xref: /freebsd/sys/dev/ti/if_ti.c (revision 243e928310d073338c5ec089f0dce238a80b9866)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95 
96 #include <net/if.h>
97 #include <net/if_var.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_types.h>
103 #include <net/if_vlan_var.h>
104 
105 #include <net/bpf.h>
106 
107 #include <netinet/in_systm.h>
108 #include <netinet/in.h>
109 #include <netinet/ip.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #ifdef TI_SF_BUF_JUMBO
117 #include <vm/vm.h>
118 #include <vm/vm_page.h>
119 #endif
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 
124 #include <sys/tiio.h>
125 #include <dev/ti/if_tireg.h>
126 #include <dev/ti/ti_fw.h>
127 #include <dev/ti/ti_fw2.h>
128 
129 #include <sys/sysctl.h>
130 
131 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
132 /*
133  * We can only turn on header splitting if we're using extended receive
134  * BDs.
135  */
136 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
137 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
138 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
139 
140 typedef enum {
141 	TI_SWAP_HTON,
142 	TI_SWAP_NTOH
143 } ti_swap_type;
144 
145 /*
146  * Various supported device vendors/types and their names.
147  */
148 
149 static const struct ti_type ti_devs[] = {
150 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
151 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
152 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
153 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
154 	{ TC_VENDORID,	TC_DEVICEID_3C985,
155 		"3Com 3c985-SX Gigabit Ethernet" },
156 	{ NG_VENDORID, NG_DEVICEID_GA620,
157 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
158 	{ NG_VENDORID, NG_DEVICEID_GA620T,
159 		"Netgear GA620 1000baseT Gigabit Ethernet" },
160 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
161 		"Silicon Graphics Gigabit Ethernet" },
162 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
163 		"Farallon PN9000SX Gigabit Ethernet" },
164 	{ 0, 0, NULL }
165 };
166 
167 
168 static	d_open_t	ti_open;
169 static	d_close_t	ti_close;
170 static	d_ioctl_t	ti_ioctl2;
171 
172 static struct cdevsw ti_cdevsw = {
173 	.d_version =	D_VERSION,
174 	.d_flags =	0,
175 	.d_open =	ti_open,
176 	.d_close =	ti_close,
177 	.d_ioctl =	ti_ioctl2,
178 	.d_name =	"ti",
179 };
180 
181 static int ti_probe(device_t);
182 static int ti_attach(device_t);
183 static int ti_detach(device_t);
184 static void ti_txeof(struct ti_softc *);
185 static void ti_rxeof(struct ti_softc *);
186 
187 static int ti_encap(struct ti_softc *, struct mbuf **);
188 
189 static void ti_intr(void *);
190 static void ti_start(struct ifnet *);
191 static void ti_start_locked(struct ifnet *);
192 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193 static uint64_t ti_get_counter(struct ifnet *, ift_counter);
194 static void ti_init(void *);
195 static void ti_init_locked(void *);
196 static void ti_init2(struct ti_softc *);
197 static void ti_stop(struct ti_softc *);
198 static void ti_watchdog(void *);
199 static int ti_shutdown(device_t);
200 static int ti_ifmedia_upd(struct ifnet *);
201 static int ti_ifmedia_upd_locked(struct ti_softc *);
202 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
203 
204 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
205 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
206 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
207 
208 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
209 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
210 static void ti_setmulti(struct ti_softc *);
211 
212 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
213 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
214 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
215 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
216     int);
217 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
218     int, int, int);
219 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
220 static void ti_loadfw(struct ti_softc *);
221 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
222 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
223 static void ti_handle_events(struct ti_softc *);
224 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
225 static int ti_dma_alloc(struct ti_softc *);
226 static void ti_dma_free(struct ti_softc *);
227 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
228     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
229 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
230     bus_dmamap_t, bus_addr_t *);
231 static int ti_newbuf_std(struct ti_softc *, int);
232 static int ti_newbuf_mini(struct ti_softc *, int);
233 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
234 static int ti_init_rx_ring_std(struct ti_softc *);
235 static void ti_free_rx_ring_std(struct ti_softc *);
236 static int ti_init_rx_ring_jumbo(struct ti_softc *);
237 static void ti_free_rx_ring_jumbo(struct ti_softc *);
238 static int ti_init_rx_ring_mini(struct ti_softc *);
239 static void ti_free_rx_ring_mini(struct ti_softc *);
240 static void ti_free_tx_ring(struct ti_softc *);
241 static int ti_init_tx_ring(struct ti_softc *);
242 static void ti_discard_std(struct ti_softc *, int);
243 #ifndef TI_SF_BUF_JUMBO
244 static void ti_discard_jumbo(struct ti_softc *, int);
245 #endif
246 static void ti_discard_mini(struct ti_softc *, int);
247 
248 static int ti_64bitslot_war(struct ti_softc *);
249 static int ti_chipinit(struct ti_softc *);
250 static int ti_gibinit(struct ti_softc *);
251 
252 #ifdef TI_JUMBO_HDRSPLIT
253 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
254     int idx);
255 #endif /* TI_JUMBO_HDRSPLIT */
256 
257 static void ti_sysctl_node(struct ti_softc *);
258 
259 static device_method_t ti_methods[] = {
260 	/* Device interface */
261 	DEVMETHOD(device_probe,		ti_probe),
262 	DEVMETHOD(device_attach,	ti_attach),
263 	DEVMETHOD(device_detach,	ti_detach),
264 	DEVMETHOD(device_shutdown,	ti_shutdown),
265 	{ 0, 0 }
266 };
267 
268 static driver_t ti_driver = {
269 	"ti",
270 	ti_methods,
271 	sizeof(struct ti_softc)
272 };
273 
274 static devclass_t ti_devclass;
275 
276 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
277 MODULE_DEPEND(ti, pci, 1, 1, 1);
278 MODULE_DEPEND(ti, ether, 1, 1, 1);
279 
280 /*
281  * Send an instruction or address to the EEPROM, check for ACK.
282  */
283 static uint32_t
284 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
285 {
286 	int i, ack = 0;
287 
288 	/*
289 	 * Make sure we're in TX mode.
290 	 */
291 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
292 
293 	/*
294 	 * Feed in each bit and stobe the clock.
295 	 */
296 	for (i = 0x80; i; i >>= 1) {
297 		if (byte & i) {
298 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
299 		} else {
300 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
301 		}
302 		DELAY(1);
303 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
304 		DELAY(1);
305 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
306 	}
307 
308 	/*
309 	 * Turn off TX mode.
310 	 */
311 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
312 
313 	/*
314 	 * Check for ack.
315 	 */
316 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
317 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
318 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
319 
320 	return (ack);
321 }
322 
323 /*
324  * Read a byte of data stored in the EEPROM at address 'addr.'
325  * We have to send two address bytes since the EEPROM can hold
326  * more than 256 bytes of data.
327  */
328 static uint8_t
329 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
330 {
331 	int i;
332 	uint8_t byte = 0;
333 
334 	EEPROM_START;
335 
336 	/*
337 	 * Send write control code to EEPROM.
338 	 */
339 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
340 		device_printf(sc->ti_dev,
341 		    "failed to send write command, status: %x\n",
342 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
343 		return (1);
344 	}
345 
346 	/*
347 	 * Send first byte of address of byte we want to read.
348 	 */
349 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
350 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
351 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
352 		return (1);
353 	}
354 	/*
355 	 * Send second byte address of byte we want to read.
356 	 */
357 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
358 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
359 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
360 		return (1);
361 	}
362 
363 	EEPROM_STOP;
364 	EEPROM_START;
365 	/*
366 	 * Send read control code to EEPROM.
367 	 */
368 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
369 		device_printf(sc->ti_dev,
370 		    "failed to send read command, status: %x\n",
371 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
372 		return (1);
373 	}
374 
375 	/*
376 	 * Start reading bits from EEPROM.
377 	 */
378 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
379 	for (i = 0x80; i; i >>= 1) {
380 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
381 		DELAY(1);
382 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
383 			byte |= i;
384 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
385 		DELAY(1);
386 	}
387 
388 	EEPROM_STOP;
389 
390 	/*
391 	 * No ACK generated for read, so just return byte.
392 	 */
393 
394 	*dest = byte;
395 
396 	return (0);
397 }
398 
399 /*
400  * Read a sequence of bytes from the EEPROM.
401  */
402 static int
403 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
404 {
405 	int err = 0, i;
406 	uint8_t byte = 0;
407 
408 	for (i = 0; i < cnt; i++) {
409 		err = ti_eeprom_getbyte(sc, off + i, &byte);
410 		if (err)
411 			break;
412 		*(dest + i) = byte;
413 	}
414 
415 	return (err ? 1 : 0);
416 }
417 
418 /*
419  * NIC memory read function.
420  * Can be used to copy data from NIC local memory.
421  */
422 static void
423 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
424 {
425 	int segptr, segsize, cnt;
426 	char *ptr;
427 
428 	segptr = addr;
429 	cnt = len;
430 	ptr = buf;
431 
432 	while (cnt) {
433 		if (cnt < TI_WINLEN)
434 			segsize = cnt;
435 		else
436 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
437 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
438 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
439 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
440 		    segsize / 4);
441 		ptr += segsize;
442 		segptr += segsize;
443 		cnt -= segsize;
444 	}
445 }
446 
447 
448 /*
449  * NIC memory write function.
450  * Can be used to copy data into NIC local memory.
451  */
452 static void
453 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
454 {
455 	int segptr, segsize, cnt;
456 	char *ptr;
457 
458 	segptr = addr;
459 	cnt = len;
460 	ptr = buf;
461 
462 	while (cnt) {
463 		if (cnt < TI_WINLEN)
464 			segsize = cnt;
465 		else
466 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
467 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
468 		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
469 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
470 		    segsize / 4);
471 		ptr += segsize;
472 		segptr += segsize;
473 		cnt -= segsize;
474 	}
475 }
476 
477 /*
478  * NIC memory read function.
479  * Can be used to clear a section of NIC local memory.
480  */
481 static void
482 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
483 {
484 	int segptr, segsize, cnt;
485 
486 	segptr = addr;
487 	cnt = len;
488 
489 	while (cnt) {
490 		if (cnt < TI_WINLEN)
491 			segsize = cnt;
492 		else
493 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
494 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
495 		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
496 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
497 		segptr += segsize;
498 		cnt -= segsize;
499 	}
500 }
501 
502 static int
503 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
504     caddr_t buf, int useraddr, int readdata)
505 {
506 	int segptr, segsize, cnt;
507 	caddr_t ptr;
508 	uint32_t origwin;
509 	int resid, segresid;
510 	int first_pass;
511 
512 	TI_LOCK_ASSERT(sc);
513 
514 	/*
515 	 * At the moment, we don't handle non-aligned cases, we just bail.
516 	 * If this proves to be a problem, it will be fixed.
517 	 */
518 	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
519 		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
520 		    "word-aligned\n", __func__, tigon_addr);
521 		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
522 		    "yet supported\n", __func__);
523 		return (EINVAL);
524 	}
525 
526 	segptr = tigon_addr & ~0x3;
527 	segresid = tigon_addr - segptr;
528 
529 	/*
530 	 * This is the non-aligned amount left over that we'll need to
531 	 * copy.
532 	 */
533 	resid = len & 0x3;
534 
535 	/* Add in the left over amount at the front of the buffer */
536 	resid += segresid;
537 
538 	cnt = len & ~0x3;
539 	/*
540 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
541 	 * decrease the residual by that much.
542 	 */
543 	cnt += resid & ~0x3;
544 	resid -= resid & ~0x3;
545 
546 	ptr = buf;
547 
548 	first_pass = 1;
549 
550 	/*
551 	 * Save the old window base value.
552 	 */
553 	origwin = CSR_READ_4(sc, TI_WINBASE);
554 
555 	while (cnt) {
556 		bus_size_t ti_offset;
557 
558 		if (cnt < TI_WINLEN)
559 			segsize = cnt;
560 		else
561 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
562 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
563 
564 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
565 
566 		if (readdata) {
567 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
568 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
569 			if (useraddr) {
570 				/*
571 				 * Yeah, this is a little on the kludgy
572 				 * side, but at least this code is only
573 				 * used for debugging.
574 				 */
575 				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
576 				    segsize, TI_SWAP_NTOH);
577 
578 				TI_UNLOCK(sc);
579 				if (first_pass) {
580 					copyout(&sc->ti_membuf2[segresid], ptr,
581 					    segsize - segresid);
582 					first_pass = 0;
583 				} else
584 					copyout(sc->ti_membuf2, ptr, segsize);
585 				TI_LOCK(sc);
586 			} else {
587 				if (first_pass) {
588 
589 					ti_bcopy_swap(sc->ti_membuf,
590 					    sc->ti_membuf2, segsize,
591 					    TI_SWAP_NTOH);
592 					TI_UNLOCK(sc);
593 					bcopy(&sc->ti_membuf2[segresid], ptr,
594 					    segsize - segresid);
595 					TI_LOCK(sc);
596 					first_pass = 0;
597 				} else
598 					ti_bcopy_swap(sc->ti_membuf, ptr,
599 					    segsize, TI_SWAP_NTOH);
600 			}
601 
602 		} else {
603 			if (useraddr) {
604 				TI_UNLOCK(sc);
605 				copyin(ptr, sc->ti_membuf2, segsize);
606 				TI_LOCK(sc);
607 				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
608 				    segsize, TI_SWAP_HTON);
609 			} else
610 				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
611 				    TI_SWAP_HTON);
612 
613 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
614 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
615 		}
616 		segptr += segsize;
617 		ptr += segsize;
618 		cnt -= segsize;
619 	}
620 
621 	/*
622 	 * Handle leftover, non-word-aligned bytes.
623 	 */
624 	if (resid != 0) {
625 		uint32_t tmpval, tmpval2;
626 		bus_size_t ti_offset;
627 
628 		/*
629 		 * Set the segment pointer.
630 		 */
631 		CSR_WRITE_4(sc, TI_WINBASE, rounddown2(segptr, TI_WINLEN));
632 
633 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
634 
635 		/*
636 		 * First, grab whatever is in our source/destination.
637 		 * We'll obviously need this for reads, but also for
638 		 * writes, since we'll be doing read/modify/write.
639 		 */
640 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
641 		    ti_offset, &tmpval, 1);
642 
643 		/*
644 		 * Next, translate this from little-endian to big-endian
645 		 * (at least on i386 boxes).
646 		 */
647 		tmpval2 = ntohl(tmpval);
648 
649 		if (readdata) {
650 			/*
651 			 * If we're reading, just copy the leftover number
652 			 * of bytes from the host byte order buffer to
653 			 * the user's buffer.
654 			 */
655 			if (useraddr) {
656 				TI_UNLOCK(sc);
657 				copyout(&tmpval2, ptr, resid);
658 				TI_LOCK(sc);
659 			} else
660 				bcopy(&tmpval2, ptr, resid);
661 		} else {
662 			/*
663 			 * If we're writing, first copy the bytes to be
664 			 * written into the network byte order buffer,
665 			 * leaving the rest of the buffer with whatever was
666 			 * originally in there.  Then, swap the bytes
667 			 * around into host order and write them out.
668 			 *
669 			 * XXX KDM the read side of this has been verified
670 			 * to work, but the write side of it has not been
671 			 * verified.  So user beware.
672 			 */
673 			if (useraddr) {
674 				TI_UNLOCK(sc);
675 				copyin(ptr, &tmpval2, resid);
676 				TI_LOCK(sc);
677 			} else
678 				bcopy(ptr, &tmpval2, resid);
679 
680 			tmpval = htonl(tmpval2);
681 
682 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
683 			    ti_offset, &tmpval, 1);
684 		}
685 	}
686 
687 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
688 
689 	return (0);
690 }
691 
692 static int
693 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
694     caddr_t buf, int useraddr, int readdata, int cpu)
695 {
696 	uint32_t segptr;
697 	int cnt;
698 	uint32_t tmpval, tmpval2;
699 	caddr_t ptr;
700 
701 	TI_LOCK_ASSERT(sc);
702 
703 	/*
704 	 * At the moment, we don't handle non-aligned cases, we just bail.
705 	 * If this proves to be a problem, it will be fixed.
706 	 */
707 	if (tigon_addr & 0x3) {
708 		device_printf(sc->ti_dev, "%s: tigon address %#x "
709 		    "isn't word-aligned\n", __func__, tigon_addr);
710 		return (EINVAL);
711 	}
712 
713 	if (len & 0x3) {
714 		device_printf(sc->ti_dev, "%s: transfer length %d "
715 		    "isn't word-aligned\n", __func__, len);
716 		return (EINVAL);
717 	}
718 
719 	segptr = tigon_addr;
720 	cnt = len;
721 	ptr = buf;
722 
723 	while (cnt) {
724 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
725 
726 		if (readdata) {
727 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
728 
729 			tmpval = ntohl(tmpval2);
730 
731 			/*
732 			 * Note:  I've used this debugging interface
733 			 * extensively with Alteon's 12.3.15 firmware,
734 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
735 			 *
736 			 * When you compile the firmware without
737 			 * optimization, which is necessary sometimes in
738 			 * order to properly step through it, you sometimes
739 			 * read out a bogus value of 0xc0017c instead of
740 			 * whatever was supposed to be in that scratchpad
741 			 * location.  That value is on the stack somewhere,
742 			 * but I've never been able to figure out what was
743 			 * causing the problem.
744 			 *
745 			 * The address seems to pop up in random places,
746 			 * often not in the same place on two subsequent
747 			 * reads.
748 			 *
749 			 * In any case, the underlying data doesn't seem
750 			 * to be affected, just the value read out.
751 			 *
752 			 * KDM, 3/7/2000
753 			 */
754 
755 			if (tmpval2 == 0xc0017c)
756 				device_printf(sc->ti_dev, "found 0xc0017c at "
757 				    "%#x (tmpval2)\n", segptr);
758 
759 			if (tmpval == 0xc0017c)
760 				device_printf(sc->ti_dev, "found 0xc0017c at "
761 				    "%#x (tmpval)\n", segptr);
762 
763 			if (useraddr)
764 				copyout(&tmpval, ptr, 4);
765 			else
766 				bcopy(&tmpval, ptr, 4);
767 		} else {
768 			if (useraddr)
769 				copyin(ptr, &tmpval2, 4);
770 			else
771 				bcopy(ptr, &tmpval2, 4);
772 
773 			tmpval = htonl(tmpval2);
774 
775 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
776 		}
777 
778 		cnt -= 4;
779 		segptr += 4;
780 		ptr += 4;
781 	}
782 
783 	return (0);
784 }
785 
786 static int
787 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
788 {
789 	const uint8_t *tmpsrc;
790 	uint8_t *tmpdst;
791 	size_t tmplen;
792 
793 	if (len & 0x3) {
794 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
795 		return (-1);
796 	}
797 
798 	tmpsrc = src;
799 	tmpdst = dst;
800 	tmplen = len;
801 
802 	while (tmplen) {
803 		if (swap_type == TI_SWAP_NTOH)
804 			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
805 		else
806 			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
807 		tmpsrc += 4;
808 		tmpdst += 4;
809 		tmplen -= 4;
810 	}
811 
812 	return (0);
813 }
814 
815 /*
816  * Load firmware image into the NIC. Check that the firmware revision
817  * is acceptable and see if we want the firmware for the Tigon 1 or
818  * Tigon 2.
819  */
820 static void
821 ti_loadfw(struct ti_softc *sc)
822 {
823 
824 	TI_LOCK_ASSERT(sc);
825 
826 	switch (sc->ti_hwrev) {
827 	case TI_HWREV_TIGON:
828 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
829 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
830 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
831 			device_printf(sc->ti_dev, "firmware revision mismatch; "
832 			    "want %d.%d.%d, got %d.%d.%d\n",
833 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
834 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
835 			    tigonFwReleaseMinor, tigonFwReleaseFix);
836 			return;
837 		}
838 		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
839 		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
840 		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
841 		    tigonFwRodata);
842 		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
843 		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
844 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
845 		break;
846 	case TI_HWREV_TIGON_II:
847 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
848 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
849 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
850 			device_printf(sc->ti_dev, "firmware revision mismatch; "
851 			    "want %d.%d.%d, got %d.%d.%d\n",
852 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
853 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
854 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
855 			return;
856 		}
857 		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
858 		    tigon2FwText);
859 		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
860 		    tigon2FwData);
861 		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
862 		    tigon2FwRodata);
863 		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
864 		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
865 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
866 		break;
867 	default:
868 		device_printf(sc->ti_dev,
869 		    "can't load firmware: unknown hardware rev\n");
870 		break;
871 	}
872 }
873 
874 /*
875  * Send the NIC a command via the command ring.
876  */
877 static void
878 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
879 {
880 	int index;
881 
882 	index = sc->ti_cmd_saved_prodidx;
883 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
884 	TI_INC(index, TI_CMD_RING_CNT);
885 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
886 	sc->ti_cmd_saved_prodidx = index;
887 }
888 
889 /*
890  * Send the NIC an extended command. The 'len' parameter specifies the
891  * number of command slots to include after the initial command.
892  */
893 static void
894 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
895 {
896 	int index;
897 	int i;
898 
899 	index = sc->ti_cmd_saved_prodidx;
900 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
901 	TI_INC(index, TI_CMD_RING_CNT);
902 	for (i = 0; i < len; i++) {
903 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
904 		    *(uint32_t *)(&arg[i * 4]));
905 		TI_INC(index, TI_CMD_RING_CNT);
906 	}
907 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
908 	sc->ti_cmd_saved_prodidx = index;
909 }
910 
911 /*
912  * Handle events that have triggered interrupts.
913  */
914 static void
915 ti_handle_events(struct ti_softc *sc)
916 {
917 	struct ti_event_desc *e;
918 
919 	if (sc->ti_rdata.ti_event_ring == NULL)
920 		return;
921 
922 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
923 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
924 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
925 		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
926 		switch (TI_EVENT_EVENT(e)) {
927 		case TI_EV_LINKSTAT_CHANGED:
928 			sc->ti_linkstat = TI_EVENT_CODE(e);
929 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
930 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
931 				sc->ti_ifp->if_baudrate = IF_Mbps(100);
932 				if (bootverbose)
933 					device_printf(sc->ti_dev,
934 					    "10/100 link up\n");
935 			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
936 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
937 				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
938 				if (bootverbose)
939 					device_printf(sc->ti_dev,
940 					    "gigabit link up\n");
941 			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
942 				if_link_state_change(sc->ti_ifp,
943 				    LINK_STATE_DOWN);
944 				sc->ti_ifp->if_baudrate = 0;
945 				if (bootverbose)
946 					device_printf(sc->ti_dev,
947 					    "link down\n");
948 			}
949 			break;
950 		case TI_EV_ERROR:
951 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
952 				device_printf(sc->ti_dev, "invalid command\n");
953 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
954 				device_printf(sc->ti_dev, "unknown command\n");
955 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
956 				device_printf(sc->ti_dev, "bad config data\n");
957 			break;
958 		case TI_EV_FIRMWARE_UP:
959 			ti_init2(sc);
960 			break;
961 		case TI_EV_STATS_UPDATED:
962 		case TI_EV_RESET_JUMBO_RING:
963 		case TI_EV_MCAST_UPDATED:
964 			/* Who cares. */
965 			break;
966 		default:
967 			device_printf(sc->ti_dev, "unknown event: %d\n",
968 			    TI_EVENT_EVENT(e));
969 			break;
970 		}
971 		/* Advance the consumer index. */
972 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
973 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
974 	}
975 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
976 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
977 }
978 
979 struct ti_dmamap_arg {
980 	bus_addr_t	ti_busaddr;
981 };
982 
983 static void
984 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
985 {
986 	struct ti_dmamap_arg *ctx;
987 
988 	if (error)
989 		return;
990 
991 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
992 
993 	ctx = arg;
994 	ctx->ti_busaddr = segs->ds_addr;
995 }
996 
997 static int
998 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
999     bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1000     const char *msg)
1001 {
1002 	struct ti_dmamap_arg ctx;
1003 	int error;
1004 
1005 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1006 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1007 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1008 	if (error != 0) {
1009 		device_printf(sc->ti_dev,
1010 		    "could not create %s dma tag\n", msg);
1011 		return (error);
1012 	}
1013 	/* Allocate DMA'able memory for ring. */
1014 	error = bus_dmamem_alloc(*tag, (void **)ring,
1015 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1016 	if (error != 0) {
1017 		device_printf(sc->ti_dev,
1018 		    "could not allocate DMA'able memory for %s\n", msg);
1019 		return (error);
1020 	}
1021 	/* Load the address of the ring. */
1022 	ctx.ti_busaddr = 0;
1023 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1024 	    &ctx, BUS_DMA_NOWAIT);
1025 	if (error != 0) {
1026 		device_printf(sc->ti_dev,
1027 		    "could not load DMA'able memory for %s\n", msg);
1028 		return (error);
1029 	}
1030 	*paddr = ctx.ti_busaddr;
1031 	return (0);
1032 }
1033 
1034 static void
1035 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1036     bus_dmamap_t map, bus_addr_t *paddr)
1037 {
1038 
1039 	if (*paddr != 0) {
1040 		bus_dmamap_unload(*tag, map);
1041 		*paddr = 0;
1042 	}
1043 	if (*ring != NULL) {
1044 		bus_dmamem_free(*tag, *ring, map);
1045 		*ring = NULL;
1046 	}
1047 	if (*tag) {
1048 		bus_dma_tag_destroy(*tag);
1049 		*tag = NULL;
1050 	}
1051 }
1052 
1053 static int
1054 ti_dma_alloc(struct ti_softc *sc)
1055 {
1056 	bus_addr_t lowaddr;
1057 	int i, error;
1058 
1059 	lowaddr = BUS_SPACE_MAXADDR;
1060 	if (sc->ti_dac == 0)
1061 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1062 
1063 	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1064 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1065 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1066 	    &sc->ti_cdata.ti_parent_tag);
1067 	if (error != 0) {
1068 		device_printf(sc->ti_dev,
1069 		    "could not allocate parent dma tag\n");
1070 		return (ENOMEM);
1071 	}
1072 
1073 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1074 	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1075 	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1076 	if (error)
1077 		return (error);
1078 
1079 	/* Producer/consumer status */
1080 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1081 	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1082 	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1083 	    "event ring");
1084 	if (error)
1085 		return (error);
1086 
1087 	/* Event ring */
1088 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1089 	    &sc->ti_cdata.ti_event_ring_tag,
1090 	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1091 	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1092 	    "event ring");
1093 	if (error)
1094 		return (error);
1095 
1096 	/* Command ring lives in shared memory so no need to create DMA area. */
1097 
1098 	/* Standard RX ring */
1099 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1100 	    &sc->ti_cdata.ti_rx_std_ring_tag,
1101 	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1102 	    &sc->ti_cdata.ti_rx_std_ring_map,
1103 	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1104 	if (error)
1105 		return (error);
1106 
1107 	/* Jumbo RX ring */
1108 	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1109 	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1110 	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1111 	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1112 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1113 	if (error)
1114 		return (error);
1115 
1116 	/* RX return ring */
1117 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1118 	    &sc->ti_cdata.ti_rx_return_ring_tag,
1119 	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1120 	    &sc->ti_cdata.ti_rx_return_ring_map,
1121 	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1122 	if (error)
1123 		return (error);
1124 
1125 	/* Create DMA tag for standard RX mbufs. */
1126 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1127 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1128 	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1129 	if (error) {
1130 		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1131 		return (error);
1132 	}
1133 
1134 	/* Create DMA tag for jumbo RX mbufs. */
1135 #ifdef TI_SF_BUF_JUMBO
1136 	/*
1137 	 * The VM system will take care of providing aligned pages.  Alignment
1138 	 * is set to 1 here so that busdma resources won't be wasted.
1139 	 */
1140 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1141 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1142 	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1143 #else
1144 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1145 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1146 	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1147 #endif
1148 	if (error) {
1149 		device_printf(sc->ti_dev,
1150 		    "could not allocate jumbo RX dma tag\n");
1151 		return (error);
1152 	}
1153 
1154 	/* Create DMA tag for TX mbufs. */
1155 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1156 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1157 	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1158 	    &sc->ti_cdata.ti_tx_tag);
1159 	if (error) {
1160 		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1161 		return (ENOMEM);
1162 	}
1163 
1164 	/* Create DMA maps for RX buffers. */
1165 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1166 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1167 		    &sc->ti_cdata.ti_rx_std_maps[i]);
1168 		if (error) {
1169 			device_printf(sc->ti_dev,
1170 			    "could not create DMA map for RX\n");
1171 			return (error);
1172 		}
1173 	}
1174 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1175 	    &sc->ti_cdata.ti_rx_std_sparemap);
1176 	if (error) {
1177 		device_printf(sc->ti_dev,
1178 		    "could not create spare DMA map for RX\n");
1179 		return (error);
1180 	}
1181 
1182 	/* Create DMA maps for jumbo RX buffers. */
1183 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1184 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1185 		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1186 		if (error) {
1187 			device_printf(sc->ti_dev,
1188 			    "could not create DMA map for jumbo RX\n");
1189 			return (error);
1190 		}
1191 	}
1192 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1193 	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1194 	if (error) {
1195 		device_printf(sc->ti_dev,
1196 		    "could not create spare DMA map for jumbo RX\n");
1197 		return (error);
1198 	}
1199 
1200 	/* Create DMA maps for TX buffers. */
1201 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1202 		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1203 		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1204 		if (error) {
1205 			device_printf(sc->ti_dev,
1206 			    "could not create DMA map for TX\n");
1207 			return (ENOMEM);
1208 		}
1209 	}
1210 
1211 	/* Mini ring and TX ring is not available on Tigon 1. */
1212 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1213 		return (0);
1214 
1215 	/* TX ring */
1216 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1217 	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1218 	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1219 	    "TX ring");
1220 	if (error)
1221 		return (error);
1222 
1223 	/* Mini RX ring */
1224 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1225 	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1226 	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1227 	    &sc->ti_cdata.ti_rx_mini_ring_map,
1228 	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1229 	if (error)
1230 		return (error);
1231 
1232 	/* Create DMA tag for mini RX mbufs. */
1233 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1234 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1235 	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1236 	if (error) {
1237 		device_printf(sc->ti_dev,
1238 		    "could not allocate mini RX dma tag\n");
1239 		return (error);
1240 	}
1241 
1242 	/* Create DMA maps for mini RX buffers. */
1243 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1244 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1245 		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1246 		if (error) {
1247 			device_printf(sc->ti_dev,
1248 			    "could not create DMA map for mini RX\n");
1249 			return (error);
1250 		}
1251 	}
1252 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1253 	    &sc->ti_cdata.ti_rx_mini_sparemap);
1254 	if (error) {
1255 		device_printf(sc->ti_dev,
1256 		    "could not create spare DMA map for mini RX\n");
1257 		return (error);
1258 	}
1259 
1260 	return (0);
1261 }
1262 
1263 static void
1264 ti_dma_free(struct ti_softc *sc)
1265 {
1266 	int i;
1267 
1268 	/* Destroy DMA maps for RX buffers. */
1269 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1270 		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1271 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1272 			    sc->ti_cdata.ti_rx_std_maps[i]);
1273 			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1274 		}
1275 	}
1276 	if (sc->ti_cdata.ti_rx_std_sparemap) {
1277 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1278 		    sc->ti_cdata.ti_rx_std_sparemap);
1279 		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1280 	}
1281 	if (sc->ti_cdata.ti_rx_std_tag) {
1282 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1283 		sc->ti_cdata.ti_rx_std_tag = NULL;
1284 	}
1285 
1286 	/* Destroy DMA maps for jumbo RX buffers. */
1287 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1288 		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1289 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1290 			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1291 			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1292 		}
1293 	}
1294 	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1295 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1296 		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1297 		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1298 	}
1299 	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1300 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1301 		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1302 	}
1303 
1304 	/* Destroy DMA maps for mini RX buffers. */
1305 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1306 		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1307 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1308 			    sc->ti_cdata.ti_rx_mini_maps[i]);
1309 			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1310 		}
1311 	}
1312 	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1313 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1314 		    sc->ti_cdata.ti_rx_mini_sparemap);
1315 		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1316 	}
1317 	if (sc->ti_cdata.ti_rx_mini_tag) {
1318 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1319 		sc->ti_cdata.ti_rx_mini_tag = NULL;
1320 	}
1321 
1322 	/* Destroy DMA maps for TX buffers. */
1323 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1324 		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1325 			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1326 			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1327 			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1328 		}
1329 	}
1330 	if (sc->ti_cdata.ti_tx_tag) {
1331 		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1332 		sc->ti_cdata.ti_tx_tag = NULL;
1333 	}
1334 
1335 	/* Destroy standard RX ring. */
1336 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1337 	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1338 	    sc->ti_cdata.ti_rx_std_ring_map,
1339 	    &sc->ti_rdata.ti_rx_std_ring_paddr);
1340 	/* Destroy jumbo RX ring. */
1341 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1342 	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1343 	    sc->ti_cdata.ti_rx_jumbo_ring_map,
1344 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr);
1345 	/* Destroy mini RX ring. */
1346 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1347 	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1348 	    sc->ti_cdata.ti_rx_mini_ring_map,
1349 	    &sc->ti_rdata.ti_rx_mini_ring_paddr);
1350 	/* Destroy RX return ring. */
1351 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1352 	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1353 	    sc->ti_cdata.ti_rx_return_ring_map,
1354 	    &sc->ti_rdata.ti_rx_return_ring_paddr);
1355 	/* Destroy TX ring. */
1356 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1357 	    (void *)&sc->ti_rdata.ti_tx_ring, sc->ti_cdata.ti_tx_ring_map,
1358 	    &sc->ti_rdata.ti_tx_ring_paddr);
1359 	/* Destroy status block. */
1360 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1361 	    (void *)&sc->ti_rdata.ti_status, sc->ti_cdata.ti_status_map,
1362 	    &sc->ti_rdata.ti_status_paddr);
1363 	/* Destroy event ring. */
1364 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1365 	    (void *)&sc->ti_rdata.ti_event_ring,
1366 	    sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr);
1367 	/* Destroy GIB */
1368 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1369 	    (void *)&sc->ti_rdata.ti_info, sc->ti_cdata.ti_gib_map,
1370 	    &sc->ti_rdata.ti_info_paddr);
1371 
1372 	/* Destroy the parent tag. */
1373 	if (sc->ti_cdata.ti_parent_tag) {
1374 		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1375 		sc->ti_cdata.ti_parent_tag = NULL;
1376 	}
1377 }
1378 
1379 /*
1380  * Intialize a standard receive ring descriptor.
1381  */
1382 static int
1383 ti_newbuf_std(struct ti_softc *sc, int i)
1384 {
1385 	bus_dmamap_t map;
1386 	bus_dma_segment_t segs[1];
1387 	struct mbuf *m;
1388 	struct ti_rx_desc *r;
1389 	int error, nsegs;
1390 
1391 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1392 	if (m == NULL)
1393 		return (ENOBUFS);
1394 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1395 	m_adj(m, ETHER_ALIGN);
1396 
1397 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1398 	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1399 	if (error != 0) {
1400 		m_freem(m);
1401 		return (error);
1402         }
1403 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1404 
1405 	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1406 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1407 		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1408 		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1409 		    sc->ti_cdata.ti_rx_std_maps[i]);
1410 	}
1411 
1412 	map = sc->ti_cdata.ti_rx_std_maps[i];
1413 	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1414 	sc->ti_cdata.ti_rx_std_sparemap = map;
1415 	sc->ti_cdata.ti_rx_std_chain[i] = m;
1416 
1417 	r = &sc->ti_rdata.ti_rx_std_ring[i];
1418 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1419 	r->ti_len = segs[0].ds_len;
1420 	r->ti_type = TI_BDTYPE_RECV_BD;
1421 	r->ti_flags = 0;
1422 	r->ti_vlan_tag = 0;
1423 	r->ti_tcp_udp_cksum = 0;
1424 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1425 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1426 	r->ti_idx = i;
1427 
1428 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1429 	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1430 	return (0);
1431 }
1432 
1433 /*
1434  * Intialize a mini receive ring descriptor. This only applies to
1435  * the Tigon 2.
1436  */
1437 static int
1438 ti_newbuf_mini(struct ti_softc *sc, int i)
1439 {
1440 	bus_dmamap_t map;
1441 	bus_dma_segment_t segs[1];
1442 	struct mbuf *m;
1443 	struct ti_rx_desc *r;
1444 	int error, nsegs;
1445 
1446 	MGETHDR(m, M_NOWAIT, MT_DATA);
1447 	if (m == NULL)
1448 		return (ENOBUFS);
1449 	m->m_len = m->m_pkthdr.len = MHLEN;
1450 	m_adj(m, ETHER_ALIGN);
1451 
1452 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1453 	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1454 	if (error != 0) {
1455 		m_freem(m);
1456 		return (error);
1457         }
1458 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1459 
1460 	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1461 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1462 		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1463 		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1464 		    sc->ti_cdata.ti_rx_mini_maps[i]);
1465 	}
1466 
1467 	map = sc->ti_cdata.ti_rx_mini_maps[i];
1468 	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1469 	sc->ti_cdata.ti_rx_mini_sparemap = map;
1470 	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1471 
1472 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1473 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1474 	r->ti_len = segs[0].ds_len;
1475 	r->ti_type = TI_BDTYPE_RECV_BD;
1476 	r->ti_flags = TI_BDFLAG_MINI_RING;
1477 	r->ti_vlan_tag = 0;
1478 	r->ti_tcp_udp_cksum = 0;
1479 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1480 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1481 	r->ti_idx = i;
1482 
1483 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1484 	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1485 	return (0);
1486 }
1487 
1488 #ifndef TI_SF_BUF_JUMBO
1489 
1490 /*
1491  * Initialize a jumbo receive ring descriptor. This allocates
1492  * a jumbo buffer from the pool managed internally by the driver.
1493  */
1494 static int
1495 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1496 {
1497 	bus_dmamap_t map;
1498 	bus_dma_segment_t segs[1];
1499 	struct mbuf *m;
1500 	struct ti_rx_desc *r;
1501 	int error, nsegs;
1502 
1503 	(void)dummy;
1504 
1505 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1506 	if (m == NULL)
1507 		return (ENOBUFS);
1508 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1509 	m_adj(m, ETHER_ALIGN);
1510 
1511 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1512 	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1513 	if (error != 0) {
1514 		m_freem(m);
1515 		return (error);
1516         }
1517 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1518 
1519 	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1520 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1521 		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1522 		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1523 		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1524 	}
1525 
1526 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1527 	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1528 	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1529 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1530 
1531 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1532 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1533 	r->ti_len = segs[0].ds_len;
1534 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1535 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1536 	r->ti_vlan_tag = 0;
1537 	r->ti_tcp_udp_cksum = 0;
1538 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1539 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1540 	r->ti_idx = i;
1541 
1542 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1543 	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1544 	return (0);
1545 }
1546 
1547 #else
1548 
1549 #if (PAGE_SIZE == 4096)
1550 #define NPAYLOAD 2
1551 #else
1552 #define NPAYLOAD 1
1553 #endif
1554 
1555 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1556 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1557 #define NFS_HDR_LEN (UDP_HDR_LEN)
1558 static int HDR_LEN = TCP_HDR_LEN;
1559 
1560 /*
1561  * Initialize a jumbo receive ring descriptor. This allocates
1562  * a jumbo buffer from the pool managed internally by the driver.
1563  */
1564 static int
1565 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1566 {
1567 	bus_dmamap_t map;
1568 	struct mbuf *cur, *m_new = NULL;
1569 	struct mbuf *m[3] = {NULL, NULL, NULL};
1570 	struct ti_rx_desc_ext *r;
1571 	vm_page_t frame;
1572 	/* 1 extra buf to make nobufs easy*/
1573 	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1574 	int i;
1575 	bus_dma_segment_t segs[4];
1576 	int nsegs;
1577 
1578 	if (m_old != NULL) {
1579 		m_new = m_old;
1580 		cur = m_old->m_next;
1581 		for (i = 0; i <= NPAYLOAD; i++){
1582 			m[i] = cur;
1583 			cur = cur->m_next;
1584 		}
1585 	} else {
1586 		/* Allocate the mbufs. */
1587 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1588 		if (m_new == NULL) {
1589 			device_printf(sc->ti_dev, "mbuf allocation failed "
1590 			    "-- packet dropped!\n");
1591 			goto nobufs;
1592 		}
1593 		MGET(m[NPAYLOAD], M_NOWAIT, MT_DATA);
1594 		if (m[NPAYLOAD] == NULL) {
1595 			device_printf(sc->ti_dev, "cluster mbuf allocation "
1596 			    "failed -- packet dropped!\n");
1597 			goto nobufs;
1598 		}
1599 		if (!(MCLGET(m[NPAYLOAD], M_NOWAIT))) {
1600 			device_printf(sc->ti_dev, "mbuf allocation failed "
1601 			    "-- packet dropped!\n");
1602 			goto nobufs;
1603 		}
1604 		m[NPAYLOAD]->m_len = MCLBYTES;
1605 
1606 		for (i = 0; i < NPAYLOAD; i++){
1607 			MGET(m[i], M_NOWAIT, MT_DATA);
1608 			if (m[i] == NULL) {
1609 				device_printf(sc->ti_dev, "mbuf allocation "
1610 				    "failed -- packet dropped!\n");
1611 				goto nobufs;
1612 			}
1613 			frame = vm_page_alloc(NULL, 0,
1614 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1615 			    VM_ALLOC_WIRED);
1616 			if (frame == NULL) {
1617 				device_printf(sc->ti_dev, "buffer allocation "
1618 				    "failed -- packet dropped!\n");
1619 				printf("      index %d page %d\n", idx, i);
1620 				goto nobufs;
1621 			}
1622 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1623 			if (sf[i] == NULL) {
1624 				vm_page_unwire(frame, PQ_INACTIVE);
1625 				vm_page_free(frame);
1626 				device_printf(sc->ti_dev, "buffer allocation "
1627 				    "failed -- packet dropped!\n");
1628 				printf("      index %d page %d\n", idx, i);
1629 				goto nobufs;
1630 			}
1631 		}
1632 		for (i = 0; i < NPAYLOAD; i++){
1633 		/* Attach the buffer to the mbuf. */
1634 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1635 			m[i]->m_len = PAGE_SIZE;
1636 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1637 			    sf_mext_free, (void*)sf_buf_kva(sf[i]), sf[i],
1638 			    0, EXT_DISPOSABLE);
1639 			m[i]->m_next = m[i+1];
1640 		}
1641 		/* link the buffers to the header */
1642 		m_new->m_next = m[0];
1643 		m_new->m_data += ETHER_ALIGN;
1644 		if (sc->ti_hdrsplit)
1645 			m_new->m_len = MHLEN - ETHER_ALIGN;
1646 		else
1647 			m_new->m_len = HDR_LEN;
1648 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1649 	}
1650 
1651 	/* Set up the descriptor. */
1652 	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1653 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1654 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1655 	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1656 	    segs, &nsegs, 0))
1657 		return (ENOBUFS);
1658 	if ((nsegs < 1) || (nsegs > 4))
1659 		return (ENOBUFS);
1660 	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1661 	r->ti_len0 = m_new->m_len;
1662 
1663 	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1664 	r->ti_len1 = PAGE_SIZE;
1665 
1666 	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1667 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1668 
1669 	if (PAGE_SIZE == 4096) {
1670 		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1671 		r->ti_len3 = MCLBYTES;
1672 	} else {
1673 		r->ti_len3 = 0;
1674 	}
1675 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1676 
1677 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1678 
1679 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1680 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1681 
1682 	r->ti_idx = idx;
1683 
1684 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1685 	return (0);
1686 
1687 nobufs:
1688 
1689 	/*
1690 	 * Warning! :
1691 	 * This can only be called before the mbufs are strung together.
1692 	 * If the mbufs are strung together, m_freem() will free the chain,
1693 	 * so that the later mbufs will be freed multiple times.
1694 	 */
1695 	if (m_new)
1696 		m_freem(m_new);
1697 
1698 	for (i = 0; i < 3; i++) {
1699 		if (m[i])
1700 			m_freem(m[i]);
1701 		if (sf[i])
1702 			sf_mext_free((void *)sf_buf_kva(sf[i]), sf[i]);
1703 	}
1704 	return (ENOBUFS);
1705 }
1706 #endif
1707 
1708 /*
1709  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1710  * that's 1MB or memory, which is a lot. For now, we fill only the first
1711  * 256 ring entries and hope that our CPU is fast enough to keep up with
1712  * the NIC.
1713  */
1714 static int
1715 ti_init_rx_ring_std(struct ti_softc *sc)
1716 {
1717 	int i;
1718 	struct ti_cmd_desc cmd;
1719 
1720 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1721 		if (ti_newbuf_std(sc, i) != 0)
1722 			return (ENOBUFS);
1723 	}
1724 
1725 	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1726 	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1727 
1728 	return (0);
1729 }
1730 
1731 static void
1732 ti_free_rx_ring_std(struct ti_softc *sc)
1733 {
1734 	bus_dmamap_t map;
1735 	int i;
1736 
1737 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1738 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1739 			map = sc->ti_cdata.ti_rx_std_maps[i];
1740 			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1741 			    BUS_DMASYNC_POSTREAD);
1742 			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1743 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1744 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1745 		}
1746 	}
1747 	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1748 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1749 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1750 }
1751 
1752 static int
1753 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1754 {
1755 	struct ti_cmd_desc cmd;
1756 	int i;
1757 
1758 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1759 		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1760 			return (ENOBUFS);
1761 	}
1762 
1763 	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1764 	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1765 
1766 	return (0);
1767 }
1768 
1769 static void
1770 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1771 {
1772 	bus_dmamap_t map;
1773 	int i;
1774 
1775 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1776 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1777 			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1778 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1779 			    BUS_DMASYNC_POSTREAD);
1780 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1781 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1782 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1783 		}
1784 	}
1785 	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1786 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1787 	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1788 }
1789 
1790 static int
1791 ti_init_rx_ring_mini(struct ti_softc *sc)
1792 {
1793 	int i;
1794 
1795 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1796 		if (ti_newbuf_mini(sc, i) != 0)
1797 			return (ENOBUFS);
1798 	}
1799 
1800 	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1801 	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1802 
1803 	return (0);
1804 }
1805 
1806 static void
1807 ti_free_rx_ring_mini(struct ti_softc *sc)
1808 {
1809 	bus_dmamap_t map;
1810 	int i;
1811 
1812 	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1813 		return;
1814 
1815 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1816 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1817 			map = sc->ti_cdata.ti_rx_mini_maps[i];
1818 			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1819 			    BUS_DMASYNC_POSTREAD);
1820 			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1821 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1822 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1823 		}
1824 	}
1825 	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1826 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1827 	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1828 }
1829 
1830 static void
1831 ti_free_tx_ring(struct ti_softc *sc)
1832 {
1833 	struct ti_txdesc *txd;
1834 	int i;
1835 
1836 	if (sc->ti_rdata.ti_tx_ring == NULL)
1837 		return;
1838 
1839 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1840 		txd = &sc->ti_cdata.ti_txdesc[i];
1841 		if (txd->tx_m != NULL) {
1842 			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1843 			    BUS_DMASYNC_POSTWRITE);
1844 			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1845 			    txd->tx_dmamap);
1846 			m_freem(txd->tx_m);
1847 			txd->tx_m = NULL;
1848 		}
1849 	}
1850 	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1851 	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1852 	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1853 }
1854 
1855 static int
1856 ti_init_tx_ring(struct ti_softc *sc)
1857 {
1858 	struct ti_txdesc *txd;
1859 	int i;
1860 
1861 	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1862 	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1863 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1864 		txd = &sc->ti_cdata.ti_txdesc[i];
1865 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1866 	}
1867 	sc->ti_txcnt = 0;
1868 	sc->ti_tx_saved_considx = 0;
1869 	sc->ti_tx_saved_prodidx = 0;
1870 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1871 	return (0);
1872 }
1873 
1874 /*
1875  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1876  * but we have to support the old way too so that Tigon 1 cards will
1877  * work.
1878  */
1879 static void
1880 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1881 {
1882 	struct ti_cmd_desc cmd;
1883 	uint16_t *m;
1884 	uint32_t ext[2] = {0, 0};
1885 
1886 	m = (uint16_t *)&addr->octet[0];
1887 
1888 	switch (sc->ti_hwrev) {
1889 	case TI_HWREV_TIGON:
1890 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1891 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1892 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1893 		break;
1894 	case TI_HWREV_TIGON_II:
1895 		ext[0] = htons(m[0]);
1896 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1897 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1898 		break;
1899 	default:
1900 		device_printf(sc->ti_dev, "unknown hwrev\n");
1901 		break;
1902 	}
1903 }
1904 
1905 static void
1906 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1907 {
1908 	struct ti_cmd_desc cmd;
1909 	uint16_t *m;
1910 	uint32_t ext[2] = {0, 0};
1911 
1912 	m = (uint16_t *)&addr->octet[0];
1913 
1914 	switch (sc->ti_hwrev) {
1915 	case TI_HWREV_TIGON:
1916 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1917 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1918 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1919 		break;
1920 	case TI_HWREV_TIGON_II:
1921 		ext[0] = htons(m[0]);
1922 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1923 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1924 		break;
1925 	default:
1926 		device_printf(sc->ti_dev, "unknown hwrev\n");
1927 		break;
1928 	}
1929 }
1930 
1931 /*
1932  * Configure the Tigon's multicast address filter.
1933  *
1934  * The actual multicast table management is a bit of a pain, thanks to
1935  * slight brain damage on the part of both Alteon and us. With our
1936  * multicast code, we are only alerted when the multicast address table
1937  * changes and at that point we only have the current list of addresses:
1938  * we only know the current state, not the previous state, so we don't
1939  * actually know what addresses were removed or added. The firmware has
1940  * state, but we can't get our grubby mits on it, and there is no 'delete
1941  * all multicast addresses' command. Hence, we have to maintain our own
1942  * state so we know what addresses have been programmed into the NIC at
1943  * any given time.
1944  */
1945 static void
1946 ti_setmulti(struct ti_softc *sc)
1947 {
1948 	struct ifnet *ifp;
1949 	struct ifmultiaddr *ifma;
1950 	struct ti_cmd_desc cmd;
1951 	struct ti_mc_entry *mc;
1952 	uint32_t intrs;
1953 
1954 	TI_LOCK_ASSERT(sc);
1955 
1956 	ifp = sc->ti_ifp;
1957 
1958 	if (ifp->if_flags & IFF_ALLMULTI) {
1959 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1960 		return;
1961 	} else {
1962 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1963 	}
1964 
1965 	/* Disable interrupts. */
1966 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1967 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1968 
1969 	/* First, zot all the existing filters. */
1970 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1971 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1972 		ti_del_mcast(sc, &mc->mc_addr);
1973 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1974 		free(mc, M_DEVBUF);
1975 	}
1976 
1977 	/* Now program new ones. */
1978 	if_maddr_rlock(ifp);
1979 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1980 		if (ifma->ifma_addr->sa_family != AF_LINK)
1981 			continue;
1982 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1983 		if (mc == NULL) {
1984 			device_printf(sc->ti_dev,
1985 			    "no memory for mcast filter entry\n");
1986 			continue;
1987 		}
1988 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1989 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1990 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1991 		ti_add_mcast(sc, &mc->mc_addr);
1992 	}
1993 	if_maddr_runlock(ifp);
1994 
1995 	/* Re-enable interrupts. */
1996 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1997 }
1998 
1999 /*
2000  * Check to see if the BIOS has configured us for a 64 bit slot when
2001  * we aren't actually in one. If we detect this condition, we can work
2002  * around it on the Tigon 2 by setting a bit in the PCI state register,
2003  * but for the Tigon 1 we must give up and abort the interface attach.
2004  */
2005 static int
2006 ti_64bitslot_war(struct ti_softc *sc)
2007 {
2008 
2009 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2010 		CSR_WRITE_4(sc, 0x600, 0);
2011 		CSR_WRITE_4(sc, 0x604, 0);
2012 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2013 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2014 			if (sc->ti_hwrev == TI_HWREV_TIGON)
2015 				return (EINVAL);
2016 			else {
2017 				TI_SETBIT(sc, TI_PCI_STATE,
2018 				    TI_PCISTATE_32BIT_BUS);
2019 				return (0);
2020 			}
2021 		}
2022 	}
2023 
2024 	return (0);
2025 }
2026 
2027 /*
2028  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2029  * self-test results.
2030  */
2031 static int
2032 ti_chipinit(struct ti_softc *sc)
2033 {
2034 	uint32_t cacheline;
2035 	uint32_t pci_writemax = 0;
2036 	uint32_t hdrsplit;
2037 
2038 	/* Initialize link to down state. */
2039 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2040 
2041 	/* Set endianness before we access any non-PCI registers. */
2042 #if 0 && BYTE_ORDER == BIG_ENDIAN
2043 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2044 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2045 #else
2046 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2047 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2048 #endif
2049 
2050 	/* Check the ROM failed bit to see if self-tests passed. */
2051 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2052 		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2053 		return (ENODEV);
2054 	}
2055 
2056 	/* Halt the CPU. */
2057 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2058 
2059 	/* Figure out the hardware revision. */
2060 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2061 	case TI_REV_TIGON_I:
2062 		sc->ti_hwrev = TI_HWREV_TIGON;
2063 		break;
2064 	case TI_REV_TIGON_II:
2065 		sc->ti_hwrev = TI_HWREV_TIGON_II;
2066 		break;
2067 	default:
2068 		device_printf(sc->ti_dev, "unsupported chip revision\n");
2069 		return (ENODEV);
2070 	}
2071 
2072 	/* Do special setup for Tigon 2. */
2073 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2074 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2075 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2076 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2077 	}
2078 
2079 	/*
2080 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2081 	 * can't do header splitting.
2082 	 */
2083 #ifdef TI_JUMBO_HDRSPLIT
2084 	if (sc->ti_hwrev != TI_HWREV_TIGON)
2085 		sc->ti_hdrsplit = 1;
2086 	else
2087 		device_printf(sc->ti_dev,
2088 		    "can't do header splitting on a Tigon I board\n");
2089 #endif /* TI_JUMBO_HDRSPLIT */
2090 
2091 	/* Set up the PCI state register. */
2092 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2093 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2094 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2095 	}
2096 
2097 	/* Clear the read/write max DMA parameters. */
2098 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2099 	    TI_PCISTATE_READ_MAXDMA));
2100 
2101 	/* Get cache line size. */
2102 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2103 
2104 	/*
2105 	 * If the system has set enabled the PCI memory write
2106 	 * and invalidate command in the command register, set
2107 	 * the write max parameter accordingly. This is necessary
2108 	 * to use MWI with the Tigon 2.
2109 	 */
2110 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2111 		switch (cacheline) {
2112 		case 1:
2113 		case 4:
2114 		case 8:
2115 		case 16:
2116 		case 32:
2117 		case 64:
2118 			break;
2119 		default:
2120 		/* Disable PCI memory write and invalidate. */
2121 			if (bootverbose)
2122 				device_printf(sc->ti_dev, "cache line size %d"
2123 				    " not supported; disabling PCI MWI\n",
2124 				    cacheline);
2125 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2126 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2127 			break;
2128 		}
2129 	}
2130 
2131 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2132 
2133 	/* This sets the min dma param all the way up (0xff). */
2134 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2135 
2136 	if (sc->ti_hdrsplit)
2137 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2138 	else
2139 		hdrsplit = 0;
2140 
2141 	/* Configure DMA variables. */
2142 #if BYTE_ORDER == BIG_ENDIAN
2143 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2144 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2145 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2146 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2147 #else /* BYTE_ORDER */
2148 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2149 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2150 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2151 #endif /* BYTE_ORDER */
2152 
2153 	/*
2154 	 * Only allow 1 DMA channel to be active at a time.
2155 	 * I don't think this is a good idea, but without it
2156 	 * the firmware racks up lots of nicDmaReadRingFull
2157 	 * errors.  This is not compatible with hardware checksums.
2158 	 */
2159 	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2160 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2161 
2162 	/* Recommended settings from Tigon manual. */
2163 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2164 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2165 
2166 	if (ti_64bitslot_war(sc)) {
2167 		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2168 		    "but we aren't");
2169 		return (EINVAL);
2170 	}
2171 
2172 	return (0);
2173 }
2174 
2175 /*
2176  * Initialize the general information block and firmware, and
2177  * start the CPU(s) running.
2178  */
2179 static int
2180 ti_gibinit(struct ti_softc *sc)
2181 {
2182 	struct ifnet *ifp;
2183 	struct ti_rcb *rcb;
2184 	int i;
2185 
2186 	TI_LOCK_ASSERT(sc);
2187 
2188 	ifp = sc->ti_ifp;
2189 
2190 	/* Disable interrupts for now. */
2191 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2192 
2193 	/* Tell the chip where to find the general information block. */
2194 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2195 	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2196 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2197 	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2198 
2199 	/* Load the firmware into SRAM. */
2200 	ti_loadfw(sc);
2201 
2202 	/* Set up the contents of the general info and ring control blocks. */
2203 
2204 	/* Set up the event ring and producer pointer. */
2205 	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2206 	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2207 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2208 	rcb->ti_flags = 0;
2209 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2210 	    sc->ti_rdata.ti_status_paddr +
2211 	    offsetof(struct ti_status, ti_ev_prodidx_r));
2212 	sc->ti_ev_prodidx.ti_idx = 0;
2213 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2214 	sc->ti_ev_saved_considx = 0;
2215 
2216 	/* Set up the command ring and producer mailbox. */
2217 	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2218 	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2219 	rcb->ti_flags = 0;
2220 	rcb->ti_max_len = 0;
2221 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2222 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2223 	}
2224 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2225 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2226 	sc->ti_cmd_saved_prodidx = 0;
2227 
2228 	/*
2229 	 * Assign the address of the stats refresh buffer.
2230 	 * We re-use the current stats buffer for this to
2231 	 * conserve memory.
2232 	 */
2233 	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2234 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2235 	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2236 
2237 	/* Set up the standard receive ring. */
2238 	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2239 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2240 	rcb->ti_max_len = TI_FRAMELEN;
2241 	rcb->ti_flags = 0;
2242 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2243 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2244 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2245 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2246 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2247 
2248 	/* Set up the jumbo receive ring. */
2249 	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2250 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2251 
2252 #ifndef TI_SF_BUF_JUMBO
2253 	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2254 	rcb->ti_flags = 0;
2255 #else
2256 	rcb->ti_max_len = PAGE_SIZE;
2257 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2258 #endif
2259 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2260 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2261 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2262 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2263 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2264 
2265 	/*
2266 	 * Set up the mini ring. Only activated on the
2267 	 * Tigon 2 but the slot in the config block is
2268 	 * still there on the Tigon 1.
2269 	 */
2270 	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2271 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2272 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2273 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2274 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2275 	else
2276 		rcb->ti_flags = 0;
2277 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2278 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2279 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2280 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2281 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2282 
2283 	/*
2284 	 * Set up the receive return ring.
2285 	 */
2286 	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2287 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2288 	rcb->ti_flags = 0;
2289 	rcb->ti_max_len = TI_RETURN_RING_CNT;
2290 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2291 	    sc->ti_rdata.ti_status_paddr +
2292 	    offsetof(struct ti_status, ti_return_prodidx_r));
2293 
2294 	/*
2295 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2296 	 * of putting the transmit ring in the host's address space and
2297 	 * letting the chip DMA it instead of leaving the ring in the NIC's
2298 	 * memory and accessing it through the shared memory region. We
2299 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2300 	 * so we have to revert to the shared memory scheme if we detect
2301 	 * a Tigon 1 chip.
2302 	 */
2303 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2304 	if (sc->ti_rdata.ti_tx_ring != NULL)
2305 		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2306 	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2307 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2308 		rcb->ti_flags = 0;
2309 	else
2310 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2311 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2312 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2313 	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2314 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2315 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2316 	rcb->ti_max_len = TI_TX_RING_CNT;
2317 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2318 		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2319 	else
2320 		ti_hostaddr64(&rcb->ti_hostaddr,
2321 		    sc->ti_rdata.ti_tx_ring_paddr);
2322 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2323 	    sc->ti_rdata.ti_status_paddr +
2324 	    offsetof(struct ti_status, ti_tx_considx_r));
2325 
2326 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2327 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2328 	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2329 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2330 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2331 	    sc->ti_cdata.ti_event_ring_map,
2332 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2333 	if (sc->ti_rdata.ti_tx_ring != NULL)
2334 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2335 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2336 
2337 	/* Set up tunables */
2338 #if 0
2339 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2340 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2341 		    (sc->ti_rx_coal_ticks / 10));
2342 	else
2343 #endif
2344 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2345 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2346 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2347 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2348 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2349 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2350 
2351 	/* Turn interrupts on. */
2352 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2353 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2354 
2355 	/* Start CPU. */
2356 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2357 
2358 	return (0);
2359 }
2360 
2361 /*
2362  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2363  * against our list and return its name if we find a match.
2364  */
2365 static int
2366 ti_probe(device_t dev)
2367 {
2368 	const struct ti_type *t;
2369 
2370 	t = ti_devs;
2371 
2372 	while (t->ti_name != NULL) {
2373 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2374 		    (pci_get_device(dev) == t->ti_did)) {
2375 			device_set_desc(dev, t->ti_name);
2376 			return (BUS_PROBE_DEFAULT);
2377 		}
2378 		t++;
2379 	}
2380 
2381 	return (ENXIO);
2382 }
2383 
2384 static int
2385 ti_attach(device_t dev)
2386 {
2387 	struct ifnet *ifp;
2388 	struct ti_softc *sc;
2389 	int error = 0, rid;
2390 	u_char eaddr[6];
2391 
2392 	sc = device_get_softc(dev);
2393 	sc->ti_dev = dev;
2394 
2395 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2396 	    MTX_DEF);
2397 	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2398 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2399 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2400 	if (ifp == NULL) {
2401 		device_printf(dev, "can not if_alloc()\n");
2402 		error = ENOSPC;
2403 		goto fail;
2404 	}
2405 	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2406 	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2407 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2408 
2409 	/*
2410 	 * Map control/status registers.
2411 	 */
2412 	pci_enable_busmaster(dev);
2413 
2414 	rid = PCIR_BAR(0);
2415 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2416 	    RF_ACTIVE);
2417 
2418 	if (sc->ti_res == NULL) {
2419 		device_printf(dev, "couldn't map memory\n");
2420 		error = ENXIO;
2421 		goto fail;
2422 	}
2423 
2424 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2425 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2426 
2427 	/* Allocate interrupt */
2428 	rid = 0;
2429 
2430 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2431 	    RF_SHAREABLE | RF_ACTIVE);
2432 
2433 	if (sc->ti_irq == NULL) {
2434 		device_printf(dev, "couldn't map interrupt\n");
2435 		error = ENXIO;
2436 		goto fail;
2437 	}
2438 
2439 	if (ti_chipinit(sc)) {
2440 		device_printf(dev, "chip initialization failed\n");
2441 		error = ENXIO;
2442 		goto fail;
2443 	}
2444 
2445 	/* Zero out the NIC's on-board SRAM. */
2446 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2447 
2448 	/* Init again -- zeroing memory may have clobbered some registers. */
2449 	if (ti_chipinit(sc)) {
2450 		device_printf(dev, "chip initialization failed\n");
2451 		error = ENXIO;
2452 		goto fail;
2453 	}
2454 
2455 	/*
2456 	 * Get station address from the EEPROM. Note: the manual states
2457 	 * that the MAC address is at offset 0x8c, however the data is
2458 	 * stored as two longwords (since that's how it's loaded into
2459 	 * the NIC). This means the MAC address is actually preceded
2460 	 * by two zero bytes. We need to skip over those.
2461 	 */
2462 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2463 		device_printf(dev, "failed to read station address\n");
2464 		error = ENXIO;
2465 		goto fail;
2466 	}
2467 
2468 	/* Allocate working area for memory dump. */
2469 	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2470 	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2471 	    M_NOWAIT);
2472 	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2473 		device_printf(dev, "cannot allocate memory buffer\n");
2474 		error = ENOMEM;
2475 		goto fail;
2476 	}
2477 	if ((error = ti_dma_alloc(sc)) != 0)
2478 		goto fail;
2479 
2480 	/*
2481 	 * We really need a better way to tell a 1000baseTX card
2482 	 * from a 1000baseSX one, since in theory there could be
2483 	 * OEMed 1000baseTX cards from lame vendors who aren't
2484 	 * clever enough to change the PCI ID. For the moment
2485 	 * though, the AceNIC is the only copper card available.
2486 	 */
2487 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2488 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2489 		sc->ti_copper = 1;
2490 	/* Ok, it's not the only copper card available. */
2491 	if (pci_get_vendor(dev) == NG_VENDORID &&
2492 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2493 		sc->ti_copper = 1;
2494 
2495 	/* Set default tunable values. */
2496 	ti_sysctl_node(sc);
2497 
2498 	/* Set up ifnet structure */
2499 	ifp->if_softc = sc;
2500 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2501 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2502 	ifp->if_ioctl = ti_ioctl;
2503 	ifp->if_start = ti_start;
2504 	ifp->if_init = ti_init;
2505 	ifp->if_get_counter = ti_get_counter;
2506 	ifp->if_baudrate = IF_Gbps(1UL);
2507 	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2508 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2509 	IFQ_SET_READY(&ifp->if_snd);
2510 
2511 	/* Set up ifmedia support. */
2512 	if (sc->ti_copper) {
2513 		/*
2514 		 * Copper cards allow manual 10/100 mode selection,
2515 		 * but not manual 1000baseTX mode selection. Why?
2516 		 * Because currently there's no way to specify the
2517 		 * master/slave setting through the firmware interface,
2518 		 * so Alteon decided to just bag it and handle it
2519 		 * via autonegotiation.
2520 		 */
2521 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2522 		ifmedia_add(&sc->ifmedia,
2523 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2524 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2525 		ifmedia_add(&sc->ifmedia,
2526 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2527 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2528 		ifmedia_add(&sc->ifmedia,
2529 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2530 	} else {
2531 		/* Fiber cards don't support 10/100 modes. */
2532 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2533 		ifmedia_add(&sc->ifmedia,
2534 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2535 	}
2536 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2537 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2538 
2539 	/*
2540 	 * We're assuming here that card initialization is a sequential
2541 	 * thing.  If it isn't, multiple cards probing at the same time
2542 	 * could stomp on the list of softcs here.
2543 	 */
2544 
2545 	/* Register the device */
2546 	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2547 	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2548 	sc->dev->si_drv1 = sc;
2549 
2550 	/*
2551 	 * Call MI attach routine.
2552 	 */
2553 	ether_ifattach(ifp, eaddr);
2554 
2555 	/* VLAN capability setup. */
2556 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2557 	    IFCAP_VLAN_HWTAGGING;
2558 	ifp->if_capenable = ifp->if_capabilities;
2559 	/* Tell the upper layer we support VLAN over-sized frames. */
2560 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2561 
2562 	/* Driver supports link state tracking. */
2563 	ifp->if_capabilities |= IFCAP_LINKSTATE;
2564 	ifp->if_capenable |= IFCAP_LINKSTATE;
2565 
2566 	/* Hook interrupt last to avoid having to lock softc */
2567 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2568 	   NULL, ti_intr, sc, &sc->ti_intrhand);
2569 
2570 	if (error) {
2571 		device_printf(dev, "couldn't set up irq\n");
2572 		goto fail;
2573 	}
2574 
2575 fail:
2576 	if (error)
2577 		ti_detach(dev);
2578 
2579 	return (error);
2580 }
2581 
2582 /*
2583  * Shutdown hardware and free up resources. This can be called any
2584  * time after the mutex has been initialized. It is called in both
2585  * the error case in attach and the normal detach case so it needs
2586  * to be careful about only freeing resources that have actually been
2587  * allocated.
2588  */
2589 static int
2590 ti_detach(device_t dev)
2591 {
2592 	struct ti_softc *sc;
2593 	struct ifnet *ifp;
2594 
2595 	sc = device_get_softc(dev);
2596 	if (sc->dev)
2597 		destroy_dev(sc->dev);
2598 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2599 	ifp = sc->ti_ifp;
2600 	if (device_is_attached(dev)) {
2601 		ether_ifdetach(ifp);
2602 		TI_LOCK(sc);
2603 		ti_stop(sc);
2604 		TI_UNLOCK(sc);
2605 	}
2606 
2607 	/* These should only be active if attach succeeded */
2608 	callout_drain(&sc->ti_watchdog);
2609 	bus_generic_detach(dev);
2610 	ti_dma_free(sc);
2611 	ifmedia_removeall(&sc->ifmedia);
2612 
2613 	if (sc->ti_intrhand)
2614 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2615 	if (sc->ti_irq)
2616 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2617 	if (sc->ti_res) {
2618 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2619 		    sc->ti_res);
2620 	}
2621 	if (ifp)
2622 		if_free(ifp);
2623 	if (sc->ti_membuf)
2624 		free(sc->ti_membuf, M_DEVBUF);
2625 	if (sc->ti_membuf2)
2626 		free(sc->ti_membuf2, M_DEVBUF);
2627 
2628 	mtx_destroy(&sc->ti_mtx);
2629 
2630 	return (0);
2631 }
2632 
2633 #ifdef TI_JUMBO_HDRSPLIT
2634 /*
2635  * If hdr_len is 0, that means that header splitting wasn't done on
2636  * this packet for some reason.  The two most likely reasons are that
2637  * the protocol isn't a supported protocol for splitting, or this
2638  * packet had a fragment offset that wasn't 0.
2639  *
2640  * The header length, if it is non-zero, will always be the length of
2641  * the headers on the packet, but that length could be longer than the
2642  * first mbuf.  So we take the minimum of the two as the actual
2643  * length.
2644  */
2645 static __inline void
2646 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2647 {
2648 	int i = 0;
2649 	int lengths[4] = {0, 0, 0, 0};
2650 	struct mbuf *m, *mp;
2651 
2652 	if (hdr_len != 0)
2653 		top->m_len = min(hdr_len, top->m_len);
2654 	pkt_len -= top->m_len;
2655 	lengths[i++] = top->m_len;
2656 
2657 	mp = top;
2658 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2659 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2660 		pkt_len -= m->m_len;
2661 		lengths[i++] = m->m_len;
2662 		mp = m;
2663 	}
2664 
2665 #if 0
2666 	if (hdr_len != 0)
2667 		printf("got split packet: ");
2668 	else
2669 		printf("got non-split packet: ");
2670 
2671 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2672 	    lengths[1], lengths[2], lengths[3],
2673 	    lengths[0] + lengths[1] + lengths[2] +
2674 	    lengths[3]);
2675 #endif
2676 
2677 	if (pkt_len)
2678 		panic("header splitting didn't");
2679 
2680 	if (m) {
2681 		m_freem(m);
2682 		mp->m_next = NULL;
2683 
2684 	}
2685 	if (mp->m_next != NULL)
2686 		panic("ti_hdr_split: last mbuf in chain should be null");
2687 }
2688 #endif /* TI_JUMBO_HDRSPLIT */
2689 
2690 static void
2691 ti_discard_std(struct ti_softc *sc, int i)
2692 {
2693 
2694 	struct ti_rx_desc *r;
2695 
2696 	r = &sc->ti_rdata.ti_rx_std_ring[i];
2697 	r->ti_len = MCLBYTES - ETHER_ALIGN;
2698 	r->ti_type = TI_BDTYPE_RECV_BD;
2699 	r->ti_flags = 0;
2700 	r->ti_vlan_tag = 0;
2701 	r->ti_tcp_udp_cksum = 0;
2702 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2703 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2704 	r->ti_idx = i;
2705 }
2706 
2707 static void
2708 ti_discard_mini(struct ti_softc *sc, int i)
2709 {
2710 
2711 	struct ti_rx_desc *r;
2712 
2713 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2714 	r->ti_len = MHLEN - ETHER_ALIGN;
2715 	r->ti_type = TI_BDTYPE_RECV_BD;
2716 	r->ti_flags = TI_BDFLAG_MINI_RING;
2717 	r->ti_vlan_tag = 0;
2718 	r->ti_tcp_udp_cksum = 0;
2719 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2720 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2721 	r->ti_idx = i;
2722 }
2723 
2724 #ifndef TI_SF_BUF_JUMBO
2725 static void
2726 ti_discard_jumbo(struct ti_softc *sc, int i)
2727 {
2728 
2729 	struct ti_rx_desc *r;
2730 
2731 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2732 	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2733 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2734 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2735 	r->ti_vlan_tag = 0;
2736 	r->ti_tcp_udp_cksum = 0;
2737 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2738 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2739 	r->ti_idx = i;
2740 }
2741 #endif
2742 
2743 /*
2744  * Frame reception handling. This is called if there's a frame
2745  * on the receive return list.
2746  *
2747  * Note: we have to be able to handle three possibilities here:
2748  * 1) the frame is from the mini receive ring (can only happen)
2749  *    on Tigon 2 boards)
2750  * 2) the frame is from the jumbo receive ring
2751  * 3) the frame is from the standard receive ring
2752  */
2753 
2754 static void
2755 ti_rxeof(struct ti_softc *sc)
2756 {
2757 	struct ifnet *ifp;
2758 #ifdef TI_SF_BUF_JUMBO
2759 	bus_dmamap_t map;
2760 #endif
2761 	struct ti_cmd_desc cmd;
2762 	int jumbocnt, minicnt, stdcnt, ti_len;
2763 
2764 	TI_LOCK_ASSERT(sc);
2765 
2766 	ifp = sc->ti_ifp;
2767 
2768 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2769 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2770 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2771 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2772 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2773 	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2774 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2775 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2776 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2777 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2778 
2779 	jumbocnt = minicnt = stdcnt = 0;
2780 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2781 		struct ti_rx_desc *cur_rx;
2782 		uint32_t rxidx;
2783 		struct mbuf *m = NULL;
2784 		uint16_t vlan_tag = 0;
2785 		int have_tag = 0;
2786 
2787 		cur_rx =
2788 		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2789 		rxidx = cur_rx->ti_idx;
2790 		ti_len = cur_rx->ti_len;
2791 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2792 
2793 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2794 			have_tag = 1;
2795 			vlan_tag = cur_rx->ti_vlan_tag;
2796 		}
2797 
2798 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2799 			jumbocnt++;
2800 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2801 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2802 #ifndef TI_SF_BUF_JUMBO
2803 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2804 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2805 				ti_discard_jumbo(sc, rxidx);
2806 				continue;
2807 			}
2808 			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2809 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2810 				ti_discard_jumbo(sc, rxidx);
2811 				continue;
2812 			}
2813 			m->m_len = ti_len;
2814 #else /* !TI_SF_BUF_JUMBO */
2815 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2816 			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2817 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2818 			    BUS_DMASYNC_POSTREAD);
2819 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2820 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2821 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2822 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2823 				continue;
2824 			}
2825 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2826 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2827 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2828 				continue;
2829 			}
2830 #ifdef TI_JUMBO_HDRSPLIT
2831 			if (sc->ti_hdrsplit)
2832 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2833 					     ti_len, rxidx);
2834 			else
2835 #endif /* TI_JUMBO_HDRSPLIT */
2836 			m_adj(m, ti_len - m->m_pkthdr.len);
2837 #endif /* TI_SF_BUF_JUMBO */
2838 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2839 			minicnt++;
2840 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2841 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2842 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2843 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2844 				ti_discard_mini(sc, rxidx);
2845 				continue;
2846 			}
2847 			if (ti_newbuf_mini(sc, rxidx) != 0) {
2848 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2849 				ti_discard_mini(sc, rxidx);
2850 				continue;
2851 			}
2852 			m->m_len = ti_len;
2853 		} else {
2854 			stdcnt++;
2855 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2856 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2857 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2858 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2859 				ti_discard_std(sc, rxidx);
2860 				continue;
2861 			}
2862 			if (ti_newbuf_std(sc, rxidx) != 0) {
2863 				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2864 				ti_discard_std(sc, rxidx);
2865 				continue;
2866 			}
2867 			m->m_len = ti_len;
2868 		}
2869 
2870 		m->m_pkthdr.len = ti_len;
2871 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2872 		m->m_pkthdr.rcvif = ifp;
2873 
2874 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2875 			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2876 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2877 				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2878 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2879 			}
2880 			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2881 				m->m_pkthdr.csum_data =
2882 				    cur_rx->ti_tcp_udp_cksum;
2883 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2884 			}
2885 		}
2886 
2887 		/*
2888 		 * If we received a packet with a vlan tag,
2889 		 * tag it before passing the packet upward.
2890 		 */
2891 		if (have_tag) {
2892 			m->m_pkthdr.ether_vtag = vlan_tag;
2893 			m->m_flags |= M_VLANTAG;
2894 		}
2895 		TI_UNLOCK(sc);
2896 		(*ifp->if_input)(ifp, m);
2897 		TI_LOCK(sc);
2898 	}
2899 
2900 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2901 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2902 	/* Only necessary on the Tigon 1. */
2903 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2904 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2905 		    sc->ti_rx_saved_considx);
2906 
2907 	if (stdcnt > 0) {
2908 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2909 		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2910 		TI_UPDATE_STDPROD(sc, sc->ti_std);
2911 	}
2912 	if (minicnt > 0) {
2913 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2914 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2915 		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2916 	}
2917 	if (jumbocnt > 0) {
2918 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2919 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2920 		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2921 	}
2922 }
2923 
2924 static void
2925 ti_txeof(struct ti_softc *sc)
2926 {
2927 	struct ti_txdesc *txd;
2928 	struct ti_tx_desc txdesc;
2929 	struct ti_tx_desc *cur_tx = NULL;
2930 	struct ifnet *ifp;
2931 	int idx;
2932 
2933 	ifp = sc->ti_ifp;
2934 
2935 	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2936 	if (txd == NULL)
2937 		return;
2938 
2939 	if (sc->ti_rdata.ti_tx_ring != NULL)
2940 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2941 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2942 	/*
2943 	 * Go through our tx ring and free mbufs for those
2944 	 * frames that have been sent.
2945 	 */
2946 	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2947 	    TI_INC(idx, TI_TX_RING_CNT)) {
2948 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2949 			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2950 			    sizeof(txdesc), &txdesc);
2951 			cur_tx = &txdesc;
2952 		} else
2953 			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2954 		sc->ti_txcnt--;
2955 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2956 		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2957 			continue;
2958 		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2959 		    BUS_DMASYNC_POSTWRITE);
2960 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2961 
2962 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2963 		m_freem(txd->tx_m);
2964 		txd->tx_m = NULL;
2965 		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2966 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2967 		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2968 	}
2969 	sc->ti_tx_saved_considx = idx;
2970 	if (sc->ti_txcnt == 0)
2971 		sc->ti_timer = 0;
2972 }
2973 
2974 static void
2975 ti_intr(void *xsc)
2976 {
2977 	struct ti_softc *sc;
2978 	struct ifnet *ifp;
2979 
2980 	sc = xsc;
2981 	TI_LOCK(sc);
2982 	ifp = sc->ti_ifp;
2983 
2984 	/* Make sure this is really our interrupt. */
2985 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2986 		TI_UNLOCK(sc);
2987 		return;
2988 	}
2989 
2990 	/* Ack interrupt and stop others from occurring. */
2991 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2992 
2993 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2994 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2995 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2996 		/* Check RX return ring producer/consumer */
2997 		ti_rxeof(sc);
2998 
2999 		/* Check TX ring producer/consumer */
3000 		ti_txeof(sc);
3001 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
3002 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
3003 	}
3004 
3005 	ti_handle_events(sc);
3006 
3007 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3008 		/* Re-enable interrupts. */
3009 		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3010 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3011 			ti_start_locked(ifp);
3012 	}
3013 
3014 	TI_UNLOCK(sc);
3015 }
3016 
3017 static uint64_t
3018 ti_get_counter(struct ifnet *ifp, ift_counter cnt)
3019 {
3020 
3021 	switch (cnt) {
3022 	case IFCOUNTER_COLLISIONS:
3023 	    {
3024 		struct ti_softc *sc;
3025 		struct ti_stats *s;
3026 		uint64_t rv;
3027 
3028 		sc = if_getsoftc(ifp);
3029 		s = &sc->ti_rdata.ti_info->ti_stats;
3030 
3031 		TI_LOCK(sc);
3032 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3033 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3034 		rv = s->dot3StatsSingleCollisionFrames +
3035 		    s->dot3StatsMultipleCollisionFrames +
3036 		    s->dot3StatsExcessiveCollisions +
3037 		    s->dot3StatsLateCollisions;
3038 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3039 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3040 		TI_UNLOCK(sc);
3041 		return (rv);
3042 	    }
3043 	default:
3044 		return (if_get_counter_default(ifp, cnt));
3045 	}
3046 }
3047 
3048 /*
3049  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3050  * pointers to descriptors.
3051  */
3052 static int
3053 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3054 {
3055 	struct ti_txdesc *txd;
3056 	struct ti_tx_desc *f;
3057 	struct ti_tx_desc txdesc;
3058 	struct mbuf *m;
3059 	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3060 	uint16_t csum_flags;
3061 	int error, frag, i, nseg;
3062 
3063 	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3064 		return (ENOBUFS);
3065 
3066 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3067 	    *m_head, txsegs, &nseg, 0);
3068 	if (error == EFBIG) {
3069 		m = m_defrag(*m_head, M_NOWAIT);
3070 		if (m == NULL) {
3071 			m_freem(*m_head);
3072 			*m_head = NULL;
3073 			return (ENOMEM);
3074 		}
3075 		*m_head = m;
3076 		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3077 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3078 		if (error) {
3079 			m_freem(*m_head);
3080 			*m_head = NULL;
3081 			return (error);
3082 		}
3083 	} else if (error != 0)
3084 		return (error);
3085 	if (nseg == 0) {
3086 		m_freem(*m_head);
3087 		*m_head = NULL;
3088 		return (EIO);
3089 	}
3090 
3091 	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3092 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3093 		return (ENOBUFS);
3094 	}
3095 	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3096 	    BUS_DMASYNC_PREWRITE);
3097 
3098 	m = *m_head;
3099 	csum_flags = 0;
3100 	if (m->m_pkthdr.csum_flags & CSUM_IP)
3101 		csum_flags |= TI_BDFLAG_IP_CKSUM;
3102 	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3103 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3104 
3105 	frag = sc->ti_tx_saved_prodidx;
3106 	for (i = 0; i < nseg; i++) {
3107 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3108 			bzero(&txdesc, sizeof(txdesc));
3109 			f = &txdesc;
3110 		} else
3111 			f = &sc->ti_rdata.ti_tx_ring[frag];
3112 		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3113 		f->ti_len = txsegs[i].ds_len;
3114 		f->ti_flags = csum_flags;
3115 		if (m->m_flags & M_VLANTAG) {
3116 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3117 			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3118 		} else {
3119 			f->ti_vlan_tag = 0;
3120 		}
3121 
3122 		if (sc->ti_hwrev == TI_HWREV_TIGON)
3123 			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3124 			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3125 		TI_INC(frag, TI_TX_RING_CNT);
3126 	}
3127 
3128 	sc->ti_tx_saved_prodidx = frag;
3129 	/* set TI_BDFLAG_END on the last descriptor */
3130 	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3131 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3132 		txdesc.ti_flags |= TI_BDFLAG_END;
3133 		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3134 		    sizeof(txdesc), &txdesc);
3135 	} else
3136 		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3137 
3138 	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3139 	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3140 	txd->tx_m = m;
3141 	sc->ti_txcnt += nseg;
3142 
3143 	return (0);
3144 }
3145 
3146 static void
3147 ti_start(struct ifnet *ifp)
3148 {
3149 	struct ti_softc *sc;
3150 
3151 	sc = ifp->if_softc;
3152 	TI_LOCK(sc);
3153 	ti_start_locked(ifp);
3154 	TI_UNLOCK(sc);
3155 }
3156 
3157 /*
3158  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3159  * to the mbuf data regions directly in the transmit descriptors.
3160  */
3161 static void
3162 ti_start_locked(struct ifnet *ifp)
3163 {
3164 	struct ti_softc *sc;
3165 	struct mbuf *m_head = NULL;
3166 	int enq = 0;
3167 
3168 	sc = ifp->if_softc;
3169 
3170 	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3171 	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3172 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3173 		if (m_head == NULL)
3174 			break;
3175 
3176 		/*
3177 		 * Pack the data into the transmit ring. If we
3178 		 * don't have room, set the OACTIVE flag and wait
3179 		 * for the NIC to drain the ring.
3180 		 */
3181 		if (ti_encap(sc, &m_head)) {
3182 			if (m_head == NULL)
3183 				break;
3184 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3185 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3186 			break;
3187 		}
3188 
3189 		enq++;
3190 		/*
3191 		 * If there's a BPF listener, bounce a copy of this frame
3192 		 * to him.
3193 		 */
3194 		ETHER_BPF_MTAP(ifp, m_head);
3195 	}
3196 
3197 	if (enq > 0) {
3198 		if (sc->ti_rdata.ti_tx_ring != NULL)
3199 			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3200 			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3201 		/* Transmit */
3202 		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3203 
3204 		/*
3205 		 * Set a timeout in case the chip goes out to lunch.
3206 		 */
3207 		sc->ti_timer = 5;
3208 	}
3209 }
3210 
3211 static void
3212 ti_init(void *xsc)
3213 {
3214 	struct ti_softc *sc;
3215 
3216 	sc = xsc;
3217 	TI_LOCK(sc);
3218 	ti_init_locked(sc);
3219 	TI_UNLOCK(sc);
3220 }
3221 
3222 static void
3223 ti_init_locked(void *xsc)
3224 {
3225 	struct ti_softc *sc = xsc;
3226 
3227 	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3228 		return;
3229 
3230 	/* Cancel pending I/O and flush buffers. */
3231 	ti_stop(sc);
3232 
3233 	/* Init the gen info block, ring control blocks and firmware. */
3234 	if (ti_gibinit(sc)) {
3235 		device_printf(sc->ti_dev, "initialization failure\n");
3236 		return;
3237 	}
3238 }
3239 
3240 static void ti_init2(struct ti_softc *sc)
3241 {
3242 	struct ti_cmd_desc cmd;
3243 	struct ifnet *ifp;
3244 	uint8_t *ea;
3245 	struct ifmedia *ifm;
3246 	int tmp;
3247 
3248 	TI_LOCK_ASSERT(sc);
3249 
3250 	ifp = sc->ti_ifp;
3251 
3252 	/* Specify MTU and interface index. */
3253 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3254 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3255 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3256 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3257 
3258 	/* Load our MAC address. */
3259 	ea = IF_LLADDR(sc->ti_ifp);
3260 	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3261 	CSR_WRITE_4(sc, TI_GCR_PAR1,
3262 	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3263 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3264 
3265 	/* Enable or disable promiscuous mode as needed. */
3266 	if (ifp->if_flags & IFF_PROMISC) {
3267 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3268 	} else {
3269 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3270 	}
3271 
3272 	/* Program multicast filter. */
3273 	ti_setmulti(sc);
3274 
3275 	/*
3276 	 * If this is a Tigon 1, we should tell the
3277 	 * firmware to use software packet filtering.
3278 	 */
3279 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3280 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3281 	}
3282 
3283 	/* Init RX ring. */
3284 	if (ti_init_rx_ring_std(sc) != 0) {
3285 		/* XXX */
3286 		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3287 		return;
3288 	}
3289 
3290 	/* Init jumbo RX ring. */
3291 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3292 		if (ti_init_rx_ring_jumbo(sc) != 0) {
3293 			/* XXX */
3294 			device_printf(sc->ti_dev,
3295 			    "no memory for jumbo Rx buffers.\n");
3296 			return;
3297 		}
3298 	}
3299 
3300 	/*
3301 	 * If this is a Tigon 2, we can also configure the
3302 	 * mini ring.
3303 	 */
3304 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3305 		if (ti_init_rx_ring_mini(sc) != 0) {
3306 			/* XXX */
3307 			device_printf(sc->ti_dev,
3308 			    "no memory for mini Rx buffers.\n");
3309 			return;
3310 		}
3311 	}
3312 
3313 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3314 	sc->ti_rx_saved_considx = 0;
3315 
3316 	/* Init TX ring. */
3317 	ti_init_tx_ring(sc);
3318 
3319 	/* Tell firmware we're alive. */
3320 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3321 
3322 	/* Enable host interrupts. */
3323 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3324 
3325 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3326 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3327 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3328 
3329 	/*
3330 	 * Make sure to set media properly. We have to do this
3331 	 * here since we have to issue commands in order to set
3332 	 * the link negotiation and we can't issue commands until
3333 	 * the firmware is running.
3334 	 */
3335 	ifm = &sc->ifmedia;
3336 	tmp = ifm->ifm_media;
3337 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3338 	ti_ifmedia_upd_locked(sc);
3339 	ifm->ifm_media = tmp;
3340 }
3341 
3342 /*
3343  * Set media options.
3344  */
3345 static int
3346 ti_ifmedia_upd(struct ifnet *ifp)
3347 {
3348 	struct ti_softc *sc;
3349 	int error;
3350 
3351 	sc = ifp->if_softc;
3352 	TI_LOCK(sc);
3353 	error = ti_ifmedia_upd_locked(sc);
3354 	TI_UNLOCK(sc);
3355 
3356 	return (error);
3357 }
3358 
3359 static int
3360 ti_ifmedia_upd_locked(struct ti_softc *sc)
3361 {
3362 	struct ifmedia *ifm;
3363 	struct ti_cmd_desc cmd;
3364 	uint32_t flowctl;
3365 
3366 	ifm = &sc->ifmedia;
3367 
3368 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3369 		return (EINVAL);
3370 
3371 	flowctl = 0;
3372 
3373 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3374 	case IFM_AUTO:
3375 		/*
3376 		 * Transmit flow control doesn't work on the Tigon 1.
3377 		 */
3378 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3379 
3380 		/*
3381 		 * Transmit flow control can also cause problems on the
3382 		 * Tigon 2, apparently with both the copper and fiber
3383 		 * boards.  The symptom is that the interface will just
3384 		 * hang.  This was reproduced with Alteon 180 switches.
3385 		 */
3386 #if 0
3387 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3388 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3389 #endif
3390 
3391 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3392 		    TI_GLNK_FULL_DUPLEX| flowctl |
3393 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3394 
3395 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3396 #if 0
3397 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3398 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3399 #endif
3400 
3401 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3402 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3403 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3404 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3405 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3406 		break;
3407 	case IFM_1000_SX:
3408 	case IFM_1000_T:
3409 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3410 #if 0
3411 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3412 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3413 #endif
3414 
3415 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3416 		    flowctl |TI_GLNK_ENB);
3417 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3418 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3419 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3420 		}
3421 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3422 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3423 		break;
3424 	case IFM_100_FX:
3425 	case IFM_10_FL:
3426 	case IFM_100_TX:
3427 	case IFM_10_T:
3428 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3429 #if 0
3430 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3431 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3432 #endif
3433 
3434 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3435 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3436 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3437 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3438 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3439 		} else {
3440 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3441 		}
3442 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3443 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3444 		} else {
3445 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3446 		}
3447 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3448 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3449 		break;
3450 	}
3451 
3452 	return (0);
3453 }
3454 
3455 /*
3456  * Report current media status.
3457  */
3458 static void
3459 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3460 {
3461 	struct ti_softc *sc;
3462 	uint32_t media = 0;
3463 
3464 	sc = ifp->if_softc;
3465 
3466 	TI_LOCK(sc);
3467 
3468 	ifmr->ifm_status = IFM_AVALID;
3469 	ifmr->ifm_active = IFM_ETHER;
3470 
3471 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3472 		TI_UNLOCK(sc);
3473 		return;
3474 	}
3475 
3476 	ifmr->ifm_status |= IFM_ACTIVE;
3477 
3478 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3479 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3480 		if (sc->ti_copper)
3481 			ifmr->ifm_active |= IFM_1000_T;
3482 		else
3483 			ifmr->ifm_active |= IFM_1000_SX;
3484 		if (media & TI_GLNK_FULL_DUPLEX)
3485 			ifmr->ifm_active |= IFM_FDX;
3486 		else
3487 			ifmr->ifm_active |= IFM_HDX;
3488 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3489 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3490 		if (sc->ti_copper) {
3491 			if (media & TI_LNK_100MB)
3492 				ifmr->ifm_active |= IFM_100_TX;
3493 			if (media & TI_LNK_10MB)
3494 				ifmr->ifm_active |= IFM_10_T;
3495 		} else {
3496 			if (media & TI_LNK_100MB)
3497 				ifmr->ifm_active |= IFM_100_FX;
3498 			if (media & TI_LNK_10MB)
3499 				ifmr->ifm_active |= IFM_10_FL;
3500 		}
3501 		if (media & TI_LNK_FULL_DUPLEX)
3502 			ifmr->ifm_active |= IFM_FDX;
3503 		if (media & TI_LNK_HALF_DUPLEX)
3504 			ifmr->ifm_active |= IFM_HDX;
3505 	}
3506 	TI_UNLOCK(sc);
3507 }
3508 
3509 static int
3510 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3511 {
3512 	struct ti_softc *sc = ifp->if_softc;
3513 	struct ifreq *ifr = (struct ifreq *) data;
3514 	struct ti_cmd_desc cmd;
3515 	int mask, error = 0;
3516 
3517 	switch (command) {
3518 	case SIOCSIFMTU:
3519 		TI_LOCK(sc);
3520 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3521 			error = EINVAL;
3522 		else {
3523 			ifp->if_mtu = ifr->ifr_mtu;
3524 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3525 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3526 				ti_init_locked(sc);
3527 			}
3528 		}
3529 		TI_UNLOCK(sc);
3530 		break;
3531 	case SIOCSIFFLAGS:
3532 		TI_LOCK(sc);
3533 		if (ifp->if_flags & IFF_UP) {
3534 			/*
3535 			 * If only the state of the PROMISC flag changed,
3536 			 * then just use the 'set promisc mode' command
3537 			 * instead of reinitializing the entire NIC. Doing
3538 			 * a full re-init means reloading the firmware and
3539 			 * waiting for it to start up, which may take a
3540 			 * second or two.
3541 			 */
3542 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3543 			    ifp->if_flags & IFF_PROMISC &&
3544 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3545 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3546 				    TI_CMD_CODE_PROMISC_ENB, 0);
3547 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3548 			    !(ifp->if_flags & IFF_PROMISC) &&
3549 			    sc->ti_if_flags & IFF_PROMISC) {
3550 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3551 				    TI_CMD_CODE_PROMISC_DIS, 0);
3552 			} else
3553 				ti_init_locked(sc);
3554 		} else {
3555 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3556 				ti_stop(sc);
3557 			}
3558 		}
3559 		sc->ti_if_flags = ifp->if_flags;
3560 		TI_UNLOCK(sc);
3561 		break;
3562 	case SIOCADDMULTI:
3563 	case SIOCDELMULTI:
3564 		TI_LOCK(sc);
3565 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3566 			ti_setmulti(sc);
3567 		TI_UNLOCK(sc);
3568 		break;
3569 	case SIOCSIFMEDIA:
3570 	case SIOCGIFMEDIA:
3571 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3572 		break;
3573 	case SIOCSIFCAP:
3574 		TI_LOCK(sc);
3575 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3576 		if ((mask & IFCAP_TXCSUM) != 0 &&
3577 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3578 			ifp->if_capenable ^= IFCAP_TXCSUM;
3579 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3580 				ifp->if_hwassist |= TI_CSUM_FEATURES;
3581                         else
3582 				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3583                 }
3584 		if ((mask & IFCAP_RXCSUM) != 0 &&
3585 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3586 			ifp->if_capenable ^= IFCAP_RXCSUM;
3587 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3588 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3589                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3590 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3591 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3592 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3593 		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3594 		    IFCAP_VLAN_HWTAGGING)) != 0) {
3595 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3596 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3597 				ti_init_locked(sc);
3598 			}
3599 		}
3600 		TI_UNLOCK(sc);
3601 		VLAN_CAPABILITIES(ifp);
3602 		break;
3603 	default:
3604 		error = ether_ioctl(ifp, command, data);
3605 		break;
3606 	}
3607 
3608 	return (error);
3609 }
3610 
3611 static int
3612 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3613 {
3614 	struct ti_softc *sc;
3615 
3616 	sc = dev->si_drv1;
3617 	if (sc == NULL)
3618 		return (ENODEV);
3619 
3620 	TI_LOCK(sc);
3621 	sc->ti_flags |= TI_FLAG_DEBUGING;
3622 	TI_UNLOCK(sc);
3623 
3624 	return (0);
3625 }
3626 
3627 static int
3628 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3629 {
3630 	struct ti_softc *sc;
3631 
3632 	sc = dev->si_drv1;
3633 	if (sc == NULL)
3634 		return (ENODEV);
3635 
3636 	TI_LOCK(sc);
3637 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3638 	TI_UNLOCK(sc);
3639 
3640 	return (0);
3641 }
3642 
3643 /*
3644  * This ioctl routine goes along with the Tigon character device.
3645  */
3646 static int
3647 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3648     struct thread *td)
3649 {
3650 	struct ti_softc *sc;
3651 	int error;
3652 
3653 	sc = dev->si_drv1;
3654 	if (sc == NULL)
3655 		return (ENODEV);
3656 
3657 	error = 0;
3658 
3659 	switch (cmd) {
3660 	case TIIOCGETSTATS:
3661 	{
3662 		struct ti_stats *outstats;
3663 
3664 		outstats = (struct ti_stats *)addr;
3665 
3666 		TI_LOCK(sc);
3667 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3668 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3669 		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3670 		    sizeof(struct ti_stats));
3671 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3672 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_PREREAD);
3673 		TI_UNLOCK(sc);
3674 		break;
3675 	}
3676 	case TIIOCGETPARAMS:
3677 	{
3678 		struct ti_params *params;
3679 
3680 		params = (struct ti_params *)addr;
3681 
3682 		TI_LOCK(sc);
3683 		params->ti_stat_ticks = sc->ti_stat_ticks;
3684 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3685 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3686 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3687 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3688 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3689 		params->param_mask = TI_PARAM_ALL;
3690 		TI_UNLOCK(sc);
3691 		break;
3692 	}
3693 	case TIIOCSETPARAMS:
3694 	{
3695 		struct ti_params *params;
3696 
3697 		params = (struct ti_params *)addr;
3698 
3699 		TI_LOCK(sc);
3700 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3701 			sc->ti_stat_ticks = params->ti_stat_ticks;
3702 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3703 		}
3704 
3705 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3706 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3707 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3708 				    sc->ti_rx_coal_ticks);
3709 		}
3710 
3711 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3712 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3713 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3714 				    sc->ti_tx_coal_ticks);
3715 		}
3716 
3717 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3718 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3719 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3720 				    sc->ti_rx_max_coal_bds);
3721 		}
3722 
3723 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3724 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3725 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3726 				    sc->ti_tx_max_coal_bds);
3727 		}
3728 
3729 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3730 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3731 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3732 				    sc->ti_tx_buf_ratio);
3733 		}
3734 		TI_UNLOCK(sc);
3735 		break;
3736 	}
3737 	case TIIOCSETTRACE: {
3738 		ti_trace_type trace_type;
3739 
3740 		trace_type = *(ti_trace_type *)addr;
3741 
3742 		/*
3743 		 * Set tracing to whatever the user asked for.  Setting
3744 		 * this register to 0 should have the effect of disabling
3745 		 * tracing.
3746 		 */
3747 		TI_LOCK(sc);
3748 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3749 		TI_UNLOCK(sc);
3750 		break;
3751 	}
3752 	case TIIOCGETTRACE: {
3753 		struct ti_trace_buf *trace_buf;
3754 		uint32_t trace_start, cur_trace_ptr, trace_len;
3755 
3756 		trace_buf = (struct ti_trace_buf *)addr;
3757 
3758 		TI_LOCK(sc);
3759 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3760 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3761 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3762 #if 0
3763 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3764 		       "trace_len = %d\n", trace_start,
3765 		       cur_trace_ptr, trace_len);
3766 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3767 		       trace_buf->buf_len);
3768 #endif
3769 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3770 		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3771 		if (error == 0) {
3772 			trace_buf->fill_len = min(trace_len,
3773 			    trace_buf->buf_len);
3774 			if (cur_trace_ptr < trace_start)
3775 				trace_buf->cur_trace_ptr =
3776 				    trace_start - cur_trace_ptr;
3777 			else
3778 				trace_buf->cur_trace_ptr =
3779 				    cur_trace_ptr - trace_start;
3780 		} else
3781 			trace_buf->fill_len = 0;
3782 		TI_UNLOCK(sc);
3783 		break;
3784 	}
3785 
3786 	/*
3787 	 * For debugging, five ioctls are needed:
3788 	 * ALT_ATTACH
3789 	 * ALT_READ_TG_REG
3790 	 * ALT_WRITE_TG_REG
3791 	 * ALT_READ_TG_MEM
3792 	 * ALT_WRITE_TG_MEM
3793 	 */
3794 	case ALT_ATTACH:
3795 		/*
3796 		 * From what I can tell, Alteon's Solaris Tigon driver
3797 		 * only has one character device, so you have to attach
3798 		 * to the Tigon board you're interested in.  This seems
3799 		 * like a not-so-good way to do things, since unless you
3800 		 * subsequently specify the unit number of the device
3801 		 * you're interested in every ioctl, you'll only be
3802 		 * able to debug one board at a time.
3803 		 */
3804 		break;
3805 	case ALT_READ_TG_MEM:
3806 	case ALT_WRITE_TG_MEM:
3807 	{
3808 		struct tg_mem *mem_param;
3809 		uint32_t sram_end, scratch_end;
3810 
3811 		mem_param = (struct tg_mem *)addr;
3812 
3813 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3814 			sram_end = TI_END_SRAM_I;
3815 			scratch_end = TI_END_SCRATCH_I;
3816 		} else {
3817 			sram_end = TI_END_SRAM_II;
3818 			scratch_end = TI_END_SCRATCH_II;
3819 		}
3820 
3821 		/*
3822 		 * For now, we'll only handle accessing regular SRAM,
3823 		 * nothing else.
3824 		 */
3825 		TI_LOCK(sc);
3826 		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3827 		    mem_param->tgAddr + mem_param->len <= sram_end) {
3828 			/*
3829 			 * In this instance, we always copy to/from user
3830 			 * space, so the user space argument is set to 1.
3831 			 */
3832 			error = ti_copy_mem(sc, mem_param->tgAddr,
3833 			    mem_param->len, mem_param->userAddr, 1,
3834 			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3835 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3836 		    mem_param->tgAddr <= scratch_end) {
3837 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3838 			    mem_param->len, mem_param->userAddr, 1,
3839 			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3840 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3841 		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3842 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3843 				if_printf(sc->ti_ifp,
3844 				    "invalid memory range for Tigon I\n");
3845 				error = EINVAL;
3846 				break;
3847 			}
3848 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3849 			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3850 			    mem_param->userAddr, 1,
3851 			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3852 		} else {
3853 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3854 			        "out of supported range\n",
3855 			        mem_param->tgAddr, mem_param->len);
3856 			error = EINVAL;
3857 		}
3858 		TI_UNLOCK(sc);
3859 		break;
3860 	}
3861 	case ALT_READ_TG_REG:
3862 	case ALT_WRITE_TG_REG:
3863 	{
3864 		struct tg_reg *regs;
3865 		uint32_t tmpval;
3866 
3867 		regs = (struct tg_reg *)addr;
3868 
3869 		/*
3870 		 * Make sure the address in question isn't out of range.
3871 		 */
3872 		if (regs->addr > TI_REG_MAX) {
3873 			error = EINVAL;
3874 			break;
3875 		}
3876 		TI_LOCK(sc);
3877 		if (cmd == ALT_READ_TG_REG) {
3878 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3879 			    regs->addr, &tmpval, 1);
3880 			regs->data = ntohl(tmpval);
3881 #if 0
3882 			if ((regs->addr == TI_CPU_STATE)
3883 			 || (regs->addr == TI_CPU_CTL_B)) {
3884 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3885 				       regs->addr, tmpval);
3886 			}
3887 #endif
3888 		} else {
3889 			tmpval = htonl(regs->data);
3890 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3891 			    regs->addr, &tmpval, 1);
3892 		}
3893 		TI_UNLOCK(sc);
3894 		break;
3895 	}
3896 	default:
3897 		error = ENOTTY;
3898 		break;
3899 	}
3900 	return (error);
3901 }
3902 
3903 static void
3904 ti_watchdog(void *arg)
3905 {
3906 	struct ti_softc *sc;
3907 	struct ifnet *ifp;
3908 
3909 	sc = arg;
3910 	TI_LOCK_ASSERT(sc);
3911 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3912 	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3913 		return;
3914 
3915 	/*
3916 	 * When we're debugging, the chip is often stopped for long periods
3917 	 * of time, and that would normally cause the watchdog timer to fire.
3918 	 * Since that impedes debugging, we don't want to do that.
3919 	 */
3920 	if (sc->ti_flags & TI_FLAG_DEBUGING)
3921 		return;
3922 
3923 	ifp = sc->ti_ifp;
3924 	if_printf(ifp, "watchdog timeout -- resetting\n");
3925 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3926 	ti_init_locked(sc);
3927 
3928 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3929 }
3930 
3931 /*
3932  * Stop the adapter and free any mbufs allocated to the
3933  * RX and TX lists.
3934  */
3935 static void
3936 ti_stop(struct ti_softc *sc)
3937 {
3938 	struct ifnet *ifp;
3939 	struct ti_cmd_desc cmd;
3940 
3941 	TI_LOCK_ASSERT(sc);
3942 
3943 	ifp = sc->ti_ifp;
3944 
3945 	/* Disable host interrupts. */
3946 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3947 	/*
3948 	 * Tell firmware we're shutting down.
3949 	 */
3950 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3951 
3952 	/* Halt and reinitialize. */
3953 	if (ti_chipinit(sc) == 0) {
3954 		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3955 		/* XXX ignore init errors. */
3956 		ti_chipinit(sc);
3957 	}
3958 
3959 	/* Free the RX lists. */
3960 	ti_free_rx_ring_std(sc);
3961 
3962 	/* Free jumbo RX list. */
3963 	ti_free_rx_ring_jumbo(sc);
3964 
3965 	/* Free mini RX list. */
3966 	ti_free_rx_ring_mini(sc);
3967 
3968 	/* Free TX buffers. */
3969 	ti_free_tx_ring(sc);
3970 
3971 	sc->ti_ev_prodidx.ti_idx = 0;
3972 	sc->ti_return_prodidx.ti_idx = 0;
3973 	sc->ti_tx_considx.ti_idx = 0;
3974 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3975 
3976 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3977 	callout_stop(&sc->ti_watchdog);
3978 }
3979 
3980 /*
3981  * Stop all chip I/O so that the kernel's probe routines don't
3982  * get confused by errant DMAs when rebooting.
3983  */
3984 static int
3985 ti_shutdown(device_t dev)
3986 {
3987 	struct ti_softc *sc;
3988 
3989 	sc = device_get_softc(dev);
3990 	TI_LOCK(sc);
3991 	ti_chipinit(sc);
3992 	TI_UNLOCK(sc);
3993 
3994 	return (0);
3995 }
3996 
3997 static void
3998 ti_sysctl_node(struct ti_softc *sc)
3999 {
4000 	struct sysctl_ctx_list *ctx;
4001 	struct sysctl_oid_list *child;
4002 	char tname[32];
4003 
4004 	ctx = device_get_sysctl_ctx(sc->ti_dev);
4005 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
4006 
4007 	/* Use DAC */
4008 	sc->ti_dac = 1;
4009 	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4010 	    device_get_unit(sc->ti_dev));
4011 	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4012 
4013 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4014 	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4015 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4016 	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4017 
4018 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4019 	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4020 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4021 	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4022 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4023 	    &sc->ti_tx_buf_ratio, 0,
4024 	    "Ratio of NIC memory devoted to TX buffer");
4025 
4026 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4027 	    &sc->ti_stat_ticks, 0,
4028 	    "Number of clock ticks for statistics update interval");
4029 
4030 	/* Pull in device tunables. */
4031 	sc->ti_rx_coal_ticks = 170;
4032 	resource_int_value(device_get_name(sc->ti_dev),
4033 	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4034 	    &sc->ti_rx_coal_ticks);
4035 	sc->ti_rx_max_coal_bds = 64;
4036 	resource_int_value(device_get_name(sc->ti_dev),
4037 	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4038 	    &sc->ti_rx_max_coal_bds);
4039 
4040 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4041 	resource_int_value(device_get_name(sc->ti_dev),
4042 	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4043 	    &sc->ti_tx_coal_ticks);
4044 	sc->ti_tx_max_coal_bds = 32;
4045 	resource_int_value(device_get_name(sc->ti_dev),
4046 	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4047 	    &sc->ti_tx_max_coal_bds);
4048 	sc->ti_tx_buf_ratio = 21;
4049 	resource_int_value(device_get_name(sc->ti_dev),
4050 	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4051 	    &sc->ti_tx_buf_ratio);
4052 
4053 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4054 	resource_int_value(device_get_name(sc->ti_dev),
4055 	    device_get_unit(sc->ti_dev), "stat_ticks",
4056 	    &sc->ti_stat_ticks);
4057 }
4058