrupt. */
2695 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2696 		TI_UNLOCK(sc);
2697 		return;
2698 	}
2699 /*#endif*/
2700 
2701 	/* Ack interrupt and stop others from occuring. */
2702 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2703 
2704 	if (ifp->if_flags & IFF_RUNNING) {
2705 		/* Check RX return ring producer/consumer */
2706 		ti_rxeof(sc);
2707 
2708 		/* Check TX ring producer/consumer */
2709 		ti_txeof(sc);
2710 	}
2711 
2712 	ti_handle_events(sc);
2713 
2714 	/* Re-enable interrupts. */
2715 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2716 
2717 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2718 		ti_start(ifp);
2719 
2720 	TI_UNLOCK(sc);
2721 
2722 	return;
2723 }
2724 
2725 static void
2726 ti_stats_update(sc)
2727 	struct ti_softc		*sc;
2728 {
2729 	struct ifnet		*ifp;
2730 
2731 	ifp = &sc->arpcom.ac_if;
2732 
2733 	ifp->if_collisions +=
2734 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2735 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2736 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2737 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2738 	   ifp->if_collisions;
2739 
2740 	return;
2741 }
2742 
2743 /*
2744  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2745  * pointers to descriptors.
2746  */
2747 static int
2748 ti_encap(sc, m_head, txidx)
2749 	struct ti_softc		*sc;
2750 	struct mbuf		*m_head;
2751 	u_int32_t		*txidx;
2752 {
2753 	struct ti_tx_desc	*f = NULL;
2754 	struct mbuf		*m;
2755 	u_int32_t		frag, cur, cnt = 0;
2756 	u_int16_t		csum_flags = 0;
2757 	struct ifvlan		*ifv = NULL;
2758 
2759 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2760 	    m_head->m_pkthdr.rcvif != NULL &&
2761 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2762 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2763 
2764 	m = m_head;
2765 	cur = frag = *txidx;
2766 
2767 	if (m_head->m_pkthdr.csum_flags) {
2768 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2769 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2770 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2771 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2772 		if (m_head->m_flags & M_LASTFRAG)
2773 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2774 		else if (m_head->m_flags & M_FRAG)
2775 			csum_flags |= TI_BDFLAG_IP_FRAG;
2776 	}
2777 	/*
2778  	 * Start packing the mbufs in this chain into
2779 	 * the fragment pointers. Stop when we run out
2780  	 * of fragments or hit the end of the mbuf chain.
2781 	 */
2782 	for (m = m_head; m != NULL; m = m->m_next) {
2783 		if (m->m_len != 0) {
2784 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2785 				if (frag > 383)
2786 					CSR_WRITE_4(sc, TI_WINBASE,
2787 					    TI_TX_RING_BASE + 6144);
2788 				else if (frag > 255)
2789 					CSR_WRITE_4(sc, TI_WINBASE,
2790 					    TI_TX_RING_BASE + 4096);
2791 				else if (frag > 127)
2792 					CSR_WRITE_4(sc, TI_WINBASE,
2793 					    TI_TX_RING_BASE + 2048);
2794 				else
2795 					CSR_WRITE_4(sc, TI_WINBASE,
2796 					    TI_TX_RING_BASE);
2797 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2798 			} else
2799 				f = &sc->ti_rdata->ti_tx_ring[frag];
2800 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2801 				break;
2802 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2803 			f->ti_len = m->m_len;
2804 			f->ti_flags = csum_flags;
2805 
2806 			if (ifv != NULL) {
2807 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2808 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
2809 			} else {
2810 				f->ti_vlan_tag = 0;
2811 			}
2812 
2813 			/*
2814 			 * Sanity check: avoid coming within 16 descriptors
2815 			 * of the end of the ring.
2816 			 */
2817 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2818 				return(ENOBUFS);
2819 			cur = frag;
2820 			TI_INC(frag, TI_TX_RING_CNT);
2821 			cnt++;
2822 		}
2823 	}
2824 
2825 	if (m != NULL)
2826 		return(ENOBUFS);
2827 
2828 	if (frag == sc->ti_tx_saved_considx)
2829 		return(ENOBUFS);
2830 
2831 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2832 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2833 	            TI_BDFLAG_END;
2834 	else
2835 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2836 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2837 	sc->ti_txcnt += cnt;
2838 
2839 	*txidx = frag;
2840 
2841 	return(0);
2842 }
2843 
2844 /*
2845  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2846  * to the mbuf data regions directly in the transmit descriptors.
2847  */
2848 static void
2849 ti_start(ifp)
2850 	struct ifnet		*ifp;
2851 {
2852 	struct ti_softc		*sc;
2853 	struct mbuf		*m_head = NULL;
2854 	u_int32_t		prodidx = 0;
2855 
2856 	sc = ifp->if_softc;
2857 	TI_LOCK(sc);
2858 
2859 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2860 
2861 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2862 		IF_DEQUEUE(&ifp->if_snd, m_head);
2863 		if (m_head == NULL)
2864 			break;
2865 
2866 		/*
2867 		 * XXX
2868 		 * safety overkill.  If this is a fragmented packet chain
2869 		 * with delayed TCP/UDP checksums, then only encapsulate
2870 		 * it if we have enough descriptors to handle the entire
2871 		 * chain at once.
2872 		 * (paranoia -- may not actually be needed)
2873 		 */
2874 		if (m_head->m_flags & M_FIRSTFRAG &&
2875 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2876 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2877 			    m_head->m_pkthdr.csum_data + 16) {
2878 				IF_PREPEND(&ifp->if_snd, m_head);
2879 				ifp->if_flags |= IFF_OACTIVE;
2880 				break;
2881 			}
2882 		}
2883 
2884 		/*
2885 		 * Pack the data into the transmit ring. If we
2886 		 * don't have room, set the OACTIVE flag and wait
2887 		 * for the NIC to drain the ring.
2888 		 */
2889 		if (ti_encap(sc, m_head, &prodidx)) {
2890 			IF_PREPEND(&ifp->if_snd, m_head);
2891 			ifp->if_flags |= IFF_OACTIVE;
2892 			break;
2893 		}
2894 
2895 		/*
2896 		 * If there's a BPF listener, bounce a copy of this frame
2897 		 * to him.
2898 		 */
2899 		if (ifp->if_bpf)
2900 			bpf_mtap(ifp, m_head);
2901 	}
2902 
2903 	/* Transmit */
2904 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2905 
2906 	/*
2907 	 * Set a timeout in case the chip goes out to lunch.
2908 	 */
2909 	ifp->if_timer = 5;
2910 	TI_UNLOCK(sc);
2911 
2912 	return;
2913 }
2914 
2915 static void
2916 ti_init(xsc)
2917 	void			*xsc;
2918 {
2919 	struct ti_softc		*sc = xsc;
2920 
2921 	/* Cancel pending I/O and flush buffers. */
2922 	ti_stop(sc);
2923 
2924 	TI_LOCK(sc);
2925 	/* Init the gen info block, ring control blocks and firmware. */
2926 	if (ti_gibinit(sc)) {
2927 		printf("ti%d: initialization failure\n", sc->ti_unit);
2928 		TI_UNLOCK(sc);
2929 		return;
2930 	}
2931 
2932 	TI_UNLOCK(sc);
2933 
2934 	return;
2935 }
2936 
2937 static void ti_init2(sc)
2938 	struct ti_softc		*sc;
2939 {
2940 	struct ti_cmd_desc	cmd;
2941 	struct ifnet		*ifp;
2942 	u_int16_t		*m;
2943 	struct ifmedia		*ifm;
2944 	int			tmp;
2945 
2946 	ifp = &sc->arpcom.ac_if;
2947 
2948 	/* Specify MTU and interface index. */
2949 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2950 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2951 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2952 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2953 
2954 	/* Load our MAC address. */
2955 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2956 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2957 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2958 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2959 
2960 	/* Enable or disable promiscuous mode as needed. */
2961 	if (ifp->if_flags & IFF_PROMISC) {
2962 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2963 	} else {
2964 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2965 	}
2966 
2967 	/* Program multicast filter. */
2968 	ti_setmulti(sc);
2969 
2970 	/*
2971 	 * If this is a Tigon 1, we should tell the
2972 	 * firmware to use software packet filtering.
2973 	 */
2974 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2975 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2976 	}
2977 
2978 	/* Init RX ring. */
2979 	ti_init_rx_ring_std(sc);
2980 
2981 	/* Init jumbo RX ring. */
2982 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2983 		ti_init_rx_ring_jumbo(sc);
2984 
2985 	/*
2986 	 * If this is a Tigon 2, we can also configure the
2987 	 * mini ring.
2988 	 */
2989 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2990 		ti_init_rx_ring_mini(sc);
2991 
2992 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2993 	sc->ti_rx_saved_considx = 0;
2994 
2995 	/* Init TX ring. */
2996 	ti_init_tx_ring(sc);
2997 
2998 	/* Tell firmware we're alive. */
2999 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3000 
3001 	/* Enable host interrupts. */
3002 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3003 
3004 	ifp->if_flags |= IFF_RUNNING;
3005 	ifp->if_flags &= ~IFF_OACTIVE;
3006 
3007 	/*
3008 	 * Make sure to set media properly. We have to do this
3009 	 * here since we have to issue commands in order to set
3010 	 * the link negotiation and we can't issue commands until
3011 	 * the firmware is running.
3012 	 */
3013 	ifm = &sc->ifmedia;
3014 	tmp = ifm->ifm_media;
3015 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3016 	ti_ifmedia_upd(ifp);
3017 	ifm->ifm_media = tmp;
3018 
3019 	return;
3020 }
3021 
3022 /*
3023  * Set media options.
3024  */
3025 static int
3026 ti_ifmedia_upd(ifp)
3027 	struct ifnet		*ifp;
3028 {
3029 	struct ti_softc		*sc;
3030 	struct ifmedia		*ifm;
3031 	struct ti_cmd_desc	cmd;
3032 	u_int32_t		flowctl;
3033 
3034 	sc = ifp->if_softc;
3035 	ifm = &sc->ifmedia;
3036 
3037 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3038 		return(EINVAL);
3039 
3040 	flowctl = 0;
3041 
3042 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
3043 	case IFM_AUTO:
3044 		/*
3045 		 * Transmit flow control doesn't work on the Tigon 1.
3046 		 */
3047 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3048 
3049 		/*
3050 		 * Transmit flow control can also cause problems on the
3051 		 * Tigon 2, apparantly with both the copper and fiber
3052 		 * boards.  The symptom is that the interface will just
3053 		 * hang.  This was reproduced with Alteon 180 switches.
3054 		 */
3055 #if 0
3056 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3057 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3058 #endif
3059 
3060 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3061 		    TI_GLNK_FULL_DUPLEX| flowctl |
3062 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3063 
3064 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3065 #if 0
3066 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3067 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3068 #endif
3069 
3070 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3071 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3072 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3073 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3074 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3075 		break;
3076 	case IFM_1000_SX:
3077 	case IFM_1000_T:
3078 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3079 #if 0
3080 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3081 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3082 #endif
3083 
3084 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3085 		    flowctl |TI_GLNK_ENB);
3086 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3087 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3088 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3089 		}
3090 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3091 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3092 		break;
3093 	case IFM_100_FX:
3094 	case IFM_10_FL:
3095 	case IFM_100_TX:
3096 	case IFM_10_T:
3097 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3098 #if 0
3099 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3100 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3101 #endif
3102 
3103 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3104 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3105 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3106 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3107 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3108 		} else {
3109 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3110 		}
3111 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3112 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3113 		} else {
3114 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3115 		}
3116 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3117 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3118 		break;
3119 	}
3120 
3121 	return(0);
3122 }
3123 
3124 /*
3125  * Report current media status.
3126  */
3127 static void
3128 ti_ifmedia_sts(ifp, ifmr)
3129 	struct ifnet		*ifp;
3130 	struct ifmediareq	*ifmr;
3131 {
3132 	struct ti_softc		*sc;
3133 	u_int32_t		media = 0;
3134 
3135 	sc = ifp->if_softc;
3136 
3137 	ifmr->ifm_status = IFM_AVALID;
3138 	ifmr->ifm_active = IFM_ETHER;
3139 
3140 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3141 		return;
3142 
3143 	ifmr->ifm_status |= IFM_ACTIVE;
3144 
3145 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3146 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3147 		if (sc->ti_copper)
3148 			ifmr->ifm_active |= IFM_1000_T;
3149 		else
3150 			ifmr->ifm_active |= IFM_1000_SX;
3151 		if (media & TI_GLNK_FULL_DUPLEX)
3152 			ifmr->ifm_active |= IFM_FDX;
3153 		else
3154 			ifmr->ifm_active |= IFM_HDX;
3155 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3156 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3157 		if (sc->ti_copper) {
3158 			if (media & TI_LNK_100MB)
3159 				ifmr->ifm_active |= IFM_100_TX;
3160 			if (media & TI_LNK_10MB)
3161 				ifmr->ifm_active |= IFM_10_T;
3162 		} else {
3163 			if (media & TI_LNK_100MB)
3164 				ifmr->ifm_active |= IFM_100_FX;
3165 			if (media & TI_LNK_10MB)
3166 				ifmr->ifm_active |= IFM_10_FL;
3167 		}
3168 		if (media & TI_LNK_FULL_DUPLEX)
3169 			ifmr->ifm_active |= IFM_FDX;
3170 		if (media & TI_LNK_HALF_DUPLEX)
3171 			ifmr->ifm_active |= IFM_HDX;
3172 	}
3173 
3174 	return;
3175 }
3176 
3177 static int
3178 ti_ioctl(ifp, command, data)
3179 	struct ifnet		*ifp;
3180 	u_long			command;
3181 	caddr_t			data;
3182 {
3183 	struct ti_softc		*sc = ifp->if_softc;
3184 	struct ifreq		*ifr = (struct ifreq *) data;
3185 	int			mask, error = 0;
3186 	struct ti_cmd_desc	cmd;
3187 
3188 	TI_LOCK(sc);
3189 
3190 	switch(command) {
3191 	case SIOCSIFADDR:
3192 	case SIOCGIFADDR:
3193 		error = ether_ioctl(ifp, command, data);
3194 		break;
3195 	case SIOCSIFMTU:
3196 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3197 			error = EINVAL;
3198 		else {
3199 			ifp->if_mtu = ifr->ifr_mtu;
3200 			ti_init(sc);
3201 		}
3202 		break;
3203 	case SIOCSIFFLAGS:
3204 		if (ifp->if_flags & IFF_UP) {
3205 			/*
3206 			 * If only the state of the PROMISC flag changed,
3207 			 * then just use the 'set promisc mode' command
3208 			 * instead of reinitializing the entire NIC. Doing
3209 			 * a full re-init means reloading the firmware and
3210 			 * waiting for it to start up, which may take a
3211 			 * second or two.
3212 			 */
3213 			if (ifp->if_flags & IFF_RUNNING &&
3214 			    ifp->if_flags & IFF_PROMISC &&
3215 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3216 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3217 				    TI_CMD_CODE_PROMISC_ENB, 0);
3218 			} else if (ifp->if_flags & IFF_RUNNING &&
3219 			    !(ifp->if_flags & IFF_PROMISC) &&
3220 			    sc->ti_if_flags & IFF_PROMISC) {
3221 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3222 				    TI_CMD_CODE_PROMISC_DIS, 0);
3223 			} else
3224 				ti_init(sc);
3225 		} else {
3226 			if (ifp->if_flags & IFF_RUNNING) {
3227 				ti_stop(sc);
3228 			}
3229 		}
3230 		sc->ti_if_flags = ifp->if_flags;
3231 		error = 0;
3232 		break;
3233 	case SIOCADDMULTI:
3234 	case SIOCDELMULTI:
3235 		if (ifp->if_flags & IFF_RUNNING) {
3236 			ti_setmulti(sc);
3237 			error = 0;
3238 		}
3239 		break;
3240 	case SIOCSIFMEDIA:
3241 	case SIOCGIFMEDIA:
3242 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3243 		break;
3244 	case SIOCSIFCAP:
3245 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3246 		if (mask & IFCAP_HWCSUM) {
3247 			if (IFCAP_HWCSUM & ifp->if_capenable)
3248 				ifp->if_capenable &= ~IFCAP_HWCSUM;
3249                         else
3250                                 ifp->if_capenable |= IFCAP_HWCSUM;
3251 			if (ifp->if_flags & IFF_RUNNING)
3252 				ti_init(sc);
3253                 }
3254 		error = 0;
3255 		break;
3256 	default:
3257 		error = EINVAL;
3258 		break;
3259 	}
3260 
3261 	TI_UNLOCK(sc);
3262 
3263 	return(error);
3264 }
3265 
3266 static int
3267 ti_open(dev_t dev, int flags, int fmt, struct thread *td)
3268 {
3269 	int unit;
3270 	struct ti_softc *sc;
3271 
3272 	unit = minor(dev) & 0xff;
3273 
3274 	sc = ti_lookup_softc(unit);
3275 
3276 	if (sc == NULL)
3277 		return(ENODEV);
3278 
3279 	TI_LOCK(sc);
3280 	sc->ti_flags |= TI_FLAG_DEBUGING;
3281 	TI_UNLOCK(sc);
3282 
3283 	return(0);
3284 }
3285 
3286 static int
3287 ti_close(dev_t dev, int flag, int fmt, struct thread *td)
3288 {
3289 	int unit;
3290 	struct ti_softc *sc;
3291 
3292 	unit = minor(dev) & 0xff;
3293 
3294 	sc = ti_lookup_softc(unit);
3295 
3296 	if (sc == NULL)
3297 		return(ENODEV);
3298 
3299 	TI_LOCK(sc);
3300 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3301 	TI_UNLOCK(sc);
3302 
3303 	return(0);
3304 }
3305 
3306 /*
3307  * This ioctl routine goes along with the Tigon character device.
3308  */
3309 static int
3310 ti_ioctl2(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3311 {
3312 	int unit, error;
3313 	struct ti_softc *sc;
3314 
3315 	unit = minor(dev) & 0xff;
3316 
3317 	sc = ti_lookup_softc(unit);
3318 
3319 	if (sc == NULL)
3320 		return(ENODEV);
3321 
3322 	error = 0;
3323 
3324 	switch(cmd) {
3325 	case TIIOCGETSTATS:
3326 	{
3327 		struct ti_stats *outstats;
3328 
3329 		outstats = (struct ti_stats *)addr;
3330 
3331 		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3332 		      sizeof(struct ti_stats));
3333 		break;
3334 	}
3335 	case TIIOCGETPARAMS:
3336 	{
3337 		struct ti_params	*params;
3338 
3339 		params = (struct ti_params *)addr;
3340 
3341 		params->ti_stat_ticks = sc->ti_stat_ticks;
3342 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3343 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3344 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3345 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3346 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3347 		params->param_mask = TI_PARAM_ALL;
3348 
3349 		error = 0;
3350 
3351 		break;
3352 	}
3353 	case TIIOCSETPARAMS:
3354 	{
3355 		struct ti_params *params;
3356 
3357 		params = (struct ti_params *)addr;
3358 
3359 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3360 			sc->ti_stat_ticks = params->ti_stat_ticks;
3361 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3362 		}
3363 
3364 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3365 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3366 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3367 				    sc->ti_rx_coal_ticks);
3368 		}
3369 
3370 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3371 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3372 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3373 				    sc->ti_tx_coal_ticks);
3374 		}
3375 
3376 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3377 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3378 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3379 				    sc->ti_rx_max_coal_bds);
3380 		}
3381 
3382 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3383 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3384 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3385 				    sc->ti_tx_max_coal_bds);
3386 		}
3387 
3388 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3389 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3390 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3391 				    sc->ti_tx_buf_ratio);
3392 		}
3393 
3394 		error = 0;
3395 
3396 		break;
3397 	}
3398 	case TIIOCSETTRACE: {
3399 		ti_trace_type	trace_type;
3400 
3401 		trace_type = *(ti_trace_type *)addr;
3402 
3403 		/*
3404 		 * Set tracing to whatever the user asked for.  Setting
3405 		 * this register to 0 should have the effect of disabling
3406 		 * tracing.
3407 		 */
3408 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3409 
3410 		error = 0;
3411 
3412 		break;
3413 	}
3414 	case TIIOCGETTRACE: {
3415 		struct ti_trace_buf	*trace_buf;
3416 		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3417 
3418 		trace_buf = (struct ti_trace_buf *)addr;
3419 
3420 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3421 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3422 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3423 
3424 #if 0
3425 		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3426 		       "trace_len = %d\n", sc->ti_unit, trace_start,
3427 		       cur_trace_ptr, trace_len);
3428 		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3429 		       trace_buf->buf_len);
3430 #endif
3431 
3432 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3433 				    trace_buf->buf_len),
3434 				    (caddr_t)trace_buf->buf, 1, 1);
3435 
3436 		if (error == 0) {
3437 			trace_buf->fill_len = min(trace_len,
3438 						  trace_buf->buf_len);
3439 			if (cur_trace_ptr < trace_start)
3440 				trace_buf->cur_trace_ptr =
3441 					trace_start - cur_trace_ptr;
3442 			else
3443 				trace_buf->cur_trace_ptr =
3444 					cur_trace_ptr - trace_start;
3445 		} else
3446 			trace_buf->fill_len = 0;
3447 
3448 
3449 		break;
3450 	}
3451 
3452 	/*
3453 	 * For debugging, five ioctls are needed:
3454 	 * ALT_ATTACH
3455 	 * ALT_READ_TG_REG
3456 	 * ALT_WRITE_TG_REG
3457 	 * ALT_READ_TG_MEM
3458 	 * ALT_WRITE_TG_MEM
3459 	 */
3460 	case ALT_ATTACH:
3461 		/*
3462 		 * From what I can tell, Alteon's Solaris Tigon driver
3463 		 * only has one character device, so you have to attach
3464 		 * to the Tigon board you're interested in.  This seems
3465 		 * like a not-so-good way to do things, since unless you
3466 		 * subsequently specify the unit number of the device
3467 		 * you're interested in in every ioctl, you'll only be
3468 		 * able to debug one board at a time.
3469 		 */
3470 		error = 0;
3471 		break;
3472 	case ALT_READ_TG_MEM:
3473 	case ALT_WRITE_TG_MEM:
3474 	{
3475 		struct tg_mem *mem_param;
3476 		u_int32_t sram_end, scratch_end;
3477 
3478 		mem_param = (struct tg_mem *)addr;
3479 
3480 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3481 			sram_end = TI_END_SRAM_I;
3482 			scratch_end = TI_END_SCRATCH_I;
3483 		} else {
3484 			sram_end = TI_END_SRAM_II;
3485 			scratch_end = TI_END_SCRATCH_II;
3486 		}
3487 
3488 		/*
3489 		 * For now, we'll only handle accessing regular SRAM,
3490 		 * nothing else.
3491 		 */
3492 		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3493 		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3494 			/*
3495 			 * In this instance, we always copy to/from user
3496 			 * space, so the user space argument is set to 1.
3497 			 */
3498 			error = ti_copy_mem(sc, mem_param->tgAddr,
3499 					    mem_param->len,
3500 					    mem_param->userAddr, 1,
3501 					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3502 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3503 			&& (mem_param->tgAddr <= scratch_end)) {
3504 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3505 						mem_param->len,
3506 						mem_param->userAddr, 1,
3507 						(cmd == ALT_READ_TG_MEM) ?
3508 						1 : 0, TI_PROCESSOR_A);
3509 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3510 			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3511 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3512 				printf("ti%d:  invalid memory range for "
3513 				       "Tigon I\n", sc->ti_unit);
3514 				error = EINVAL;
3515 				break;
3516 			}
3517 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3518 						TI_SCRATCH_DEBUG_OFF,
3519 						mem_param->len,
3520 						mem_param->userAddr, 1,
3521 						(cmd == ALT_READ_TG_MEM) ?
3522 						1 : 0, TI_PROCESSOR_B);
3523 		} else {
3524 			printf("ti%d: memory address %#x len %d is out of "
3525 			       "supported range\n", sc->ti_unit,
3526 			        mem_param->tgAddr, mem_param->len);
3527 			error = EINVAL;
3528 		}
3529 
3530 		break;
3531 	}
3532 	case ALT_READ_TG_REG:
3533 	case ALT_WRITE_TG_REG:
3534 	{
3535 		struct tg_reg	*regs;
3536 		u_int32_t	tmpval;
3537 
3538 		regs = (struct tg_reg *)addr;
3539 
3540 		/*
3541 		 * Make sure the address in question isn't out of range.
3542 		 */
3543 		if (regs->addr > TI_REG_MAX) {
3544 			error = EINVAL;
3545 			break;
3546 		}
3547 		if (cmd == ALT_READ_TG_REG) {
3548 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3549 						regs->addr, &tmpval, 1);
3550 			regs->data = ntohl(tmpval);
3551 #if 0
3552 			if ((regs->addr == TI_CPU_STATE)
3553 			 || (regs->addr == TI_CPU_CTL_B)) {
3554 				printf("ti%d: register %#x = %#x\n",
3555 				       sc->ti_unit, regs->addr, tmpval);
3556 			}
3557 #endif
3558 		} else {
3559 			tmpval = htonl(regs->data);
3560 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3561 						 regs->addr, &tmpval, 1);
3562 		}
3563 
3564 		break;
3565 	}
3566 	default:
3567 		error = ENOTTY;
3568 		break;
3569 	}
3570 	return(error);
3571 }
3572 
3573 static void
3574 ti_watchdog(ifp)
3575 	struct ifnet		*ifp;
3576 {
3577 	struct ti_softc		*sc;
3578 
3579 	sc = ifp->if_softc;
3580 	TI_LOCK(sc);
3581 
3582 	/*
3583 	 * When we're debugging, the chip is often stopped for long periods
3584 	 * of time, and that would normally cause the watchdog timer to fire.
3585 	 * Since that impedes debugging, we don't want to do that.
3586 	 */
3587 	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3588 		TI_UNLOCK(sc);
3589 		return;
3590 	}
3591 
3592 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3593 	ti_stop(sc);
3594 	ti_init(sc);
3595 
3596 	ifp->if_oerrors++;
3597 	TI_UNLOCK(sc);
3598 
3599 	return;
3600 }
3601 
3602 /*
3603  * Stop the adapter and free any mbufs allocated to the
3604  * RX and TX lists.
3605  */
3606 static void
3607 ti_stop(sc)
3608 	struct ti_softc		*sc;
3609 {
3610 	struct ifnet		*ifp;
3611 	struct ti_cmd_desc	cmd;
3612 
3613 	TI_LOCK(sc);
3614 
3615 	ifp = &sc->arpcom.ac_if;
3616 
3617 	/* Disable host interrupts. */
3618 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3619 	/*
3620 	 * Tell firmware we're shutting down.
3621 	 */
3622 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3623 
3624 	/* Halt and reinitialize. */
3625 	ti_chipinit(sc);
3626 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3627 	ti_chipinit(sc);
3628 
3629 	/* Free the RX lists. */
3630 	ti_free_rx_ring_std(sc);
3631 
3632 	/* Free jumbo RX list. */
3633 	ti_free_rx_ring_jumbo(sc);
3634 
3635 	/* Free mini RX list. */
3636 	ti_free_rx_ring_mini(sc);
3637 
3638 	/* Free TX buffers. */
3639 	ti_free_tx_ring(sc);
3640 
3641 	sc->ti_ev_prodidx.ti_idx = 0;
3642 	sc->ti_return_prodidx.ti_idx = 0;
3643 	sc->ti_tx_considx.ti_idx = 0;
3644 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3645 
3646 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3647 	TI_UNLOCK(sc);
3648 
3649 	return;
3650 }
3651 
3652 /*
3653  * Stop all chip I/O so that the kernel's probe routines don't
3654  * get confused by errant DMAs when rebooting.
3655  */
3656 static void
3657 ti_shutdown(dev)
3658 	device_t		dev;
3659 {
3660 	struct ti_softc		*sc;
3661 
3662 	sc = device_get_softc(dev);
3663 	TI_LOCK(sc);
3664 	ti_chipinit(sc);
3665 	TI_UNLOCK(sc);
3666 
3667 	return;
3668 }
3669