xref: /freebsd/sys/dev/ti/if_ti.c (revision 685dc743dc3b5645e34836464128e1c0558b404b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring descriptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include <sys/cdefs.h>
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95 
96 #include <net/if.h>
97 #include <net/if_var.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_types.h>
103 #include <net/if_vlan_var.h>
104 
105 #include <net/bpf.h>
106 
107 #include <netinet/in_systm.h>
108 #include <netinet/in.h>
109 #include <netinet/ip.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #ifdef TI_SF_BUF_JUMBO
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128 
129 #include <sys/sysctl.h>
130 
131 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
132 /*
133  * We can only turn on header splitting if we're using extended receive
134  * BDs.
135  */
136 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
137 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
138 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
139 
140 typedef enum {
141 	TI_SWAP_HTON,
142 	TI_SWAP_NTOH
143 } ti_swap_type;
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 
149 static const struct ti_type ti_devs[] = {
150 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
151 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
152 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
153 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
154 	{ TC_VENDORID,	TC_DEVICEID_3C985,
155 		"3Com 3c985-SX Gigabit Ethernet" },
156 	{ NG_VENDORID, NG_DEVICEID_GA620,
157 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
158 	{ NG_VENDORID, NG_DEVICEID_GA620T,
159 		"Netgear GA620 1000baseT Gigabit Ethernet" },
160 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
161 		"Silicon Graphics Gigabit Ethernet" },
162 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
163 		"Farallon PN9000SX Gigabit Ethernet" },
164 	{ 0, 0, NULL }
165 };
166 
167 static	d_open_t	ti_open;
168 static	d_close_t	ti_close;
169 static	d_ioctl_t	ti_ioctl2;
170 
171 static struct cdevsw ti_cdevsw = {
172 	.d_version =	D_VERSION,
173 	.d_flags =	0,
174 	.d_open =	ti_open,
175 	.d_close =	ti_close,
176 	.d_ioctl =	ti_ioctl2,
177 	.d_name =	"ti",
178 };
179 
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185 
186 static int ti_encap(struct ti_softc *, struct mbuf **);
187 
188 static void ti_intr(void *);
189 static void ti_start(if_t);
190 static void ti_start_locked(if_t);
191 static int ti_ioctl(if_t, u_long, caddr_t);
192 static uint64_t ti_get_counter(if_t, ift_counter);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(void *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(if_t);
200 static int ti_ifmedia_upd_locked(struct ti_softc *);
201 static void ti_ifmedia_sts(if_t, struct ifmediareq *);
202 
203 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
204 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
205 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
206 
207 static u_int ti_add_mcast(void *, struct sockaddr_dl *, u_int);
208 static u_int ti_del_mcast(void *, struct sockaddr_dl *, u_int);
209 static void ti_setmulti(struct ti_softc *);
210 
211 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
212 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
213 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
214 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
215     int);
216 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
217     int, int, int);
218 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219 static void ti_loadfw(struct ti_softc *);
220 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222 static void ti_handle_events(struct ti_softc *);
223 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
224 static int ti_dma_alloc(struct ti_softc *);
225 static void ti_dma_free(struct ti_softc *);
226 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
227     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
228 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
229     bus_dmamap_t, bus_addr_t *);
230 static int ti_newbuf_std(struct ti_softc *, int);
231 static int ti_newbuf_mini(struct ti_softc *, int);
232 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233 static int ti_init_rx_ring_std(struct ti_softc *);
234 static void ti_free_rx_ring_std(struct ti_softc *);
235 static int ti_init_rx_ring_jumbo(struct ti_softc *);
236 static void ti_free_rx_ring_jumbo(struct ti_softc *);
237 static int ti_init_rx_ring_mini(struct ti_softc *);
238 static void ti_free_rx_ring_mini(struct ti_softc *);
239 static void ti_free_tx_ring(struct ti_softc *);
240 static int ti_init_tx_ring(struct ti_softc *);
241 static void ti_discard_std(struct ti_softc *, int);
242 #ifndef TI_SF_BUF_JUMBO
243 static void ti_discard_jumbo(struct ti_softc *, int);
244 #endif
245 static void ti_discard_mini(struct ti_softc *, int);
246 
247 static int ti_64bitslot_war(struct ti_softc *);
248 static int ti_chipinit(struct ti_softc *);
249 static int ti_gibinit(struct ti_softc *);
250 
251 #ifdef TI_JUMBO_HDRSPLIT
252 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
253     int idx);
254 #endif /* TI_JUMBO_HDRSPLIT */
255 
256 static void ti_sysctl_node(struct ti_softc *);
257 
258 static device_method_t ti_methods[] = {
259 	/* Device interface */
260 	DEVMETHOD(device_probe,		ti_probe),
261 	DEVMETHOD(device_attach,	ti_attach),
262 	DEVMETHOD(device_detach,	ti_detach),
263 	DEVMETHOD(device_shutdown,	ti_shutdown),
264 	{ 0, 0 }
265 };
266 
267 static driver_t ti_driver = {
268 	"ti",
269 	ti_methods,
270 	sizeof(struct ti_softc)
271 };
272 
273 DRIVER_MODULE(ti, pci, ti_driver, 0, 0);
274 MODULE_DEPEND(ti, pci, 1, 1, 1);
275 MODULE_DEPEND(ti, ether, 1, 1, 1);
276 
277 /*
278  * Send an instruction or address to the EEPROM, check for ACK.
279  */
280 static uint32_t
281 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
282 {
283 	int i, ack = 0;
284 
285 	/*
286 	 * Make sure we're in TX mode.
287 	 */
288 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
289 
290 	/*
291 	 * Feed in each bit and stobe the clock.
292 	 */
293 	for (i = 0x80; i; i >>= 1) {
294 		if (byte & i) {
295 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
296 		} else {
297 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
298 		}
299 		DELAY(1);
300 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
301 		DELAY(1);
302 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
303 	}
304 
305 	/*
306 	 * Turn off TX mode.
307 	 */
308 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
309 
310 	/*
311 	 * Check for ack.
312 	 */
313 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
314 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
315 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316 
317 	return (ack);
318 }
319 
320 /*
321  * Read a byte of data stored in the EEPROM at address 'addr.'
322  * We have to send two address bytes since the EEPROM can hold
323  * more than 256 bytes of data.
324  */
325 static uint8_t
326 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
327 {
328 	int i;
329 	uint8_t byte = 0;
330 
331 	EEPROM_START;
332 
333 	/*
334 	 * Send write control code to EEPROM.
335 	 */
336 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
337 		device_printf(sc->ti_dev,
338 		    "failed to send write command, status: %x\n",
339 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
340 		return (1);
341 	}
342 
343 	/*
344 	 * Send first byte of address of byte we want to read.
345 	 */
346 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
347 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
348 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
349 		return (1);
350 	}
351 	/*
352 	 * Send second byte address of byte we want to read.
353 	 */
354 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
355 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
356 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
357 		return (1);
358 	}
359 
360 	EEPROM_STOP;
361 	EEPROM_START;
362 	/*
363 	 * Send read control code to EEPROM.
364 	 */
365 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
366 		device_printf(sc->ti_dev,
367 		    "failed to send read command, status: %x\n",
368 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
369 		return (1);
370 	}
371 
372 	/*
373 	 * Start reading bits from EEPROM.
374 	 */
375 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
376 	for (i = 0x80; i; i >>= 1) {
377 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
378 		DELAY(1);
379 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
380 			byte |= i;
381 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
382 		DELAY(1);
383 	}
384 
385 	EEPROM_STOP;
386 
387 	/*
388 	 * No ACK generated for read, so just return byte.
389 	 */
390 
391 	*dest = byte;
392 
393 	return (0);
394 }
395 
396 /*
397  * Read a sequence of bytes from the EEPROM.
398  */
399 static int
400 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
401 {
402 	int err = 0, i;
403 	uint8_t byte = 0;
404 
405 	for (i = 0; i < cnt; i++) {
406 		err = ti_eeprom_getbyte(sc, off + i, &byte);
407 		if (err)
408 			break;
409 		*(dest + i) = byte;
410 	}
411 
412 	return (err ? 1 : 0);
413 }
414 
415 /*
416  * NIC memory read function.
417  * Can be used to copy data from NIC local memory.
418  */
419 static void
420 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
421 {
422 	int segptr, segsize, cnt;
423 	char *ptr;
424 
425 	segptr = addr;
426 	cnt = len;
427 	ptr = buf;
428 
429 	while (cnt) {
430 		if (cnt < TI_WINLEN)
431 			segsize = cnt;
432 		else
433 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
434 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
435 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
436 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
437 		    segsize / 4);
438 		ptr += segsize;
439 		segptr += segsize;
440 		cnt -= segsize;
441 	}
442 }
443 
444 /*
445  * NIC memory write function.
446  * Can be used to copy data into NIC local memory.
447  */
448 static void
449 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
450 {
451 	int segptr, segsize, cnt;
452 	char *ptr;
453 
454 	segptr = addr;
455 	cnt = len;
456 	ptr = buf;
457 
458 	while (cnt) {
459 		if (cnt < TI_WINLEN)
460 			segsize = cnt;
461 		else
462 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
463 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
464 		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
465 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
466 		    segsize / 4);
467 		ptr += segsize;
468 		segptr += segsize;
469 		cnt -= segsize;
470 	}
471 }
472 
473 /*
474  * NIC memory read function.
475  * Can be used to clear a section of NIC local memory.
476  */
477 static void
478 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
479 {
480 	int segptr, segsize, cnt;
481 
482 	segptr = addr;
483 	cnt = len;
484 
485 	while (cnt) {
486 		if (cnt < TI_WINLEN)
487 			segsize = cnt;
488 		else
489 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
490 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
491 		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
492 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
493 		segptr += segsize;
494 		cnt -= segsize;
495 	}
496 }
497 
498 static int
499 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
500     caddr_t buf, int useraddr, int readdata)
501 {
502 	int segptr, segsize, cnt;
503 	caddr_t ptr;
504 	uint32_t origwin;
505 	int resid, segresid;
506 	int first_pass;
507 
508 	TI_LOCK_ASSERT(sc);
509 
510 	/*
511 	 * At the moment, we don't handle non-aligned cases, we just bail.
512 	 * If this proves to be a problem, it will be fixed.
513 	 */
514 	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
515 		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
516 		    "word-aligned\n", __func__, tigon_addr);
517 		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
518 		    "yet supported\n", __func__);
519 		return (EINVAL);
520 	}
521 
522 	segptr = tigon_addr & ~0x3;
523 	segresid = tigon_addr - segptr;
524 
525 	/*
526 	 * This is the non-aligned amount left over that we'll need to
527 	 * copy.
528 	 */
529 	resid = len & 0x3;
530 
531 	/* Add in the left over amount at the front of the buffer */
532 	resid += segresid;
533 
534 	cnt = len & ~0x3;
535 	/*
536 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
537 	 * decrease the residual by that much.
538 	 */
539 	cnt += resid & ~0x3;
540 	resid -= resid & ~0x3;
541 
542 	ptr = buf;
543 
544 	first_pass = 1;
545 
546 	/*
547 	 * Save the old window base value.
548 	 */
549 	origwin = CSR_READ_4(sc, TI_WINBASE);
550 
551 	while (cnt) {
552 		bus_size_t ti_offset;
553 
554 		if (cnt < TI_WINLEN)
555 			segsize = cnt;
556 		else
557 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
558 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
559 
560 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
561 
562 		if (readdata) {
563 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
564 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
565 			if (useraddr) {
566 				/*
567 				 * Yeah, this is a little on the kludgy
568 				 * side, but at least this code is only
569 				 * used for debugging.
570 				 */
571 				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
572 				    segsize, TI_SWAP_NTOH);
573 
574 				TI_UNLOCK(sc);
575 				if (first_pass) {
576 					copyout(&sc->ti_membuf2[segresid], ptr,
577 					    segsize - segresid);
578 					first_pass = 0;
579 				} else
580 					copyout(sc->ti_membuf2, ptr, segsize);
581 				TI_LOCK(sc);
582 			} else {
583 				if (first_pass) {
584 					ti_bcopy_swap(sc->ti_membuf,
585 					    sc->ti_membuf2, segsize,
586 					    TI_SWAP_NTOH);
587 					TI_UNLOCK(sc);
588 					bcopy(&sc->ti_membuf2[segresid], ptr,
589 					    segsize - segresid);
590 					TI_LOCK(sc);
591 					first_pass = 0;
592 				} else
593 					ti_bcopy_swap(sc->ti_membuf, ptr,
594 					    segsize, TI_SWAP_NTOH);
595 			}
596 
597 		} else {
598 			if (useraddr) {
599 				TI_UNLOCK(sc);
600 				copyin(ptr, sc->ti_membuf2, segsize);
601 				TI_LOCK(sc);
602 				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
603 				    segsize, TI_SWAP_HTON);
604 			} else
605 				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
606 				    TI_SWAP_HTON);
607 
608 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
609 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
610 		}
611 		segptr += segsize;
612 		ptr += segsize;
613 		cnt -= segsize;
614 	}
615 
616 	/*
617 	 * Handle leftover, non-word-aligned bytes.
618 	 */
619 	if (resid != 0) {
620 		uint32_t tmpval, tmpval2;
621 		bus_size_t ti_offset;
622 
623 		/*
624 		 * Set the segment pointer.
625 		 */
626 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
627 
628 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
629 
630 		/*
631 		 * First, grab whatever is in our source/destination.
632 		 * We'll obviously need this for reads, but also for
633 		 * writes, since we'll be doing read/modify/write.
634 		 */
635 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
636 		    ti_offset, &tmpval, 1);
637 
638 		/*
639 		 * Next, translate this from little-endian to big-endian
640 		 * (at least on i386 boxes).
641 		 */
642 		tmpval2 = ntohl(tmpval);
643 
644 		if (readdata) {
645 			/*
646 			 * If we're reading, just copy the leftover number
647 			 * of bytes from the host byte order buffer to
648 			 * the user's buffer.
649 			 */
650 			if (useraddr) {
651 				TI_UNLOCK(sc);
652 				copyout(&tmpval2, ptr, resid);
653 				TI_LOCK(sc);
654 			} else
655 				bcopy(&tmpval2, ptr, resid);
656 		} else {
657 			/*
658 			 * If we're writing, first copy the bytes to be
659 			 * written into the network byte order buffer,
660 			 * leaving the rest of the buffer with whatever was
661 			 * originally in there.  Then, swap the bytes
662 			 * around into host order and write them out.
663 			 *
664 			 * XXX KDM the read side of this has been verified
665 			 * to work, but the write side of it has not been
666 			 * verified.  So user beware.
667 			 */
668 			if (useraddr) {
669 				TI_UNLOCK(sc);
670 				copyin(ptr, &tmpval2, resid);
671 				TI_LOCK(sc);
672 			} else
673 				bcopy(ptr, &tmpval2, resid);
674 
675 			tmpval = htonl(tmpval2);
676 
677 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
678 			    ti_offset, &tmpval, 1);
679 		}
680 	}
681 
682 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
683 
684 	return (0);
685 }
686 
687 static int
688 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
689     caddr_t buf, int useraddr, int readdata, int cpu)
690 {
691 	uint32_t segptr;
692 	int cnt;
693 	uint32_t tmpval, tmpval2;
694 	caddr_t ptr;
695 
696 	TI_LOCK_ASSERT(sc);
697 
698 	/*
699 	 * At the moment, we don't handle non-aligned cases, we just bail.
700 	 * If this proves to be a problem, it will be fixed.
701 	 */
702 	if (tigon_addr & 0x3) {
703 		device_printf(sc->ti_dev, "%s: tigon address %#x "
704 		    "isn't word-aligned\n", __func__, tigon_addr);
705 		return (EINVAL);
706 	}
707 
708 	if (len & 0x3) {
709 		device_printf(sc->ti_dev, "%s: transfer length %d "
710 		    "isn't word-aligned\n", __func__, len);
711 		return (EINVAL);
712 	}
713 
714 	segptr = tigon_addr;
715 	cnt = len;
716 	ptr = buf;
717 
718 	while (cnt) {
719 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
720 
721 		if (readdata) {
722 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
723 
724 			tmpval = ntohl(tmpval2);
725 
726 			/*
727 			 * Note:  I've used this debugging interface
728 			 * extensively with Alteon's 12.3.15 firmware,
729 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
730 			 *
731 			 * When you compile the firmware without
732 			 * optimization, which is necessary sometimes in
733 			 * order to properly step through it, you sometimes
734 			 * read out a bogus value of 0xc0017c instead of
735 			 * whatever was supposed to be in that scratchpad
736 			 * location.  That value is on the stack somewhere,
737 			 * but I've never been able to figure out what was
738 			 * causing the problem.
739 			 *
740 			 * The address seems to pop up in random places,
741 			 * often not in the same place on two subsequent
742 			 * reads.
743 			 *
744 			 * In any case, the underlying data doesn't seem
745 			 * to be affected, just the value read out.
746 			 *
747 			 * KDM, 3/7/2000
748 			 */
749 
750 			if (tmpval2 == 0xc0017c)
751 				device_printf(sc->ti_dev, "found 0xc0017c at "
752 				    "%#x (tmpval2)\n", segptr);
753 
754 			if (tmpval == 0xc0017c)
755 				device_printf(sc->ti_dev, "found 0xc0017c at "
756 				    "%#x (tmpval)\n", segptr);
757 
758 			if (useraddr)
759 				copyout(&tmpval, ptr, 4);
760 			else
761 				bcopy(&tmpval, ptr, 4);
762 		} else {
763 			if (useraddr)
764 				copyin(ptr, &tmpval2, 4);
765 			else
766 				bcopy(ptr, &tmpval2, 4);
767 
768 			tmpval = htonl(tmpval2);
769 
770 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
771 		}
772 
773 		cnt -= 4;
774 		segptr += 4;
775 		ptr += 4;
776 	}
777 
778 	return (0);
779 }
780 
781 static int
782 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
783 {
784 	const uint8_t *tmpsrc;
785 	uint8_t *tmpdst;
786 	size_t tmplen;
787 
788 	if (len & 0x3) {
789 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
790 		return (-1);
791 	}
792 
793 	tmpsrc = src;
794 	tmpdst = dst;
795 	tmplen = len;
796 
797 	while (tmplen) {
798 		if (swap_type == TI_SWAP_NTOH)
799 			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
800 		else
801 			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
802 		tmpsrc += 4;
803 		tmpdst += 4;
804 		tmplen -= 4;
805 	}
806 
807 	return (0);
808 }
809 
810 /*
811  * Load firmware image into the NIC. Check that the firmware revision
812  * is acceptable and see if we want the firmware for the Tigon 1 or
813  * Tigon 2.
814  */
815 static void
816 ti_loadfw(struct ti_softc *sc)
817 {
818 
819 	TI_LOCK_ASSERT(sc);
820 
821 	switch (sc->ti_hwrev) {
822 	case TI_HWREV_TIGON:
823 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
824 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
825 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
826 			device_printf(sc->ti_dev, "firmware revision mismatch; "
827 			    "want %d.%d.%d, got %d.%d.%d\n",
828 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
829 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
830 			    tigonFwReleaseMinor, tigonFwReleaseFix);
831 			return;
832 		}
833 		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
834 		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
835 		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
836 		    tigonFwRodata);
837 		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
838 		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
839 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
840 		break;
841 	case TI_HWREV_TIGON_II:
842 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
843 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
844 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
845 			device_printf(sc->ti_dev, "firmware revision mismatch; "
846 			    "want %d.%d.%d, got %d.%d.%d\n",
847 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
848 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
849 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
850 			return;
851 		}
852 		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
853 		    tigon2FwText);
854 		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
855 		    tigon2FwData);
856 		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
857 		    tigon2FwRodata);
858 		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
859 		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
860 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
861 		break;
862 	default:
863 		device_printf(sc->ti_dev,
864 		    "can't load firmware: unknown hardware rev\n");
865 		break;
866 	}
867 }
868 
869 /*
870  * Send the NIC a command via the command ring.
871  */
872 static void
873 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
874 {
875 	int index;
876 
877 	index = sc->ti_cmd_saved_prodidx;
878 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
879 	TI_INC(index, TI_CMD_RING_CNT);
880 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
881 	sc->ti_cmd_saved_prodidx = index;
882 }
883 
884 /*
885  * Send the NIC an extended command. The 'len' parameter specifies the
886  * number of command slots to include after the initial command.
887  */
888 static void
889 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
890 {
891 	int index;
892 	int i;
893 
894 	index = sc->ti_cmd_saved_prodidx;
895 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
896 	TI_INC(index, TI_CMD_RING_CNT);
897 	for (i = 0; i < len; i++) {
898 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
899 		    *(uint32_t *)(&arg[i * 4]));
900 		TI_INC(index, TI_CMD_RING_CNT);
901 	}
902 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
903 	sc->ti_cmd_saved_prodidx = index;
904 }
905 
906 /*
907  * Handle events that have triggered interrupts.
908  */
909 static void
910 ti_handle_events(struct ti_softc *sc)
911 {
912 	struct ti_event_desc *e;
913 
914 	if (sc->ti_rdata.ti_event_ring == NULL)
915 		return;
916 
917 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
918 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
919 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
920 		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
921 		switch (TI_EVENT_EVENT(e)) {
922 		case TI_EV_LINKSTAT_CHANGED:
923 			sc->ti_linkstat = TI_EVENT_CODE(e);
924 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
925 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
926 				if_setbaudrate(sc->ti_ifp, IF_Mbps(100));
927 				if (bootverbose)
928 					device_printf(sc->ti_dev,
929 					    "10/100 link up\n");
930 			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
931 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
932 				if_setbaudrate(sc->ti_ifp, IF_Gbps(1UL));
933 				if (bootverbose)
934 					device_printf(sc->ti_dev,
935 					    "gigabit link up\n");
936 			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
937 				if_link_state_change(sc->ti_ifp,
938 				    LINK_STATE_DOWN);
939 				if_setbaudrate(sc->ti_ifp, 0);
940 				if (bootverbose)
941 					device_printf(sc->ti_dev,
942 					    "link down\n");
943 			}
944 			break;
945 		case TI_EV_ERROR:
946 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
947 				device_printf(sc->ti_dev, "invalid command\n");
948 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
949 				device_printf(sc->ti_dev, "unknown command\n");
950 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
951 				device_printf(sc->ti_dev, "bad config data\n");
952 			break;
953 		case TI_EV_FIRMWARE_UP:
954 			ti_init2(sc);
955 			break;
956 		case TI_EV_STATS_UPDATED:
957 		case TI_EV_RESET_JUMBO_RING:
958 		case TI_EV_MCAST_UPDATED:
959 			/* Who cares. */
960 			break;
961 		default:
962 			device_printf(sc->ti_dev, "unknown event: %d\n",
963 			    TI_EVENT_EVENT(e));
964 			break;
965 		}
966 		/* Advance the consumer index. */
967 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
968 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
969 	}
970 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
971 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
972 }
973 
974 struct ti_dmamap_arg {
975 	bus_addr_t	ti_busaddr;
976 };
977 
978 static void
979 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
980 {
981 	struct ti_dmamap_arg *ctx;
982 
983 	if (error)
984 		return;
985 
986 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
987 
988 	ctx = arg;
989 	ctx->ti_busaddr = segs->ds_addr;
990 }
991 
992 static int
993 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
994     bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
995     const char *msg)
996 {
997 	struct ti_dmamap_arg ctx;
998 	int error;
999 
1000 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1001 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1002 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1003 	if (error != 0) {
1004 		device_printf(sc->ti_dev,
1005 		    "could not create %s dma tag\n", msg);
1006 		return (error);
1007 	}
1008 	/* Allocate DMA'able memory for ring. */
1009 	error = bus_dmamem_alloc(*tag, (void **)ring,
1010 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1011 	if (error != 0) {
1012 		device_printf(sc->ti_dev,
1013 		    "could not allocate DMA'able memory for %s\n", msg);
1014 		return (error);
1015 	}
1016 	/* Load the address of the ring. */
1017 	ctx.ti_busaddr = 0;
1018 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1019 	    &ctx, BUS_DMA_NOWAIT);
1020 	if (error != 0) {
1021 		device_printf(sc->ti_dev,
1022 		    "could not load DMA'able memory for %s\n", msg);
1023 		return (error);
1024 	}
1025 	*paddr = ctx.ti_busaddr;
1026 	return (0);
1027 }
1028 
1029 static void
1030 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1031     bus_dmamap_t map, bus_addr_t *paddr)
1032 {
1033 
1034 	if (*paddr != 0) {
1035 		bus_dmamap_unload(*tag, map);
1036 		*paddr = 0;
1037 	}
1038 	if (*ring != NULL) {
1039 		bus_dmamem_free(*tag, *ring, map);
1040 		*ring = NULL;
1041 	}
1042 	if (*tag) {
1043 		bus_dma_tag_destroy(*tag);
1044 		*tag = NULL;
1045 	}
1046 }
1047 
1048 static int
1049 ti_dma_alloc(struct ti_softc *sc)
1050 {
1051 	bus_addr_t lowaddr;
1052 	int i, error;
1053 
1054 	lowaddr = BUS_SPACE_MAXADDR;
1055 	if (sc->ti_dac == 0)
1056 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1057 
1058 	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1059 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1060 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1061 	    &sc->ti_cdata.ti_parent_tag);
1062 	if (error != 0) {
1063 		device_printf(sc->ti_dev,
1064 		    "could not allocate parent dma tag\n");
1065 		return (ENOMEM);
1066 	}
1067 
1068 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1069 	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1070 	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1071 	if (error)
1072 		return (error);
1073 
1074 	/* Producer/consumer status */
1075 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1076 	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1077 	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1078 	    "event ring");
1079 	if (error)
1080 		return (error);
1081 
1082 	/* Event ring */
1083 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1084 	    &sc->ti_cdata.ti_event_ring_tag,
1085 	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1086 	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1087 	    "event ring");
1088 	if (error)
1089 		return (error);
1090 
1091 	/* Command ring lives in shared memory so no need to create DMA area. */
1092 
1093 	/* Standard RX ring */
1094 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1095 	    &sc->ti_cdata.ti_rx_std_ring_tag,
1096 	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1097 	    &sc->ti_cdata.ti_rx_std_ring_map,
1098 	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1099 	if (error)
1100 		return (error);
1101 
1102 	/* Jumbo RX ring */
1103 	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1104 	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1105 	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1106 	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1107 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1108 	if (error)
1109 		return (error);
1110 
1111 	/* RX return ring */
1112 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1113 	    &sc->ti_cdata.ti_rx_return_ring_tag,
1114 	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1115 	    &sc->ti_cdata.ti_rx_return_ring_map,
1116 	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1117 	if (error)
1118 		return (error);
1119 
1120 	/* Create DMA tag for standard RX mbufs. */
1121 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1122 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1123 	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1124 	if (error) {
1125 		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1126 		return (error);
1127 	}
1128 
1129 	/* Create DMA tag for jumbo RX mbufs. */
1130 #ifdef TI_SF_BUF_JUMBO
1131 	/*
1132 	 * The VM system will take care of providing aligned pages.  Alignment
1133 	 * is set to 1 here so that busdma resources won't be wasted.
1134 	 */
1135 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1136 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1137 	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1138 #else
1139 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1140 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1141 	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1142 #endif
1143 	if (error) {
1144 		device_printf(sc->ti_dev,
1145 		    "could not allocate jumbo RX dma tag\n");
1146 		return (error);
1147 	}
1148 
1149 	/* Create DMA tag for TX mbufs. */
1150 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1151 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1152 	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1153 	    &sc->ti_cdata.ti_tx_tag);
1154 	if (error) {
1155 		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1156 		return (ENOMEM);
1157 	}
1158 
1159 	/* Create DMA maps for RX buffers. */
1160 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1161 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1162 		    &sc->ti_cdata.ti_rx_std_maps[i]);
1163 		if (error) {
1164 			device_printf(sc->ti_dev,
1165 			    "could not create DMA map for RX\n");
1166 			return (error);
1167 		}
1168 	}
1169 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1170 	    &sc->ti_cdata.ti_rx_std_sparemap);
1171 	if (error) {
1172 		device_printf(sc->ti_dev,
1173 		    "could not create spare DMA map for RX\n");
1174 		return (error);
1175 	}
1176 
1177 	/* Create DMA maps for jumbo RX buffers. */
1178 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1179 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1180 		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1181 		if (error) {
1182 			device_printf(sc->ti_dev,
1183 			    "could not create DMA map for jumbo RX\n");
1184 			return (error);
1185 		}
1186 	}
1187 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1188 	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1189 	if (error) {
1190 		device_printf(sc->ti_dev,
1191 		    "could not create spare DMA map for jumbo RX\n");
1192 		return (error);
1193 	}
1194 
1195 	/* Create DMA maps for TX buffers. */
1196 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1197 		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1198 		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1199 		if (error) {
1200 			device_printf(sc->ti_dev,
1201 			    "could not create DMA map for TX\n");
1202 			return (ENOMEM);
1203 		}
1204 	}
1205 
1206 	/* Mini ring and TX ring is not available on Tigon 1. */
1207 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1208 		return (0);
1209 
1210 	/* TX ring */
1211 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1212 	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1213 	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1214 	    "TX ring");
1215 	if (error)
1216 		return (error);
1217 
1218 	/* Mini RX ring */
1219 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1220 	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1221 	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1222 	    &sc->ti_cdata.ti_rx_mini_ring_map,
1223 	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1224 	if (error)
1225 		return (error);
1226 
1227 	/* Create DMA tag for mini RX mbufs. */
1228 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1229 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1230 	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1231 	if (error) {
1232 		device_printf(sc->ti_dev,
1233 		    "could not allocate mini RX dma tag\n");
1234 		return (error);
1235 	}
1236 
1237 	/* Create DMA maps for mini RX buffers. */
1238 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1239 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1240 		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1241 		if (error) {
1242 			device_printf(sc->ti_dev,
1243 			    "could not create DMA map for mini RX\n");
1244 			return (error);
1245 		}
1246 	}
1247 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1248 	    &sc->ti_cdata.ti_rx_mini_sparemap);
1249 	if (error) {
1250 		device_printf(sc->ti_dev,
1251 		    "could not create spare DMA map for mini RX\n");
1252 		return (error);
1253 	}
1254 
1255 	return (0);
1256 }
1257 
1258 static void
1259 ti_dma_free(struct ti_softc *sc)
1260 {
1261 	int i;
1262 
1263 	/* Destroy DMA maps for RX buffers. */
1264 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1265 		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1266 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1267 			    sc->ti_cdata.ti_rx_std_maps[i]);
1268 			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1269 		}
1270 	}
1271 	if (sc->ti_cdata.ti_rx_std_sparemap) {
1272 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1273 		    sc->ti_cdata.ti_rx_std_sparemap);
1274 		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1275 	}
1276 	if (sc->ti_cdata.ti_rx_std_tag) {
1277 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1278 		sc->ti_cdata.ti_rx_std_tag = NULL;
1279 	}
1280 
1281 	/* Destroy DMA maps for jumbo RX buffers. */
1282 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1283 		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1284 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1285 			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1286 			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1287 		}
1288 	}
1289 	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1290 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1291 		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1292 		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1293 	}
1294 	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1295 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1296 		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1297 	}
1298 
1299 	/* Destroy DMA maps for mini RX buffers. */
1300 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1301 		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1302 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1303 			    sc->ti_cdata.ti_rx_mini_maps[i]);
1304 			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1305 		}
1306 	}
1307 	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1308 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1309 		    sc->ti_cdata.ti_rx_mini_sparemap);
1310 		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1311 	}
1312 	if (sc->ti_cdata.ti_rx_mini_tag) {
1313 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1314 		sc->ti_cdata.ti_rx_mini_tag = NULL;
1315 	}
1316 
1317 	/* Destroy DMA maps for TX buffers. */
1318 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1319 		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1320 			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1321 			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1322 			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1323 		}
1324 	}
1325 	if (sc->ti_cdata.ti_tx_tag) {
1326 		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1327 		sc->ti_cdata.ti_tx_tag = NULL;
1328 	}
1329 
1330 	/* Destroy standard RX ring. */
1331 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1332 	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1333 	    sc->ti_cdata.ti_rx_std_ring_map,
1334 	    &sc->ti_rdata.ti_rx_std_ring_paddr);
1335 	/* Destroy jumbo RX ring. */
1336 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1337 	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1338 	    sc->ti_cdata.ti_rx_jumbo_ring_map,
1339 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
1340 	/* Destroy mini RX ring. */
1341 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1342 	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1343 	    sc->ti_cdata.ti_rx_mini_ring_map,
1344 	    &sc->ti_rdata.ti_rx_mini_ring_paddr);
1345 	/* Destroy RX return ring. */
1346 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1347 	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1348 	    sc->ti_cdata.ti_rx_return_ring_map,
1349 	    &sc->ti_rdata.ti_rx_return_ring_paddr);
1350 	/* Destroy TX ring. */
1351 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1352 	    (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
1353 	    &sc->ti_rdata.ti_tx_ring_paddr);
1354 	/* Destroy status block. */
1355 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1356 	    (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
1357 	    &sc->ti_rdata.ti_status_paddr);
1358 	/* Destroy event ring. */
1359 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1360 	    (void *)&sc->ti_rdata.ti_event_ring,
1361 	    sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
1362 	/* Destroy GIB */
1363 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1364 	    (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
1365 	    &sc->ti_rdata.ti_info_paddr);
1366 
1367 	/* Destroy the parent tag. */
1368 	if (sc->ti_cdata.ti_parent_tag) {
1369 		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1370 		sc->ti_cdata.ti_parent_tag = NULL;
1371 	}
1372 }
1373 
1374 /*
1375  * Intialize a standard receive ring descriptor.
1376  */
1377 static int
1378 ti_newbuf_std(struct ti_softc *sc, int i)
1379 {
1380 	bus_dmamap_t map;
1381 	bus_dma_segment_t segs[1];
1382 	struct mbuf *m;
1383 	struct ti_rx_desc *r;
1384 	int error, nsegs;
1385 
1386 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1387 	if (m == NULL)
1388 		return (ENOBUFS);
1389 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1390 	m_adj(m, ETHER_ALIGN);
1391 
1392 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1393 	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1394 	if (error != 0) {
1395 		m_freem(m);
1396 		return (error);
1397         }
1398 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1399 
1400 	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1401 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1402 		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1403 		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1404 		    sc->ti_cdata.ti_rx_std_maps[i]);
1405 	}
1406 
1407 	map = sc->ti_cdata.ti_rx_std_maps[i];
1408 	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1409 	sc->ti_cdata.ti_rx_std_sparemap = map;
1410 	sc->ti_cdata.ti_rx_std_chain[i] = m;
1411 
1412 	r = &sc->ti_rdata.ti_rx_std_ring[i];
1413 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1414 	r->ti_len = segs[0].ds_len;
1415 	r->ti_type = TI_BDTYPE_RECV_BD;
1416 	r->ti_flags = 0;
1417 	r->ti_vlan_tag = 0;
1418 	r->ti_tcp_udp_cksum = 0;
1419 	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1420 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1421 	r->ti_idx = i;
1422 
1423 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1424 	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1425 	return (0);
1426 }
1427 
1428 /*
1429  * Intialize a mini receive ring descriptor. This only applies to
1430  * the Tigon 2.
1431  */
1432 static int
1433 ti_newbuf_mini(struct ti_softc *sc, int i)
1434 {
1435 	bus_dmamap_t map;
1436 	bus_dma_segment_t segs[1];
1437 	struct mbuf *m;
1438 	struct ti_rx_desc *r;
1439 	int error, nsegs;
1440 
1441 	MGETHDR(m, M_NOWAIT, MT_DATA);
1442 	if (m == NULL)
1443 		return (ENOBUFS);
1444 	m->m_len = m->m_pkthdr.len = MHLEN;
1445 	m_adj(m, ETHER_ALIGN);
1446 
1447 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1448 	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1449 	if (error != 0) {
1450 		m_freem(m);
1451 		return (error);
1452         }
1453 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1454 
1455 	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1456 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1457 		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1458 		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1459 		    sc->ti_cdata.ti_rx_mini_maps[i]);
1460 	}
1461 
1462 	map = sc->ti_cdata.ti_rx_mini_maps[i];
1463 	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1464 	sc->ti_cdata.ti_rx_mini_sparemap = map;
1465 	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1466 
1467 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1468 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1469 	r->ti_len = segs[0].ds_len;
1470 	r->ti_type = TI_BDTYPE_RECV_BD;
1471 	r->ti_flags = TI_BDFLAG_MINI_RING;
1472 	r->ti_vlan_tag = 0;
1473 	r->ti_tcp_udp_cksum = 0;
1474 	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1475 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1476 	r->ti_idx = i;
1477 
1478 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1479 	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1480 	return (0);
1481 }
1482 
1483 #ifndef TI_SF_BUF_JUMBO
1484 
1485 /*
1486  * Initialize a jumbo receive ring descriptor. This allocates
1487  * a jumbo buffer from the pool managed internally by the driver.
1488  */
1489 static int
1490 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1491 {
1492 	bus_dmamap_t map;
1493 	bus_dma_segment_t segs[1];
1494 	struct mbuf *m;
1495 	struct ti_rx_desc *r;
1496 	int error, nsegs;
1497 
1498 	(void)dummy;
1499 
1500 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1501 	if (m == NULL)
1502 		return (ENOBUFS);
1503 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1504 	m_adj(m, ETHER_ALIGN);
1505 
1506 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1507 	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1508 	if (error != 0) {
1509 		m_freem(m);
1510 		return (error);
1511         }
1512 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1513 
1514 	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1515 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1516 		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1517 		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1518 		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1519 	}
1520 
1521 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1522 	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1523 	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1524 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1525 
1526 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1527 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1528 	r->ti_len = segs[0].ds_len;
1529 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1530 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1531 	r->ti_vlan_tag = 0;
1532 	r->ti_tcp_udp_cksum = 0;
1533 	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1534 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1535 	r->ti_idx = i;
1536 
1537 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1538 	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1539 	return (0);
1540 }
1541 
1542 #else
1543 
1544 #if (PAGE_SIZE == 4096)
1545 #define NPAYLOAD 2
1546 #else
1547 #define NPAYLOAD 1
1548 #endif
1549 
1550 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1551 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1552 #define NFS_HDR_LEN (UDP_HDR_LEN)
1553 static int HDR_LEN = TCP_HDR_LEN;
1554 
1555 /*
1556  * Initialize a jumbo receive ring descriptor. This allocates
1557  * a jumbo buffer from the pool managed internally by the driver.
1558  */
1559 static int
1560 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1561 {
1562 	bus_dmamap_t map;
1563 	struct mbuf *cur, *m_new = NULL;
1564 	struct mbuf *m[3] = {NULL, NULL, NULL};
1565 	struct ti_rx_desc_ext *r;
1566 	vm_page_t frame;
1567 	/* 1 extra buf to make nobufs easy*/
1568 	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1569 	int i;
1570 	bus_dma_segment_t segs[4];
1571 	int nsegs;
1572 
1573 	if (m_old != NULL) {
1574 		m_new = m_old;
1575 		cur = m_old->m_next;
1576 		for (i = 0; i <= NPAYLOAD; i++){
1577 			m[i] = cur;
1578 			cur = cur->m_next;
1579 		}
1580 	} else {
1581 		/* Allocate the mbufs. */
1582 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1583 		if (m_new == NULL) {
1584 			device_printf(sc->ti_dev, "mbuf allocation failed "
1585 			    "-- packet dropped!\n");
1586 			goto nobufs;
1587 		}
1588 		MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
1589 		if (m[NPAYLOAD] == NULL) {
1590 			device_printf(sc->ti_dev, "cluster mbuf allocation "
1591 			    "failed -- packet dropped!\n");
1592 			goto nobufs;
1593 		}
1594 		if (!(MCLGET(m[NPAYLOAD], M_NOWAIT))) {
1595 			device_printf(sc->ti_dev, "mbuf allocation failed "
1596 			    "-- packet dropped!\n");
1597 			goto nobufs;
1598 		}
1599 		m[NPAYLOAD]->m_len = MCLBYTES;
1600 
1601 		for (i = 0; i < NPAYLOAD; i++){
1602 			MGET(m[i], M_NOWAIT, MT_DATA);
1603 			if (m[i] == NULL) {
1604 				device_printf(sc->ti_dev, "mbuf allocation "
1605 				    "failed -- packet dropped!\n");
1606 				goto nobufs;
1607 			}
1608 			frame = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
1609 			    VM_ALLOC_WIRED);
1610 			if (frame == NULL) {
1611 				device_printf(sc->ti_dev, "buffer allocation "
1612 				    "failed -- packet dropped!\n");
1613 				printf("      index %d page %d\n", idx, i);
1614 				goto nobufs;
1615 			}
1616 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1617 			if (sf[i] == NULL) {
1618 				vm_page_unwire_noq(frame);
1619 				vm_page_free(frame);
1620 				device_printf(sc->ti_dev, "buffer allocation "
1621 				    "failed -- packet dropped!\n");
1622 				printf("      index %d page %d\n", idx, i);
1623 				goto nobufs;
1624 			}
1625 		}
1626 		for (i = 0; i < NPAYLOAD; i++){
1627 		/* Attach the buffer to the mbuf. */
1628 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1629 			m[i]->m_len = PAGE_SIZE;
1630 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1631 			    sf_mext_free, (void*)sf_buf_kva(sf[i]), sf[i],
1632 			    0, EXT_DISPOSABLE);
1633 			m[i]->m_next = m[i+1];
1634 		}
1635 		/* link the buffers to the header */
1636 		m_new->m_next = m[0];
1637 		m_new->m_data += ETHER_ALIGN;
1638 		if (sc->ti_hdrsplit)
1639 			m_new->m_len = MHLEN - ETHER_ALIGN;
1640 		else
1641 			m_new->m_len = HDR_LEN;
1642 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1643 	}
1644 
1645 	/* Set up the descriptor. */
1646 	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1647 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1648 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1649 	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1650 	    segs, &nsegs, 0))
1651 		return (ENOBUFS);
1652 	if ((nsegs < 1) || (nsegs > 4))
1653 		return (ENOBUFS);
1654 	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1655 	r->ti_len0 = m_new->m_len;
1656 
1657 	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1658 	r->ti_len1 = PAGE_SIZE;
1659 
1660 	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1661 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1662 
1663 	if (PAGE_SIZE == 4096) {
1664 		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1665 		r->ti_len3 = MCLBYTES;
1666 	} else {
1667 		r->ti_len3 = 0;
1668 	}
1669 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1670 
1671 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1672 
1673 	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
1674 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1675 
1676 	r->ti_idx = idx;
1677 
1678 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1679 	return (0);
1680 
1681 nobufs:
1682 
1683 	/*
1684 	 * Warning! :
1685 	 * This can only be called before the mbufs are strung together.
1686 	 * If the mbufs are strung together, m_freem() will free the chain,
1687 	 * so that the later mbufs will be freed multiple times.
1688 	 */
1689 	if (m_new)
1690 		m_freem(m_new);
1691 
1692 	for (i = 0; i < 3; i++) {
1693 		if (m[i])
1694 			m_freem(m[i]);
1695 		if (sf[i])
1696 			sf_mext_free((void *)sf_buf_kva(sf[i]), sf[i]);
1697 	}
1698 	return (ENOBUFS);
1699 }
1700 #endif
1701 
1702 /*
1703  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1704  * that's 1MB or memory, which is a lot. For now, we fill only the first
1705  * 256 ring entries and hope that our CPU is fast enough to keep up with
1706  * the NIC.
1707  */
1708 static int
1709 ti_init_rx_ring_std(struct ti_softc *sc)
1710 {
1711 	int i;
1712 	struct ti_cmd_desc cmd;
1713 
1714 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1715 		if (ti_newbuf_std(sc, i) != 0)
1716 			return (ENOBUFS);
1717 	}
1718 
1719 	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1720 	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1721 
1722 	return (0);
1723 }
1724 
1725 static void
1726 ti_free_rx_ring_std(struct ti_softc *sc)
1727 {
1728 	bus_dmamap_t map;
1729 	int i;
1730 
1731 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1732 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1733 			map = sc->ti_cdata.ti_rx_std_maps[i];
1734 			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1735 			    BUS_DMASYNC_POSTREAD);
1736 			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1737 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1738 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1739 		}
1740 	}
1741 	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1742 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1743 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1744 }
1745 
1746 static int
1747 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1748 {
1749 	struct ti_cmd_desc cmd;
1750 	int i;
1751 
1752 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1753 		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1754 			return (ENOBUFS);
1755 	}
1756 
1757 	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1758 	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1759 
1760 	return (0);
1761 }
1762 
1763 static void
1764 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1765 {
1766 	bus_dmamap_t map;
1767 	int i;
1768 
1769 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1770 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1771 			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1772 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1773 			    BUS_DMASYNC_POSTREAD);
1774 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1775 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1776 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1777 		}
1778 	}
1779 	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1780 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1781 	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1782 }
1783 
1784 static int
1785 ti_init_rx_ring_mini(struct ti_softc *sc)
1786 {
1787 	int i;
1788 
1789 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1790 		if (ti_newbuf_mini(sc, i) != 0)
1791 			return (ENOBUFS);
1792 	}
1793 
1794 	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1795 	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1796 
1797 	return (0);
1798 }
1799 
1800 static void
1801 ti_free_rx_ring_mini(struct ti_softc *sc)
1802 {
1803 	bus_dmamap_t map;
1804 	int i;
1805 
1806 	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1807 		return;
1808 
1809 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1810 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1811 			map = sc->ti_cdata.ti_rx_mini_maps[i];
1812 			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1813 			    BUS_DMASYNC_POSTREAD);
1814 			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1815 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1816 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1817 		}
1818 	}
1819 	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1820 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1821 	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1822 }
1823 
1824 static void
1825 ti_free_tx_ring(struct ti_softc *sc)
1826 {
1827 	struct ti_txdesc *txd;
1828 	int i;
1829 
1830 	if (sc->ti_rdata.ti_tx_ring == NULL)
1831 		return;
1832 
1833 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1834 		txd = &sc->ti_cdata.ti_txdesc[i];
1835 		if (txd->tx_m != NULL) {
1836 			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1837 			    BUS_DMASYNC_POSTWRITE);
1838 			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1839 			    txd->tx_dmamap);
1840 			m_freem(txd->tx_m);
1841 			txd->tx_m = NULL;
1842 		}
1843 	}
1844 	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1845 	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1846 	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1847 }
1848 
1849 static int
1850 ti_init_tx_ring(struct ti_softc *sc)
1851 {
1852 	struct ti_txdesc *txd;
1853 	int i;
1854 
1855 	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1856 	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1857 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1858 		txd = &sc->ti_cdata.ti_txdesc[i];
1859 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1860 	}
1861 	sc->ti_txcnt = 0;
1862 	sc->ti_tx_saved_considx = 0;
1863 	sc->ti_tx_saved_prodidx = 0;
1864 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1865 	return (0);
1866 }
1867 
1868 /*
1869  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1870  * but we have to support the old way too so that Tigon 1 cards will
1871  * work.
1872  */
1873 static u_int
1874 ti_add_mcast(void *arg, struct sockaddr_dl *sdl, u_int count)
1875 {
1876 	struct ti_softc *sc = arg;
1877 	struct ti_cmd_desc cmd;
1878 	uint16_t *m;
1879 	uint32_t ext[2] = {0, 0};
1880 
1881 	m = (uint16_t *)LLADDR(sdl);
1882 
1883 	switch (sc->ti_hwrev) {
1884 	case TI_HWREV_TIGON:
1885 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1886 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1887 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1888 		break;
1889 	case TI_HWREV_TIGON_II:
1890 		ext[0] = htons(m[0]);
1891 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1892 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1893 		break;
1894 	default:
1895 		device_printf(sc->ti_dev, "unknown hwrev\n");
1896 		return (0);
1897 	}
1898 	return (1);
1899 }
1900 
1901 static u_int
1902 ti_del_mcast(void *arg, struct sockaddr_dl *sdl, u_int count)
1903 {
1904 	struct ti_softc *sc = arg;
1905 	struct ti_cmd_desc cmd;
1906 	uint16_t *m;
1907 	uint32_t ext[2] = {0, 0};
1908 
1909 	m = (uint16_t *)LLADDR(sdl);
1910 
1911 	switch (sc->ti_hwrev) {
1912 	case TI_HWREV_TIGON:
1913 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1914 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1915 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1916 		break;
1917 	case TI_HWREV_TIGON_II:
1918 		ext[0] = htons(m[0]);
1919 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1920 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1921 		break;
1922 	default:
1923 		device_printf(sc->ti_dev, "unknown hwrev\n");
1924 		return (0);
1925 	}
1926 
1927 	return (1);
1928 }
1929 
1930 /*
1931  * Configure the Tigon's multicast address filter.
1932  *
1933  * The actual multicast table management is a bit of a pain, thanks to
1934  * slight brain damage on the part of both Alteon and us. With our
1935  * multicast code, we are only alerted when the multicast address table
1936  * changes and at that point we only have the current list of addresses:
1937  * we only know the current state, not the previous state, so we don't
1938  * actually know what addresses were removed or added. The firmware has
1939  * state, but we can't get our grubby mits on it, and there is no 'delete
1940  * all multicast addresses' command. Hence, we have to maintain our own
1941  * state so we know what addresses have been programmed into the NIC at
1942  * any given time.
1943  */
1944 static void
1945 ti_setmulti(struct ti_softc *sc)
1946 {
1947 	if_t ifp;
1948 	struct ti_cmd_desc cmd;
1949 	uint32_t intrs;
1950 
1951 	TI_LOCK_ASSERT(sc);
1952 
1953 	ifp = sc->ti_ifp;
1954 
1955 	if (if_getflags(ifp) & IFF_ALLMULTI) {
1956 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1957 		return;
1958 	} else {
1959 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1960 	}
1961 
1962 	/* Disable interrupts. */
1963 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1964 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1965 
1966 	/* First, zot all the existing filters. */
1967 	if_foreach_llmaddr(ifp, ti_del_mcast, sc);
1968 
1969 	/* Now program new ones. */
1970 	if_foreach_llmaddr(ifp, ti_add_mcast, sc);
1971 
1972 	/* Re-enable interrupts. */
1973 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1974 }
1975 
1976 /*
1977  * Check to see if the BIOS has configured us for a 64 bit slot when
1978  * we aren't actually in one. If we detect this condition, we can work
1979  * around it on the Tigon 2 by setting a bit in the PCI state register,
1980  * but for the Tigon 1 we must give up and abort the interface attach.
1981  */
1982 static int
1983 ti_64bitslot_war(struct ti_softc *sc)
1984 {
1985 
1986 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1987 		CSR_WRITE_4(sc, 0x600, 0);
1988 		CSR_WRITE_4(sc, 0x604, 0);
1989 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1990 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1991 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1992 				return (EINVAL);
1993 			else {
1994 				TI_SETBIT(sc, TI_PCI_STATE,
1995 				    TI_PCISTATE_32BIT_BUS);
1996 				return (0);
1997 			}
1998 		}
1999 	}
2000 
2001 	return (0);
2002 }
2003 
2004 /*
2005  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2006  * self-test results.
2007  */
2008 static int
2009 ti_chipinit(struct ti_softc *sc)
2010 {
2011 	uint32_t cacheline;
2012 	uint32_t pci_writemax = 0;
2013 	uint32_t hdrsplit;
2014 
2015 	/* Initialize link to down state. */
2016 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2017 
2018 	/* Set endianness before we access any non-PCI registers. */
2019 #if 0 && BYTE_ORDER == BIG_ENDIAN
2020 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2021 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2022 #else
2023 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2024 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2025 #endif
2026 
2027 	/* Check the ROM failed bit to see if self-tests passed. */
2028 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2029 		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2030 		return (ENODEV);
2031 	}
2032 
2033 	/* Halt the CPU. */
2034 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2035 
2036 	/* Figure out the hardware revision. */
2037 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2038 	case TI_REV_TIGON_I:
2039 		sc->ti_hwrev = TI_HWREV_TIGON;
2040 		break;
2041 	case TI_REV_TIGON_II:
2042 		sc->ti_hwrev = TI_HWREV_TIGON_II;
2043 		break;
2044 	default:
2045 		device_printf(sc->ti_dev, "unsupported chip revision\n");
2046 		return (ENODEV);
2047 	}
2048 
2049 	/* Do special setup for Tigon 2. */
2050 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2051 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2052 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2053 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2054 	}
2055 
2056 	/*
2057 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2058 	 * can't do header splitting.
2059 	 */
2060 #ifdef TI_JUMBO_HDRSPLIT
2061 	if (sc->ti_hwrev != TI_HWREV_TIGON)
2062 		sc->ti_hdrsplit = 1;
2063 	else
2064 		device_printf(sc->ti_dev,
2065 		    "can't do header splitting on a Tigon I board\n");
2066 #endif /* TI_JUMBO_HDRSPLIT */
2067 
2068 	/* Set up the PCI state register. */
2069 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2070 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2071 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2072 	}
2073 
2074 	/* Clear the read/write max DMA parameters. */
2075 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2076 	    TI_PCISTATE_READ_MAXDMA));
2077 
2078 	/* Get cache line size. */
2079 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2080 
2081 	/*
2082 	 * If the system has set enabled the PCI memory write
2083 	 * and invalidate command in the command register, set
2084 	 * the write max parameter accordingly. This is necessary
2085 	 * to use MWI with the Tigon 2.
2086 	 */
2087 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2088 		switch (cacheline) {
2089 		case 1:
2090 		case 4:
2091 		case 8:
2092 		case 16:
2093 		case 32:
2094 		case 64:
2095 			break;
2096 		default:
2097 		/* Disable PCI memory write and invalidate. */
2098 			if (bootverbose)
2099 				device_printf(sc->ti_dev, "cache line size %d"
2100 				    " not supported; disabling PCI MWI\n",
2101 				    cacheline);
2102 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2103 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2104 			break;
2105 		}
2106 	}
2107 
2108 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2109 
2110 	/* This sets the min dma param all the way up (0xff). */
2111 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2112 
2113 	if (sc->ti_hdrsplit)
2114 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2115 	else
2116 		hdrsplit = 0;
2117 
2118 	/* Configure DMA variables. */
2119 #if BYTE_ORDER == BIG_ENDIAN
2120 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2121 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2122 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2123 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2124 #else /* BYTE_ORDER */
2125 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2126 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2127 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2128 #endif /* BYTE_ORDER */
2129 
2130 	/*
2131 	 * Only allow 1 DMA channel to be active at a time.
2132 	 * I don't think this is a good idea, but without it
2133 	 * the firmware racks up lots of nicDmaReadRingFull
2134 	 * errors.  This is not compatible with hardware checksums.
2135 	 */
2136 	if ((if_getcapenable(sc->ti_ifp) & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2137 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2138 
2139 	/* Recommended settings from Tigon manual. */
2140 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2141 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2142 
2143 	if (ti_64bitslot_war(sc)) {
2144 		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2145 		    "but we aren't");
2146 		return (EINVAL);
2147 	}
2148 
2149 	return (0);
2150 }
2151 
2152 /*
2153  * Initialize the general information block and firmware, and
2154  * start the CPU(s) running.
2155  */
2156 static int
2157 ti_gibinit(struct ti_softc *sc)
2158 {
2159 	if_t ifp;
2160 	struct ti_rcb *rcb;
2161 	int i;
2162 
2163 	TI_LOCK_ASSERT(sc);
2164 
2165 	ifp = sc->ti_ifp;
2166 
2167 	/* Disable interrupts for now. */
2168 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2169 
2170 	/* Tell the chip where to find the general information block. */
2171 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2172 	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2173 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2174 	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2175 
2176 	/* Load the firmware into SRAM. */
2177 	ti_loadfw(sc);
2178 
2179 	/* Set up the contents of the general info and ring control blocks. */
2180 
2181 	/* Set up the event ring and producer pointer. */
2182 	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2183 	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2184 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2185 	rcb->ti_flags = 0;
2186 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2187 	    sc->ti_rdata.ti_status_paddr +
2188 	    offsetof(struct ti_status, ti_ev_prodidx_r));
2189 	sc->ti_ev_prodidx.ti_idx = 0;
2190 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2191 	sc->ti_ev_saved_considx = 0;
2192 
2193 	/* Set up the command ring and producer mailbox. */
2194 	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2195 	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2196 	rcb->ti_flags = 0;
2197 	rcb->ti_max_len = 0;
2198 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2199 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2200 	}
2201 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2202 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2203 	sc->ti_cmd_saved_prodidx = 0;
2204 
2205 	/*
2206 	 * Assign the address of the stats refresh buffer.
2207 	 * We re-use the current stats buffer for this to
2208 	 * conserve memory.
2209 	 */
2210 	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2211 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2212 	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2213 
2214 	/* Set up the standard receive ring. */
2215 	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2216 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2217 	rcb->ti_max_len = TI_FRAMELEN;
2218 	rcb->ti_flags = 0;
2219 	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2220 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2221 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2222 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2223 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2224 
2225 	/* Set up the jumbo receive ring. */
2226 	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2227 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2228 
2229 #ifndef TI_SF_BUF_JUMBO
2230 	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2231 	rcb->ti_flags = 0;
2232 #else
2233 	rcb->ti_max_len = PAGE_SIZE;
2234 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2235 #endif
2236 	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2237 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2238 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2239 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2240 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2241 
2242 	/*
2243 	 * Set up the mini ring. Only activated on the
2244 	 * Tigon 2 but the slot in the config block is
2245 	 * still there on the Tigon 1.
2246 	 */
2247 	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2248 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2249 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2250 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2251 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2252 	else
2253 		rcb->ti_flags = 0;
2254 	if (if_getcapenable(ifp) & IFCAP_RXCSUM)
2255 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2256 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2257 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2258 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2259 
2260 	/*
2261 	 * Set up the receive return ring.
2262 	 */
2263 	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2264 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2265 	rcb->ti_flags = 0;
2266 	rcb->ti_max_len = TI_RETURN_RING_CNT;
2267 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2268 	    sc->ti_rdata.ti_status_paddr +
2269 	    offsetof(struct ti_status, ti_return_prodidx_r));
2270 
2271 	/*
2272 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2273 	 * of putting the transmit ring in the host's address space and
2274 	 * letting the chip DMA it instead of leaving the ring in the NIC's
2275 	 * memory and accessing it through the shared memory region. We
2276 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2277 	 * so we have to revert to the shared memory scheme if we detect
2278 	 * a Tigon 1 chip.
2279 	 */
2280 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2281 	if (sc->ti_rdata.ti_tx_ring != NULL)
2282 		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2283 	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2284 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2285 		rcb->ti_flags = 0;
2286 	else
2287 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2288 	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
2289 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2290 	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2291 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2292 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2293 	rcb->ti_max_len = TI_TX_RING_CNT;
2294 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2295 		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2296 	else
2297 		ti_hostaddr64(&rcb->ti_hostaddr,
2298 		    sc->ti_rdata.ti_tx_ring_paddr);
2299 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2300 	    sc->ti_rdata.ti_status_paddr +
2301 	    offsetof(struct ti_status, ti_tx_considx_r));
2302 
2303 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2304 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2305 	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2306 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2307 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2308 	    sc->ti_cdata.ti_event_ring_map,
2309 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2310 	if (sc->ti_rdata.ti_tx_ring != NULL)
2311 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2312 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2313 
2314 	/* Set up tunables */
2315 #if 0
2316 	if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2317 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2318 		    (sc->ti_rx_coal_ticks / 10));
2319 	else
2320 #endif
2321 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2322 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2323 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2324 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2325 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2326 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2327 
2328 	/* Turn interrupts on. */
2329 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2330 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2331 
2332 	/* Start CPU. */
2333 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2334 
2335 	return (0);
2336 }
2337 
2338 /*
2339  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2340  * against our list and return its name if we find a match.
2341  */
2342 static int
2343 ti_probe(device_t dev)
2344 {
2345 	const struct ti_type *t;
2346 
2347 	t = ti_devs;
2348 
2349 	while (t->ti_name != NULL) {
2350 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2351 		    (pci_get_device(dev) == t->ti_did)) {
2352 			device_set_desc(dev, t->ti_name);
2353 			return (BUS_PROBE_DEFAULT);
2354 		}
2355 		t++;
2356 	}
2357 
2358 	return (ENXIO);
2359 }
2360 
2361 static int
2362 ti_attach(device_t dev)
2363 {
2364 	if_t ifp;
2365 	struct ti_softc *sc;
2366 	int error = 0, rid;
2367 	u_char eaddr[6];
2368 
2369 	sc = device_get_softc(dev);
2370 	sc->ti_dev = dev;
2371 
2372 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2373 	    MTX_DEF);
2374 	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2375 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2376 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2377 	if (ifp == NULL) {
2378 		device_printf(dev, "can not if_alloc()\n");
2379 		error = ENOSPC;
2380 		goto fail;
2381 	}
2382 	if_sethwassist(ifp, TI_CSUM_FEATURES);
2383 	if_setcapabilities(ifp, IFCAP_TXCSUM | IFCAP_RXCSUM);
2384 	if_setcapenable(ifp, if_getcapabilities(sc->ti_ifp));
2385 
2386 	/*
2387 	 * Map control/status registers.
2388 	 */
2389 	pci_enable_busmaster(dev);
2390 
2391 	rid = PCIR_BAR(0);
2392 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2393 	    RF_ACTIVE);
2394 
2395 	if (sc->ti_res == NULL) {
2396 		device_printf(dev, "couldn't map memory\n");
2397 		error = ENXIO;
2398 		goto fail;
2399 	}
2400 
2401 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2402 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2403 
2404 	/* Allocate interrupt */
2405 	rid = 0;
2406 
2407 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2408 	    RF_SHAREABLE | RF_ACTIVE);
2409 
2410 	if (sc->ti_irq == NULL) {
2411 		device_printf(dev, "couldn't map interrupt\n");
2412 		error = ENXIO;
2413 		goto fail;
2414 	}
2415 
2416 	if (ti_chipinit(sc)) {
2417 		device_printf(dev, "chip initialization failed\n");
2418 		error = ENXIO;
2419 		goto fail;
2420 	}
2421 
2422 	/* Zero out the NIC's on-board SRAM. */
2423 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2424 
2425 	/* Init again -- zeroing memory may have clobbered some registers. */
2426 	if (ti_chipinit(sc)) {
2427 		device_printf(dev, "chip initialization failed\n");
2428 		error = ENXIO;
2429 		goto fail;
2430 	}
2431 
2432 	/*
2433 	 * Get station address from the EEPROM. Note: the manual states
2434 	 * that the MAC address is at offset 0x8c, however the data is
2435 	 * stored as two longwords (since that's how it's loaded into
2436 	 * the NIC). This means the MAC address is actually preceded
2437 	 * by two zero bytes. We need to skip over those.
2438 	 */
2439 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2440 		device_printf(dev, "failed to read station address\n");
2441 		error = ENXIO;
2442 		goto fail;
2443 	}
2444 
2445 	/* Allocate working area for memory dump. */
2446 	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2447 	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2448 	    M_NOWAIT);
2449 	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2450 		device_printf(dev, "cannot allocate memory buffer\n");
2451 		error = ENOMEM;
2452 		goto fail;
2453 	}
2454 	if ((error = ti_dma_alloc(sc)) != 0)
2455 		goto fail;
2456 
2457 	/*
2458 	 * We really need a better way to tell a 1000baseTX card
2459 	 * from a 1000baseSX one, since in theory there could be
2460 	 * OEMed 1000baseTX cards from lame vendors who aren't
2461 	 * clever enough to change the PCI ID. For the moment
2462 	 * though, the AceNIC is the only copper card available.
2463 	 */
2464 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2465 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2466 		sc->ti_copper = 1;
2467 	/* Ok, it's not the only copper card available. */
2468 	if (pci_get_vendor(dev) == NG_VENDORID &&
2469 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2470 		sc->ti_copper = 1;
2471 
2472 	/* Set default tunable values. */
2473 	ti_sysctl_node(sc);
2474 
2475 	/* Set up ifnet structure */
2476 	if_setsoftc(ifp, sc);
2477 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2478 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2479 	if_setioctlfn(ifp, ti_ioctl);
2480 	if_setstartfn(ifp, ti_start);
2481 	if_setinitfn(ifp, ti_init);
2482 	if_setgetcounterfn(ifp, ti_get_counter);
2483 	if_setbaudrate(ifp, IF_Gbps(1UL));
2484 	if_setsendqlen(ifp, TI_TX_RING_CNT - 1);
2485 	if_setsendqready(ifp);
2486 
2487 	/* Set up ifmedia support. */
2488 	if (sc->ti_copper) {
2489 		/*
2490 		 * Copper cards allow manual 10/100 mode selection,
2491 		 * but not manual 1000baseTX mode selection. Why?
2492 		 * Because currently there's no way to specify the
2493 		 * master/slave setting through the firmware interface,
2494 		 * so Alteon decided to just bag it and handle it
2495 		 * via autonegotiation.
2496 		 */
2497 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2498 		ifmedia_add(&sc->ifmedia,
2499 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2500 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2501 		ifmedia_add(&sc->ifmedia,
2502 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2503 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2504 		ifmedia_add(&sc->ifmedia,
2505 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2506 	} else {
2507 		/* Fiber cards don't support 10/100 modes. */
2508 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2509 		ifmedia_add(&sc->ifmedia,
2510 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2511 	}
2512 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2513 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2514 
2515 	/*
2516 	 * We're assuming here that card initialization is a sequential
2517 	 * thing.  If it isn't, multiple cards probing at the same time
2518 	 * could stomp on the list of softcs here.
2519 	 */
2520 
2521 	/* Register the device */
2522 	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2523 	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2524 	sc->dev->si_drv1 = sc;
2525 
2526 	/*
2527 	 * Call MI attach routine.
2528 	 */
2529 	ether_ifattach(ifp, eaddr);
2530 
2531 	/* VLAN capability setup. */
2532 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2533 	    IFCAP_VLAN_HWTAGGING, 0);
2534 	if_setcapenable(ifp, if_getcapabilities(ifp));
2535 	/* Tell the upper layer we support VLAN over-sized frames. */
2536 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2537 
2538 	/* Driver supports link state tracking. */
2539 	if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
2540 	if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0);
2541 
2542 	/* Hook interrupt last to avoid having to lock softc */
2543 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2544 	   NULL, ti_intr, sc, &sc->ti_intrhand);
2545 
2546 	if (error) {
2547 		device_printf(dev, "couldn't set up irq\n");
2548 		goto fail;
2549 	}
2550 
2551 fail:
2552 	if (error)
2553 		ti_detach(dev);
2554 
2555 	return (error);
2556 }
2557 
2558 /*
2559  * Shutdown hardware and free up resources. This can be called any
2560  * time after the mutex has been initialized. It is called in both
2561  * the error case in attach and the normal detach case so it needs
2562  * to be careful about only freeing resources that have actually been
2563  * allocated.
2564  */
2565 static int
2566 ti_detach(device_t dev)
2567 {
2568 	struct ti_softc *sc;
2569 	if_t ifp;
2570 
2571 	sc = device_get_softc(dev);
2572 	if (sc->dev)
2573 		destroy_dev(sc->dev);
2574 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2575 	ifp = sc->ti_ifp;
2576 	if (device_is_attached(dev)) {
2577 		ether_ifdetach(ifp);
2578 		TI_LOCK(sc);
2579 		ti_stop(sc);
2580 		TI_UNLOCK(sc);
2581 	}
2582 
2583 	/* These should only be active if attach succeeded */
2584 	callout_drain(&sc->ti_watchdog);
2585 	bus_generic_detach(dev);
2586 	ti_dma_free(sc);
2587 	ifmedia_removeall(&sc->ifmedia);
2588 
2589 	if (sc->ti_intrhand)
2590 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2591 	if (sc->ti_irq)
2592 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2593 	if (sc->ti_res) {
2594 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2595 		    sc->ti_res);
2596 	}
2597 	if (ifp)
2598 		if_free(ifp);
2599 	if (sc->ti_membuf)
2600 		free(sc->ti_membuf, M_DEVBUF);
2601 	if (sc->ti_membuf2)
2602 		free(sc->ti_membuf2, M_DEVBUF);
2603 
2604 	mtx_destroy(&sc->ti_mtx);
2605 
2606 	return (0);
2607 }
2608 
2609 #ifdef TI_JUMBO_HDRSPLIT
2610 /*
2611  * If hdr_len is 0, that means that header splitting wasn't done on
2612  * this packet for some reason.  The two most likely reasons are that
2613  * the protocol isn't a supported protocol for splitting, or this
2614  * packet had a fragment offset that wasn't 0.
2615  *
2616  * The header length, if it is non-zero, will always be the length of
2617  * the headers on the packet, but that length could be longer than the
2618  * first mbuf.  So we take the minimum of the two as the actual
2619  * length.
2620  */
2621 static __inline void
2622 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2623 {
2624 	int i = 0;
2625 	int lengths[4] = {0, 0, 0, 0};
2626 	struct mbuf *m, *mp;
2627 
2628 	if (hdr_len != 0)
2629 		top->m_len = min(hdr_len, top->m_len);
2630 	pkt_len -= top->m_len;
2631 	lengths[i++] = top->m_len;
2632 
2633 	mp = top;
2634 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2635 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2636 		pkt_len -= m->m_len;
2637 		lengths[i++] = m->m_len;
2638 		mp = m;
2639 	}
2640 
2641 #if 0
2642 	if (hdr_len != 0)
2643 		printf("got split packet: ");
2644 	else
2645 		printf("got non-split packet: ");
2646 
2647 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2648 	    lengths[1], lengths[2], lengths[3],
2649 	    lengths[0] + lengths[1] + lengths[2] +
2650 	    lengths[3]);
2651 #endif
2652 
2653 	if (pkt_len)
2654 		panic("header splitting didn't");
2655 
2656 	if (m) {
2657 		m_freem(m);
2658 		mp->m_next = NULL;
2659 	}
2660 	if (mp->m_next != NULL)
2661 		panic("ti_hdr_split: last mbuf in chain should be null");
2662 }
2663 #endif /* TI_JUMBO_HDRSPLIT */
2664 
2665 static void
2666 ti_discard_std(struct ti_softc *sc, int i)
2667 {
2668 
2669 	struct ti_rx_desc *r;
2670 
2671 	r = &sc->ti_rdata.ti_rx_std_ring[i];
2672 	r->ti_len = MCLBYTES - ETHER_ALIGN;
2673 	r->ti_type = TI_BDTYPE_RECV_BD;
2674 	r->ti_flags = 0;
2675 	r->ti_vlan_tag = 0;
2676 	r->ti_tcp_udp_cksum = 0;
2677 	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2678 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2679 	r->ti_idx = i;
2680 }
2681 
2682 static void
2683 ti_discard_mini(struct ti_softc *sc, int i)
2684 {
2685 
2686 	struct ti_rx_desc *r;
2687 
2688 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2689 	r->ti_len = MHLEN - ETHER_ALIGN;
2690 	r->ti_type = TI_BDTYPE_RECV_BD;
2691 	r->ti_flags = TI_BDFLAG_MINI_RING;
2692 	r->ti_vlan_tag = 0;
2693 	r->ti_tcp_udp_cksum = 0;
2694 	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2695 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2696 	r->ti_idx = i;
2697 }
2698 
2699 #ifndef TI_SF_BUF_JUMBO
2700 static void
2701 ti_discard_jumbo(struct ti_softc *sc, int i)
2702 {
2703 
2704 	struct ti_rx_desc *r;
2705 
2706 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2707 	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2708 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2709 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2710 	r->ti_vlan_tag = 0;
2711 	r->ti_tcp_udp_cksum = 0;
2712 	if (if_getcapenable(sc->ti_ifp) & IFCAP_RXCSUM)
2713 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2714 	r->ti_idx = i;
2715 }
2716 #endif
2717 
2718 /*
2719  * Frame reception handling. This is called if there's a frame
2720  * on the receive return list.
2721  *
2722  * Note: we have to be able to handle three possibilities here:
2723  * 1) the frame is from the mini receive ring (can only happen)
2724  *    on Tigon 2 boards)
2725  * 2) the frame is from the jumbo receive ring
2726  * 3) the frame is from the standard receive ring
2727  */
2728 
2729 static void
2730 ti_rxeof(struct ti_softc *sc)
2731 {
2732 	if_t ifp;
2733 #ifdef TI_SF_BUF_JUMBO
2734 	bus_dmamap_t map;
2735 #endif
2736 	struct ti_cmd_desc cmd;
2737 	int jumbocnt, minicnt, stdcnt, ti_len;
2738 
2739 	TI_LOCK_ASSERT(sc);
2740 
2741 	ifp = sc->ti_ifp;
2742 
2743 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2744 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2745 	if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2746 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2747 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2748 	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2749 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2750 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2751 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2752 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2753 
2754 	jumbocnt = minicnt = stdcnt = 0;
2755 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2756 		struct ti_rx_desc *cur_rx;
2757 		uint32_t rxidx;
2758 		struct mbuf *m = NULL;
2759 		uint16_t vlan_tag = 0;
2760 		int have_tag = 0;
2761 
2762 		cur_rx =
2763 		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2764 		rxidx = cur_rx->ti_idx;
2765 		ti_len = cur_rx->ti_len;
2766 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2767 
2768 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2769 			have_tag = 1;
2770 			vlan_tag = cur_rx->ti_vlan_tag;
2771 		}
2772 
2773 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2774 			jumbocnt++;
2775 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2776 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2777 #ifndef TI_SF_BUF_JUMBO
2778 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2779 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2780 				ti_discard_jumbo(sc, rxidx);
2781 				continue;
2782 			}
2783 			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2784 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2785 				ti_discard_jumbo(sc, rxidx);
2786 				continue;
2787 			}
2788 			m->m_len = ti_len;
2789 #else /* !TI_SF_BUF_JUMBO */
2790 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2791 			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2792 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2793 			    BUS_DMASYNC_POSTREAD);
2794 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2795 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2796 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2797 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2798 				continue;
2799 			}
2800 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2801 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2802 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2803 				continue;
2804 			}
2805 #ifdef TI_JUMBO_HDRSPLIT
2806 			if (sc->ti_hdrsplit)
2807 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2808 					     ti_len, rxidx);
2809 			else
2810 #endif /* TI_JUMBO_HDRSPLIT */
2811 			m_adj(m, ti_len - m->m_pkthdr.len);
2812 #endif /* TI_SF_BUF_JUMBO */
2813 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2814 			minicnt++;
2815 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2816 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2817 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2818 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2819 				ti_discard_mini(sc, rxidx);
2820 				continue;
2821 			}
2822 			if (ti_newbuf_mini(sc, rxidx) != 0) {
2823 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2824 				ti_discard_mini(sc, rxidx);
2825 				continue;
2826 			}
2827 			m->m_len = ti_len;
2828 		} else {
2829 			stdcnt++;
2830 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2831 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2832 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2833 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2834 				ti_discard_std(sc, rxidx);
2835 				continue;
2836 			}
2837 			if (ti_newbuf_std(sc, rxidx) != 0) {
2838 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2839 				ti_discard_std(sc, rxidx);
2840 				continue;
2841 			}
2842 			m->m_len = ti_len;
2843 		}
2844 
2845 		m->m_pkthdr.len = ti_len;
2846 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2847 		m->m_pkthdr.rcvif = ifp;
2848 
2849 		if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
2850 			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2851 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2852 				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2853 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2854 			}
2855 			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2856 				m->m_pkthdr.csum_data =
2857 				    cur_rx->ti_tcp_udp_cksum;
2858 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2859 			}
2860 		}
2861 
2862 		/*
2863 		 * If we received a packet with a vlan tag,
2864 		 * tag it before passing the packet upward.
2865 		 */
2866 		if (have_tag) {
2867 			m->m_pkthdr.ether_vtag = vlan_tag;
2868 			m->m_flags |= M_VLANTAG;
2869 		}
2870 		TI_UNLOCK(sc);
2871 		if_input(ifp, m);
2872 		TI_LOCK(sc);
2873 	}
2874 
2875 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2876 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2877 	/* Only necessary on the Tigon 1. */
2878 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2879 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2880 		    sc->ti_rx_saved_considx);
2881 
2882 	if (stdcnt > 0) {
2883 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2884 		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2885 		TI_UPDATE_STDPROD(sc, sc->ti_std);
2886 	}
2887 	if (minicnt > 0) {
2888 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2889 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2890 		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2891 	}
2892 	if (jumbocnt > 0) {
2893 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2894 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2895 		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2896 	}
2897 }
2898 
2899 static void
2900 ti_txeof(struct ti_softc *sc)
2901 {
2902 	struct ti_txdesc *txd;
2903 	struct ti_tx_desc txdesc;
2904 	struct ti_tx_desc *cur_tx = NULL;
2905 	if_t ifp;
2906 	int idx;
2907 
2908 	ifp = sc->ti_ifp;
2909 
2910 	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2911 	if (txd == NULL)
2912 		return;
2913 
2914 	if (sc->ti_rdata.ti_tx_ring != NULL)
2915 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2916 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2917 	/*
2918 	 * Go through our tx ring and free mbufs for those
2919 	 * frames that have been sent.
2920 	 */
2921 	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2922 	    TI_INC(idx, TI_TX_RING_CNT)) {
2923 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2924 			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2925 			    sizeof(txdesc), &txdesc);
2926 			cur_tx = &txdesc;
2927 		} else
2928 			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2929 		sc->ti_txcnt--;
2930 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2931 		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2932 			continue;
2933 		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2934 		    BUS_DMASYNC_POSTWRITE);
2935 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2936 
2937 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2938 		m_freem(txd->tx_m);
2939 		txd->tx_m = NULL;
2940 		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2941 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2942 		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2943 	}
2944 	sc->ti_tx_saved_considx = idx;
2945 	if (sc->ti_txcnt == 0)
2946 		sc->ti_timer = 0;
2947 }
2948 
2949 static void
2950 ti_intr(void *xsc)
2951 {
2952 	struct ti_softc *sc;
2953 	if_t ifp;
2954 
2955 	sc = xsc;
2956 	TI_LOCK(sc);
2957 	ifp = sc->ti_ifp;
2958 
2959 	/* Make sure this is really our interrupt. */
2960 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2961 		TI_UNLOCK(sc);
2962 		return;
2963 	}
2964 
2965 	/* Ack interrupt and stop others from occurring. */
2966 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2967 
2968 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2969 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2970 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2971 		/* Check RX return ring producer/consumer */
2972 		ti_rxeof(sc);
2973 
2974 		/* Check TX ring producer/consumer */
2975 		ti_txeof(sc);
2976 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2977 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
2978 	}
2979 
2980 	ti_handle_events(sc);
2981 
2982 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2983 		/* Re-enable interrupts. */
2984 		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2985 		if (!if_sendq_empty(ifp))
2986 			ti_start_locked(ifp);
2987 	}
2988 
2989 	TI_UNLOCK(sc);
2990 }
2991 
2992 static uint64_t
2993 ti_get_counter(if_t ifp, ift_counter cnt)
2994 {
2995 
2996 	switch (cnt) {
2997 	case IFCOUNTER_COLLISIONS:
2998 	    {
2999 		struct ti_softc *sc;
3000 		struct ti_stats *s;
3001 		uint64_t rv;
3002 
3003 		sc = if_getsoftc(ifp);
3004 		s = &sc->ti_rdata.ti_info->ti_stats;
3005 
3006 		TI_LOCK(sc);
3007 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3008 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3009 		rv = s->dot3StatsSingleCollisionFrames +
3010 		    s->dot3StatsMultipleCollisionFrames +
3011 		    s->dot3StatsExcessiveCollisions +
3012 		    s->dot3StatsLateCollisions;
3013 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3014 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3015 		TI_UNLOCK(sc);
3016 		return (rv);
3017 	    }
3018 	default:
3019 		return (if_get_counter_default(ifp, cnt));
3020 	}
3021 }
3022 
3023 /*
3024  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3025  * pointers to descriptors.
3026  */
3027 static int
3028 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3029 {
3030 	struct ti_txdesc *txd;
3031 	struct ti_tx_desc *f;
3032 	struct ti_tx_desc txdesc;
3033 	struct mbuf *m;
3034 	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3035 	uint16_t csum_flags;
3036 	int error, frag, i, nseg;
3037 
3038 	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3039 		return (ENOBUFS);
3040 
3041 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3042 	    *m_head, txsegs, &nseg, 0);
3043 	if (error == EFBIG) {
3044 		m = m_defrag(*m_head, M_NOWAIT);
3045 		if (m == NULL) {
3046 			m_freem(*m_head);
3047 			*m_head = NULL;
3048 			return (ENOMEM);
3049 		}
3050 		*m_head = m;
3051 		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3052 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3053 		if (error) {
3054 			m_freem(*m_head);
3055 			*m_head = NULL;
3056 			return (error);
3057 		}
3058 	} else if (error != 0)
3059 		return (error);
3060 	if (nseg == 0) {
3061 		m_freem(*m_head);
3062 		*m_head = NULL;
3063 		return (EIO);
3064 	}
3065 
3066 	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3067 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3068 		return (ENOBUFS);
3069 	}
3070 	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3071 	    BUS_DMASYNC_PREWRITE);
3072 
3073 	m = *m_head;
3074 	csum_flags = 0;
3075 	if (m->m_pkthdr.csum_flags & CSUM_IP)
3076 		csum_flags |= TI_BDFLAG_IP_CKSUM;
3077 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3078 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3079 
3080 	frag = sc->ti_tx_saved_prodidx;
3081 	for (i = 0; i < nseg; i++) {
3082 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3083 			bzero(&txdesc, sizeof(txdesc));
3084 			f = &txdesc;
3085 		} else
3086 			f = &sc->ti_rdata.ti_tx_ring[frag];
3087 		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3088 		f->ti_len = txsegs[i].ds_len;
3089 		f->ti_flags = csum_flags;
3090 		if (m->m_flags & M_VLANTAG) {
3091 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3092 			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3093 		} else {
3094 			f->ti_vlan_tag = 0;
3095 		}
3096 
3097 		if (sc->ti_hwrev == TI_HWREV_TIGON)
3098 			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3099 			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3100 		TI_INC(frag, TI_TX_RING_CNT);
3101 	}
3102 
3103 	sc->ti_tx_saved_prodidx = frag;
3104 	/* set TI_BDFLAG_END on the last descriptor */
3105 	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3106 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3107 		txdesc.ti_flags |= TI_BDFLAG_END;
3108 		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3109 		    sizeof(txdesc), &txdesc);
3110 	} else
3111 		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3112 
3113 	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3114 	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3115 	txd->tx_m = m;
3116 	sc->ti_txcnt += nseg;
3117 
3118 	return (0);
3119 }
3120 
3121 static void
3122 ti_start(if_t ifp)
3123 {
3124 	struct ti_softc *sc;
3125 
3126 	sc = if_getsoftc(ifp);
3127 	TI_LOCK(sc);
3128 	ti_start_locked(ifp);
3129 	TI_UNLOCK(sc);
3130 }
3131 
3132 /*
3133  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3134  * to the mbuf data regions directly in the transmit descriptors.
3135  */
3136 static void
3137 ti_start_locked(if_t ifp)
3138 {
3139 	struct ti_softc *sc;
3140 	struct mbuf *m_head = NULL;
3141 	int enq = 0;
3142 
3143 	sc = if_getsoftc(ifp);
3144 
3145 	for (; !if_sendq_empty(ifp) &&
3146 	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3147 		m_head = if_dequeue(ifp);
3148 		if (m_head == NULL)
3149 			break;
3150 
3151 		/*
3152 		 * Pack the data into the transmit ring. If we
3153 		 * don't have room, set the OACTIVE flag and wait
3154 		 * for the NIC to drain the ring.
3155 		 */
3156 		if (ti_encap(sc, &m_head)) {
3157 			if (m_head == NULL)
3158 				break;
3159 			if_sendq_prepend(ifp, m_head);
3160 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3161 			break;
3162 		}
3163 
3164 		enq++;
3165 		/*
3166 		 * If there's a BPF listener, bounce a copy of this frame
3167 		 * to him.
3168 		 */
3169 		ETHER_BPF_MTAP(ifp, m_head);
3170 	}
3171 
3172 	if (enq > 0) {
3173 		if (sc->ti_rdata.ti_tx_ring != NULL)
3174 			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3175 			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3176 		/* Transmit */
3177 		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3178 
3179 		/*
3180 		 * Set a timeout in case the chip goes out to lunch.
3181 		 */
3182 		sc->ti_timer = 5;
3183 	}
3184 }
3185 
3186 static void
3187 ti_init(void *xsc)
3188 {
3189 	struct ti_softc *sc;
3190 
3191 	sc = xsc;
3192 	TI_LOCK(sc);
3193 	ti_init_locked(sc);
3194 	TI_UNLOCK(sc);
3195 }
3196 
3197 static void
3198 ti_init_locked(void *xsc)
3199 {
3200 	struct ti_softc *sc = xsc;
3201 
3202 	if (if_getdrvflags(sc->ti_ifp) & IFF_DRV_RUNNING)
3203 		return;
3204 
3205 	/* Cancel pending I/O and flush buffers. */
3206 	ti_stop(sc);
3207 
3208 	/* Init the gen info block, ring control blocks and firmware. */
3209 	if (ti_gibinit(sc)) {
3210 		device_printf(sc->ti_dev, "initialization failure\n");
3211 		return;
3212 	}
3213 }
3214 
3215 static void ti_init2(struct ti_softc *sc)
3216 {
3217 	struct ti_cmd_desc cmd;
3218 	if_t ifp;
3219 	uint8_t *ea;
3220 	struct ifmedia *ifm;
3221 	int tmp;
3222 
3223 	TI_LOCK_ASSERT(sc);
3224 
3225 	ifp = sc->ti_ifp;
3226 
3227 	/* Specify MTU and interface index. */
3228 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3229 	CSR_WRITE_4(sc, TI_GCR_IFMTU, if_getmtu(ifp) +
3230 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3231 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3232 
3233 	/* Load our MAC address. */
3234 	ea = if_getlladdr(sc->ti_ifp);
3235 	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3236 	CSR_WRITE_4(sc, TI_GCR_PAR1,
3237 	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3238 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3239 
3240 	/* Enable or disable promiscuous mode as needed. */
3241 	if (if_getflags(ifp) & IFF_PROMISC) {
3242 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3243 	} else {
3244 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3245 	}
3246 
3247 	/* Program multicast filter. */
3248 	ti_setmulti(sc);
3249 
3250 	/*
3251 	 * If this is a Tigon 1, we should tell the
3252 	 * firmware to use software packet filtering.
3253 	 */
3254 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3255 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3256 	}
3257 
3258 	/* Init RX ring. */
3259 	if (ti_init_rx_ring_std(sc) != 0) {
3260 		/* XXX */
3261 		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3262 		return;
3263 	}
3264 
3265 	/* Init jumbo RX ring. */
3266 	if (if_getmtu(ifp) > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3267 		if (ti_init_rx_ring_jumbo(sc) != 0) {
3268 			/* XXX */
3269 			device_printf(sc->ti_dev,
3270 			    "no memory for jumbo Rx buffers.\n");
3271 			return;
3272 		}
3273 	}
3274 
3275 	/*
3276 	 * If this is a Tigon 2, we can also configure the
3277 	 * mini ring.
3278 	 */
3279 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3280 		if (ti_init_rx_ring_mini(sc) != 0) {
3281 			/* XXX */
3282 			device_printf(sc->ti_dev,
3283 			    "no memory for mini Rx buffers.\n");
3284 			return;
3285 		}
3286 	}
3287 
3288 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3289 	sc->ti_rx_saved_considx = 0;
3290 
3291 	/* Init TX ring. */
3292 	ti_init_tx_ring(sc);
3293 
3294 	/* Tell firmware we're alive. */
3295 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3296 
3297 	/* Enable host interrupts. */
3298 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3299 
3300 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3301 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3302 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3303 
3304 	/*
3305 	 * Make sure to set media properly. We have to do this
3306 	 * here since we have to issue commands in order to set
3307 	 * the link negotiation and we can't issue commands until
3308 	 * the firmware is running.
3309 	 */
3310 	ifm = &sc->ifmedia;
3311 	tmp = ifm->ifm_media;
3312 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3313 	ti_ifmedia_upd_locked(sc);
3314 	ifm->ifm_media = tmp;
3315 }
3316 
3317 /*
3318  * Set media options.
3319  */
3320 static int
3321 ti_ifmedia_upd(if_t ifp)
3322 {
3323 	struct ti_softc *sc;
3324 	int error;
3325 
3326 	sc = if_getsoftc(ifp);
3327 	TI_LOCK(sc);
3328 	error = ti_ifmedia_upd_locked(sc);
3329 	TI_UNLOCK(sc);
3330 
3331 	return (error);
3332 }
3333 
3334 static int
3335 ti_ifmedia_upd_locked(struct ti_softc *sc)
3336 {
3337 	struct ifmedia *ifm;
3338 	struct ti_cmd_desc cmd;
3339 	uint32_t flowctl;
3340 
3341 	ifm = &sc->ifmedia;
3342 
3343 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3344 		return (EINVAL);
3345 
3346 	flowctl = 0;
3347 
3348 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3349 	case IFM_AUTO:
3350 		/*
3351 		 * Transmit flow control doesn't work on the Tigon 1.
3352 		 */
3353 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3354 
3355 		/*
3356 		 * Transmit flow control can also cause problems on the
3357 		 * Tigon 2, apparently with both the copper and fiber
3358 		 * boards.  The symptom is that the interface will just
3359 		 * hang.  This was reproduced with Alteon 180 switches.
3360 		 */
3361 #if 0
3362 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3363 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3364 #endif
3365 
3366 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3367 		    TI_GLNK_FULL_DUPLEX| flowctl |
3368 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3369 
3370 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3371 #if 0
3372 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3373 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3374 #endif
3375 
3376 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3377 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3378 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3379 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3380 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3381 		break;
3382 	case IFM_1000_SX:
3383 	case IFM_1000_T:
3384 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3385 #if 0
3386 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3387 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3388 #endif
3389 
3390 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3391 		    flowctl |TI_GLNK_ENB);
3392 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3393 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3394 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3395 		}
3396 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3397 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3398 		break;
3399 	case IFM_100_FX:
3400 	case IFM_10_FL:
3401 	case IFM_100_TX:
3402 	case IFM_10_T:
3403 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3404 #if 0
3405 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3406 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3407 #endif
3408 
3409 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3410 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3411 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3412 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3413 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3414 		} else {
3415 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3416 		}
3417 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3418 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3419 		} else {
3420 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3421 		}
3422 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3423 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3424 		break;
3425 	}
3426 
3427 	return (0);
3428 }
3429 
3430 /*
3431  * Report current media status.
3432  */
3433 static void
3434 ti_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
3435 {
3436 	struct ti_softc *sc;
3437 	uint32_t media = 0;
3438 
3439 	sc = if_getsoftc(ifp);
3440 
3441 	TI_LOCK(sc);
3442 
3443 	ifmr->ifm_status = IFM_AVALID;
3444 	ifmr->ifm_active = IFM_ETHER;
3445 
3446 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3447 		TI_UNLOCK(sc);
3448 		return;
3449 	}
3450 
3451 	ifmr->ifm_status |= IFM_ACTIVE;
3452 
3453 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3454 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3455 		if (sc->ti_copper)
3456 			ifmr->ifm_active |= IFM_1000_T;
3457 		else
3458 			ifmr->ifm_active |= IFM_1000_SX;
3459 		if (media & TI_GLNK_FULL_DUPLEX)
3460 			ifmr->ifm_active |= IFM_FDX;
3461 		else
3462 			ifmr->ifm_active |= IFM_HDX;
3463 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3464 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3465 		if (sc->ti_copper) {
3466 			if (media & TI_LNK_100MB)
3467 				ifmr->ifm_active |= IFM_100_TX;
3468 			if (media & TI_LNK_10MB)
3469 				ifmr->ifm_active |= IFM_10_T;
3470 		} else {
3471 			if (media & TI_LNK_100MB)
3472 				ifmr->ifm_active |= IFM_100_FX;
3473 			if (media & TI_LNK_10MB)
3474 				ifmr->ifm_active |= IFM_10_FL;
3475 		}
3476 		if (media & TI_LNK_FULL_DUPLEX)
3477 			ifmr->ifm_active |= IFM_FDX;
3478 		if (media & TI_LNK_HALF_DUPLEX)
3479 			ifmr->ifm_active |= IFM_HDX;
3480 	}
3481 	TI_UNLOCK(sc);
3482 }
3483 
3484 static int
3485 ti_ioctl(if_t ifp, u_long command, caddr_t data)
3486 {
3487 	struct ti_softc *sc = if_getsoftc(ifp);
3488 	struct ifreq *ifr = (struct ifreq *) data;
3489 	struct ti_cmd_desc cmd;
3490 	int mask, error = 0;
3491 
3492 	switch (command) {
3493 	case SIOCSIFMTU:
3494 		TI_LOCK(sc);
3495 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3496 			error = EINVAL;
3497 		else {
3498 			if_setmtu(ifp, ifr->ifr_mtu);
3499 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3500 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3501 				ti_init_locked(sc);
3502 			}
3503 		}
3504 		TI_UNLOCK(sc);
3505 		break;
3506 	case SIOCSIFFLAGS:
3507 		TI_LOCK(sc);
3508 		if (if_getflags(ifp) & IFF_UP) {
3509 			/*
3510 			 * If only the state of the PROMISC flag changed,
3511 			 * then just use the 'set promisc mode' command
3512 			 * instead of reinitializing the entire NIC. Doing
3513 			 * a full re-init means reloading the firmware and
3514 			 * waiting for it to start up, which may take a
3515 			 * second or two.
3516 			 */
3517 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
3518 			    if_getflags(ifp) & IFF_PROMISC &&
3519 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3520 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3521 				    TI_CMD_CODE_PROMISC_ENB, 0);
3522 			} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
3523 			    !(if_getflags(ifp) & IFF_PROMISC) &&
3524 			    sc->ti_if_flags & IFF_PROMISC) {
3525 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3526 				    TI_CMD_CODE_PROMISC_DIS, 0);
3527 			} else
3528 				ti_init_locked(sc);
3529 		} else {
3530 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3531 				ti_stop(sc);
3532 			}
3533 		}
3534 		sc->ti_if_flags = if_getflags(ifp);
3535 		TI_UNLOCK(sc);
3536 		break;
3537 	case SIOCADDMULTI:
3538 	case SIOCDELMULTI:
3539 		TI_LOCK(sc);
3540 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3541 			ti_setmulti(sc);
3542 		TI_UNLOCK(sc);
3543 		break;
3544 	case SIOCSIFMEDIA:
3545 	case SIOCGIFMEDIA:
3546 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3547 		break;
3548 	case SIOCSIFCAP:
3549 		TI_LOCK(sc);
3550 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3551 		if ((mask & IFCAP_TXCSUM) != 0 &&
3552 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
3553 			if_togglecapenable(ifp, IFCAP_TXCSUM);
3554 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
3555 				if_sethwassistbits(ifp, TI_CSUM_FEATURES, 0);
3556                         else
3557 				if_sethwassistbits(ifp, 0, TI_CSUM_FEATURES);
3558                 }
3559 		if ((mask & IFCAP_RXCSUM) != 0 &&
3560 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
3561 			if_togglecapenable(ifp, IFCAP_RXCSUM);
3562 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3563 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3564                         if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3565 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3566 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
3567 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3568 		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3569 		    IFCAP_VLAN_HWTAGGING)) != 0) {
3570 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3571 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3572 				ti_init_locked(sc);
3573 			}
3574 		}
3575 		TI_UNLOCK(sc);
3576 		VLAN_CAPABILITIES(ifp);
3577 		break;
3578 	default:
3579 		error = ether_ioctl(ifp, command, data);
3580 		break;
3581 	}
3582 
3583 	return (error);
3584 }
3585 
3586 static int
3587 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3588 {
3589 	struct ti_softc *sc;
3590 
3591 	sc = dev->si_drv1;
3592 	if (sc == NULL)
3593 		return (ENODEV);
3594 
3595 	TI_LOCK(sc);
3596 	sc->ti_flags |= TI_FLAG_DEBUGING;
3597 	TI_UNLOCK(sc);
3598 
3599 	return (0);
3600 }
3601 
3602 static int
3603 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3604 {
3605 	struct ti_softc *sc;
3606 
3607 	sc = dev->si_drv1;
3608 	if (sc == NULL)
3609 		return (ENODEV);
3610 
3611 	TI_LOCK(sc);
3612 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3613 	TI_UNLOCK(sc);
3614 
3615 	return (0);
3616 }
3617 
3618 /*
3619  * This ioctl routine goes along with the Tigon character device.
3620  */
3621 static int
3622 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3623     struct thread *td)
3624 {
3625 	struct ti_softc *sc;
3626 	int error;
3627 
3628 	sc = dev->si_drv1;
3629 	if (sc == NULL)
3630 		return (ENODEV);
3631 
3632 	error = 0;
3633 
3634 	switch (cmd) {
3635 	case TIIOCGETSTATS:
3636 	{
3637 		struct ti_stats *outstats;
3638 
3639 		outstats = (struct ti_stats *)addr;
3640 
3641 		TI_LOCK(sc);
3642 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3643 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3644 		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3645 		    sizeof(struct ti_stats));
3646 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3647 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3648 		TI_UNLOCK(sc);
3649 		break;
3650 	}
3651 	case TIIOCGETPARAMS:
3652 	{
3653 		struct ti_params *params;
3654 
3655 		params = (struct ti_params *)addr;
3656 
3657 		TI_LOCK(sc);
3658 		params->ti_stat_ticks = sc->ti_stat_ticks;
3659 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3660 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3661 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3662 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3663 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3664 		params->param_mask = TI_PARAM_ALL;
3665 		TI_UNLOCK(sc);
3666 		break;
3667 	}
3668 	case TIIOCSETPARAMS:
3669 	{
3670 		struct ti_params *params;
3671 
3672 		params = (struct ti_params *)addr;
3673 
3674 		TI_LOCK(sc);
3675 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3676 			sc->ti_stat_ticks = params->ti_stat_ticks;
3677 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3678 		}
3679 
3680 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3681 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3682 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3683 				    sc->ti_rx_coal_ticks);
3684 		}
3685 
3686 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3687 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3688 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3689 				    sc->ti_tx_coal_ticks);
3690 		}
3691 
3692 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3693 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3694 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3695 				    sc->ti_rx_max_coal_bds);
3696 		}
3697 
3698 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3699 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3700 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3701 				    sc->ti_tx_max_coal_bds);
3702 		}
3703 
3704 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3705 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3706 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3707 				    sc->ti_tx_buf_ratio);
3708 		}
3709 		TI_UNLOCK(sc);
3710 		break;
3711 	}
3712 	case TIIOCSETTRACE: {
3713 		ti_trace_type trace_type;
3714 
3715 		trace_type = *(ti_trace_type *)addr;
3716 
3717 		/*
3718 		 * Set tracing to whatever the user asked for.  Setting
3719 		 * this register to 0 should have the effect of disabling
3720 		 * tracing.
3721 		 */
3722 		TI_LOCK(sc);
3723 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3724 		TI_UNLOCK(sc);
3725 		break;
3726 	}
3727 	case TIIOCGETTRACE: {
3728 		struct ti_trace_buf *trace_buf;
3729 		uint32_t trace_start, cur_trace_ptr, trace_len;
3730 
3731 		trace_buf = (struct ti_trace_buf *)addr;
3732 
3733 		TI_LOCK(sc);
3734 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3735 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3736 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3737 #if 0
3738 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3739 		       "trace_len = %d\n", trace_start,
3740 		       cur_trace_ptr, trace_len);
3741 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3742 		       trace_buf->buf_len);
3743 #endif
3744 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3745 		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3746 		if (error == 0) {
3747 			trace_buf->fill_len = min(trace_len,
3748 			    trace_buf->buf_len);
3749 			if (cur_trace_ptr < trace_start)
3750 				trace_buf->cur_trace_ptr =
3751 				    trace_start - cur_trace_ptr;
3752 			else
3753 				trace_buf->cur_trace_ptr =
3754 				    cur_trace_ptr - trace_start;
3755 		} else
3756 			trace_buf->fill_len = 0;
3757 		TI_UNLOCK(sc);
3758 		break;
3759 	}
3760 
3761 	/*
3762 	 * For debugging, five ioctls are needed:
3763 	 * ALT_ATTACH
3764 	 * ALT_READ_TG_REG
3765 	 * ALT_WRITE_TG_REG
3766 	 * ALT_READ_TG_MEM
3767 	 * ALT_WRITE_TG_MEM
3768 	 */
3769 	case ALT_ATTACH:
3770 		/*
3771 		 * From what I can tell, Alteon's Solaris Tigon driver
3772 		 * only has one character device, so you have to attach
3773 		 * to the Tigon board you're interested in.  This seems
3774 		 * like a not-so-good way to do things, since unless you
3775 		 * subsequently specify the unit number of the device
3776 		 * you're interested in every ioctl, you'll only be
3777 		 * able to debug one board at a time.
3778 		 */
3779 		break;
3780 	case ALT_READ_TG_MEM:
3781 	case ALT_WRITE_TG_MEM:
3782 	{
3783 		struct tg_mem *mem_param;
3784 		uint32_t sram_end, scratch_end;
3785 
3786 		mem_param = (struct tg_mem *)addr;
3787 
3788 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3789 			sram_end = TI_END_SRAM_I;
3790 			scratch_end = TI_END_SCRATCH_I;
3791 		} else {
3792 			sram_end = TI_END_SRAM_II;
3793 			scratch_end = TI_END_SCRATCH_II;
3794 		}
3795 
3796 		/*
3797 		 * For now, we'll only handle accessing regular SRAM,
3798 		 * nothing else.
3799 		 */
3800 		TI_LOCK(sc);
3801 		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3802 		    mem_param->tgAddr + mem_param->len <= sram_end) {
3803 			/*
3804 			 * In this instance, we always copy to/from user
3805 			 * space, so the user space argument is set to 1.
3806 			 */
3807 			error = ti_copy_mem(sc, mem_param->tgAddr,
3808 			    mem_param->len, mem_param->userAddr, 1,
3809 			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3810 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3811 		    mem_param->tgAddr <= scratch_end) {
3812 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3813 			    mem_param->len, mem_param->userAddr, 1,
3814 			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3815 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3816 		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3817 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3818 				if_printf(sc->ti_ifp,
3819 				    "invalid memory range for Tigon I\n");
3820 				error = EINVAL;
3821 				break;
3822 			}
3823 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3824 			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3825 			    mem_param->userAddr, 1,
3826 			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3827 		} else {
3828 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3829 			        "out of supported range\n",
3830 			        mem_param->tgAddr, mem_param->len);
3831 			error = EINVAL;
3832 		}
3833 		TI_UNLOCK(sc);
3834 		break;
3835 	}
3836 	case ALT_READ_TG_REG:
3837 	case ALT_WRITE_TG_REG:
3838 	{
3839 		struct tg_reg *regs;
3840 		uint32_t tmpval;
3841 
3842 		regs = (struct tg_reg *)addr;
3843 
3844 		/*
3845 		 * Make sure the address in question isn't out of range.
3846 		 */
3847 		if (regs->addr > TI_REG_MAX) {
3848 			error = EINVAL;
3849 			break;
3850 		}
3851 		TI_LOCK(sc);
3852 		if (cmd == ALT_READ_TG_REG) {
3853 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3854 			    regs->addr, &tmpval, 1);
3855 			regs->data = ntohl(tmpval);
3856 #if 0
3857 			if ((regs->addr == TI_CPU_STATE)
3858 			 || (regs->addr == TI_CPU_CTL_B)) {
3859 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3860 				       regs->addr, tmpval);
3861 			}
3862 #endif
3863 		} else {
3864 			tmpval = htonl(regs->data);
3865 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3866 			    regs->addr, &tmpval, 1);
3867 		}
3868 		TI_UNLOCK(sc);
3869 		break;
3870 	}
3871 	default:
3872 		error = ENOTTY;
3873 		break;
3874 	}
3875 	return (error);
3876 }
3877 
3878 static void
3879 ti_watchdog(void *arg)
3880 {
3881 	struct ti_softc *sc;
3882 	if_t ifp;
3883 
3884 	sc = arg;
3885 	TI_LOCK_ASSERT(sc);
3886 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3887 	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3888 		return;
3889 
3890 	/*
3891 	 * When we're debugging, the chip is often stopped for long periods
3892 	 * of time, and that would normally cause the watchdog timer to fire.
3893 	 * Since that impedes debugging, we don't want to do that.
3894 	 */
3895 	if (sc->ti_flags & TI_FLAG_DEBUGING)
3896 		return;
3897 
3898 	ifp = sc->ti_ifp;
3899 	if_printf(ifp, "watchdog timeout -- resetting\n");
3900 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3901 	ti_init_locked(sc);
3902 
3903 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3904 }
3905 
3906 /*
3907  * Stop the adapter and free any mbufs allocated to the
3908  * RX and TX lists.
3909  */
3910 static void
3911 ti_stop(struct ti_softc *sc)
3912 {
3913 	if_t ifp;
3914 	struct ti_cmd_desc cmd;
3915 
3916 	TI_LOCK_ASSERT(sc);
3917 
3918 	ifp = sc->ti_ifp;
3919 
3920 	/* Disable host interrupts. */
3921 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3922 	/*
3923 	 * Tell firmware we're shutting down.
3924 	 */
3925 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3926 
3927 	/* Halt and reinitialize. */
3928 	if (ti_chipinit(sc) == 0) {
3929 		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3930 		/* XXX ignore init errors. */
3931 		ti_chipinit(sc);
3932 	}
3933 
3934 	/* Free the RX lists. */
3935 	ti_free_rx_ring_std(sc);
3936 
3937 	/* Free jumbo RX list. */
3938 	ti_free_rx_ring_jumbo(sc);
3939 
3940 	/* Free mini RX list. */
3941 	ti_free_rx_ring_mini(sc);
3942 
3943 	/* Free TX buffers. */
3944 	ti_free_tx_ring(sc);
3945 
3946 	sc->ti_ev_prodidx.ti_idx = 0;
3947 	sc->ti_return_prodidx.ti_idx = 0;
3948 	sc->ti_tx_considx.ti_idx = 0;
3949 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3950 
3951 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3952 	callout_stop(&sc->ti_watchdog);
3953 }
3954 
3955 /*
3956  * Stop all chip I/O so that the kernel's probe routines don't
3957  * get confused by errant DMAs when rebooting.
3958  */
3959 static int
3960 ti_shutdown(device_t dev)
3961 {
3962 	struct ti_softc *sc;
3963 
3964 	sc = device_get_softc(dev);
3965 	TI_LOCK(sc);
3966 	ti_chipinit(sc);
3967 	TI_UNLOCK(sc);
3968 
3969 	return (0);
3970 }
3971 
3972 static void
3973 ti_sysctl_node(struct ti_softc *sc)
3974 {
3975 	struct sysctl_ctx_list *ctx;
3976 	struct sysctl_oid_list *child;
3977 	char tname[32];
3978 
3979 	ctx = device_get_sysctl_ctx(sc->ti_dev);
3980 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
3981 
3982 	/* Use DAC */
3983 	sc->ti_dac = 1;
3984 	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
3985 	    device_get_unit(sc->ti_dev));
3986 	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
3987 
3988 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
3989 	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
3990 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
3991 	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
3992 
3993 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
3994 	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
3995 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
3996 	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
3997 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
3998 	    &sc->ti_tx_buf_ratio, 0,
3999 	    "Ratio of NIC memory devoted to TX buffer");
4000 
4001 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4002 	    &sc->ti_stat_ticks, 0,
4003 	    "Number of clock ticks for statistics update interval");
4004 
4005 	/* Pull in device tunables. */
4006 	sc->ti_rx_coal_ticks = 170;
4007 	resource_int_value(device_get_name(sc->ti_dev),
4008 	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4009 	    &sc->ti_rx_coal_ticks);
4010 	sc->ti_rx_max_coal_bds = 64;
4011 	resource_int_value(device_get_name(sc->ti_dev),
4012 	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4013 	    &sc->ti_rx_max_coal_bds);
4014 
4015 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4016 	resource_int_value(device_get_name(sc->ti_dev),
4017 	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4018 	    &sc->ti_tx_coal_ticks);
4019 	sc->ti_tx_max_coal_bds = 32;
4020 	resource_int_value(device_get_name(sc->ti_dev),
4021 	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4022 	    &sc->ti_tx_max_coal_bds);
4023 	sc->ti_tx_buf_ratio = 21;
4024 	resource_int_value(device_get_name(sc->ti_dev),
4025 	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4026 	    &sc->ti_tx_buf_ratio);
4027 
4028 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4029 	resource_int_value(device_get_name(sc->ti_dev),
4030 	    device_get_unit(sc->ti_dev), "stat_ticks",
4031 	    &sc->ti_stat_ticks);
4032 }
4033