xref: /freebsd/sys/dev/ti/if_ti.c (revision 42821a2fc9aa8656e89d0353ece77c4799e940bb)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95 
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103 
104 #include <net/bpf.h>
105 
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109 
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #ifdef TI_SF_BUF_JUMBO
116 #include <vm/vm.h>
117 #include <vm/vm_page.h>
118 #endif
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 
123 #include <sys/tiio.h>
124 #include <dev/ti/if_tireg.h>
125 #include <dev/ti/ti_fw.h>
126 #include <dev/ti/ti_fw2.h>
127 
128 #include <sys/sysctl.h>
129 
130 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
131 /*
132  * We can only turn on header splitting if we're using extended receive
133  * BDs.
134  */
135 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
136 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
137 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
138 
139 typedef enum {
140 	TI_SWAP_HTON,
141 	TI_SWAP_NTOH
142 } ti_swap_type;
143 
144 /*
145  * Various supported device vendors/types and their names.
146  */
147 
148 static const struct ti_type const ti_devs[] = {
149 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153 	{ TC_VENDORID,	TC_DEVICEID_3C985,
154 		"3Com 3c985-SX Gigabit Ethernet" },
155 	{ NG_VENDORID, NG_DEVICEID_GA620,
156 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157 	{ NG_VENDORID, NG_DEVICEID_GA620T,
158 		"Netgear GA620 1000baseT Gigabit Ethernet" },
159 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160 		"Silicon Graphics Gigabit Ethernet" },
161 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162 		"Farallon PN9000SX Gigabit Ethernet" },
163 	{ 0, 0, NULL }
164 };
165 
166 
167 static	d_open_t	ti_open;
168 static	d_close_t	ti_close;
169 static	d_ioctl_t	ti_ioctl2;
170 
171 static struct cdevsw ti_cdevsw = {
172 	.d_version =	D_VERSION,
173 	.d_flags =	0,
174 	.d_open =	ti_open,
175 	.d_close =	ti_close,
176 	.d_ioctl =	ti_ioctl2,
177 	.d_name =	"ti",
178 };
179 
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185 
186 static void ti_stats_update(struct ti_softc *);
187 static int ti_encap(struct ti_softc *, struct mbuf **);
188 
189 static void ti_intr(void *);
190 static void ti_start(struct ifnet *);
191 static void ti_start_locked(struct ifnet *);
192 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(void *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(struct ifnet *);
200 static int ti_ifmedia_upd_locked(struct ti_softc *);
201 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202 
203 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
204 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
205 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
206 
207 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
208 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
209 static void ti_setmulti(struct ti_softc *);
210 
211 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
212 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
213 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
214 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
215     int);
216 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
217     int, int, int);
218 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219 static void ti_loadfw(struct ti_softc *);
220 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222 static void ti_handle_events(struct ti_softc *);
223 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
224 static int ti_dma_alloc(struct ti_softc *);
225 static void ti_dma_free(struct ti_softc *);
226 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
227     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
228 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
229     bus_dmamap_t *);
230 static int ti_newbuf_std(struct ti_softc *, int);
231 static int ti_newbuf_mini(struct ti_softc *, int);
232 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233 static int ti_init_rx_ring_std(struct ti_softc *);
234 static void ti_free_rx_ring_std(struct ti_softc *);
235 static int ti_init_rx_ring_jumbo(struct ti_softc *);
236 static void ti_free_rx_ring_jumbo(struct ti_softc *);
237 static int ti_init_rx_ring_mini(struct ti_softc *);
238 static void ti_free_rx_ring_mini(struct ti_softc *);
239 static void ti_free_tx_ring(struct ti_softc *);
240 static int ti_init_tx_ring(struct ti_softc *);
241 static void ti_discard_std(struct ti_softc *, int);
242 #ifndef TI_SF_BUF_JUMBO
243 static void ti_discard_jumbo(struct ti_softc *, int);
244 #endif
245 static void ti_discard_mini(struct ti_softc *, int);
246 
247 static int ti_64bitslot_war(struct ti_softc *);
248 static int ti_chipinit(struct ti_softc *);
249 static int ti_gibinit(struct ti_softc *);
250 
251 #ifdef TI_JUMBO_HDRSPLIT
252 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
253     int idx);
254 #endif /* TI_JUMBO_HDRSPLIT */
255 
256 static void ti_sysctl_node(struct ti_softc *);
257 
258 static device_method_t ti_methods[] = {
259 	/* Device interface */
260 	DEVMETHOD(device_probe,		ti_probe),
261 	DEVMETHOD(device_attach,	ti_attach),
262 	DEVMETHOD(device_detach,	ti_detach),
263 	DEVMETHOD(device_shutdown,	ti_shutdown),
264 	{ 0, 0 }
265 };
266 
267 static driver_t ti_driver = {
268 	"ti",
269 	ti_methods,
270 	sizeof(struct ti_softc)
271 };
272 
273 static devclass_t ti_devclass;
274 
275 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
276 MODULE_DEPEND(ti, pci, 1, 1, 1);
277 MODULE_DEPEND(ti, ether, 1, 1, 1);
278 
279 /*
280  * Send an instruction or address to the EEPROM, check for ACK.
281  */
282 static uint32_t
283 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
284 {
285 	int i, ack = 0;
286 
287 	/*
288 	 * Make sure we're in TX mode.
289 	 */
290 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
291 
292 	/*
293 	 * Feed in each bit and stobe the clock.
294 	 */
295 	for (i = 0x80; i; i >>= 1) {
296 		if (byte & i) {
297 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
298 		} else {
299 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
300 		}
301 		DELAY(1);
302 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
303 		DELAY(1);
304 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
305 	}
306 
307 	/*
308 	 * Turn off TX mode.
309 	 */
310 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
311 
312 	/*
313 	 * Check for ack.
314 	 */
315 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
317 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318 
319 	return (ack);
320 }
321 
322 /*
323  * Read a byte of data stored in the EEPROM at address 'addr.'
324  * We have to send two address bytes since the EEPROM can hold
325  * more than 256 bytes of data.
326  */
327 static uint8_t
328 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
329 {
330 	int i;
331 	uint8_t byte = 0;
332 
333 	EEPROM_START;
334 
335 	/*
336 	 * Send write control code to EEPROM.
337 	 */
338 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
339 		device_printf(sc->ti_dev,
340 		    "failed to send write command, status: %x\n",
341 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
342 		return (1);
343 	}
344 
345 	/*
346 	 * Send first byte of address of byte we want to read.
347 	 */
348 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
349 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
350 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351 		return (1);
352 	}
353 	/*
354 	 * Send second byte address of byte we want to read.
355 	 */
356 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
357 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
358 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
359 		return (1);
360 	}
361 
362 	EEPROM_STOP;
363 	EEPROM_START;
364 	/*
365 	 * Send read control code to EEPROM.
366 	 */
367 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
368 		device_printf(sc->ti_dev,
369 		    "failed to send read command, status: %x\n",
370 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
371 		return (1);
372 	}
373 
374 	/*
375 	 * Start reading bits from EEPROM.
376 	 */
377 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
378 	for (i = 0x80; i; i >>= 1) {
379 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
380 		DELAY(1);
381 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
382 			byte |= i;
383 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
384 		DELAY(1);
385 	}
386 
387 	EEPROM_STOP;
388 
389 	/*
390 	 * No ACK generated for read, so just return byte.
391 	 */
392 
393 	*dest = byte;
394 
395 	return (0);
396 }
397 
398 /*
399  * Read a sequence of bytes from the EEPROM.
400  */
401 static int
402 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
403 {
404 	int err = 0, i;
405 	uint8_t byte = 0;
406 
407 	for (i = 0; i < cnt; i++) {
408 		err = ti_eeprom_getbyte(sc, off + i, &byte);
409 		if (err)
410 			break;
411 		*(dest + i) = byte;
412 	}
413 
414 	return (err ? 1 : 0);
415 }
416 
417 /*
418  * NIC memory read function.
419  * Can be used to copy data from NIC local memory.
420  */
421 static void
422 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
423 {
424 	int segptr, segsize, cnt;
425 	char *ptr;
426 
427 	segptr = addr;
428 	cnt = len;
429 	ptr = buf;
430 
431 	while (cnt) {
432 		if (cnt < TI_WINLEN)
433 			segsize = cnt;
434 		else
435 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
436 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
437 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
438 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
439 		    segsize / 4);
440 		ptr += segsize;
441 		segptr += segsize;
442 		cnt -= segsize;
443 	}
444 }
445 
446 
447 /*
448  * NIC memory write function.
449  * Can be used to copy data into NIC local memory.
450  */
451 static void
452 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
453 {
454 	int segptr, segsize, cnt;
455 	char *ptr;
456 
457 	segptr = addr;
458 	cnt = len;
459 	ptr = buf;
460 
461 	while (cnt) {
462 		if (cnt < TI_WINLEN)
463 			segsize = cnt;
464 		else
465 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
466 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
467 		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
468 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
469 		    segsize / 4);
470 		ptr += segsize;
471 		segptr += segsize;
472 		cnt -= segsize;
473 	}
474 }
475 
476 /*
477  * NIC memory read function.
478  * Can be used to clear a section of NIC local memory.
479  */
480 static void
481 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
482 {
483 	int segptr, segsize, cnt;
484 
485 	segptr = addr;
486 	cnt = len;
487 
488 	while (cnt) {
489 		if (cnt < TI_WINLEN)
490 			segsize = cnt;
491 		else
492 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
493 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
494 		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
495 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
496 		segptr += segsize;
497 		cnt -= segsize;
498 	}
499 }
500 
501 static int
502 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
503     caddr_t buf, int useraddr, int readdata)
504 {
505 	int segptr, segsize, cnt;
506 	caddr_t ptr;
507 	uint32_t origwin;
508 	int resid, segresid;
509 	int first_pass;
510 
511 	TI_LOCK_ASSERT(sc);
512 
513 	/*
514 	 * At the moment, we don't handle non-aligned cases, we just bail.
515 	 * If this proves to be a problem, it will be fixed.
516 	 */
517 	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
518 		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
519 		    "word-aligned\n", __func__, tigon_addr);
520 		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
521 		    "yet supported\n", __func__);
522 		return (EINVAL);
523 	}
524 
525 	segptr = tigon_addr & ~0x3;
526 	segresid = tigon_addr - segptr;
527 
528 	/*
529 	 * This is the non-aligned amount left over that we'll need to
530 	 * copy.
531 	 */
532 	resid = len & 0x3;
533 
534 	/* Add in the left over amount at the front of the buffer */
535 	resid += segresid;
536 
537 	cnt = len & ~0x3;
538 	/*
539 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
540 	 * decrease the residual by that much.
541 	 */
542 	cnt += resid & ~0x3;
543 	resid -= resid & ~0x3;
544 
545 	ptr = buf;
546 
547 	first_pass = 1;
548 
549 	/*
550 	 * Save the old window base value.
551 	 */
552 	origwin = CSR_READ_4(sc, TI_WINBASE);
553 
554 	while (cnt) {
555 		bus_size_t ti_offset;
556 
557 		if (cnt < TI_WINLEN)
558 			segsize = cnt;
559 		else
560 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
561 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
562 
563 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
564 
565 		if (readdata) {
566 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
567 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
568 			if (useraddr) {
569 				/*
570 				 * Yeah, this is a little on the kludgy
571 				 * side, but at least this code is only
572 				 * used for debugging.
573 				 */
574 				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
575 				    segsize, TI_SWAP_NTOH);
576 
577 				TI_UNLOCK(sc);
578 				if (first_pass) {
579 					copyout(&sc->ti_membuf2[segresid], ptr,
580 					    segsize - segresid);
581 					first_pass = 0;
582 				} else
583 					copyout(sc->ti_membuf2, ptr, segsize);
584 				TI_LOCK(sc);
585 			} else {
586 				if (first_pass) {
587 
588 					ti_bcopy_swap(sc->ti_membuf,
589 					    sc->ti_membuf2, segsize,
590 					    TI_SWAP_NTOH);
591 					TI_UNLOCK(sc);
592 					bcopy(&sc->ti_membuf2[segresid], ptr,
593 					    segsize - segresid);
594 					TI_LOCK(sc);
595 					first_pass = 0;
596 				} else
597 					ti_bcopy_swap(sc->ti_membuf, ptr,
598 					    segsize, TI_SWAP_NTOH);
599 			}
600 
601 		} else {
602 			if (useraddr) {
603 				TI_UNLOCK(sc);
604 				copyin(ptr, sc->ti_membuf2, segsize);
605 				TI_LOCK(sc);
606 				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
607 				    segsize, TI_SWAP_HTON);
608 			} else
609 				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
610 				    TI_SWAP_HTON);
611 
612 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
613 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
614 		}
615 		segptr += segsize;
616 		ptr += segsize;
617 		cnt -= segsize;
618 	}
619 
620 	/*
621 	 * Handle leftover, non-word-aligned bytes.
622 	 */
623 	if (resid != 0) {
624 		uint32_t tmpval, tmpval2;
625 		bus_size_t ti_offset;
626 
627 		/*
628 		 * Set the segment pointer.
629 		 */
630 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
631 
632 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
633 
634 		/*
635 		 * First, grab whatever is in our source/destination.
636 		 * We'll obviously need this for reads, but also for
637 		 * writes, since we'll be doing read/modify/write.
638 		 */
639 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
640 		    ti_offset, &tmpval, 1);
641 
642 		/*
643 		 * Next, translate this from little-endian to big-endian
644 		 * (at least on i386 boxes).
645 		 */
646 		tmpval2 = ntohl(tmpval);
647 
648 		if (readdata) {
649 			/*
650 			 * If we're reading, just copy the leftover number
651 			 * of bytes from the host byte order buffer to
652 			 * the user's buffer.
653 			 */
654 			if (useraddr) {
655 				TI_UNLOCK(sc);
656 				copyout(&tmpval2, ptr, resid);
657 				TI_LOCK(sc);
658 			} else
659 				bcopy(&tmpval2, ptr, resid);
660 		} else {
661 			/*
662 			 * If we're writing, first copy the bytes to be
663 			 * written into the network byte order buffer,
664 			 * leaving the rest of the buffer with whatever was
665 			 * originally in there.  Then, swap the bytes
666 			 * around into host order and write them out.
667 			 *
668 			 * XXX KDM the read side of this has been verified
669 			 * to work, but the write side of it has not been
670 			 * verified.  So user beware.
671 			 */
672 			if (useraddr) {
673 				TI_UNLOCK(sc);
674 				copyin(ptr, &tmpval2, resid);
675 				TI_LOCK(sc);
676 			} else
677 				bcopy(ptr, &tmpval2, resid);
678 
679 			tmpval = htonl(tmpval2);
680 
681 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
682 			    ti_offset, &tmpval, 1);
683 		}
684 	}
685 
686 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
687 
688 	return (0);
689 }
690 
691 static int
692 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
693     caddr_t buf, int useraddr, int readdata, int cpu)
694 {
695 	uint32_t segptr;
696 	int cnt;
697 	uint32_t tmpval, tmpval2;
698 	caddr_t ptr;
699 
700 	TI_LOCK_ASSERT(sc);
701 
702 	/*
703 	 * At the moment, we don't handle non-aligned cases, we just bail.
704 	 * If this proves to be a problem, it will be fixed.
705 	 */
706 	if (tigon_addr & 0x3) {
707 		device_printf(sc->ti_dev, "%s: tigon address %#x "
708 		    "isn't word-aligned\n", __func__, tigon_addr);
709 		return (EINVAL);
710 	}
711 
712 	if (len & 0x3) {
713 		device_printf(sc->ti_dev, "%s: transfer length %d "
714 		    "isn't word-aligned\n", __func__, len);
715 		return (EINVAL);
716 	}
717 
718 	segptr = tigon_addr;
719 	cnt = len;
720 	ptr = buf;
721 
722 	while (cnt) {
723 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
724 
725 		if (readdata) {
726 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
727 
728 			tmpval = ntohl(tmpval2);
729 
730 			/*
731 			 * Note:  I've used this debugging interface
732 			 * extensively with Alteon's 12.3.15 firmware,
733 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
734 			 *
735 			 * When you compile the firmware without
736 			 * optimization, which is necessary sometimes in
737 			 * order to properly step through it, you sometimes
738 			 * read out a bogus value of 0xc0017c instead of
739 			 * whatever was supposed to be in that scratchpad
740 			 * location.  That value is on the stack somewhere,
741 			 * but I've never been able to figure out what was
742 			 * causing the problem.
743 			 *
744 			 * The address seems to pop up in random places,
745 			 * often not in the same place on two subsequent
746 			 * reads.
747 			 *
748 			 * In any case, the underlying data doesn't seem
749 			 * to be affected, just the value read out.
750 			 *
751 			 * KDM, 3/7/2000
752 			 */
753 
754 			if (tmpval2 == 0xc0017c)
755 				device_printf(sc->ti_dev, "found 0xc0017c at "
756 				    "%#x (tmpval2)\n", segptr);
757 
758 			if (tmpval == 0xc0017c)
759 				device_printf(sc->ti_dev, "found 0xc0017c at "
760 				    "%#x (tmpval)\n", segptr);
761 
762 			if (useraddr)
763 				copyout(&tmpval, ptr, 4);
764 			else
765 				bcopy(&tmpval, ptr, 4);
766 		} else {
767 			if (useraddr)
768 				copyin(ptr, &tmpval2, 4);
769 			else
770 				bcopy(ptr, &tmpval2, 4);
771 
772 			tmpval = htonl(tmpval2);
773 
774 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
775 		}
776 
777 		cnt -= 4;
778 		segptr += 4;
779 		ptr += 4;
780 	}
781 
782 	return (0);
783 }
784 
785 static int
786 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
787 {
788 	const uint8_t *tmpsrc;
789 	uint8_t *tmpdst;
790 	size_t tmplen;
791 
792 	if (len & 0x3) {
793 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
794 		return (-1);
795 	}
796 
797 	tmpsrc = src;
798 	tmpdst = dst;
799 	tmplen = len;
800 
801 	while (tmplen) {
802 		if (swap_type == TI_SWAP_NTOH)
803 			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
804 		else
805 			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
806 		tmpsrc += 4;
807 		tmpdst += 4;
808 		tmplen -= 4;
809 	}
810 
811 	return (0);
812 }
813 
814 /*
815  * Load firmware image into the NIC. Check that the firmware revision
816  * is acceptable and see if we want the firmware for the Tigon 1 or
817  * Tigon 2.
818  */
819 static void
820 ti_loadfw(struct ti_softc *sc)
821 {
822 
823 	TI_LOCK_ASSERT(sc);
824 
825 	switch (sc->ti_hwrev) {
826 	case TI_HWREV_TIGON:
827 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
828 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
829 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
830 			device_printf(sc->ti_dev, "firmware revision mismatch; "
831 			    "want %d.%d.%d, got %d.%d.%d\n",
832 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
833 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
834 			    tigonFwReleaseMinor, tigonFwReleaseFix);
835 			return;
836 		}
837 		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
838 		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
839 		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
840 		    tigonFwRodata);
841 		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
842 		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
843 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
844 		break;
845 	case TI_HWREV_TIGON_II:
846 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
847 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
848 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
849 			device_printf(sc->ti_dev, "firmware revision mismatch; "
850 			    "want %d.%d.%d, got %d.%d.%d\n",
851 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
852 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
853 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
854 			return;
855 		}
856 		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
857 		    tigon2FwText);
858 		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
859 		    tigon2FwData);
860 		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
861 		    tigon2FwRodata);
862 		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
863 		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
864 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
865 		break;
866 	default:
867 		device_printf(sc->ti_dev,
868 		    "can't load firmware: unknown hardware rev\n");
869 		break;
870 	}
871 }
872 
873 /*
874  * Send the NIC a command via the command ring.
875  */
876 static void
877 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
878 {
879 	int index;
880 
881 	index = sc->ti_cmd_saved_prodidx;
882 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
883 	TI_INC(index, TI_CMD_RING_CNT);
884 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
885 	sc->ti_cmd_saved_prodidx = index;
886 }
887 
888 /*
889  * Send the NIC an extended command. The 'len' parameter specifies the
890  * number of command slots to include after the initial command.
891  */
892 static void
893 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
894 {
895 	int index;
896 	int i;
897 
898 	index = sc->ti_cmd_saved_prodidx;
899 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
900 	TI_INC(index, TI_CMD_RING_CNT);
901 	for (i = 0; i < len; i++) {
902 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
903 		    *(uint32_t *)(&arg[i * 4]));
904 		TI_INC(index, TI_CMD_RING_CNT);
905 	}
906 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
907 	sc->ti_cmd_saved_prodidx = index;
908 }
909 
910 /*
911  * Handle events that have triggered interrupts.
912  */
913 static void
914 ti_handle_events(struct ti_softc *sc)
915 {
916 	struct ti_event_desc *e;
917 
918 	if (sc->ti_rdata.ti_event_ring == NULL)
919 		return;
920 
921 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
922 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
923 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
924 		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
925 		switch (TI_EVENT_EVENT(e)) {
926 		case TI_EV_LINKSTAT_CHANGED:
927 			sc->ti_linkstat = TI_EVENT_CODE(e);
928 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
929 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
930 				sc->ti_ifp->if_baudrate = IF_Mbps(100);
931 				if (bootverbose)
932 					device_printf(sc->ti_dev,
933 					    "10/100 link up\n");
934 			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
935 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936 				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
937 				if (bootverbose)
938 					device_printf(sc->ti_dev,
939 					    "gigabit link up\n");
940 			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
941 				if_link_state_change(sc->ti_ifp,
942 				    LINK_STATE_DOWN);
943 				sc->ti_ifp->if_baudrate = 0;
944 				if (bootverbose)
945 					device_printf(sc->ti_dev,
946 					    "link down\n");
947 			}
948 			break;
949 		case TI_EV_ERROR:
950 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
951 				device_printf(sc->ti_dev, "invalid command\n");
952 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
953 				device_printf(sc->ti_dev, "unknown command\n");
954 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
955 				device_printf(sc->ti_dev, "bad config data\n");
956 			break;
957 		case TI_EV_FIRMWARE_UP:
958 			ti_init2(sc);
959 			break;
960 		case TI_EV_STATS_UPDATED:
961 			ti_stats_update(sc);
962 			break;
963 		case TI_EV_RESET_JUMBO_RING:
964 		case TI_EV_MCAST_UPDATED:
965 			/* Who cares. */
966 			break;
967 		default:
968 			device_printf(sc->ti_dev, "unknown event: %d\n",
969 			    TI_EVENT_EVENT(e));
970 			break;
971 		}
972 		/* Advance the consumer index. */
973 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
974 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
975 	}
976 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
977 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
978 }
979 
980 struct ti_dmamap_arg {
981 	bus_addr_t	ti_busaddr;
982 };
983 
984 static void
985 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
986 {
987 	struct ti_dmamap_arg *ctx;
988 
989 	if (error)
990 		return;
991 
992 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
993 
994 	ctx = arg;
995 	ctx->ti_busaddr = segs->ds_addr;
996 }
997 
998 static int
999 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1000     bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1001     const char *msg)
1002 {
1003 	struct ti_dmamap_arg ctx;
1004 	int error;
1005 
1006 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1007 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1008 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1009 	if (error != 0) {
1010 		device_printf(sc->ti_dev,
1011 		    "could not create %s dma tag\n", msg);
1012 		return (error);
1013 	}
1014 	/* Allocate DMA'able memory for ring. */
1015 	error = bus_dmamem_alloc(*tag, (void **)ring,
1016 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1017 	if (error != 0) {
1018 		device_printf(sc->ti_dev,
1019 		    "could not allocate DMA'able memory for %s\n", msg);
1020 		return (error);
1021 	}
1022 	/* Load the address of the ring. */
1023 	ctx.ti_busaddr = 0;
1024 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1025 	    &ctx, BUS_DMA_NOWAIT);
1026 	if (error != 0) {
1027 		device_printf(sc->ti_dev,
1028 		    "could not load DMA'able memory for %s\n", msg);
1029 		return (error);
1030 	}
1031 	*paddr = ctx.ti_busaddr;
1032 	return (0);
1033 }
1034 
1035 static void
1036 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1037     bus_dmamap_t *map)
1038 {
1039 
1040 	if (*map != NULL)
1041 		bus_dmamap_unload(*tag, *map);
1042 	if (*map != NULL && *ring != NULL) {
1043 		bus_dmamem_free(*tag, *ring, *map);
1044 		*ring = NULL;
1045 		*map = NULL;
1046 	}
1047 	if (*tag) {
1048 		bus_dma_tag_destroy(*tag);
1049 		*tag = NULL;
1050 	}
1051 }
1052 
1053 static int
1054 ti_dma_alloc(struct ti_softc *sc)
1055 {
1056 	bus_addr_t lowaddr;
1057 	int i, error;
1058 
1059 	lowaddr = BUS_SPACE_MAXADDR;
1060 	if (sc->ti_dac == 0)
1061 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1062 
1063 	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1064 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1065 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1066 	    &sc->ti_cdata.ti_parent_tag);
1067 	if (error != 0) {
1068 		device_printf(sc->ti_dev,
1069 		    "could not allocate parent dma tag\n");
1070 		return (ENOMEM);
1071 	}
1072 
1073 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1074 	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1075 	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1076 	if (error)
1077 		return (error);
1078 
1079 	/* Producer/consumer status */
1080 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1081 	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1082 	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1083 	    "event ring");
1084 	if (error)
1085 		return (error);
1086 
1087 	/* Event ring */
1088 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1089 	    &sc->ti_cdata.ti_event_ring_tag,
1090 	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1091 	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1092 	    "event ring");
1093 	if (error)
1094 		return (error);
1095 
1096 	/* Command ring lives in shared memory so no need to create DMA area. */
1097 
1098 	/* Standard RX ring */
1099 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1100 	    &sc->ti_cdata.ti_rx_std_ring_tag,
1101 	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1102 	    &sc->ti_cdata.ti_rx_std_ring_map,
1103 	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1104 	if (error)
1105 		return (error);
1106 
1107 	/* Jumbo RX ring */
1108 	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1109 	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1110 	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1111 	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1112 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1113 	if (error)
1114 		return (error);
1115 
1116 	/* RX return ring */
1117 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1118 	    &sc->ti_cdata.ti_rx_return_ring_tag,
1119 	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1120 	    &sc->ti_cdata.ti_rx_return_ring_map,
1121 	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1122 	if (error)
1123 		return (error);
1124 
1125 	/* Create DMA tag for standard RX mbufs. */
1126 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1127 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1128 	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1129 	if (error) {
1130 		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1131 		return (error);
1132 	}
1133 
1134 	/* Create DMA tag for jumbo RX mbufs. */
1135 #ifdef TI_SF_BUF_JUMBO
1136 	/*
1137 	 * The VM system will take care of providing aligned pages.  Alignment
1138 	 * is set to 1 here so that busdma resources won't be wasted.
1139 	 */
1140 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1141 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1142 	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1143 #else
1144 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1145 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1146 	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1147 #endif
1148 	if (error) {
1149 		device_printf(sc->ti_dev,
1150 		    "could not allocate jumbo RX dma tag\n");
1151 		return (error);
1152 	}
1153 
1154 	/* Create DMA tag for TX mbufs. */
1155 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1156 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1157 	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1158 	    &sc->ti_cdata.ti_tx_tag);
1159 	if (error) {
1160 		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1161 		return (ENOMEM);
1162 	}
1163 
1164 	/* Create DMA maps for RX buffers. */
1165 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1166 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1167 		    &sc->ti_cdata.ti_rx_std_maps[i]);
1168 		if (error) {
1169 			device_printf(sc->ti_dev,
1170 			    "could not create DMA map for RX\n");
1171 			return (error);
1172 		}
1173 	}
1174 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1175 	    &sc->ti_cdata.ti_rx_std_sparemap);
1176 	if (error) {
1177 		device_printf(sc->ti_dev,
1178 		    "could not create spare DMA map for RX\n");
1179 		return (error);
1180 	}
1181 
1182 	/* Create DMA maps for jumbo RX buffers. */
1183 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1184 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1185 		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1186 		if (error) {
1187 			device_printf(sc->ti_dev,
1188 			    "could not create DMA map for jumbo RX\n");
1189 			return (error);
1190 		}
1191 	}
1192 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1193 	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1194 	if (error) {
1195 		device_printf(sc->ti_dev,
1196 		    "could not create spare DMA map for jumbo RX\n");
1197 		return (error);
1198 	}
1199 
1200 	/* Create DMA maps for TX buffers. */
1201 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1202 		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1203 		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1204 		if (error) {
1205 			device_printf(sc->ti_dev,
1206 			    "could not create DMA map for TX\n");
1207 			return (ENOMEM);
1208 		}
1209 	}
1210 
1211 	/* Mini ring and TX ring is not available on Tigon 1. */
1212 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1213 		return (0);
1214 
1215 	/* TX ring */
1216 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1217 	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1218 	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1219 	    "TX ring");
1220 	if (error)
1221 		return (error);
1222 
1223 	/* Mini RX ring */
1224 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1225 	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1226 	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1227 	    &sc->ti_cdata.ti_rx_mini_ring_map,
1228 	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1229 	if (error)
1230 		return (error);
1231 
1232 	/* Create DMA tag for mini RX mbufs. */
1233 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1234 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1235 	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1236 	if (error) {
1237 		device_printf(sc->ti_dev,
1238 		    "could not allocate mini RX dma tag\n");
1239 		return (error);
1240 	}
1241 
1242 	/* Create DMA maps for mini RX buffers. */
1243 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1244 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1245 		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1246 		if (error) {
1247 			device_printf(sc->ti_dev,
1248 			    "could not create DMA map for mini RX\n");
1249 			return (error);
1250 		}
1251 	}
1252 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1253 	    &sc->ti_cdata.ti_rx_mini_sparemap);
1254 	if (error) {
1255 		device_printf(sc->ti_dev,
1256 		    "could not create spare DMA map for mini RX\n");
1257 		return (error);
1258 	}
1259 
1260 	return (0);
1261 }
1262 
1263 static void
1264 ti_dma_free(struct ti_softc *sc)
1265 {
1266 	int i;
1267 
1268 	/* Destroy DMA maps for RX buffers. */
1269 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1270 		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1271 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1272 			    sc->ti_cdata.ti_rx_std_maps[i]);
1273 			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1274 		}
1275 	}
1276 	if (sc->ti_cdata.ti_rx_std_sparemap) {
1277 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1278 		    sc->ti_cdata.ti_rx_std_sparemap);
1279 		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1280 	}
1281 	if (sc->ti_cdata.ti_rx_std_tag) {
1282 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1283 		sc->ti_cdata.ti_rx_std_tag = NULL;
1284 	}
1285 
1286 	/* Destroy DMA maps for jumbo RX buffers. */
1287 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1288 		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1289 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1290 			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1291 			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1292 		}
1293 	}
1294 	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1295 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1296 		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1297 		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1298 	}
1299 	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1300 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1301 		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1302 	}
1303 
1304 	/* Destroy DMA maps for mini RX buffers. */
1305 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1306 		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1307 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1308 			    sc->ti_cdata.ti_rx_mini_maps[i]);
1309 			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1310 		}
1311 	}
1312 	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1313 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1314 		    sc->ti_cdata.ti_rx_mini_sparemap);
1315 		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1316 	}
1317 	if (sc->ti_cdata.ti_rx_mini_tag) {
1318 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1319 		sc->ti_cdata.ti_rx_mini_tag = NULL;
1320 	}
1321 
1322 	/* Destroy DMA maps for TX buffers. */
1323 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1324 		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1325 			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1326 			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1327 			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1328 		}
1329 	}
1330 	if (sc->ti_cdata.ti_tx_tag) {
1331 		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1332 		sc->ti_cdata.ti_tx_tag = NULL;
1333 	}
1334 
1335 	/* Destroy standard RX ring. */
1336 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1337 	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1338 	    &sc->ti_cdata.ti_rx_std_ring_map);
1339 	/* Destroy jumbo RX ring. */
1340 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1341 	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1342 	    &sc->ti_cdata.ti_rx_jumbo_ring_map);
1343 	/* Destroy mini RX ring. */
1344 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1345 	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1346 	    &sc->ti_cdata.ti_rx_mini_ring_map);
1347 	/* Destroy RX return ring. */
1348 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1349 	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1350 	    &sc->ti_cdata.ti_rx_return_ring_map);
1351 	/* Destroy TX ring. */
1352 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1353 	    (void *)&sc->ti_rdata.ti_tx_ring, &sc->ti_cdata.ti_tx_ring_map);
1354 	/* Destroy status block. */
1355 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1356 	    (void *)&sc->ti_rdata.ti_status, &sc->ti_cdata.ti_status_map);
1357 	/* Destroy event ring. */
1358 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1359 	    (void *)&sc->ti_rdata.ti_event_ring,
1360 	    &sc->ti_cdata.ti_event_ring_map);
1361 	/* Destroy GIB */
1362 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1363 	    (void *)&sc->ti_rdata.ti_info, &sc->ti_cdata.ti_gib_map);
1364 
1365 	/* Destroy the parent tag. */
1366 	if (sc->ti_cdata.ti_parent_tag) {
1367 		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1368 		sc->ti_cdata.ti_parent_tag = NULL;
1369 	}
1370 }
1371 
1372 /*
1373  * Intialize a standard receive ring descriptor.
1374  */
1375 static int
1376 ti_newbuf_std(struct ti_softc *sc, int i)
1377 {
1378 	bus_dmamap_t map;
1379 	bus_dma_segment_t segs[1];
1380 	struct mbuf *m;
1381 	struct ti_rx_desc *r;
1382 	int error, nsegs;
1383 
1384 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1385 	if (m == NULL)
1386 		return (ENOBUFS);
1387 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388 	m_adj(m, ETHER_ALIGN);
1389 
1390 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1391 	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1392 	if (error != 0) {
1393 		m_freem(m);
1394 		return (error);
1395         }
1396 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1397 
1398 	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1399 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1400 		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1401 		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1402 		    sc->ti_cdata.ti_rx_std_maps[i]);
1403 	}
1404 
1405 	map = sc->ti_cdata.ti_rx_std_maps[i];
1406 	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1407 	sc->ti_cdata.ti_rx_std_sparemap = map;
1408 	sc->ti_cdata.ti_rx_std_chain[i] = m;
1409 
1410 	r = &sc->ti_rdata.ti_rx_std_ring[i];
1411 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1412 	r->ti_len = segs[0].ds_len;
1413 	r->ti_type = TI_BDTYPE_RECV_BD;
1414 	r->ti_flags = 0;
1415 	r->ti_vlan_tag = 0;
1416 	r->ti_tcp_udp_cksum = 0;
1417 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1418 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1419 	r->ti_idx = i;
1420 
1421 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1422 	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1423 	return (0);
1424 }
1425 
1426 /*
1427  * Intialize a mini receive ring descriptor. This only applies to
1428  * the Tigon 2.
1429  */
1430 static int
1431 ti_newbuf_mini(struct ti_softc *sc, int i)
1432 {
1433 	bus_dmamap_t map;
1434 	bus_dma_segment_t segs[1];
1435 	struct mbuf *m;
1436 	struct ti_rx_desc *r;
1437 	int error, nsegs;
1438 
1439 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1440 	if (m == NULL)
1441 		return (ENOBUFS);
1442 	m->m_len = m->m_pkthdr.len = MHLEN;
1443 	m_adj(m, ETHER_ALIGN);
1444 
1445 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1446 	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1447 	if (error != 0) {
1448 		m_freem(m);
1449 		return (error);
1450         }
1451 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1452 
1453 	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1454 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1455 		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1456 		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1457 		    sc->ti_cdata.ti_rx_mini_maps[i]);
1458 	}
1459 
1460 	map = sc->ti_cdata.ti_rx_mini_maps[i];
1461 	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1462 	sc->ti_cdata.ti_rx_mini_sparemap = map;
1463 	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1464 
1465 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1466 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1467 	r->ti_len = segs[0].ds_len;
1468 	r->ti_type = TI_BDTYPE_RECV_BD;
1469 	r->ti_flags = TI_BDFLAG_MINI_RING;
1470 	r->ti_vlan_tag = 0;
1471 	r->ti_tcp_udp_cksum = 0;
1472 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1473 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1474 	r->ti_idx = i;
1475 
1476 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1477 	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1478 	return (0);
1479 }
1480 
1481 #ifndef TI_SF_BUF_JUMBO
1482 
1483 /*
1484  * Initialize a jumbo receive ring descriptor. This allocates
1485  * a jumbo buffer from the pool managed internally by the driver.
1486  */
1487 static int
1488 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1489 {
1490 	bus_dmamap_t map;
1491 	bus_dma_segment_t segs[1];
1492 	struct mbuf *m;
1493 	struct ti_rx_desc *r;
1494 	int error, nsegs;
1495 
1496 	(void)dummy;
1497 
1498 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1499 	if (m == NULL)
1500 		return (ENOBUFS);
1501 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1502 	m_adj(m, ETHER_ALIGN);
1503 
1504 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1505 	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1506 	if (error != 0) {
1507 		m_freem(m);
1508 		return (error);
1509         }
1510 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1511 
1512 	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1513 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1514 		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1515 		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1516 		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1517 	}
1518 
1519 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1520 	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1521 	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1522 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1523 
1524 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1525 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1526 	r->ti_len = segs[0].ds_len;
1527 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1528 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1529 	r->ti_vlan_tag = 0;
1530 	r->ti_tcp_udp_cksum = 0;
1531 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1532 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1533 	r->ti_idx = i;
1534 
1535 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1536 	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1537 	return (0);
1538 }
1539 
1540 #else
1541 
1542 #if (PAGE_SIZE == 4096)
1543 #define NPAYLOAD 2
1544 #else
1545 #define NPAYLOAD 1
1546 #endif
1547 
1548 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1549 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1550 #define NFS_HDR_LEN (UDP_HDR_LEN)
1551 static int HDR_LEN = TCP_HDR_LEN;
1552 
1553 /*
1554  * Initialize a jumbo receive ring descriptor. This allocates
1555  * a jumbo buffer from the pool managed internally by the driver.
1556  */
1557 static int
1558 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1559 {
1560 	bus_dmamap_t map;
1561 	struct mbuf *cur, *m_new = NULL;
1562 	struct mbuf *m[3] = {NULL, NULL, NULL};
1563 	struct ti_rx_desc_ext *r;
1564 	vm_page_t frame;
1565 	/* 1 extra buf to make nobufs easy*/
1566 	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1567 	int i;
1568 	bus_dma_segment_t segs[4];
1569 	int nsegs;
1570 
1571 	if (m_old != NULL) {
1572 		m_new = m_old;
1573 		cur = m_old->m_next;
1574 		for (i = 0; i <= NPAYLOAD; i++){
1575 			m[i] = cur;
1576 			cur = cur->m_next;
1577 		}
1578 	} else {
1579 		/* Allocate the mbufs. */
1580 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1581 		if (m_new == NULL) {
1582 			device_printf(sc->ti_dev, "mbuf allocation failed "
1583 			    "-- packet dropped!\n");
1584 			goto nobufs;
1585 		}
1586 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1587 		if (m[NPAYLOAD] == NULL) {
1588 			device_printf(sc->ti_dev, "cluster mbuf allocation "
1589 			    "failed -- packet dropped!\n");
1590 			goto nobufs;
1591 		}
1592 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1593 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1594 			device_printf(sc->ti_dev, "mbuf allocation failed "
1595 			    "-- packet dropped!\n");
1596 			goto nobufs;
1597 		}
1598 		m[NPAYLOAD]->m_len = MCLBYTES;
1599 
1600 		for (i = 0; i < NPAYLOAD; i++){
1601 			MGET(m[i], M_DONTWAIT, MT_DATA);
1602 			if (m[i] == NULL) {
1603 				device_printf(sc->ti_dev, "mbuf allocation "
1604 				    "failed -- packet dropped!\n");
1605 				goto nobufs;
1606 			}
1607 			frame = vm_page_alloc(NULL, 0,
1608 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1609 			    VM_ALLOC_WIRED);
1610 			if (frame == NULL) {
1611 				device_printf(sc->ti_dev, "buffer allocation "
1612 				    "failed -- packet dropped!\n");
1613 				printf("      index %d page %d\n", idx, i);
1614 				goto nobufs;
1615 			}
1616 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1617 			if (sf[i] == NULL) {
1618 				vm_page_unwire(frame, 0);
1619 				vm_page_free(frame);
1620 				device_printf(sc->ti_dev, "buffer allocation "
1621 				    "failed -- packet dropped!\n");
1622 				printf("      index %d page %d\n", idx, i);
1623 				goto nobufs;
1624 			}
1625 		}
1626 		for (i = 0; i < NPAYLOAD; i++){
1627 		/* Attach the buffer to the mbuf. */
1628 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1629 			m[i]->m_len = PAGE_SIZE;
1630 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1631 			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1632 			    0, EXT_DISPOSABLE);
1633 			m[i]->m_next = m[i+1];
1634 		}
1635 		/* link the buffers to the header */
1636 		m_new->m_next = m[0];
1637 		m_new->m_data += ETHER_ALIGN;
1638 		if (sc->ti_hdrsplit)
1639 			m_new->m_len = MHLEN - ETHER_ALIGN;
1640 		else
1641 			m_new->m_len = HDR_LEN;
1642 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1643 	}
1644 
1645 	/* Set up the descriptor. */
1646 	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1647 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1648 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1649 	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1650 	    segs, &nsegs, 0))
1651 		return (ENOBUFS);
1652 	if ((nsegs < 1) || (nsegs > 4))
1653 		return (ENOBUFS);
1654 	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1655 	r->ti_len0 = m_new->m_len;
1656 
1657 	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1658 	r->ti_len1 = PAGE_SIZE;
1659 
1660 	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1661 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1662 
1663 	if (PAGE_SIZE == 4096) {
1664 		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1665 		r->ti_len3 = MCLBYTES;
1666 	} else {
1667 		r->ti_len3 = 0;
1668 	}
1669 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1670 
1671 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1672 
1673 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1674 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1675 
1676 	r->ti_idx = idx;
1677 
1678 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1679 	return (0);
1680 
1681 nobufs:
1682 
1683 	/*
1684 	 * Warning! :
1685 	 * This can only be called before the mbufs are strung together.
1686 	 * If the mbufs are strung together, m_freem() will free the chain,
1687 	 * so that the later mbufs will be freed multiple times.
1688 	 */
1689 	if (m_new)
1690 		m_freem(m_new);
1691 
1692 	for (i = 0; i < 3; i++) {
1693 		if (m[i])
1694 			m_freem(m[i]);
1695 		if (sf[i])
1696 			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1697 	}
1698 	return (ENOBUFS);
1699 }
1700 #endif
1701 
1702 /*
1703  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1704  * that's 1MB or memory, which is a lot. For now, we fill only the first
1705  * 256 ring entries and hope that our CPU is fast enough to keep up with
1706  * the NIC.
1707  */
1708 static int
1709 ti_init_rx_ring_std(struct ti_softc *sc)
1710 {
1711 	int i;
1712 	struct ti_cmd_desc cmd;
1713 
1714 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1715 		if (ti_newbuf_std(sc, i) != 0)
1716 			return (ENOBUFS);
1717 	};
1718 
1719 	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1720 	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1721 
1722 	return (0);
1723 }
1724 
1725 static void
1726 ti_free_rx_ring_std(struct ti_softc *sc)
1727 {
1728 	bus_dmamap_t map;
1729 	int i;
1730 
1731 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1732 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1733 			map = sc->ti_cdata.ti_rx_std_maps[i];
1734 			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1735 			    BUS_DMASYNC_POSTREAD);
1736 			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1737 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1738 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1739 		}
1740 	}
1741 	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1742 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1743 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1744 }
1745 
1746 static int
1747 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1748 {
1749 	struct ti_cmd_desc cmd;
1750 	int i;
1751 
1752 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1753 		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1754 			return (ENOBUFS);
1755 	};
1756 
1757 	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1758 	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1759 
1760 	return (0);
1761 }
1762 
1763 static void
1764 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1765 {
1766 	bus_dmamap_t map;
1767 	int i;
1768 
1769 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1770 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1771 			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1772 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1773 			    BUS_DMASYNC_POSTREAD);
1774 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1775 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1776 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1777 		}
1778 	}
1779 	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1780 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1781 	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1782 }
1783 
1784 static int
1785 ti_init_rx_ring_mini(struct ti_softc *sc)
1786 {
1787 	int i;
1788 
1789 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1790 		if (ti_newbuf_mini(sc, i) != 0)
1791 			return (ENOBUFS);
1792 	};
1793 
1794 	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1795 	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1796 
1797 	return (0);
1798 }
1799 
1800 static void
1801 ti_free_rx_ring_mini(struct ti_softc *sc)
1802 {
1803 	bus_dmamap_t map;
1804 	int i;
1805 
1806 	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1807 		return;
1808 
1809 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1810 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1811 			map = sc->ti_cdata.ti_rx_mini_maps[i];
1812 			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1813 			    BUS_DMASYNC_POSTREAD);
1814 			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1815 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1816 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1817 		}
1818 	}
1819 	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1820 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1821 	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1822 }
1823 
1824 static void
1825 ti_free_tx_ring(struct ti_softc *sc)
1826 {
1827 	struct ti_txdesc *txd;
1828 	int i;
1829 
1830 	if (sc->ti_rdata.ti_tx_ring == NULL)
1831 		return;
1832 
1833 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1834 		txd = &sc->ti_cdata.ti_txdesc[i];
1835 		if (txd->tx_m != NULL) {
1836 			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1837 			    BUS_DMASYNC_POSTWRITE);
1838 			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1839 			    txd->tx_dmamap);
1840 			m_freem(txd->tx_m);
1841 			txd->tx_m = NULL;
1842 		}
1843 	}
1844 	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1845 	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1846 	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1847 }
1848 
1849 static int
1850 ti_init_tx_ring(struct ti_softc *sc)
1851 {
1852 	struct ti_txdesc *txd;
1853 	int i;
1854 
1855 	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1856 	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1857 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1858 		txd = &sc->ti_cdata.ti_txdesc[i];
1859 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1860 	}
1861 	sc->ti_txcnt = 0;
1862 	sc->ti_tx_saved_considx = 0;
1863 	sc->ti_tx_saved_prodidx = 0;
1864 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1865 	return (0);
1866 }
1867 
1868 /*
1869  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1870  * but we have to support the old way too so that Tigon 1 cards will
1871  * work.
1872  */
1873 static void
1874 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1875 {
1876 	struct ti_cmd_desc cmd;
1877 	uint16_t *m;
1878 	uint32_t ext[2] = {0, 0};
1879 
1880 	m = (uint16_t *)&addr->octet[0];
1881 
1882 	switch (sc->ti_hwrev) {
1883 	case TI_HWREV_TIGON:
1884 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1885 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1886 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1887 		break;
1888 	case TI_HWREV_TIGON_II:
1889 		ext[0] = htons(m[0]);
1890 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1891 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1892 		break;
1893 	default:
1894 		device_printf(sc->ti_dev, "unknown hwrev\n");
1895 		break;
1896 	}
1897 }
1898 
1899 static void
1900 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1901 {
1902 	struct ti_cmd_desc cmd;
1903 	uint16_t *m;
1904 	uint32_t ext[2] = {0, 0};
1905 
1906 	m = (uint16_t *)&addr->octet[0];
1907 
1908 	switch (sc->ti_hwrev) {
1909 	case TI_HWREV_TIGON:
1910 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1911 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1912 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1913 		break;
1914 	case TI_HWREV_TIGON_II:
1915 		ext[0] = htons(m[0]);
1916 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1917 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1918 		break;
1919 	default:
1920 		device_printf(sc->ti_dev, "unknown hwrev\n");
1921 		break;
1922 	}
1923 }
1924 
1925 /*
1926  * Configure the Tigon's multicast address filter.
1927  *
1928  * The actual multicast table management is a bit of a pain, thanks to
1929  * slight brain damage on the part of both Alteon and us. With our
1930  * multicast code, we are only alerted when the multicast address table
1931  * changes and at that point we only have the current list of addresses:
1932  * we only know the current state, not the previous state, so we don't
1933  * actually know what addresses were removed or added. The firmware has
1934  * state, but we can't get our grubby mits on it, and there is no 'delete
1935  * all multicast addresses' command. Hence, we have to maintain our own
1936  * state so we know what addresses have been programmed into the NIC at
1937  * any given time.
1938  */
1939 static void
1940 ti_setmulti(struct ti_softc *sc)
1941 {
1942 	struct ifnet *ifp;
1943 	struct ifmultiaddr *ifma;
1944 	struct ti_cmd_desc cmd;
1945 	struct ti_mc_entry *mc;
1946 	uint32_t intrs;
1947 
1948 	TI_LOCK_ASSERT(sc);
1949 
1950 	ifp = sc->ti_ifp;
1951 
1952 	if (ifp->if_flags & IFF_ALLMULTI) {
1953 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1954 		return;
1955 	} else {
1956 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1957 	}
1958 
1959 	/* Disable interrupts. */
1960 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1961 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1962 
1963 	/* First, zot all the existing filters. */
1964 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1965 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1966 		ti_del_mcast(sc, &mc->mc_addr);
1967 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1968 		free(mc, M_DEVBUF);
1969 	}
1970 
1971 	/* Now program new ones. */
1972 	if_maddr_rlock(ifp);
1973 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1974 		if (ifma->ifma_addr->sa_family != AF_LINK)
1975 			continue;
1976 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1977 		if (mc == NULL) {
1978 			device_printf(sc->ti_dev,
1979 			    "no memory for mcast filter entry\n");
1980 			continue;
1981 		}
1982 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1983 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1984 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1985 		ti_add_mcast(sc, &mc->mc_addr);
1986 	}
1987 	if_maddr_runlock(ifp);
1988 
1989 	/* Re-enable interrupts. */
1990 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1991 }
1992 
1993 /*
1994  * Check to see if the BIOS has configured us for a 64 bit slot when
1995  * we aren't actually in one. If we detect this condition, we can work
1996  * around it on the Tigon 2 by setting a bit in the PCI state register,
1997  * but for the Tigon 1 we must give up and abort the interface attach.
1998  */
1999 static int
2000 ti_64bitslot_war(struct ti_softc *sc)
2001 {
2002 
2003 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2004 		CSR_WRITE_4(sc, 0x600, 0);
2005 		CSR_WRITE_4(sc, 0x604, 0);
2006 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2007 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2008 			if (sc->ti_hwrev == TI_HWREV_TIGON)
2009 				return (EINVAL);
2010 			else {
2011 				TI_SETBIT(sc, TI_PCI_STATE,
2012 				    TI_PCISTATE_32BIT_BUS);
2013 				return (0);
2014 			}
2015 		}
2016 	}
2017 
2018 	return (0);
2019 }
2020 
2021 /*
2022  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2023  * self-test results.
2024  */
2025 static int
2026 ti_chipinit(struct ti_softc *sc)
2027 {
2028 	uint32_t cacheline;
2029 	uint32_t pci_writemax = 0;
2030 	uint32_t hdrsplit;
2031 
2032 	/* Initialize link to down state. */
2033 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2034 
2035 	/* Set endianness before we access any non-PCI registers. */
2036 #if 0 && BYTE_ORDER == BIG_ENDIAN
2037 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2038 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2039 #else
2040 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2041 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2042 #endif
2043 
2044 	/* Check the ROM failed bit to see if self-tests passed. */
2045 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2046 		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2047 		return (ENODEV);
2048 	}
2049 
2050 	/* Halt the CPU. */
2051 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2052 
2053 	/* Figure out the hardware revision. */
2054 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2055 	case TI_REV_TIGON_I:
2056 		sc->ti_hwrev = TI_HWREV_TIGON;
2057 		break;
2058 	case TI_REV_TIGON_II:
2059 		sc->ti_hwrev = TI_HWREV_TIGON_II;
2060 		break;
2061 	default:
2062 		device_printf(sc->ti_dev, "unsupported chip revision\n");
2063 		return (ENODEV);
2064 	}
2065 
2066 	/* Do special setup for Tigon 2. */
2067 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2068 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2069 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2070 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2071 	}
2072 
2073 	/*
2074 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2075 	 * can't do header splitting.
2076 	 */
2077 #ifdef TI_JUMBO_HDRSPLIT
2078 	if (sc->ti_hwrev != TI_HWREV_TIGON)
2079 		sc->ti_hdrsplit = 1;
2080 	else
2081 		device_printf(sc->ti_dev,
2082 		    "can't do header splitting on a Tigon I board\n");
2083 #endif /* TI_JUMBO_HDRSPLIT */
2084 
2085 	/* Set up the PCI state register. */
2086 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2087 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2088 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2089 	}
2090 
2091 	/* Clear the read/write max DMA parameters. */
2092 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2093 	    TI_PCISTATE_READ_MAXDMA));
2094 
2095 	/* Get cache line size. */
2096 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2097 
2098 	/*
2099 	 * If the system has set enabled the PCI memory write
2100 	 * and invalidate command in the command register, set
2101 	 * the write max parameter accordingly. This is necessary
2102 	 * to use MWI with the Tigon 2.
2103 	 */
2104 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2105 		switch (cacheline) {
2106 		case 1:
2107 		case 4:
2108 		case 8:
2109 		case 16:
2110 		case 32:
2111 		case 64:
2112 			break;
2113 		default:
2114 		/* Disable PCI memory write and invalidate. */
2115 			if (bootverbose)
2116 				device_printf(sc->ti_dev, "cache line size %d"
2117 				    " not supported; disabling PCI MWI\n",
2118 				    cacheline);
2119 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2120 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2121 			break;
2122 		}
2123 	}
2124 
2125 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2126 
2127 	/* This sets the min dma param all the way up (0xff). */
2128 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2129 
2130 	if (sc->ti_hdrsplit)
2131 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2132 	else
2133 		hdrsplit = 0;
2134 
2135 	/* Configure DMA variables. */
2136 #if BYTE_ORDER == BIG_ENDIAN
2137 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2138 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2139 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2140 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2141 #else /* BYTE_ORDER */
2142 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2143 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2144 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2145 #endif /* BYTE_ORDER */
2146 
2147 	/*
2148 	 * Only allow 1 DMA channel to be active at a time.
2149 	 * I don't think this is a good idea, but without it
2150 	 * the firmware racks up lots of nicDmaReadRingFull
2151 	 * errors.  This is not compatible with hardware checksums.
2152 	 */
2153 	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2154 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2155 
2156 	/* Recommended settings from Tigon manual. */
2157 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2158 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2159 
2160 	if (ti_64bitslot_war(sc)) {
2161 		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2162 		    "but we aren't");
2163 		return (EINVAL);
2164 	}
2165 
2166 	return (0);
2167 }
2168 
2169 /*
2170  * Initialize the general information block and firmware, and
2171  * start the CPU(s) running.
2172  */
2173 static int
2174 ti_gibinit(struct ti_softc *sc)
2175 {
2176 	struct ifnet *ifp;
2177 	struct ti_rcb *rcb;
2178 	int i;
2179 
2180 	TI_LOCK_ASSERT(sc);
2181 
2182 	ifp = sc->ti_ifp;
2183 
2184 	/* Disable interrupts for now. */
2185 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2186 
2187 	/* Tell the chip where to find the general information block. */
2188 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2189 	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2190 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2191 	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2192 
2193 	/* Load the firmware into SRAM. */
2194 	ti_loadfw(sc);
2195 
2196 	/* Set up the contents of the general info and ring control blocks. */
2197 
2198 	/* Set up the event ring and producer pointer. */
2199 	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2200 	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2201 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2202 	rcb->ti_flags = 0;
2203 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2204 	    sc->ti_rdata.ti_status_paddr +
2205 	    offsetof(struct ti_status, ti_ev_prodidx_r));
2206 	sc->ti_ev_prodidx.ti_idx = 0;
2207 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2208 	sc->ti_ev_saved_considx = 0;
2209 
2210 	/* Set up the command ring and producer mailbox. */
2211 	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2212 	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2213 	rcb->ti_flags = 0;
2214 	rcb->ti_max_len = 0;
2215 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2216 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2217 	}
2218 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2219 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2220 	sc->ti_cmd_saved_prodidx = 0;
2221 
2222 	/*
2223 	 * Assign the address of the stats refresh buffer.
2224 	 * We re-use the current stats buffer for this to
2225 	 * conserve memory.
2226 	 */
2227 	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2228 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2229 	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2230 
2231 	/* Set up the standard receive ring. */
2232 	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2233 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2234 	rcb->ti_max_len = TI_FRAMELEN;
2235 	rcb->ti_flags = 0;
2236 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2237 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2238 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2239 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2240 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2241 
2242 	/* Set up the jumbo receive ring. */
2243 	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2244 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2245 
2246 #ifndef TI_SF_BUF_JUMBO
2247 	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2248 	rcb->ti_flags = 0;
2249 #else
2250 	rcb->ti_max_len = PAGE_SIZE;
2251 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2252 #endif
2253 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2254 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2255 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2256 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2257 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2258 
2259 	/*
2260 	 * Set up the mini ring. Only activated on the
2261 	 * Tigon 2 but the slot in the config block is
2262 	 * still there on the Tigon 1.
2263 	 */
2264 	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2265 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2266 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2267 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2268 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2269 	else
2270 		rcb->ti_flags = 0;
2271 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2272 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2273 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2274 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2275 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2276 
2277 	/*
2278 	 * Set up the receive return ring.
2279 	 */
2280 	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2281 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2282 	rcb->ti_flags = 0;
2283 	rcb->ti_max_len = TI_RETURN_RING_CNT;
2284 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2285 	    sc->ti_rdata.ti_status_paddr +
2286 	    offsetof(struct ti_status, ti_return_prodidx_r));
2287 
2288 	/*
2289 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2290 	 * of putting the transmit ring in the host's address space and
2291 	 * letting the chip DMA it instead of leaving the ring in the NIC's
2292 	 * memory and accessing it through the shared memory region. We
2293 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2294 	 * so we have to revert to the shared memory scheme if we detect
2295 	 * a Tigon 1 chip.
2296 	 */
2297 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2298 	if (sc->ti_rdata.ti_tx_ring != NULL)
2299 		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2300 	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2301 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2302 		rcb->ti_flags = 0;
2303 	else
2304 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2305 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2306 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2307 	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2308 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2309 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2310 	rcb->ti_max_len = TI_TX_RING_CNT;
2311 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2312 		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2313 	else
2314 		ti_hostaddr64(&rcb->ti_hostaddr,
2315 		    sc->ti_rdata.ti_tx_ring_paddr);
2316 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2317 	    sc->ti_rdata.ti_status_paddr +
2318 	    offsetof(struct ti_status, ti_tx_considx_r));
2319 
2320 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2321 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2322 	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2323 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2324 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2325 	    sc->ti_cdata.ti_event_ring_map,
2326 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2327 	if (sc->ti_rdata.ti_tx_ring != NULL)
2328 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2329 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2330 
2331 	/* Set up tunables */
2332 #if 0
2333 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2334 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2335 		    (sc->ti_rx_coal_ticks / 10));
2336 	else
2337 #endif
2338 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2339 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2340 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2341 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2342 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2343 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2344 
2345 	/* Turn interrupts on. */
2346 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2347 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2348 
2349 	/* Start CPU. */
2350 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2351 
2352 	return (0);
2353 }
2354 
2355 /*
2356  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2357  * against our list and return its name if we find a match.
2358  */
2359 static int
2360 ti_probe(device_t dev)
2361 {
2362 	const struct ti_type *t;
2363 
2364 	t = ti_devs;
2365 
2366 	while (t->ti_name != NULL) {
2367 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2368 		    (pci_get_device(dev) == t->ti_did)) {
2369 			device_set_desc(dev, t->ti_name);
2370 			return (BUS_PROBE_DEFAULT);
2371 		}
2372 		t++;
2373 	}
2374 
2375 	return (ENXIO);
2376 }
2377 
2378 static int
2379 ti_attach(device_t dev)
2380 {
2381 	struct ifnet *ifp;
2382 	struct ti_softc *sc;
2383 	int error = 0, rid;
2384 	u_char eaddr[6];
2385 
2386 	sc = device_get_softc(dev);
2387 	sc->ti_dev = dev;
2388 
2389 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2390 	    MTX_DEF);
2391 	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2392 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2393 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2394 	if (ifp == NULL) {
2395 		device_printf(dev, "can not if_alloc()\n");
2396 		error = ENOSPC;
2397 		goto fail;
2398 	}
2399 	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2400 	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2401 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2402 
2403 	/*
2404 	 * Map control/status registers.
2405 	 */
2406 	pci_enable_busmaster(dev);
2407 
2408 	rid = PCIR_BAR(0);
2409 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2410 	    RF_ACTIVE);
2411 
2412 	if (sc->ti_res == NULL) {
2413 		device_printf(dev, "couldn't map memory\n");
2414 		error = ENXIO;
2415 		goto fail;
2416 	}
2417 
2418 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2419 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2420 
2421 	/* Allocate interrupt */
2422 	rid = 0;
2423 
2424 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2425 	    RF_SHAREABLE | RF_ACTIVE);
2426 
2427 	if (sc->ti_irq == NULL) {
2428 		device_printf(dev, "couldn't map interrupt\n");
2429 		error = ENXIO;
2430 		goto fail;
2431 	}
2432 
2433 	if (ti_chipinit(sc)) {
2434 		device_printf(dev, "chip initialization failed\n");
2435 		error = ENXIO;
2436 		goto fail;
2437 	}
2438 
2439 	/* Zero out the NIC's on-board SRAM. */
2440 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2441 
2442 	/* Init again -- zeroing memory may have clobbered some registers. */
2443 	if (ti_chipinit(sc)) {
2444 		device_printf(dev, "chip initialization failed\n");
2445 		error = ENXIO;
2446 		goto fail;
2447 	}
2448 
2449 	/*
2450 	 * Get station address from the EEPROM. Note: the manual states
2451 	 * that the MAC address is at offset 0x8c, however the data is
2452 	 * stored as two longwords (since that's how it's loaded into
2453 	 * the NIC). This means the MAC address is actually preceded
2454 	 * by two zero bytes. We need to skip over those.
2455 	 */
2456 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2457 		device_printf(dev, "failed to read station address\n");
2458 		error = ENXIO;
2459 		goto fail;
2460 	}
2461 
2462 	/* Allocate working area for memory dump. */
2463 	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2464 	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2465 	    M_NOWAIT);
2466 	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2467 		device_printf(dev, "cannot allocate memory buffer\n");
2468 		error = ENOMEM;
2469 		goto fail;
2470 	}
2471 	if ((error = ti_dma_alloc(sc)) != 0)
2472 		goto fail;
2473 
2474 	/*
2475 	 * We really need a better way to tell a 1000baseTX card
2476 	 * from a 1000baseSX one, since in theory there could be
2477 	 * OEMed 1000baseTX cards from lame vendors who aren't
2478 	 * clever enough to change the PCI ID. For the moment
2479 	 * though, the AceNIC is the only copper card available.
2480 	 */
2481 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2482 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2483 		sc->ti_copper = 1;
2484 	/* Ok, it's not the only copper card available. */
2485 	if (pci_get_vendor(dev) == NG_VENDORID &&
2486 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2487 		sc->ti_copper = 1;
2488 
2489 	/* Set default tunable values. */
2490 	ti_sysctl_node(sc);
2491 
2492 	/* Set up ifnet structure */
2493 	ifp->if_softc = sc;
2494 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2495 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2496 	ifp->if_ioctl = ti_ioctl;
2497 	ifp->if_start = ti_start;
2498 	ifp->if_init = ti_init;
2499 	ifp->if_baudrate = IF_Gbps(1UL);
2500 	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2501 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2502 	IFQ_SET_READY(&ifp->if_snd);
2503 
2504 	/* Set up ifmedia support. */
2505 	if (sc->ti_copper) {
2506 		/*
2507 		 * Copper cards allow manual 10/100 mode selection,
2508 		 * but not manual 1000baseTX mode selection. Why?
2509 		 * Becuase currently there's no way to specify the
2510 		 * master/slave setting through the firmware interface,
2511 		 * so Alteon decided to just bag it and handle it
2512 		 * via autonegotiation.
2513 		 */
2514 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2515 		ifmedia_add(&sc->ifmedia,
2516 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2517 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2518 		ifmedia_add(&sc->ifmedia,
2519 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2520 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2521 		ifmedia_add(&sc->ifmedia,
2522 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2523 	} else {
2524 		/* Fiber cards don't support 10/100 modes. */
2525 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2526 		ifmedia_add(&sc->ifmedia,
2527 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2528 	}
2529 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2530 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2531 
2532 	/*
2533 	 * We're assuming here that card initialization is a sequential
2534 	 * thing.  If it isn't, multiple cards probing at the same time
2535 	 * could stomp on the list of softcs here.
2536 	 */
2537 
2538 	/* Register the device */
2539 	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2540 	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2541 	sc->dev->si_drv1 = sc;
2542 
2543 	/*
2544 	 * Call MI attach routine.
2545 	 */
2546 	ether_ifattach(ifp, eaddr);
2547 
2548 	/* VLAN capability setup. */
2549 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2550 	    IFCAP_VLAN_HWTAGGING;
2551 	ifp->if_capenable = ifp->if_capabilities;
2552 	/* Tell the upper layer we support VLAN over-sized frames. */
2553 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2554 
2555 	/* Driver supports link state tracking. */
2556 	ifp->if_capabilities |= IFCAP_LINKSTATE;
2557 	ifp->if_capenable |= IFCAP_LINKSTATE;
2558 
2559 	/* Hook interrupt last to avoid having to lock softc */
2560 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2561 	   NULL, ti_intr, sc, &sc->ti_intrhand);
2562 
2563 	if (error) {
2564 		device_printf(dev, "couldn't set up irq\n");
2565 		goto fail;
2566 	}
2567 
2568 fail:
2569 	if (error)
2570 		ti_detach(dev);
2571 
2572 	return (error);
2573 }
2574 
2575 /*
2576  * Shutdown hardware and free up resources. This can be called any
2577  * time after the mutex has been initialized. It is called in both
2578  * the error case in attach and the normal detach case so it needs
2579  * to be careful about only freeing resources that have actually been
2580  * allocated.
2581  */
2582 static int
2583 ti_detach(device_t dev)
2584 {
2585 	struct ti_softc *sc;
2586 	struct ifnet *ifp;
2587 
2588 	sc = device_get_softc(dev);
2589 	if (sc->dev)
2590 		destroy_dev(sc->dev);
2591 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2592 	ifp = sc->ti_ifp;
2593 	if (device_is_attached(dev)) {
2594 		ether_ifdetach(ifp);
2595 		TI_LOCK(sc);
2596 		ti_stop(sc);
2597 		TI_UNLOCK(sc);
2598 	}
2599 
2600 	/* These should only be active if attach succeeded */
2601 	callout_drain(&sc->ti_watchdog);
2602 	bus_generic_detach(dev);
2603 	ti_dma_free(sc);
2604 	ifmedia_removeall(&sc->ifmedia);
2605 
2606 	if (sc->ti_intrhand)
2607 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2608 	if (sc->ti_irq)
2609 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2610 	if (sc->ti_res) {
2611 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2612 		    sc->ti_res);
2613 	}
2614 	if (ifp)
2615 		if_free(ifp);
2616 	if (sc->ti_membuf)
2617 		free(sc->ti_membuf, M_DEVBUF);
2618 	if (sc->ti_membuf2)
2619 		free(sc->ti_membuf2, M_DEVBUF);
2620 
2621 	mtx_destroy(&sc->ti_mtx);
2622 
2623 	return (0);
2624 }
2625 
2626 #ifdef TI_JUMBO_HDRSPLIT
2627 /*
2628  * If hdr_len is 0, that means that header splitting wasn't done on
2629  * this packet for some reason.  The two most likely reasons are that
2630  * the protocol isn't a supported protocol for splitting, or this
2631  * packet had a fragment offset that wasn't 0.
2632  *
2633  * The header length, if it is non-zero, will always be the length of
2634  * the headers on the packet, but that length could be longer than the
2635  * first mbuf.  So we take the minimum of the two as the actual
2636  * length.
2637  */
2638 static __inline void
2639 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2640 {
2641 	int i = 0;
2642 	int lengths[4] = {0, 0, 0, 0};
2643 	struct mbuf *m, *mp;
2644 
2645 	if (hdr_len != 0)
2646 		top->m_len = min(hdr_len, top->m_len);
2647 	pkt_len -= top->m_len;
2648 	lengths[i++] = top->m_len;
2649 
2650 	mp = top;
2651 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2652 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2653 		pkt_len -= m->m_len;
2654 		lengths[i++] = m->m_len;
2655 		mp = m;
2656 	}
2657 
2658 #if 0
2659 	if (hdr_len != 0)
2660 		printf("got split packet: ");
2661 	else
2662 		printf("got non-split packet: ");
2663 
2664 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2665 	    lengths[1], lengths[2], lengths[3],
2666 	    lengths[0] + lengths[1] + lengths[2] +
2667 	    lengths[3]);
2668 #endif
2669 
2670 	if (pkt_len)
2671 		panic("header splitting didn't");
2672 
2673 	if (m) {
2674 		m_freem(m);
2675 		mp->m_next = NULL;
2676 
2677 	}
2678 	if (mp->m_next != NULL)
2679 		panic("ti_hdr_split: last mbuf in chain should be null");
2680 }
2681 #endif /* TI_JUMBO_HDRSPLIT */
2682 
2683 static void
2684 ti_discard_std(struct ti_softc *sc, int i)
2685 {
2686 
2687 	struct ti_rx_desc *r;
2688 
2689 	r = &sc->ti_rdata.ti_rx_std_ring[i];
2690 	r->ti_len = MCLBYTES - ETHER_ALIGN;
2691 	r->ti_type = TI_BDTYPE_RECV_BD;
2692 	r->ti_flags = 0;
2693 	r->ti_vlan_tag = 0;
2694 	r->ti_tcp_udp_cksum = 0;
2695 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2696 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2697 	r->ti_idx = i;
2698 }
2699 
2700 static void
2701 ti_discard_mini(struct ti_softc *sc, int i)
2702 {
2703 
2704 	struct ti_rx_desc *r;
2705 
2706 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2707 	r->ti_len = MHLEN - ETHER_ALIGN;
2708 	r->ti_type = TI_BDTYPE_RECV_BD;
2709 	r->ti_flags = TI_BDFLAG_MINI_RING;
2710 	r->ti_vlan_tag = 0;
2711 	r->ti_tcp_udp_cksum = 0;
2712 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2713 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2714 	r->ti_idx = i;
2715 }
2716 
2717 #ifndef TI_SF_BUF_JUMBO
2718 static void
2719 ti_discard_jumbo(struct ti_softc *sc, int i)
2720 {
2721 
2722 	struct ti_rx_desc *r;
2723 
2724 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2725 	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2726 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2727 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2728 	r->ti_vlan_tag = 0;
2729 	r->ti_tcp_udp_cksum = 0;
2730 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2731 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2732 	r->ti_idx = i;
2733 }
2734 #endif
2735 
2736 /*
2737  * Frame reception handling. This is called if there's a frame
2738  * on the receive return list.
2739  *
2740  * Note: we have to be able to handle three possibilities here:
2741  * 1) the frame is from the mini receive ring (can only happen)
2742  *    on Tigon 2 boards)
2743  * 2) the frame is from the jumbo recieve ring
2744  * 3) the frame is from the standard receive ring
2745  */
2746 
2747 static void
2748 ti_rxeof(struct ti_softc *sc)
2749 {
2750 	struct ifnet *ifp;
2751 #ifdef TI_SF_BUF_JUMBO
2752 	bus_dmamap_t map;
2753 #endif
2754 	struct ti_cmd_desc cmd;
2755 	int jumbocnt, minicnt, stdcnt, ti_len;
2756 
2757 	TI_LOCK_ASSERT(sc);
2758 
2759 	ifp = sc->ti_ifp;
2760 
2761 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2762 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2763 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2764 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2765 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2766 	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2767 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2768 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2769 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2770 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2771 
2772 	jumbocnt = minicnt = stdcnt = 0;
2773 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2774 		struct ti_rx_desc *cur_rx;
2775 		uint32_t rxidx;
2776 		struct mbuf *m = NULL;
2777 		uint16_t vlan_tag = 0;
2778 		int have_tag = 0;
2779 
2780 		cur_rx =
2781 		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2782 		rxidx = cur_rx->ti_idx;
2783 		ti_len = cur_rx->ti_len;
2784 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2785 
2786 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2787 			have_tag = 1;
2788 			vlan_tag = cur_rx->ti_vlan_tag;
2789 		}
2790 
2791 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2792 			jumbocnt++;
2793 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2794 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2795 #ifndef TI_SF_BUF_JUMBO
2796 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2797 				ifp->if_ierrors++;
2798 				ti_discard_jumbo(sc, rxidx);
2799 				continue;
2800 			}
2801 			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2802 				ifp->if_iqdrops++;
2803 				ti_discard_jumbo(sc, rxidx);
2804 				continue;
2805 			}
2806 			m->m_len = ti_len;
2807 #else /* !TI_SF_BUF_JUMBO */
2808 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2809 			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2810 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2811 			    BUS_DMASYNC_POSTREAD);
2812 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2813 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2814 				ifp->if_ierrors++;
2815 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2816 				continue;
2817 			}
2818 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2819 				ifp->if_iqdrops++;
2820 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2821 				continue;
2822 			}
2823 #ifdef TI_JUMBO_HDRSPLIT
2824 			if (sc->ti_hdrsplit)
2825 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2826 					     ti_len, rxidx);
2827 			else
2828 #endif /* TI_JUMBO_HDRSPLIT */
2829 			m_adj(m, ti_len - m->m_pkthdr.len);
2830 #endif /* TI_SF_BUF_JUMBO */
2831 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2832 			minicnt++;
2833 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2834 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2835 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2836 				ifp->if_ierrors++;
2837 				ti_discard_mini(sc, rxidx);
2838 				continue;
2839 			}
2840 			if (ti_newbuf_mini(sc, rxidx) != 0) {
2841 				ifp->if_iqdrops++;
2842 				ti_discard_mini(sc, rxidx);
2843 				continue;
2844 			}
2845 			m->m_len = ti_len;
2846 		} else {
2847 			stdcnt++;
2848 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2849 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2850 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2851 				ifp->if_ierrors++;
2852 				ti_discard_std(sc, rxidx);
2853 				continue;
2854 			}
2855 			if (ti_newbuf_std(sc, rxidx) != 0) {
2856 				ifp->if_iqdrops++;
2857 				ti_discard_std(sc, rxidx);
2858 				continue;
2859 			}
2860 			m->m_len = ti_len;
2861 		}
2862 
2863 		m->m_pkthdr.len = ti_len;
2864 		ifp->if_ipackets++;
2865 		m->m_pkthdr.rcvif = ifp;
2866 
2867 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2868 			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2869 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2870 				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2871 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2872 			}
2873 			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2874 				m->m_pkthdr.csum_data =
2875 				    cur_rx->ti_tcp_udp_cksum;
2876 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2877 			}
2878 		}
2879 
2880 		/*
2881 		 * If we received a packet with a vlan tag,
2882 		 * tag it before passing the packet upward.
2883 		 */
2884 		if (have_tag) {
2885 			m->m_pkthdr.ether_vtag = vlan_tag;
2886 			m->m_flags |= M_VLANTAG;
2887 		}
2888 		TI_UNLOCK(sc);
2889 		(*ifp->if_input)(ifp, m);
2890 		TI_LOCK(sc);
2891 	}
2892 
2893 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2894 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2895 	/* Only necessary on the Tigon 1. */
2896 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2897 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2898 		    sc->ti_rx_saved_considx);
2899 
2900 	if (stdcnt > 0) {
2901 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2902 		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2903 		TI_UPDATE_STDPROD(sc, sc->ti_std);
2904 	}
2905 	if (minicnt > 0) {
2906 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2907 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2908 		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2909 	}
2910 	if (jumbocnt > 0) {
2911 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2912 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2913 		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2914 	}
2915 }
2916 
2917 static void
2918 ti_txeof(struct ti_softc *sc)
2919 {
2920 	struct ti_txdesc *txd;
2921 	struct ti_tx_desc txdesc;
2922 	struct ti_tx_desc *cur_tx = NULL;
2923 	struct ifnet *ifp;
2924 	int idx;
2925 
2926 	ifp = sc->ti_ifp;
2927 
2928 	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2929 	if (txd == NULL)
2930 		return;
2931 
2932 	if (sc->ti_rdata.ti_tx_ring != NULL)
2933 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2934 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2935 	/*
2936 	 * Go through our tx ring and free mbufs for those
2937 	 * frames that have been sent.
2938 	 */
2939 	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2940 	    TI_INC(idx, TI_TX_RING_CNT)) {
2941 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2942 			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2943 			    sizeof(txdesc), &txdesc);
2944 			cur_tx = &txdesc;
2945 		} else
2946 			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2947 		sc->ti_txcnt--;
2948 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2949 		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2950 			continue;
2951 		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2952 		    BUS_DMASYNC_POSTWRITE);
2953 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2954 
2955 		ifp->if_opackets++;
2956 		m_freem(txd->tx_m);
2957 		txd->tx_m = NULL;
2958 		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2959 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2960 		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2961 	}
2962 	sc->ti_tx_saved_considx = idx;
2963 	if (sc->ti_txcnt == 0)
2964 		sc->ti_timer = 0;
2965 }
2966 
2967 static void
2968 ti_intr(void *xsc)
2969 {
2970 	struct ti_softc *sc;
2971 	struct ifnet *ifp;
2972 
2973 	sc = xsc;
2974 	TI_LOCK(sc);
2975 	ifp = sc->ti_ifp;
2976 
2977 	/* Make sure this is really our interrupt. */
2978 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2979 		TI_UNLOCK(sc);
2980 		return;
2981 	}
2982 
2983 	/* Ack interrupt and stop others from occuring. */
2984 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2985 
2986 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2987 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2988 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2989 		/* Check RX return ring producer/consumer */
2990 		ti_rxeof(sc);
2991 
2992 		/* Check TX ring producer/consumer */
2993 		ti_txeof(sc);
2994 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2995 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
2996 	}
2997 
2998 	ti_handle_events(sc);
2999 
3000 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3001 		/* Re-enable interrupts. */
3002 		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3003 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3004 			ti_start_locked(ifp);
3005 	}
3006 
3007 	TI_UNLOCK(sc);
3008 }
3009 
3010 static void
3011 ti_stats_update(struct ti_softc *sc)
3012 {
3013 	struct ifnet *ifp;
3014 	struct ti_stats *s;
3015 
3016 	ifp = sc->ti_ifp;
3017 
3018 	if (sc->ti_stat_ticks == 0)
3019 		return;
3020 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3021 	    BUS_DMASYNC_POSTREAD);
3022 
3023 	s = &sc->ti_rdata.ti_info->ti_stats;
3024 	ifp->if_collisions += (s->dot3StatsSingleCollisionFrames +
3025 	   s->dot3StatsMultipleCollisionFrames +
3026 	   s->dot3StatsExcessiveCollisions + s->dot3StatsLateCollisions) -
3027 	    ifp->if_collisions;
3028 
3029 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3030 	    BUS_DMASYNC_PREREAD);
3031 }
3032 
3033 /*
3034  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3035  * pointers to descriptors.
3036  */
3037 static int
3038 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3039 {
3040 	struct ti_txdesc *txd;
3041 	struct ti_tx_desc *f;
3042 	struct ti_tx_desc txdesc;
3043 	struct mbuf *m;
3044 	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3045 	uint16_t csum_flags;
3046 	int error, frag, i, nseg;
3047 
3048 	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3049 		return (ENOBUFS);
3050 
3051 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3052 	    *m_head, txsegs, &nseg, 0);
3053 	if (error == EFBIG) {
3054 		m = m_defrag(*m_head, M_DONTWAIT);
3055 		if (m == NULL) {
3056 			m_freem(*m_head);
3057 			*m_head = NULL;
3058 			return (ENOMEM);
3059 		}
3060 		*m_head = m;
3061 		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3062 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3063 		if (error) {
3064 			m_freem(*m_head);
3065 			*m_head = NULL;
3066 			return (error);
3067 		}
3068 	} else if (error != 0)
3069 		return (error);
3070 	if (nseg == 0) {
3071 		m_freem(*m_head);
3072 		*m_head = NULL;
3073 		return (EIO);
3074 	}
3075 
3076 	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3077 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3078 		return (ENOBUFS);
3079 	}
3080 	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3081 	    BUS_DMASYNC_PREWRITE);
3082 
3083 	m = *m_head;
3084 	csum_flags = 0;
3085 	if (m->m_pkthdr.csum_flags) {
3086 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3087 			csum_flags |= TI_BDFLAG_IP_CKSUM;
3088 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3089 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3090 		if (m->m_flags & M_LASTFRAG)
3091 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
3092 		else if (m->m_flags & M_FRAG)
3093 			csum_flags |= TI_BDFLAG_IP_FRAG;
3094 	}
3095 
3096 	frag = sc->ti_tx_saved_prodidx;
3097 	for (i = 0; i < nseg; i++) {
3098 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3099 			bzero(&txdesc, sizeof(txdesc));
3100 			f = &txdesc;
3101 		} else
3102 			f = &sc->ti_rdata.ti_tx_ring[frag];
3103 		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3104 		f->ti_len = txsegs[i].ds_len;
3105 		f->ti_flags = csum_flags;
3106 		if (m->m_flags & M_VLANTAG) {
3107 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3108 			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3109 		} else {
3110 			f->ti_vlan_tag = 0;
3111 		}
3112 
3113 		if (sc->ti_hwrev == TI_HWREV_TIGON)
3114 			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3115 			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3116 		TI_INC(frag, TI_TX_RING_CNT);
3117 	}
3118 
3119 	sc->ti_tx_saved_prodidx = frag;
3120 	/* set TI_BDFLAG_END on the last descriptor */
3121 	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3122 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3123 		txdesc.ti_flags |= TI_BDFLAG_END;
3124 		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3125 		    sizeof(txdesc), &txdesc);
3126 	} else
3127 		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3128 
3129 	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3130 	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3131 	txd->tx_m = m;
3132 	sc->ti_txcnt += nseg;
3133 
3134 	return (0);
3135 }
3136 
3137 static void
3138 ti_start(struct ifnet *ifp)
3139 {
3140 	struct ti_softc *sc;
3141 
3142 	sc = ifp->if_softc;
3143 	TI_LOCK(sc);
3144 	ti_start_locked(ifp);
3145 	TI_UNLOCK(sc);
3146 }
3147 
3148 /*
3149  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3150  * to the mbuf data regions directly in the transmit descriptors.
3151  */
3152 static void
3153 ti_start_locked(struct ifnet *ifp)
3154 {
3155 	struct ti_softc *sc;
3156 	struct mbuf *m_head = NULL;
3157 	int enq = 0;
3158 
3159 	sc = ifp->if_softc;
3160 
3161 	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3162 	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3163 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3164 		if (m_head == NULL)
3165 			break;
3166 
3167 		/*
3168 		 * XXX
3169 		 * safety overkill.  If this is a fragmented packet chain
3170 		 * with delayed TCP/UDP checksums, then only encapsulate
3171 		 * it if we have enough descriptors to handle the entire
3172 		 * chain at once.
3173 		 * (paranoia -- may not actually be needed)
3174 		 */
3175 		if (m_head->m_flags & M_FIRSTFRAG &&
3176 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3177 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3178 			    m_head->m_pkthdr.csum_data + 16) {
3179 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3180 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3181 				break;
3182 			}
3183 		}
3184 
3185 		/*
3186 		 * Pack the data into the transmit ring. If we
3187 		 * don't have room, set the OACTIVE flag and wait
3188 		 * for the NIC to drain the ring.
3189 		 */
3190 		if (ti_encap(sc, &m_head)) {
3191 			if (m_head == NULL)
3192 				break;
3193 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3194 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3195 			break;
3196 		}
3197 
3198 		enq++;
3199 		/*
3200 		 * If there's a BPF listener, bounce a copy of this frame
3201 		 * to him.
3202 		 */
3203 		ETHER_BPF_MTAP(ifp, m_head);
3204 	}
3205 
3206 	if (enq > 0) {
3207 		if (sc->ti_rdata.ti_tx_ring != NULL)
3208 			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3209 			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3210 		/* Transmit */
3211 		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3212 
3213 		/*
3214 		 * Set a timeout in case the chip goes out to lunch.
3215 		 */
3216 		sc->ti_timer = 5;
3217 	}
3218 }
3219 
3220 static void
3221 ti_init(void *xsc)
3222 {
3223 	struct ti_softc *sc;
3224 
3225 	sc = xsc;
3226 	TI_LOCK(sc);
3227 	ti_init_locked(sc);
3228 	TI_UNLOCK(sc);
3229 }
3230 
3231 static void
3232 ti_init_locked(void *xsc)
3233 {
3234 	struct ti_softc *sc = xsc;
3235 
3236 	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3237 		return;
3238 
3239 	/* Cancel pending I/O and flush buffers. */
3240 	ti_stop(sc);
3241 
3242 	/* Init the gen info block, ring control blocks and firmware. */
3243 	if (ti_gibinit(sc)) {
3244 		device_printf(sc->ti_dev, "initialization failure\n");
3245 		return;
3246 	}
3247 }
3248 
3249 static void ti_init2(struct ti_softc *sc)
3250 {
3251 	struct ti_cmd_desc cmd;
3252 	struct ifnet *ifp;
3253 	uint8_t *ea;
3254 	struct ifmedia *ifm;
3255 	int tmp;
3256 
3257 	TI_LOCK_ASSERT(sc);
3258 
3259 	ifp = sc->ti_ifp;
3260 
3261 	/* Specify MTU and interface index. */
3262 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3263 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3264 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3265 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3266 
3267 	/* Load our MAC address. */
3268 	ea = IF_LLADDR(sc->ti_ifp);
3269 	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3270 	CSR_WRITE_4(sc, TI_GCR_PAR1,
3271 	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3272 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3273 
3274 	/* Enable or disable promiscuous mode as needed. */
3275 	if (ifp->if_flags & IFF_PROMISC) {
3276 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3277 	} else {
3278 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3279 	}
3280 
3281 	/* Program multicast filter. */
3282 	ti_setmulti(sc);
3283 
3284 	/*
3285 	 * If this is a Tigon 1, we should tell the
3286 	 * firmware to use software packet filtering.
3287 	 */
3288 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3289 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3290 	}
3291 
3292 	/* Init RX ring. */
3293 	if (ti_init_rx_ring_std(sc) != 0) {
3294 		/* XXX */
3295 		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3296 		return;
3297 	}
3298 
3299 	/* Init jumbo RX ring. */
3300 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3301 		if (ti_init_rx_ring_jumbo(sc) != 0) {
3302 			/* XXX */
3303 			device_printf(sc->ti_dev,
3304 			    "no memory for jumbo Rx buffers.\n");
3305 			return;
3306 		}
3307 	}
3308 
3309 	/*
3310 	 * If this is a Tigon 2, we can also configure the
3311 	 * mini ring.
3312 	 */
3313 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3314 		if (ti_init_rx_ring_mini(sc) != 0) {
3315 			/* XXX */
3316 			device_printf(sc->ti_dev,
3317 			    "no memory for mini Rx buffers.\n");
3318 			return;
3319 		}
3320 	}
3321 
3322 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3323 	sc->ti_rx_saved_considx = 0;
3324 
3325 	/* Init TX ring. */
3326 	ti_init_tx_ring(sc);
3327 
3328 	/* Tell firmware we're alive. */
3329 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3330 
3331 	/* Enable host interrupts. */
3332 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3333 
3334 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3335 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3336 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3337 
3338 	/*
3339 	 * Make sure to set media properly. We have to do this
3340 	 * here since we have to issue commands in order to set
3341 	 * the link negotiation and we can't issue commands until
3342 	 * the firmware is running.
3343 	 */
3344 	ifm = &sc->ifmedia;
3345 	tmp = ifm->ifm_media;
3346 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3347 	ti_ifmedia_upd_locked(sc);
3348 	ifm->ifm_media = tmp;
3349 }
3350 
3351 /*
3352  * Set media options.
3353  */
3354 static int
3355 ti_ifmedia_upd(struct ifnet *ifp)
3356 {
3357 	struct ti_softc *sc;
3358 	int error;
3359 
3360 	sc = ifp->if_softc;
3361 	TI_LOCK(sc);
3362 	error = ti_ifmedia_upd(ifp);
3363 	TI_UNLOCK(sc);
3364 
3365 	return (error);
3366 }
3367 
3368 static int
3369 ti_ifmedia_upd_locked(struct ti_softc *sc)
3370 {
3371 	struct ifmedia *ifm;
3372 	struct ti_cmd_desc cmd;
3373 	uint32_t flowctl;
3374 
3375 	ifm = &sc->ifmedia;
3376 
3377 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3378 		return (EINVAL);
3379 
3380 	flowctl = 0;
3381 
3382 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3383 	case IFM_AUTO:
3384 		/*
3385 		 * Transmit flow control doesn't work on the Tigon 1.
3386 		 */
3387 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3388 
3389 		/*
3390 		 * Transmit flow control can also cause problems on the
3391 		 * Tigon 2, apparantly with both the copper and fiber
3392 		 * boards.  The symptom is that the interface will just
3393 		 * hang.  This was reproduced with Alteon 180 switches.
3394 		 */
3395 #if 0
3396 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3397 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3398 #endif
3399 
3400 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3401 		    TI_GLNK_FULL_DUPLEX| flowctl |
3402 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3403 
3404 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3405 #if 0
3406 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3407 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3408 #endif
3409 
3410 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3411 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3412 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3413 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3414 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3415 		break;
3416 	case IFM_1000_SX:
3417 	case IFM_1000_T:
3418 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3419 #if 0
3420 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3421 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3422 #endif
3423 
3424 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3425 		    flowctl |TI_GLNK_ENB);
3426 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3427 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3428 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3429 		}
3430 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3431 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3432 		break;
3433 	case IFM_100_FX:
3434 	case IFM_10_FL:
3435 	case IFM_100_TX:
3436 	case IFM_10_T:
3437 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3438 #if 0
3439 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3440 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3441 #endif
3442 
3443 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3444 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3445 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3446 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3447 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3448 		} else {
3449 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3450 		}
3451 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3452 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3453 		} else {
3454 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3455 		}
3456 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3457 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3458 		break;
3459 	}
3460 
3461 	return (0);
3462 }
3463 
3464 /*
3465  * Report current media status.
3466  */
3467 static void
3468 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3469 {
3470 	struct ti_softc *sc;
3471 	uint32_t media = 0;
3472 
3473 	sc = ifp->if_softc;
3474 
3475 	TI_LOCK(sc);
3476 
3477 	ifmr->ifm_status = IFM_AVALID;
3478 	ifmr->ifm_active = IFM_ETHER;
3479 
3480 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3481 		TI_UNLOCK(sc);
3482 		return;
3483 	}
3484 
3485 	ifmr->ifm_status |= IFM_ACTIVE;
3486 
3487 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3488 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3489 		if (sc->ti_copper)
3490 			ifmr->ifm_active |= IFM_1000_T;
3491 		else
3492 			ifmr->ifm_active |= IFM_1000_SX;
3493 		if (media & TI_GLNK_FULL_DUPLEX)
3494 			ifmr->ifm_active |= IFM_FDX;
3495 		else
3496 			ifmr->ifm_active |= IFM_HDX;
3497 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3498 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3499 		if (sc->ti_copper) {
3500 			if (media & TI_LNK_100MB)
3501 				ifmr->ifm_active |= IFM_100_TX;
3502 			if (media & TI_LNK_10MB)
3503 				ifmr->ifm_active |= IFM_10_T;
3504 		} else {
3505 			if (media & TI_LNK_100MB)
3506 				ifmr->ifm_active |= IFM_100_FX;
3507 			if (media & TI_LNK_10MB)
3508 				ifmr->ifm_active |= IFM_10_FL;
3509 		}
3510 		if (media & TI_LNK_FULL_DUPLEX)
3511 			ifmr->ifm_active |= IFM_FDX;
3512 		if (media & TI_LNK_HALF_DUPLEX)
3513 			ifmr->ifm_active |= IFM_HDX;
3514 	}
3515 	TI_UNLOCK(sc);
3516 }
3517 
3518 static int
3519 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3520 {
3521 	struct ti_softc *sc = ifp->if_softc;
3522 	struct ifreq *ifr = (struct ifreq *) data;
3523 	struct ti_cmd_desc cmd;
3524 	int mask, error = 0;
3525 
3526 	switch (command) {
3527 	case SIOCSIFMTU:
3528 		TI_LOCK(sc);
3529 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3530 			error = EINVAL;
3531 		else {
3532 			ifp->if_mtu = ifr->ifr_mtu;
3533 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3534 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3535 				ti_init_locked(sc);
3536 			}
3537 		}
3538 		TI_UNLOCK(sc);
3539 		break;
3540 	case SIOCSIFFLAGS:
3541 		TI_LOCK(sc);
3542 		if (ifp->if_flags & IFF_UP) {
3543 			/*
3544 			 * If only the state of the PROMISC flag changed,
3545 			 * then just use the 'set promisc mode' command
3546 			 * instead of reinitializing the entire NIC. Doing
3547 			 * a full re-init means reloading the firmware and
3548 			 * waiting for it to start up, which may take a
3549 			 * second or two.
3550 			 */
3551 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3552 			    ifp->if_flags & IFF_PROMISC &&
3553 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3554 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3555 				    TI_CMD_CODE_PROMISC_ENB, 0);
3556 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3557 			    !(ifp->if_flags & IFF_PROMISC) &&
3558 			    sc->ti_if_flags & IFF_PROMISC) {
3559 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3560 				    TI_CMD_CODE_PROMISC_DIS, 0);
3561 			} else
3562 				ti_init_locked(sc);
3563 		} else {
3564 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3565 				ti_stop(sc);
3566 			}
3567 		}
3568 		sc->ti_if_flags = ifp->if_flags;
3569 		TI_UNLOCK(sc);
3570 		break;
3571 	case SIOCADDMULTI:
3572 	case SIOCDELMULTI:
3573 		TI_LOCK(sc);
3574 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3575 			ti_setmulti(sc);
3576 		TI_UNLOCK(sc);
3577 		break;
3578 	case SIOCSIFMEDIA:
3579 	case SIOCGIFMEDIA:
3580 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3581 		break;
3582 	case SIOCSIFCAP:
3583 		TI_LOCK(sc);
3584 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3585 		if ((mask & IFCAP_TXCSUM) != 0 &&
3586 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3587 			ifp->if_capenable ^= IFCAP_TXCSUM;
3588 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3589 				ifp->if_hwassist |= TI_CSUM_FEATURES;
3590                         else
3591 				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3592                 }
3593 		if ((mask & IFCAP_RXCSUM) != 0 &&
3594 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3595 			ifp->if_capenable ^= IFCAP_RXCSUM;
3596 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3597 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3598                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3599 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3600 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3601 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3602 		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3603 		    IFCAP_VLAN_HWTAGGING)) != 0) {
3604 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3605 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3606 				ti_init_locked(sc);
3607 			}
3608 		}
3609 		TI_UNLOCK(sc);
3610 		VLAN_CAPABILITIES(ifp);
3611 		break;
3612 	default:
3613 		error = ether_ioctl(ifp, command, data);
3614 		break;
3615 	}
3616 
3617 	return (error);
3618 }
3619 
3620 static int
3621 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3622 {
3623 	struct ti_softc *sc;
3624 
3625 	sc = dev->si_drv1;
3626 	if (sc == NULL)
3627 		return (ENODEV);
3628 
3629 	TI_LOCK(sc);
3630 	sc->ti_flags |= TI_FLAG_DEBUGING;
3631 	TI_UNLOCK(sc);
3632 
3633 	return (0);
3634 }
3635 
3636 static int
3637 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3638 {
3639 	struct ti_softc *sc;
3640 
3641 	sc = dev->si_drv1;
3642 	if (sc == NULL)
3643 		return (ENODEV);
3644 
3645 	TI_LOCK(sc);
3646 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3647 	TI_UNLOCK(sc);
3648 
3649 	return (0);
3650 }
3651 
3652 /*
3653  * This ioctl routine goes along with the Tigon character device.
3654  */
3655 static int
3656 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3657     struct thread *td)
3658 {
3659 	struct ti_softc *sc;
3660 	int error;
3661 
3662 	sc = dev->si_drv1;
3663 	if (sc == NULL)
3664 		return (ENODEV);
3665 
3666 	error = 0;
3667 
3668 	switch (cmd) {
3669 	case TIIOCGETSTATS:
3670 	{
3671 		struct ti_stats *outstats;
3672 
3673 		outstats = (struct ti_stats *)addr;
3674 
3675 		TI_LOCK(sc);
3676 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3677 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3678 		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3679 		    sizeof(struct ti_stats));
3680 		TI_UNLOCK(sc);
3681 		break;
3682 	}
3683 	case TIIOCGETPARAMS:
3684 	{
3685 		struct ti_params *params;
3686 
3687 		params = (struct ti_params *)addr;
3688 
3689 		TI_LOCK(sc);
3690 		params->ti_stat_ticks = sc->ti_stat_ticks;
3691 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3692 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3693 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3694 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3695 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3696 		params->param_mask = TI_PARAM_ALL;
3697 		TI_UNLOCK(sc);
3698 		break;
3699 	}
3700 	case TIIOCSETPARAMS:
3701 	{
3702 		struct ti_params *params;
3703 
3704 		params = (struct ti_params *)addr;
3705 
3706 		TI_LOCK(sc);
3707 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3708 			sc->ti_stat_ticks = params->ti_stat_ticks;
3709 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3710 		}
3711 
3712 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3713 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3714 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3715 				    sc->ti_rx_coal_ticks);
3716 		}
3717 
3718 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3719 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3720 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3721 				    sc->ti_tx_coal_ticks);
3722 		}
3723 
3724 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3725 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3726 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3727 				    sc->ti_rx_max_coal_bds);
3728 		}
3729 
3730 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3731 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3732 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3733 				    sc->ti_tx_max_coal_bds);
3734 		}
3735 
3736 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3737 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3738 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3739 				    sc->ti_tx_buf_ratio);
3740 		}
3741 		TI_UNLOCK(sc);
3742 		break;
3743 	}
3744 	case TIIOCSETTRACE: {
3745 		ti_trace_type trace_type;
3746 
3747 		trace_type = *(ti_trace_type *)addr;
3748 
3749 		/*
3750 		 * Set tracing to whatever the user asked for.  Setting
3751 		 * this register to 0 should have the effect of disabling
3752 		 * tracing.
3753 		 */
3754 		TI_LOCK(sc);
3755 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3756 		TI_UNLOCK(sc);
3757 		break;
3758 	}
3759 	case TIIOCGETTRACE: {
3760 		struct ti_trace_buf *trace_buf;
3761 		uint32_t trace_start, cur_trace_ptr, trace_len;
3762 
3763 		trace_buf = (struct ti_trace_buf *)addr;
3764 
3765 		TI_LOCK(sc);
3766 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3767 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3768 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3769 #if 0
3770 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3771 		       "trace_len = %d\n", trace_start,
3772 		       cur_trace_ptr, trace_len);
3773 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3774 		       trace_buf->buf_len);
3775 #endif
3776 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3777 		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3778 		if (error == 0) {
3779 			trace_buf->fill_len = min(trace_len,
3780 			    trace_buf->buf_len);
3781 			if (cur_trace_ptr < trace_start)
3782 				trace_buf->cur_trace_ptr =
3783 				    trace_start - cur_trace_ptr;
3784 			else
3785 				trace_buf->cur_trace_ptr =
3786 				    cur_trace_ptr - trace_start;
3787 		} else
3788 			trace_buf->fill_len = 0;
3789 		TI_UNLOCK(sc);
3790 		break;
3791 	}
3792 
3793 	/*
3794 	 * For debugging, five ioctls are needed:
3795 	 * ALT_ATTACH
3796 	 * ALT_READ_TG_REG
3797 	 * ALT_WRITE_TG_REG
3798 	 * ALT_READ_TG_MEM
3799 	 * ALT_WRITE_TG_MEM
3800 	 */
3801 	case ALT_ATTACH:
3802 		/*
3803 		 * From what I can tell, Alteon's Solaris Tigon driver
3804 		 * only has one character device, so you have to attach
3805 		 * to the Tigon board you're interested in.  This seems
3806 		 * like a not-so-good way to do things, since unless you
3807 		 * subsequently specify the unit number of the device
3808 		 * you're interested in every ioctl, you'll only be
3809 		 * able to debug one board at a time.
3810 		 */
3811 		break;
3812 	case ALT_READ_TG_MEM:
3813 	case ALT_WRITE_TG_MEM:
3814 	{
3815 		struct tg_mem *mem_param;
3816 		uint32_t sram_end, scratch_end;
3817 
3818 		mem_param = (struct tg_mem *)addr;
3819 
3820 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3821 			sram_end = TI_END_SRAM_I;
3822 			scratch_end = TI_END_SCRATCH_I;
3823 		} else {
3824 			sram_end = TI_END_SRAM_II;
3825 			scratch_end = TI_END_SCRATCH_II;
3826 		}
3827 
3828 		/*
3829 		 * For now, we'll only handle accessing regular SRAM,
3830 		 * nothing else.
3831 		 */
3832 		TI_LOCK(sc);
3833 		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3834 		    mem_param->tgAddr + mem_param->len <= sram_end) {
3835 			/*
3836 			 * In this instance, we always copy to/from user
3837 			 * space, so the user space argument is set to 1.
3838 			 */
3839 			error = ti_copy_mem(sc, mem_param->tgAddr,
3840 			    mem_param->len, mem_param->userAddr, 1,
3841 			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3842 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3843 		    mem_param->tgAddr <= scratch_end) {
3844 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3845 			    mem_param->len, mem_param->userAddr, 1,
3846 			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3847 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3848 		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3849 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3850 				if_printf(sc->ti_ifp,
3851 				    "invalid memory range for Tigon I\n");
3852 				error = EINVAL;
3853 				break;
3854 			}
3855 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3856 			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3857 			    mem_param->userAddr, 1,
3858 			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3859 		} else {
3860 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3861 			        "out of supported range\n",
3862 			        mem_param->tgAddr, mem_param->len);
3863 			error = EINVAL;
3864 		}
3865 		TI_UNLOCK(sc);
3866 		break;
3867 	}
3868 	case ALT_READ_TG_REG:
3869 	case ALT_WRITE_TG_REG:
3870 	{
3871 		struct tg_reg *regs;
3872 		uint32_t tmpval;
3873 
3874 		regs = (struct tg_reg *)addr;
3875 
3876 		/*
3877 		 * Make sure the address in question isn't out of range.
3878 		 */
3879 		if (regs->addr > TI_REG_MAX) {
3880 			error = EINVAL;
3881 			break;
3882 		}
3883 		TI_LOCK(sc);
3884 		if (cmd == ALT_READ_TG_REG) {
3885 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3886 			    regs->addr, &tmpval, 1);
3887 			regs->data = ntohl(tmpval);
3888 #if 0
3889 			if ((regs->addr == TI_CPU_STATE)
3890 			 || (regs->addr == TI_CPU_CTL_B)) {
3891 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3892 				       regs->addr, tmpval);
3893 			}
3894 #endif
3895 		} else {
3896 			tmpval = htonl(regs->data);
3897 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3898 			    regs->addr, &tmpval, 1);
3899 		}
3900 		TI_UNLOCK(sc);
3901 		break;
3902 	}
3903 	default:
3904 		error = ENOTTY;
3905 		break;
3906 	}
3907 	return (error);
3908 }
3909 
3910 static void
3911 ti_watchdog(void *arg)
3912 {
3913 	struct ti_softc *sc;
3914 	struct ifnet *ifp;
3915 
3916 	sc = arg;
3917 	TI_LOCK_ASSERT(sc);
3918 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3919 	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3920 		return;
3921 
3922 	/*
3923 	 * When we're debugging, the chip is often stopped for long periods
3924 	 * of time, and that would normally cause the watchdog timer to fire.
3925 	 * Since that impedes debugging, we don't want to do that.
3926 	 */
3927 	if (sc->ti_flags & TI_FLAG_DEBUGING)
3928 		return;
3929 
3930 	ifp = sc->ti_ifp;
3931 	if_printf(ifp, "watchdog timeout -- resetting\n");
3932 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3933 	ti_init_locked(sc);
3934 
3935 	ifp->if_oerrors++;
3936 }
3937 
3938 /*
3939  * Stop the adapter and free any mbufs allocated to the
3940  * RX and TX lists.
3941  */
3942 static void
3943 ti_stop(struct ti_softc *sc)
3944 {
3945 	struct ifnet *ifp;
3946 	struct ti_cmd_desc cmd;
3947 
3948 	TI_LOCK_ASSERT(sc);
3949 
3950 	ifp = sc->ti_ifp;
3951 
3952 	/* Disable host interrupts. */
3953 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3954 	/*
3955 	 * Tell firmware we're shutting down.
3956 	 */
3957 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3958 
3959 	/* Halt and reinitialize. */
3960 	if (ti_chipinit(sc) == 0) {
3961 		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3962 		/* XXX ignore init errors. */
3963 		ti_chipinit(sc);
3964 	}
3965 
3966 	/* Free the RX lists. */
3967 	ti_free_rx_ring_std(sc);
3968 
3969 	/* Free jumbo RX list. */
3970 	ti_free_rx_ring_jumbo(sc);
3971 
3972 	/* Free mini RX list. */
3973 	ti_free_rx_ring_mini(sc);
3974 
3975 	/* Free TX buffers. */
3976 	ti_free_tx_ring(sc);
3977 
3978 	sc->ti_ev_prodidx.ti_idx = 0;
3979 	sc->ti_return_prodidx.ti_idx = 0;
3980 	sc->ti_tx_considx.ti_idx = 0;
3981 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3982 
3983 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3984 	callout_stop(&sc->ti_watchdog);
3985 }
3986 
3987 /*
3988  * Stop all chip I/O so that the kernel's probe routines don't
3989  * get confused by errant DMAs when rebooting.
3990  */
3991 static int
3992 ti_shutdown(device_t dev)
3993 {
3994 	struct ti_softc *sc;
3995 
3996 	sc = device_get_softc(dev);
3997 	TI_LOCK(sc);
3998 	ti_chipinit(sc);
3999 	TI_UNLOCK(sc);
4000 
4001 	return (0);
4002 }
4003 
4004 static void
4005 ti_sysctl_node(struct ti_softc *sc)
4006 {
4007 	struct sysctl_ctx_list *ctx;
4008 	struct sysctl_oid_list *child;
4009 	char tname[32];
4010 
4011 	ctx = device_get_sysctl_ctx(sc->ti_dev);
4012 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
4013 
4014 	/* Use DAC */
4015 	sc->ti_dac = 1;
4016 	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4017 	    device_get_unit(sc->ti_dev));
4018 	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4019 
4020 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4021 	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4022 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4023 	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4024 
4025 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4026 	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4027 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4028 	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4029 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4030 	    &sc->ti_tx_buf_ratio, 0,
4031 	    "Ratio of NIC memory devoted to TX buffer");
4032 
4033 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4034 	    &sc->ti_stat_ticks, 0,
4035 	    "Number of clock ticks for statistics update interval");
4036 
4037 	/* Pull in device tunables. */
4038 	sc->ti_rx_coal_ticks = 170;
4039 	resource_int_value(device_get_name(sc->ti_dev),
4040 	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4041 	    &sc->ti_rx_coal_ticks);
4042 	sc->ti_rx_max_coal_bds = 64;
4043 	resource_int_value(device_get_name(sc->ti_dev),
4044 	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4045 	    &sc->ti_rx_max_coal_bds);
4046 
4047 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4048 	resource_int_value(device_get_name(sc->ti_dev),
4049 	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4050 	    &sc->ti_tx_coal_ticks);
4051 	sc->ti_tx_max_coal_bds = 32;
4052 	resource_int_value(device_get_name(sc->ti_dev),
4053 	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4054 	    &sc->ti_tx_max_coal_bds);
4055 	sc->ti_tx_buf_ratio = 21;
4056 	resource_int_value(device_get_name(sc->ti_dev),
4057 	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4058 	    &sc->ti_tx_buf_ratio);
4059 
4060 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4061 	resource_int_value(device_get_name(sc->ti_dev),
4062 	    device_get_unit(sc->ti_dev), "stat_ticks",
4063 	    &sc->ti_stat_ticks);
4064 }
4065