xref: /freebsd/sys/dev/ti/if_ti.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35  * Manuals, sample driver and firmware source kits are available
36  * from http://www.alteon.com/support/openkits.
37  *
38  * Written by Bill Paul <wpaul@ctr.columbia.edu>
39  * Electrical Engineering Department
40  * Columbia University, New York City
41  */
42 
43 /*
44  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48  * filtering and jumbo (9014 byte) frames. The hardware is largely
49  * controlled by firmware, which must be loaded into the NIC during
50  * initialization.
51  *
52  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53  * revision, which supports new features such as extended commands,
54  * extended jumbo receive ring desciptors and a mini receive ring.
55  *
56  * Alteon Networks is to be commended for releasing such a vast amount
57  * of development material for the Tigon NIC without requiring an NDA
58  * (although they really should have done it a long time ago). With
59  * any luck, the other vendors will finally wise up and follow Alteon's
60  * stellar example.
61  *
62  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63  * this driver by #including it as a C header file. This bloats the
64  * driver somewhat, but it's the easiest method considering that the
65  * driver code and firmware code need to be kept in sync. The source
66  * for the firmware is not provided with the FreeBSD distribution since
67  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68  *
69  * The following people deserve special thanks:
70  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71  *   for testing
72  * - Raymond Lee of Netgear, for providing a pair of Netgear
73  *   GA620 Tigon 2 boards for testing
74  * - Ulf Zimmermann, for bringing the GA260 to my attention and
75  *   convincing me to write this driver.
76  * - Andrew Gallatin for providing FreeBSD/Alpha support.
77  */
78 
79 #include <sys/cdefs.h>
80 __FBSDID("$FreeBSD$");
81 
82 #include "opt_ti.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/sockio.h>
87 #include <sys/mbuf.h>
88 #include <sys/malloc.h>
89 #include <sys/kernel.h>
90 #include <sys/module.h>
91 #include <sys/socket.h>
92 #include <sys/queue.h>
93 #include <sys/conf.h>
94 #include <sys/sf_buf.h>
95 
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/if_vlan_var.h>
103 
104 #include <net/bpf.h>
105 
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
109 
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #ifdef TI_SF_BUF_JUMBO
116 #include <vm/vm.h>
117 #include <vm/vm_page.h>
118 #endif
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 
123 #include <sys/tiio.h>
124 #include <dev/ti/if_tireg.h>
125 #include <dev/ti/ti_fw.h>
126 #include <dev/ti/ti_fw2.h>
127 
128 #include <sys/sysctl.h>
129 
130 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
131 /*
132  * We can only turn on header splitting if we're using extended receive
133  * BDs.
134  */
135 #if defined(TI_JUMBO_HDRSPLIT) && !defined(TI_SF_BUF_JUMBO)
136 #error "options TI_JUMBO_HDRSPLIT requires TI_SF_BUF_JUMBO"
137 #endif /* TI_JUMBO_HDRSPLIT && !TI_SF_BUF_JUMBO */
138 
139 typedef enum {
140 	TI_SWAP_HTON,
141 	TI_SWAP_NTOH
142 } ti_swap_type;
143 
144 /*
145  * Various supported device vendors/types and their names.
146  */
147 
148 static const struct ti_type const ti_devs[] = {
149 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
150 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
151 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
152 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
153 	{ TC_VENDORID,	TC_DEVICEID_3C985,
154 		"3Com 3c985-SX Gigabit Ethernet" },
155 	{ NG_VENDORID, NG_DEVICEID_GA620,
156 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
157 	{ NG_VENDORID, NG_DEVICEID_GA620T,
158 		"Netgear GA620 1000baseT Gigabit Ethernet" },
159 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
160 		"Silicon Graphics Gigabit Ethernet" },
161 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
162 		"Farallon PN9000SX Gigabit Ethernet" },
163 	{ 0, 0, NULL }
164 };
165 
166 
167 static	d_open_t	ti_open;
168 static	d_close_t	ti_close;
169 static	d_ioctl_t	ti_ioctl2;
170 
171 static struct cdevsw ti_cdevsw = {
172 	.d_version =	D_VERSION,
173 	.d_flags =	0,
174 	.d_open =	ti_open,
175 	.d_close =	ti_close,
176 	.d_ioctl =	ti_ioctl2,
177 	.d_name =	"ti",
178 };
179 
180 static int ti_probe(device_t);
181 static int ti_attach(device_t);
182 static int ti_detach(device_t);
183 static void ti_txeof(struct ti_softc *);
184 static void ti_rxeof(struct ti_softc *);
185 
186 static void ti_stats_update(struct ti_softc *);
187 static int ti_encap(struct ti_softc *, struct mbuf **);
188 
189 static void ti_intr(void *);
190 static void ti_start(struct ifnet *);
191 static void ti_start_locked(struct ifnet *);
192 static int ti_ioctl(struct ifnet *, u_long, caddr_t);
193 static void ti_init(void *);
194 static void ti_init_locked(void *);
195 static void ti_init2(struct ti_softc *);
196 static void ti_stop(struct ti_softc *);
197 static void ti_watchdog(void *);
198 static int ti_shutdown(device_t);
199 static int ti_ifmedia_upd(struct ifnet *);
200 static int ti_ifmedia_upd_locked(struct ti_softc *);
201 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202 
203 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
204 static uint8_t	ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
205 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
206 
207 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
208 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
209 static void ti_setmulti(struct ti_softc *);
210 
211 static void ti_mem_read(struct ti_softc *, uint32_t, uint32_t, void *);
212 static void ti_mem_write(struct ti_softc *, uint32_t, uint32_t, void *);
213 static void ti_mem_zero(struct ti_softc *, uint32_t, uint32_t);
214 static int ti_copy_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t, int,
215     int);
216 static int ti_copy_scratch(struct ti_softc *, uint32_t, uint32_t, caddr_t,
217     int, int, int);
218 static int ti_bcopy_swap(const void *, void *, size_t, ti_swap_type);
219 static void ti_loadfw(struct ti_softc *);
220 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
221 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, caddr_t, int);
222 static void ti_handle_events(struct ti_softc *);
223 static void ti_dma_map_addr(void *, bus_dma_segment_t *, int, int);
224 static int ti_dma_alloc(struct ti_softc *);
225 static void ti_dma_free(struct ti_softc *);
226 static int ti_dma_ring_alloc(struct ti_softc *, bus_size_t, bus_size_t,
227     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
228 static void ti_dma_ring_free(struct ti_softc *, bus_dma_tag_t *, uint8_t **,
229     bus_dmamap_t *);
230 static int ti_newbuf_std(struct ti_softc *, int);
231 static int ti_newbuf_mini(struct ti_softc *, int);
232 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
233 static int ti_init_rx_ring_std(struct ti_softc *);
234 static void ti_free_rx_ring_std(struct ti_softc *);
235 static int ti_init_rx_ring_jumbo(struct ti_softc *);
236 static void ti_free_rx_ring_jumbo(struct ti_softc *);
237 static int ti_init_rx_ring_mini(struct ti_softc *);
238 static void ti_free_rx_ring_mini(struct ti_softc *);
239 static void ti_free_tx_ring(struct ti_softc *);
240 static int ti_init_tx_ring(struct ti_softc *);
241 static void ti_discard_std(struct ti_softc *, int);
242 #ifndef TI_SF_BUF_JUMBO
243 static void ti_discard_jumbo(struct ti_softc *, int);
244 #endif
245 static void ti_discard_mini(struct ti_softc *, int);
246 
247 static int ti_64bitslot_war(struct ti_softc *);
248 static int ti_chipinit(struct ti_softc *);
249 static int ti_gibinit(struct ti_softc *);
250 
251 #ifdef TI_JUMBO_HDRSPLIT
252 static __inline void ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len,
253     int idx);
254 #endif /* TI_JUMBO_HDRSPLIT */
255 
256 static void ti_sysctl_node(struct ti_softc *);
257 
258 static device_method_t ti_methods[] = {
259 	/* Device interface */
260 	DEVMETHOD(device_probe,		ti_probe),
261 	DEVMETHOD(device_attach,	ti_attach),
262 	DEVMETHOD(device_detach,	ti_detach),
263 	DEVMETHOD(device_shutdown,	ti_shutdown),
264 	{ 0, 0 }
265 };
266 
267 static driver_t ti_driver = {
268 	"ti",
269 	ti_methods,
270 	sizeof(struct ti_softc)
271 };
272 
273 static devclass_t ti_devclass;
274 
275 DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
276 MODULE_DEPEND(ti, pci, 1, 1, 1);
277 MODULE_DEPEND(ti, ether, 1, 1, 1);
278 
279 /*
280  * Send an instruction or address to the EEPROM, check for ACK.
281  */
282 static uint32_t
283 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
284 {
285 	int i, ack = 0;
286 
287 	/*
288 	 * Make sure we're in TX mode.
289 	 */
290 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
291 
292 	/*
293 	 * Feed in each bit and stobe the clock.
294 	 */
295 	for (i = 0x80; i; i >>= 1) {
296 		if (byte & i) {
297 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
298 		} else {
299 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
300 		}
301 		DELAY(1);
302 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
303 		DELAY(1);
304 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
305 	}
306 
307 	/*
308 	 * Turn off TX mode.
309 	 */
310 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
311 
312 	/*
313 	 * Check for ack.
314 	 */
315 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
316 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
317 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
318 
319 	return (ack);
320 }
321 
322 /*
323  * Read a byte of data stored in the EEPROM at address 'addr.'
324  * We have to send two address bytes since the EEPROM can hold
325  * more than 256 bytes of data.
326  */
327 static uint8_t
328 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
329 {
330 	int i;
331 	uint8_t byte = 0;
332 
333 	EEPROM_START;
334 
335 	/*
336 	 * Send write control code to EEPROM.
337 	 */
338 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
339 		device_printf(sc->ti_dev,
340 		    "failed to send write command, status: %x\n",
341 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
342 		return (1);
343 	}
344 
345 	/*
346 	 * Send first byte of address of byte we want to read.
347 	 */
348 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
349 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
350 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351 		return (1);
352 	}
353 	/*
354 	 * Send second byte address of byte we want to read.
355 	 */
356 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
357 		device_printf(sc->ti_dev, "failed to send address, status: %x\n",
358 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
359 		return (1);
360 	}
361 
362 	EEPROM_STOP;
363 	EEPROM_START;
364 	/*
365 	 * Send read control code to EEPROM.
366 	 */
367 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
368 		device_printf(sc->ti_dev,
369 		    "failed to send read command, status: %x\n",
370 		    CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
371 		return (1);
372 	}
373 
374 	/*
375 	 * Start reading bits from EEPROM.
376 	 */
377 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
378 	for (i = 0x80; i; i >>= 1) {
379 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
380 		DELAY(1);
381 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
382 			byte |= i;
383 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
384 		DELAY(1);
385 	}
386 
387 	EEPROM_STOP;
388 
389 	/*
390 	 * No ACK generated for read, so just return byte.
391 	 */
392 
393 	*dest = byte;
394 
395 	return (0);
396 }
397 
398 /*
399  * Read a sequence of bytes from the EEPROM.
400  */
401 static int
402 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
403 {
404 	int err = 0, i;
405 	uint8_t byte = 0;
406 
407 	for (i = 0; i < cnt; i++) {
408 		err = ti_eeprom_getbyte(sc, off + i, &byte);
409 		if (err)
410 			break;
411 		*(dest + i) = byte;
412 	}
413 
414 	return (err ? 1 : 0);
415 }
416 
417 /*
418  * NIC memory read function.
419  * Can be used to copy data from NIC local memory.
420  */
421 static void
422 ti_mem_read(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
423 {
424 	int segptr, segsize, cnt;
425 	char *ptr;
426 
427 	segptr = addr;
428 	cnt = len;
429 	ptr = buf;
430 
431 	while (cnt) {
432 		if (cnt < TI_WINLEN)
433 			segsize = cnt;
434 		else
435 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
436 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
437 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
438 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
439 		    segsize / 4);
440 		ptr += segsize;
441 		segptr += segsize;
442 		cnt -= segsize;
443 	}
444 }
445 
446 
447 /*
448  * NIC memory write function.
449  * Can be used to copy data into NIC local memory.
450  */
451 static void
452 ti_mem_write(struct ti_softc *sc, uint32_t addr, uint32_t len, void *buf)
453 {
454 	int segptr, segsize, cnt;
455 	char *ptr;
456 
457 	segptr = addr;
458 	cnt = len;
459 	ptr = buf;
460 
461 	while (cnt) {
462 		if (cnt < TI_WINLEN)
463 			segsize = cnt;
464 		else
465 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
466 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
467 		bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
468 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), (uint32_t *)ptr,
469 		    segsize / 4);
470 		ptr += segsize;
471 		segptr += segsize;
472 		cnt -= segsize;
473 	}
474 }
475 
476 /*
477  * NIC memory read function.
478  * Can be used to clear a section of NIC local memory.
479  */
480 static void
481 ti_mem_zero(struct ti_softc *sc, uint32_t addr, uint32_t len)
482 {
483 	int segptr, segsize, cnt;
484 
485 	segptr = addr;
486 	cnt = len;
487 
488 	while (cnt) {
489 		if (cnt < TI_WINLEN)
490 			segsize = cnt;
491 		else
492 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
493 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
494 		bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
495 		    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
496 		segptr += segsize;
497 		cnt -= segsize;
498 	}
499 }
500 
501 static int
502 ti_copy_mem(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
503     caddr_t buf, int useraddr, int readdata)
504 {
505 	int segptr, segsize, cnt;
506 	caddr_t ptr;
507 	uint32_t origwin;
508 	int resid, segresid;
509 	int first_pass;
510 
511 	TI_LOCK_ASSERT(sc);
512 
513 	/*
514 	 * At the moment, we don't handle non-aligned cases, we just bail.
515 	 * If this proves to be a problem, it will be fixed.
516 	 */
517 	if (readdata == 0 && (tigon_addr & 0x3) != 0) {
518 		device_printf(sc->ti_dev, "%s: tigon address %#x isn't "
519 		    "word-aligned\n", __func__, tigon_addr);
520 		device_printf(sc->ti_dev, "%s: unaligned writes aren't "
521 		    "yet supported\n", __func__);
522 		return (EINVAL);
523 	}
524 
525 	segptr = tigon_addr & ~0x3;
526 	segresid = tigon_addr - segptr;
527 
528 	/*
529 	 * This is the non-aligned amount left over that we'll need to
530 	 * copy.
531 	 */
532 	resid = len & 0x3;
533 
534 	/* Add in the left over amount at the front of the buffer */
535 	resid += segresid;
536 
537 	cnt = len & ~0x3;
538 	/*
539 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
540 	 * decrease the residual by that much.
541 	 */
542 	cnt += resid & ~0x3;
543 	resid -= resid & ~0x3;
544 
545 	ptr = buf;
546 
547 	first_pass = 1;
548 
549 	/*
550 	 * Save the old window base value.
551 	 */
552 	origwin = CSR_READ_4(sc, TI_WINBASE);
553 
554 	while (cnt) {
555 		bus_size_t ti_offset;
556 
557 		if (cnt < TI_WINLEN)
558 			segsize = cnt;
559 		else
560 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
561 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
562 
563 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
564 
565 		if (readdata) {
566 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
567 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
568 			if (useraddr) {
569 				/*
570 				 * Yeah, this is a little on the kludgy
571 				 * side, but at least this code is only
572 				 * used for debugging.
573 				 */
574 				ti_bcopy_swap(sc->ti_membuf, sc->ti_membuf2,
575 				    segsize, TI_SWAP_NTOH);
576 
577 				TI_UNLOCK(sc);
578 				if (first_pass) {
579 					copyout(&sc->ti_membuf2[segresid], ptr,
580 					    segsize - segresid);
581 					first_pass = 0;
582 				} else
583 					copyout(sc->ti_membuf2, ptr, segsize);
584 				TI_LOCK(sc);
585 			} else {
586 				if (first_pass) {
587 
588 					ti_bcopy_swap(sc->ti_membuf,
589 					    sc->ti_membuf2, segsize,
590 					    TI_SWAP_NTOH);
591 					TI_UNLOCK(sc);
592 					bcopy(&sc->ti_membuf2[segresid], ptr,
593 					    segsize - segresid);
594 					TI_LOCK(sc);
595 					first_pass = 0;
596 				} else
597 					ti_bcopy_swap(sc->ti_membuf, ptr,
598 					    segsize, TI_SWAP_NTOH);
599 			}
600 
601 		} else {
602 			if (useraddr) {
603 				TI_UNLOCK(sc);
604 				copyin(ptr, sc->ti_membuf2, segsize);
605 				TI_LOCK(sc);
606 				ti_bcopy_swap(sc->ti_membuf2, sc->ti_membuf,
607 				    segsize, TI_SWAP_HTON);
608 			} else
609 				ti_bcopy_swap(ptr, sc->ti_membuf, segsize,
610 				    TI_SWAP_HTON);
611 
612 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
613 			    ti_offset, (uint32_t *)sc->ti_membuf, segsize >> 2);
614 		}
615 		segptr += segsize;
616 		ptr += segsize;
617 		cnt -= segsize;
618 	}
619 
620 	/*
621 	 * Handle leftover, non-word-aligned bytes.
622 	 */
623 	if (resid != 0) {
624 		uint32_t tmpval, tmpval2;
625 		bus_size_t ti_offset;
626 
627 		/*
628 		 * Set the segment pointer.
629 		 */
630 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
631 
632 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
633 
634 		/*
635 		 * First, grab whatever is in our source/destination.
636 		 * We'll obviously need this for reads, but also for
637 		 * writes, since we'll be doing read/modify/write.
638 		 */
639 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
640 		    ti_offset, &tmpval, 1);
641 
642 		/*
643 		 * Next, translate this from little-endian to big-endian
644 		 * (at least on i386 boxes).
645 		 */
646 		tmpval2 = ntohl(tmpval);
647 
648 		if (readdata) {
649 			/*
650 			 * If we're reading, just copy the leftover number
651 			 * of bytes from the host byte order buffer to
652 			 * the user's buffer.
653 			 */
654 			if (useraddr) {
655 				TI_UNLOCK(sc);
656 				copyout(&tmpval2, ptr, resid);
657 				TI_LOCK(sc);
658 			} else
659 				bcopy(&tmpval2, ptr, resid);
660 		} else {
661 			/*
662 			 * If we're writing, first copy the bytes to be
663 			 * written into the network byte order buffer,
664 			 * leaving the rest of the buffer with whatever was
665 			 * originally in there.  Then, swap the bytes
666 			 * around into host order and write them out.
667 			 *
668 			 * XXX KDM the read side of this has been verified
669 			 * to work, but the write side of it has not been
670 			 * verified.  So user beware.
671 			 */
672 			if (useraddr) {
673 				TI_UNLOCK(sc);
674 				copyin(ptr, &tmpval2, resid);
675 				TI_LOCK(sc);
676 			} else
677 				bcopy(ptr, &tmpval2, resid);
678 
679 			tmpval = htonl(tmpval2);
680 
681 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
682 			    ti_offset, &tmpval, 1);
683 		}
684 	}
685 
686 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
687 
688 	return (0);
689 }
690 
691 static int
692 ti_copy_scratch(struct ti_softc *sc, uint32_t tigon_addr, uint32_t len,
693     caddr_t buf, int useraddr, int readdata, int cpu)
694 {
695 	uint32_t segptr;
696 	int cnt;
697 	uint32_t tmpval, tmpval2;
698 	caddr_t ptr;
699 
700 	TI_LOCK_ASSERT(sc);
701 
702 	/*
703 	 * At the moment, we don't handle non-aligned cases, we just bail.
704 	 * If this proves to be a problem, it will be fixed.
705 	 */
706 	if (tigon_addr & 0x3) {
707 		device_printf(sc->ti_dev, "%s: tigon address %#x "
708 		    "isn't word-aligned\n", __func__, tigon_addr);
709 		return (EINVAL);
710 	}
711 
712 	if (len & 0x3) {
713 		device_printf(sc->ti_dev, "%s: transfer length %d "
714 		    "isn't word-aligned\n", __func__, len);
715 		return (EINVAL);
716 	}
717 
718 	segptr = tigon_addr;
719 	cnt = len;
720 	ptr = buf;
721 
722 	while (cnt) {
723 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
724 
725 		if (readdata) {
726 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
727 
728 			tmpval = ntohl(tmpval2);
729 
730 			/*
731 			 * Note:  I've used this debugging interface
732 			 * extensively with Alteon's 12.3.15 firmware,
733 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
734 			 *
735 			 * When you compile the firmware without
736 			 * optimization, which is necessary sometimes in
737 			 * order to properly step through it, you sometimes
738 			 * read out a bogus value of 0xc0017c instead of
739 			 * whatever was supposed to be in that scratchpad
740 			 * location.  That value is on the stack somewhere,
741 			 * but I've never been able to figure out what was
742 			 * causing the problem.
743 			 *
744 			 * The address seems to pop up in random places,
745 			 * often not in the same place on two subsequent
746 			 * reads.
747 			 *
748 			 * In any case, the underlying data doesn't seem
749 			 * to be affected, just the value read out.
750 			 *
751 			 * KDM, 3/7/2000
752 			 */
753 
754 			if (tmpval2 == 0xc0017c)
755 				device_printf(sc->ti_dev, "found 0xc0017c at "
756 				    "%#x (tmpval2)\n", segptr);
757 
758 			if (tmpval == 0xc0017c)
759 				device_printf(sc->ti_dev, "found 0xc0017c at "
760 				    "%#x (tmpval)\n", segptr);
761 
762 			if (useraddr)
763 				copyout(&tmpval, ptr, 4);
764 			else
765 				bcopy(&tmpval, ptr, 4);
766 		} else {
767 			if (useraddr)
768 				copyin(ptr, &tmpval2, 4);
769 			else
770 				bcopy(ptr, &tmpval2, 4);
771 
772 			tmpval = htonl(tmpval2);
773 
774 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
775 		}
776 
777 		cnt -= 4;
778 		segptr += 4;
779 		ptr += 4;
780 	}
781 
782 	return (0);
783 }
784 
785 static int
786 ti_bcopy_swap(const void *src, void *dst, size_t len, ti_swap_type swap_type)
787 {
788 	const uint8_t *tmpsrc;
789 	uint8_t *tmpdst;
790 	size_t tmplen;
791 
792 	if (len & 0x3) {
793 		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n", len);
794 		return (-1);
795 	}
796 
797 	tmpsrc = src;
798 	tmpdst = dst;
799 	tmplen = len;
800 
801 	while (tmplen) {
802 		if (swap_type == TI_SWAP_NTOH)
803 			*(uint32_t *)tmpdst = ntohl(*(const uint32_t *)tmpsrc);
804 		else
805 			*(uint32_t *)tmpdst = htonl(*(const uint32_t *)tmpsrc);
806 		tmpsrc += 4;
807 		tmpdst += 4;
808 		tmplen -= 4;
809 	}
810 
811 	return (0);
812 }
813 
814 /*
815  * Load firmware image into the NIC. Check that the firmware revision
816  * is acceptable and see if we want the firmware for the Tigon 1 or
817  * Tigon 2.
818  */
819 static void
820 ti_loadfw(struct ti_softc *sc)
821 {
822 
823 	TI_LOCK_ASSERT(sc);
824 
825 	switch (sc->ti_hwrev) {
826 	case TI_HWREV_TIGON:
827 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
828 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
829 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
830 			device_printf(sc->ti_dev, "firmware revision mismatch; "
831 			    "want %d.%d.%d, got %d.%d.%d\n",
832 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
833 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
834 			    tigonFwReleaseMinor, tigonFwReleaseFix);
835 			return;
836 		}
837 		ti_mem_write(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
838 		ti_mem_write(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
839 		ti_mem_write(sc, tigonFwRodataAddr, tigonFwRodataLen,
840 		    tigonFwRodata);
841 		ti_mem_zero(sc, tigonFwBssAddr, tigonFwBssLen);
842 		ti_mem_zero(sc, tigonFwSbssAddr, tigonFwSbssLen);
843 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
844 		break;
845 	case TI_HWREV_TIGON_II:
846 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
847 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
848 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
849 			device_printf(sc->ti_dev, "firmware revision mismatch; "
850 			    "want %d.%d.%d, got %d.%d.%d\n",
851 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
852 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
853 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
854 			return;
855 		}
856 		ti_mem_write(sc, tigon2FwTextAddr, tigon2FwTextLen,
857 		    tigon2FwText);
858 		ti_mem_write(sc, tigon2FwDataAddr, tigon2FwDataLen,
859 		    tigon2FwData);
860 		ti_mem_write(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
861 		    tigon2FwRodata);
862 		ti_mem_zero(sc, tigon2FwBssAddr, tigon2FwBssLen);
863 		ti_mem_zero(sc, tigon2FwSbssAddr, tigon2FwSbssLen);
864 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
865 		break;
866 	default:
867 		device_printf(sc->ti_dev,
868 		    "can't load firmware: unknown hardware rev\n");
869 		break;
870 	}
871 }
872 
873 /*
874  * Send the NIC a command via the command ring.
875  */
876 static void
877 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
878 {
879 	int index;
880 
881 	index = sc->ti_cmd_saved_prodidx;
882 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
883 	TI_INC(index, TI_CMD_RING_CNT);
884 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
885 	sc->ti_cmd_saved_prodidx = index;
886 }
887 
888 /*
889  * Send the NIC an extended command. The 'len' parameter specifies the
890  * number of command slots to include after the initial command.
891  */
892 static void
893 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
894 {
895 	int index;
896 	int i;
897 
898 	index = sc->ti_cmd_saved_prodidx;
899 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
900 	TI_INC(index, TI_CMD_RING_CNT);
901 	for (i = 0; i < len; i++) {
902 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
903 		    *(uint32_t *)(&arg[i * 4]));
904 		TI_INC(index, TI_CMD_RING_CNT);
905 	}
906 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
907 	sc->ti_cmd_saved_prodidx = index;
908 }
909 
910 /*
911  * Handle events that have triggered interrupts.
912  */
913 static void
914 ti_handle_events(struct ti_softc *sc)
915 {
916 	struct ti_event_desc *e;
917 
918 	if (sc->ti_rdata.ti_event_ring == NULL)
919 		return;
920 
921 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
922 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_POSTREAD);
923 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
924 		e = &sc->ti_rdata.ti_event_ring[sc->ti_ev_saved_considx];
925 		switch (TI_EVENT_EVENT(e)) {
926 		case TI_EV_LINKSTAT_CHANGED:
927 			sc->ti_linkstat = TI_EVENT_CODE(e);
928 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
929 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
930 				sc->ti_ifp->if_baudrate = IF_Mbps(100);
931 				if (bootverbose)
932 					device_printf(sc->ti_dev,
933 					    "10/100 link up\n");
934 			} else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
935 				if_link_state_change(sc->ti_ifp, LINK_STATE_UP);
936 				sc->ti_ifp->if_baudrate = IF_Gbps(1UL);
937 				if (bootverbose)
938 					device_printf(sc->ti_dev,
939 					    "gigabit link up\n");
940 			} else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
941 				if_link_state_change(sc->ti_ifp,
942 				    LINK_STATE_DOWN);
943 				sc->ti_ifp->if_baudrate = 0;
944 				if (bootverbose)
945 					device_printf(sc->ti_dev,
946 					    "link down\n");
947 			}
948 			break;
949 		case TI_EV_ERROR:
950 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
951 				device_printf(sc->ti_dev, "invalid command\n");
952 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
953 				device_printf(sc->ti_dev, "unknown command\n");
954 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
955 				device_printf(sc->ti_dev, "bad config data\n");
956 			break;
957 		case TI_EV_FIRMWARE_UP:
958 			ti_init2(sc);
959 			break;
960 		case TI_EV_STATS_UPDATED:
961 			ti_stats_update(sc);
962 			break;
963 		case TI_EV_RESET_JUMBO_RING:
964 		case TI_EV_MCAST_UPDATED:
965 			/* Who cares. */
966 			break;
967 		default:
968 			device_printf(sc->ti_dev, "unknown event: %d\n",
969 			    TI_EVENT_EVENT(e));
970 			break;
971 		}
972 		/* Advance the consumer index. */
973 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
974 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
975 	}
976 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
977 	    sc->ti_cdata.ti_event_ring_map, BUS_DMASYNC_PREREAD);
978 }
979 
980 struct ti_dmamap_arg {
981 	bus_addr_t	ti_busaddr;
982 };
983 
984 static void
985 ti_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
986 {
987 	struct ti_dmamap_arg *ctx;
988 
989 	if (error)
990 		return;
991 
992 	KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
993 
994 	ctx = arg;
995 	ctx->ti_busaddr = segs->ds_addr;
996 }
997 
998 static int
999 ti_dma_ring_alloc(struct ti_softc *sc, bus_size_t alignment, bus_size_t maxsize,
1000     bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr,
1001     const char *msg)
1002 {
1003 	struct ti_dmamap_arg ctx;
1004 	int error;
1005 
1006 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag,
1007 	    alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1008 	    NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
1009 	if (error != 0) {
1010 		device_printf(sc->ti_dev,
1011 		    "could not create %s dma tag\n", msg);
1012 		return (error);
1013 	}
1014 	/* Allocate DMA'able memory for ring. */
1015 	error = bus_dmamem_alloc(*tag, (void **)ring,
1016 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1017 	if (error != 0) {
1018 		device_printf(sc->ti_dev,
1019 		    "could not allocate DMA'able memory for %s\n", msg);
1020 		return (error);
1021 	}
1022 	/* Load the address of the ring. */
1023 	ctx.ti_busaddr = 0;
1024 	error = bus_dmamap_load(*tag, *map, *ring, maxsize, ti_dma_map_addr,
1025 	    &ctx, BUS_DMA_NOWAIT);
1026 	if (error != 0) {
1027 		device_printf(sc->ti_dev,
1028 		    "could not load DMA'able memory for %s\n", msg);
1029 		return (error);
1030 	}
1031 	*paddr = ctx.ti_busaddr;
1032 	return (0);
1033 }
1034 
1035 static void
1036 ti_dma_ring_free(struct ti_softc *sc, bus_dma_tag_t *tag, uint8_t **ring,
1037     bus_dmamap_t *map)
1038 {
1039 
1040 	if (*map != NULL)
1041 		bus_dmamap_unload(*tag, *map);
1042 	if (*map != NULL && *ring != NULL) {
1043 		bus_dmamem_free(*tag, *ring, *map);
1044 		*ring = NULL;
1045 		*map = NULL;
1046 	}
1047 	if (*tag) {
1048 		bus_dma_tag_destroy(*tag);
1049 		*tag = NULL;
1050 	}
1051 }
1052 
1053 static int
1054 ti_dma_alloc(struct ti_softc *sc)
1055 {
1056 	bus_addr_t lowaddr;
1057 	int i, error;
1058 
1059 	lowaddr = BUS_SPACE_MAXADDR;
1060 	if (sc->ti_dac == 0)
1061 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1062 
1063 	error = bus_dma_tag_create(bus_get_dma_tag(sc->ti_dev), 1, 0, lowaddr,
1064 	    BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1065 	    BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1066 	    &sc->ti_cdata.ti_parent_tag);
1067 	if (error != 0) {
1068 		device_printf(sc->ti_dev,
1069 		    "could not allocate parent dma tag\n");
1070 		return (ENOMEM);
1071 	}
1072 
1073 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_gib),
1074 	    &sc->ti_cdata.ti_gib_tag, (uint8_t **)&sc->ti_rdata.ti_info,
1075 	    &sc->ti_cdata.ti_gib_map, &sc->ti_rdata.ti_info_paddr, "GIB");
1076 	if (error)
1077 		return (error);
1078 
1079 	/* Producer/consumer status */
1080 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, sizeof(struct ti_status),
1081 	    &sc->ti_cdata.ti_status_tag, (uint8_t **)&sc->ti_rdata.ti_status,
1082 	    &sc->ti_cdata.ti_status_map, &sc->ti_rdata.ti_status_paddr,
1083 	    "event ring");
1084 	if (error)
1085 		return (error);
1086 
1087 	/* Event ring */
1088 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_EVENT_RING_SZ,
1089 	    &sc->ti_cdata.ti_event_ring_tag,
1090 	    (uint8_t **)&sc->ti_rdata.ti_event_ring,
1091 	    &sc->ti_cdata.ti_event_ring_map, &sc->ti_rdata.ti_event_ring_paddr,
1092 	    "event ring");
1093 	if (error)
1094 		return (error);
1095 
1096 	/* Command ring lives in shared memory so no need to create DMA area. */
1097 
1098 	/* Standard RX ring */
1099 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_STD_RX_RING_SZ,
1100 	    &sc->ti_cdata.ti_rx_std_ring_tag,
1101 	    (uint8_t **)&sc->ti_rdata.ti_rx_std_ring,
1102 	    &sc->ti_cdata.ti_rx_std_ring_map,
1103 	    &sc->ti_rdata.ti_rx_std_ring_paddr, "RX ring");
1104 	if (error)
1105 		return (error);
1106 
1107 	/* Jumbo RX ring */
1108 	error = ti_dma_ring_alloc(sc, TI_JUMBO_RING_ALIGN, TI_JUMBO_RX_RING_SZ,
1109 	    &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1110 	    (uint8_t **)&sc->ti_rdata.ti_rx_jumbo_ring,
1111 	    &sc->ti_cdata.ti_rx_jumbo_ring_map,
1112 	    &sc->ti_rdata.ti_rx_jumbo_ring_paddr, "jumbo RX ring");
1113 	if (error)
1114 		return (error);
1115 
1116 	/* RX return ring */
1117 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_RX_RETURN_RING_SZ,
1118 	    &sc->ti_cdata.ti_rx_return_ring_tag,
1119 	    (uint8_t **)&sc->ti_rdata.ti_rx_return_ring,
1120 	    &sc->ti_cdata.ti_rx_return_ring_map,
1121 	    &sc->ti_rdata.ti_rx_return_ring_paddr, "RX return ring");
1122 	if (error)
1123 		return (error);
1124 
1125 	/* Create DMA tag for standard RX mbufs. */
1126 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1127 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1128 	    MCLBYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_std_tag);
1129 	if (error) {
1130 		device_printf(sc->ti_dev, "could not allocate RX dma tag\n");
1131 		return (error);
1132 	}
1133 
1134 	/* Create DMA tag for jumbo RX mbufs. */
1135 #ifdef TI_SF_BUF_JUMBO
1136 	/*
1137 	 * The VM system will take care of providing aligned pages.  Alignment
1138 	 * is set to 1 here so that busdma resources won't be wasted.
1139 	 */
1140 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1141 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE * 4, 4,
1142 	    PAGE_SIZE, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1143 #else
1144 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1145 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MJUM9BYTES, 1,
1146 	    MJUM9BYTES, 0, NULL, NULL, &sc->ti_cdata.ti_rx_jumbo_tag);
1147 #endif
1148 	if (error) {
1149 		device_printf(sc->ti_dev,
1150 		    "could not allocate jumbo RX dma tag\n");
1151 		return (error);
1152 	}
1153 
1154 	/* Create DMA tag for TX mbufs. */
1155 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1,
1156 	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1157 	    MCLBYTES * TI_MAXTXSEGS, TI_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1158 	    &sc->ti_cdata.ti_tx_tag);
1159 	if (error) {
1160 		device_printf(sc->ti_dev, "could not allocate TX dma tag\n");
1161 		return (ENOMEM);
1162 	}
1163 
1164 	/* Create DMA maps for RX buffers. */
1165 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1166 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1167 		    &sc->ti_cdata.ti_rx_std_maps[i]);
1168 		if (error) {
1169 			device_printf(sc->ti_dev,
1170 			    "could not create DMA map for RX\n");
1171 			return (error);
1172 		}
1173 	}
1174 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_std_tag, 0,
1175 	    &sc->ti_cdata.ti_rx_std_sparemap);
1176 	if (error) {
1177 		device_printf(sc->ti_dev,
1178 		    "could not create spare DMA map for RX\n");
1179 		return (error);
1180 	}
1181 
1182 	/* Create DMA maps for jumbo RX buffers. */
1183 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1184 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1185 		    &sc->ti_cdata.ti_rx_jumbo_maps[i]);
1186 		if (error) {
1187 			device_printf(sc->ti_dev,
1188 			    "could not create DMA map for jumbo RX\n");
1189 			return (error);
1190 		}
1191 	}
1192 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_jumbo_tag, 0,
1193 	    &sc->ti_cdata.ti_rx_jumbo_sparemap);
1194 	if (error) {
1195 		device_printf(sc->ti_dev,
1196 		    "could not create spare DMA map for jumbo RX\n");
1197 		return (error);
1198 	}
1199 
1200 	/* Create DMA maps for TX buffers. */
1201 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1202 		error = bus_dmamap_create(sc->ti_cdata.ti_tx_tag, 0,
1203 		    &sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1204 		if (error) {
1205 			device_printf(sc->ti_dev,
1206 			    "could not create DMA map for TX\n");
1207 			return (ENOMEM);
1208 		}
1209 	}
1210 
1211 	/* Mini ring and TX ring is not available on Tigon 1. */
1212 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1213 		return (0);
1214 
1215 	/* TX ring */
1216 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_TX_RING_SZ,
1217 	    &sc->ti_cdata.ti_tx_ring_tag, (uint8_t **)&sc->ti_rdata.ti_tx_ring,
1218 	    &sc->ti_cdata.ti_tx_ring_map, &sc->ti_rdata.ti_tx_ring_paddr,
1219 	    "TX ring");
1220 	if (error)
1221 		return (error);
1222 
1223 	/* Mini RX ring */
1224 	error = ti_dma_ring_alloc(sc, TI_RING_ALIGN, TI_MINI_RX_RING_SZ,
1225 	    &sc->ti_cdata.ti_rx_mini_ring_tag,
1226 	    (uint8_t **)&sc->ti_rdata.ti_rx_mini_ring,
1227 	    &sc->ti_cdata.ti_rx_mini_ring_map,
1228 	    &sc->ti_rdata.ti_rx_mini_ring_paddr, "mini RX ring");
1229 	if (error)
1230 		return (error);
1231 
1232 	/* Create DMA tag for mini RX mbufs. */
1233 	error = bus_dma_tag_create(sc->ti_cdata.ti_parent_tag, 1, 0,
1234 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1,
1235 	    MHLEN, 0, NULL, NULL, &sc->ti_cdata.ti_rx_mini_tag);
1236 	if (error) {
1237 		device_printf(sc->ti_dev,
1238 		    "could not allocate mini RX dma tag\n");
1239 		return (error);
1240 	}
1241 
1242 	/* Create DMA maps for mini RX buffers. */
1243 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1244 		error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1245 		    &sc->ti_cdata.ti_rx_mini_maps[i]);
1246 		if (error) {
1247 			device_printf(sc->ti_dev,
1248 			    "could not create DMA map for mini RX\n");
1249 			return (error);
1250 		}
1251 	}
1252 	error = bus_dmamap_create(sc->ti_cdata.ti_rx_mini_tag, 0,
1253 	    &sc->ti_cdata.ti_rx_mini_sparemap);
1254 	if (error) {
1255 		device_printf(sc->ti_dev,
1256 		    "could not create spare DMA map for mini RX\n");
1257 		return (error);
1258 	}
1259 
1260 	return (0);
1261 }
1262 
1263 static void
1264 ti_dma_free(struct ti_softc *sc)
1265 {
1266 	int i;
1267 
1268 	/* Destroy DMA maps for RX buffers. */
1269 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1270 		if (sc->ti_cdata.ti_rx_std_maps[i]) {
1271 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1272 			    sc->ti_cdata.ti_rx_std_maps[i]);
1273 			sc->ti_cdata.ti_rx_std_maps[i] = NULL;
1274 		}
1275 	}
1276 	if (sc->ti_cdata.ti_rx_std_sparemap) {
1277 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_std_tag,
1278 		    sc->ti_cdata.ti_rx_std_sparemap);
1279 		sc->ti_cdata.ti_rx_std_sparemap = NULL;
1280 	}
1281 	if (sc->ti_cdata.ti_rx_std_tag) {
1282 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_std_tag);
1283 		sc->ti_cdata.ti_rx_std_tag = NULL;
1284 	}
1285 
1286 	/* Destroy DMA maps for jumbo RX buffers. */
1287 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1288 		if (sc->ti_cdata.ti_rx_jumbo_maps[i]) {
1289 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1290 			    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1291 			sc->ti_cdata.ti_rx_jumbo_maps[i] = NULL;
1292 		}
1293 	}
1294 	if (sc->ti_cdata.ti_rx_jumbo_sparemap) {
1295 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_jumbo_tag,
1296 		    sc->ti_cdata.ti_rx_jumbo_sparemap);
1297 		sc->ti_cdata.ti_rx_jumbo_sparemap = NULL;
1298 	}
1299 	if (sc->ti_cdata.ti_rx_jumbo_tag) {
1300 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_jumbo_tag);
1301 		sc->ti_cdata.ti_rx_jumbo_tag = NULL;
1302 	}
1303 
1304 	/* Destroy DMA maps for mini RX buffers. */
1305 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1306 		if (sc->ti_cdata.ti_rx_mini_maps[i]) {
1307 			bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1308 			    sc->ti_cdata.ti_rx_mini_maps[i]);
1309 			sc->ti_cdata.ti_rx_mini_maps[i] = NULL;
1310 		}
1311 	}
1312 	if (sc->ti_cdata.ti_rx_mini_sparemap) {
1313 		bus_dmamap_destroy(sc->ti_cdata.ti_rx_mini_tag,
1314 		    sc->ti_cdata.ti_rx_mini_sparemap);
1315 		sc->ti_cdata.ti_rx_mini_sparemap = NULL;
1316 	}
1317 	if (sc->ti_cdata.ti_rx_mini_tag) {
1318 		bus_dma_tag_destroy(sc->ti_cdata.ti_rx_mini_tag);
1319 		sc->ti_cdata.ti_rx_mini_tag = NULL;
1320 	}
1321 
1322 	/* Destroy DMA maps for TX buffers. */
1323 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1324 		if (sc->ti_cdata.ti_txdesc[i].tx_dmamap) {
1325 			bus_dmamap_destroy(sc->ti_cdata.ti_tx_tag,
1326 			    sc->ti_cdata.ti_txdesc[i].tx_dmamap);
1327 			sc->ti_cdata.ti_txdesc[i].tx_dmamap = NULL;
1328 		}
1329 	}
1330 	if (sc->ti_cdata.ti_tx_tag) {
1331 		bus_dma_tag_destroy(sc->ti_cdata.ti_tx_tag);
1332 		sc->ti_cdata.ti_tx_tag = NULL;
1333 	}
1334 
1335 	/* Destroy standard RX ring. */
1336 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_std_ring_tag,
1337 	    (void *)&sc->ti_rdata.ti_rx_std_ring,
1338 	    &sc->ti_cdata.ti_rx_std_ring_map);
1339 	/* Destroy jumbo RX ring. */
1340 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_jumbo_ring_tag,
1341 	    (void *)&sc->ti_rdata.ti_rx_jumbo_ring,
1342 	    &sc->ti_cdata.ti_rx_jumbo_ring_map);
1343 	/* Destroy mini RX ring. */
1344 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_mini_ring_tag,
1345 	    (void *)&sc->ti_rdata.ti_rx_mini_ring,
1346 	    &sc->ti_cdata.ti_rx_mini_ring_map);
1347 	/* Destroy RX return ring. */
1348 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_rx_return_ring_tag,
1349 	    (void *)&sc->ti_rdata.ti_rx_return_ring,
1350 	    &sc->ti_cdata.ti_rx_return_ring_map);
1351 	/* Destroy TX ring. */
1352 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_tx_ring_tag,
1353 	    (void *)&sc->ti_rdata.ti_tx_ring, &sc->ti_cdata.ti_tx_ring_map);
1354 	/* Destroy status block. */
1355 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_status_tag,
1356 	    (void *)&sc->ti_rdata.ti_status, &sc->ti_cdata.ti_status_map);
1357 	/* Destroy event ring. */
1358 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_event_ring_tag,
1359 	    (void *)&sc->ti_rdata.ti_event_ring,
1360 	    &sc->ti_cdata.ti_event_ring_map);
1361 	/* Destroy GIB */
1362 	ti_dma_ring_free(sc, &sc->ti_cdata.ti_gib_tag,
1363 	    (void *)&sc->ti_rdata.ti_info, &sc->ti_cdata.ti_gib_map);
1364 
1365 	/* Destroy the parent tag. */
1366 	if (sc->ti_cdata.ti_parent_tag) {
1367 		bus_dma_tag_destroy(sc->ti_cdata.ti_parent_tag);
1368 		sc->ti_cdata.ti_parent_tag = NULL;
1369 	}
1370 }
1371 
1372 /*
1373  * Intialize a standard receive ring descriptor.
1374  */
1375 static int
1376 ti_newbuf_std(struct ti_softc *sc, int i)
1377 {
1378 	bus_dmamap_t map;
1379 	bus_dma_segment_t segs[1];
1380 	struct mbuf *m;
1381 	struct ti_rx_desc *r;
1382 	int error, nsegs;
1383 
1384 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1385 	if (m == NULL)
1386 		return (ENOBUFS);
1387 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388 	m_adj(m, ETHER_ALIGN);
1389 
1390 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_std_tag,
1391 	    sc->ti_cdata.ti_rx_std_sparemap, m, segs, &nsegs, 0);
1392 	if (error != 0) {
1393 		m_freem(m);
1394 		return (error);
1395         }
1396 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1397 
1398 	if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1399 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1400 		    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_POSTREAD);
1401 		bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag,
1402 		    sc->ti_cdata.ti_rx_std_maps[i]);
1403 	}
1404 
1405 	map = sc->ti_cdata.ti_rx_std_maps[i];
1406 	sc->ti_cdata.ti_rx_std_maps[i] = sc->ti_cdata.ti_rx_std_sparemap;
1407 	sc->ti_cdata.ti_rx_std_sparemap = map;
1408 	sc->ti_cdata.ti_rx_std_chain[i] = m;
1409 
1410 	r = &sc->ti_rdata.ti_rx_std_ring[i];
1411 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1412 	r->ti_len = segs[0].ds_len;
1413 	r->ti_type = TI_BDTYPE_RECV_BD;
1414 	r->ti_flags = 0;
1415 	r->ti_vlan_tag = 0;
1416 	r->ti_tcp_udp_cksum = 0;
1417 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1418 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1419 	r->ti_idx = i;
1420 
1421 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag,
1422 	    sc->ti_cdata.ti_rx_std_maps[i], BUS_DMASYNC_PREREAD);
1423 	return (0);
1424 }
1425 
1426 /*
1427  * Intialize a mini receive ring descriptor. This only applies to
1428  * the Tigon 2.
1429  */
1430 static int
1431 ti_newbuf_mini(struct ti_softc *sc, int i)
1432 {
1433 	bus_dmamap_t map;
1434 	bus_dma_segment_t segs[1];
1435 	struct mbuf *m;
1436 	struct ti_rx_desc *r;
1437 	int error, nsegs;
1438 
1439 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1440 	if (m == NULL)
1441 		return (ENOBUFS);
1442 	m->m_len = m->m_pkthdr.len = MHLEN;
1443 	m_adj(m, ETHER_ALIGN);
1444 
1445 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_mini_tag,
1446 	    sc->ti_cdata.ti_rx_mini_sparemap, m, segs, &nsegs, 0);
1447 	if (error != 0) {
1448 		m_freem(m);
1449 		return (error);
1450         }
1451 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1452 
1453 	if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1454 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1455 		    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_POSTREAD);
1456 		bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag,
1457 		    sc->ti_cdata.ti_rx_mini_maps[i]);
1458 	}
1459 
1460 	map = sc->ti_cdata.ti_rx_mini_maps[i];
1461 	sc->ti_cdata.ti_rx_mini_maps[i] = sc->ti_cdata.ti_rx_mini_sparemap;
1462 	sc->ti_cdata.ti_rx_mini_sparemap = map;
1463 	sc->ti_cdata.ti_rx_mini_chain[i] = m;
1464 
1465 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
1466 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1467 	r->ti_len = segs[0].ds_len;
1468 	r->ti_type = TI_BDTYPE_RECV_BD;
1469 	r->ti_flags = TI_BDFLAG_MINI_RING;
1470 	r->ti_vlan_tag = 0;
1471 	r->ti_tcp_udp_cksum = 0;
1472 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1473 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1474 	r->ti_idx = i;
1475 
1476 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag,
1477 	    sc->ti_cdata.ti_rx_mini_maps[i], BUS_DMASYNC_PREREAD);
1478 	return (0);
1479 }
1480 
1481 #ifndef TI_SF_BUF_JUMBO
1482 
1483 /*
1484  * Initialize a jumbo receive ring descriptor. This allocates
1485  * a jumbo buffer from the pool managed internally by the driver.
1486  */
1487 static int
1488 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *dummy)
1489 {
1490 	bus_dmamap_t map;
1491 	bus_dma_segment_t segs[1];
1492 	struct mbuf *m;
1493 	struct ti_rx_desc *r;
1494 	int error, nsegs;
1495 
1496 	(void)dummy;
1497 
1498 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1499 	if (m == NULL)
1500 		return (ENOBUFS);
1501 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1502 	m_adj(m, ETHER_ALIGN);
1503 
1504 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag,
1505 	    sc->ti_cdata.ti_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1506 	if (error != 0) {
1507 		m_freem(m);
1508 		return (error);
1509         }
1510 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1511 
1512 	if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1513 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1514 		    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_POSTREAD);
1515 		bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag,
1516 		    sc->ti_cdata.ti_rx_jumbo_maps[i]);
1517 	}
1518 
1519 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1520 	sc->ti_cdata.ti_rx_jumbo_maps[i] = sc->ti_cdata.ti_rx_jumbo_sparemap;
1521 	sc->ti_cdata.ti_rx_jumbo_sparemap = map;
1522 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m;
1523 
1524 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
1525 	ti_hostaddr64(&r->ti_addr, segs[0].ds_addr);
1526 	r->ti_len = segs[0].ds_len;
1527 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1528 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1529 	r->ti_vlan_tag = 0;
1530 	r->ti_tcp_udp_cksum = 0;
1531 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1532 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1533 	r->ti_idx = i;
1534 
1535 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag,
1536 	    sc->ti_cdata.ti_rx_jumbo_maps[i], BUS_DMASYNC_PREREAD);
1537 	return (0);
1538 }
1539 
1540 #else
1541 
1542 #if (PAGE_SIZE == 4096)
1543 #define NPAYLOAD 2
1544 #else
1545 #define NPAYLOAD 1
1546 #endif
1547 
1548 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1549 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1550 #define NFS_HDR_LEN (UDP_HDR_LEN)
1551 static int HDR_LEN = TCP_HDR_LEN;
1552 
1553 /*
1554  * Initialize a jumbo receive ring descriptor. This allocates
1555  * a jumbo buffer from the pool managed internally by the driver.
1556  */
1557 static int
1558 ti_newbuf_jumbo(struct ti_softc *sc, int idx, struct mbuf *m_old)
1559 {
1560 	bus_dmamap_t map;
1561 	struct mbuf *cur, *m_new = NULL;
1562 	struct mbuf *m[3] = {NULL, NULL, NULL};
1563 	struct ti_rx_desc_ext *r;
1564 	vm_page_t frame;
1565 	static int color;
1566 	/* 1 extra buf to make nobufs easy*/
1567 	struct sf_buf *sf[3] = {NULL, NULL, NULL};
1568 	int i;
1569 	bus_dma_segment_t segs[4];
1570 	int nsegs;
1571 
1572 	if (m_old != NULL) {
1573 		m_new = m_old;
1574 		cur = m_old->m_next;
1575 		for (i = 0; i <= NPAYLOAD; i++){
1576 			m[i] = cur;
1577 			cur = cur->m_next;
1578 		}
1579 	} else {
1580 		/* Allocate the mbufs. */
1581 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1582 		if (m_new == NULL) {
1583 			device_printf(sc->ti_dev, "mbuf allocation failed "
1584 			    "-- packet dropped!\n");
1585 			goto nobufs;
1586 		}
1587 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1588 		if (m[NPAYLOAD] == NULL) {
1589 			device_printf(sc->ti_dev, "cluster mbuf allocation "
1590 			    "failed -- packet dropped!\n");
1591 			goto nobufs;
1592 		}
1593 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1594 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1595 			device_printf(sc->ti_dev, "mbuf allocation failed "
1596 			    "-- packet dropped!\n");
1597 			goto nobufs;
1598 		}
1599 		m[NPAYLOAD]->m_len = MCLBYTES;
1600 
1601 		for (i = 0; i < NPAYLOAD; i++){
1602 			MGET(m[i], M_DONTWAIT, MT_DATA);
1603 			if (m[i] == NULL) {
1604 				device_printf(sc->ti_dev, "mbuf allocation "
1605 				    "failed -- packet dropped!\n");
1606 				goto nobufs;
1607 			}
1608 			frame = vm_page_alloc(NULL, color++,
1609 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1610 			    VM_ALLOC_WIRED);
1611 			if (frame == NULL) {
1612 				device_printf(sc->ti_dev, "buffer allocation "
1613 				    "failed -- packet dropped!\n");
1614 				printf("      index %d page %d\n", idx, i);
1615 				goto nobufs;
1616 			}
1617 			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1618 			if (sf[i] == NULL) {
1619 				vm_page_unwire(frame, 0);
1620 				vm_page_free(frame);
1621 				device_printf(sc->ti_dev, "buffer allocation "
1622 				    "failed -- packet dropped!\n");
1623 				printf("      index %d page %d\n", idx, i);
1624 				goto nobufs;
1625 			}
1626 		}
1627 		for (i = 0; i < NPAYLOAD; i++){
1628 		/* Attach the buffer to the mbuf. */
1629 			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1630 			m[i]->m_len = PAGE_SIZE;
1631 			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1632 			    sf_buf_mext, (void*)sf_buf_kva(sf[i]), sf[i],
1633 			    0, EXT_DISPOSABLE);
1634 			m[i]->m_next = m[i+1];
1635 		}
1636 		/* link the buffers to the header */
1637 		m_new->m_next = m[0];
1638 		m_new->m_data += ETHER_ALIGN;
1639 		if (sc->ti_hdrsplit)
1640 			m_new->m_len = MHLEN - ETHER_ALIGN;
1641 		else
1642 			m_new->m_len = HDR_LEN;
1643 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1644 	}
1645 
1646 	/* Set up the descriptor. */
1647 	r = &sc->ti_rdata.ti_rx_jumbo_ring[idx];
1648 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1649 	map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1650 	if (bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_rx_jumbo_tag, map, m_new,
1651 	    segs, &nsegs, 0))
1652 		return (ENOBUFS);
1653 	if ((nsegs < 1) || (nsegs > 4))
1654 		return (ENOBUFS);
1655 	ti_hostaddr64(&r->ti_addr0, segs[0].ds_addr);
1656 	r->ti_len0 = m_new->m_len;
1657 
1658 	ti_hostaddr64(&r->ti_addr1, segs[1].ds_addr);
1659 	r->ti_len1 = PAGE_SIZE;
1660 
1661 	ti_hostaddr64(&r->ti_addr2, segs[2].ds_addr);
1662 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1663 
1664 	if (PAGE_SIZE == 4096) {
1665 		ti_hostaddr64(&r->ti_addr3, segs[3].ds_addr);
1666 		r->ti_len3 = MCLBYTES;
1667 	} else {
1668 		r->ti_len3 = 0;
1669 	}
1670 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1671 
1672 	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1673 
1674 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
1675 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1676 
1677 	r->ti_idx = idx;
1678 
1679 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map, BUS_DMASYNC_PREREAD);
1680 	return (0);
1681 
1682 nobufs:
1683 
1684 	/*
1685 	 * Warning! :
1686 	 * This can only be called before the mbufs are strung together.
1687 	 * If the mbufs are strung together, m_freem() will free the chain,
1688 	 * so that the later mbufs will be freed multiple times.
1689 	 */
1690 	if (m_new)
1691 		m_freem(m_new);
1692 
1693 	for (i = 0; i < 3; i++) {
1694 		if (m[i])
1695 			m_freem(m[i]);
1696 		if (sf[i])
1697 			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1698 	}
1699 	return (ENOBUFS);
1700 }
1701 #endif
1702 
1703 /*
1704  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1705  * that's 1MB or memory, which is a lot. For now, we fill only the first
1706  * 256 ring entries and hope that our CPU is fast enough to keep up with
1707  * the NIC.
1708  */
1709 static int
1710 ti_init_rx_ring_std(struct ti_softc *sc)
1711 {
1712 	int i;
1713 	struct ti_cmd_desc cmd;
1714 
1715 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1716 		if (ti_newbuf_std(sc, i) != 0)
1717 			return (ENOBUFS);
1718 	};
1719 
1720 	sc->ti_std = TI_STD_RX_RING_CNT - 1;
1721 	TI_UPDATE_STDPROD(sc, TI_STD_RX_RING_CNT - 1);
1722 
1723 	return (0);
1724 }
1725 
1726 static void
1727 ti_free_rx_ring_std(struct ti_softc *sc)
1728 {
1729 	bus_dmamap_t map;
1730 	int i;
1731 
1732 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1733 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1734 			map = sc->ti_cdata.ti_rx_std_maps[i];
1735 			bus_dmamap_sync(sc->ti_cdata.ti_rx_std_tag, map,
1736 			    BUS_DMASYNC_POSTREAD);
1737 			bus_dmamap_unload(sc->ti_cdata.ti_rx_std_tag, map);
1738 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1739 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1740 		}
1741 	}
1742 	bzero(sc->ti_rdata.ti_rx_std_ring, TI_STD_RX_RING_SZ);
1743 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
1744 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1745 }
1746 
1747 static int
1748 ti_init_rx_ring_jumbo(struct ti_softc *sc)
1749 {
1750 	struct ti_cmd_desc cmd;
1751 	int i;
1752 
1753 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1754 		if (ti_newbuf_jumbo(sc, i, NULL) != 0)
1755 			return (ENOBUFS);
1756 	};
1757 
1758 	sc->ti_jumbo = TI_JUMBO_RX_RING_CNT - 1;
1759 	TI_UPDATE_JUMBOPROD(sc, TI_JUMBO_RX_RING_CNT - 1);
1760 
1761 	return (0);
1762 }
1763 
1764 static void
1765 ti_free_rx_ring_jumbo(struct ti_softc *sc)
1766 {
1767 	bus_dmamap_t map;
1768 	int i;
1769 
1770 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1771 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1772 			map = sc->ti_cdata.ti_rx_jumbo_maps[i];
1773 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
1774 			    BUS_DMASYNC_POSTREAD);
1775 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
1776 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1777 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1778 		}
1779 	}
1780 	bzero(sc->ti_rdata.ti_rx_jumbo_ring, TI_JUMBO_RX_RING_SZ);
1781 	bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
1782 	    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1783 }
1784 
1785 static int
1786 ti_init_rx_ring_mini(struct ti_softc *sc)
1787 {
1788 	int i;
1789 
1790 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1791 		if (ti_newbuf_mini(sc, i) != 0)
1792 			return (ENOBUFS);
1793 	};
1794 
1795 	sc->ti_mini = TI_MINI_RX_RING_CNT - 1;
1796 	TI_UPDATE_MINIPROD(sc, TI_MINI_RX_RING_CNT - 1);
1797 
1798 	return (0);
1799 }
1800 
1801 static void
1802 ti_free_rx_ring_mini(struct ti_softc *sc)
1803 {
1804 	bus_dmamap_t map;
1805 	int i;
1806 
1807 	if (sc->ti_rdata.ti_rx_mini_ring == NULL)
1808 		return;
1809 
1810 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1811 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1812 			map = sc->ti_cdata.ti_rx_mini_maps[i];
1813 			bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_tag, map,
1814 			    BUS_DMASYNC_POSTREAD);
1815 			bus_dmamap_unload(sc->ti_cdata.ti_rx_mini_tag, map);
1816 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1817 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1818 		}
1819 	}
1820 	bzero(sc->ti_rdata.ti_rx_mini_ring, TI_MINI_RX_RING_SZ);
1821 	bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
1822 	    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
1823 }
1824 
1825 static void
1826 ti_free_tx_ring(struct ti_softc *sc)
1827 {
1828 	struct ti_txdesc *txd;
1829 	int i;
1830 
1831 	if (sc->ti_rdata.ti_tx_ring == NULL)
1832 		return;
1833 
1834 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1835 		txd = &sc->ti_cdata.ti_txdesc[i];
1836 		if (txd->tx_m != NULL) {
1837 			bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
1838 			    BUS_DMASYNC_POSTWRITE);
1839 			bus_dmamap_unload(sc->ti_cdata.ti_tx_tag,
1840 			    txd->tx_dmamap);
1841 			m_freem(txd->tx_m);
1842 			txd->tx_m = NULL;
1843 		}
1844 	}
1845 	bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
1846 	bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
1847 	    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
1848 }
1849 
1850 static int
1851 ti_init_tx_ring(struct ti_softc *sc)
1852 {
1853 	struct ti_txdesc *txd;
1854 	int i;
1855 
1856 	STAILQ_INIT(&sc->ti_cdata.ti_txfreeq);
1857 	STAILQ_INIT(&sc->ti_cdata.ti_txbusyq);
1858 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1859 		txd = &sc->ti_cdata.ti_txdesc[i];
1860 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
1861 	}
1862 	sc->ti_txcnt = 0;
1863 	sc->ti_tx_saved_considx = 0;
1864 	sc->ti_tx_saved_prodidx = 0;
1865 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1866 	return (0);
1867 }
1868 
1869 /*
1870  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1871  * but we have to support the old way too so that Tigon 1 cards will
1872  * work.
1873  */
1874 static void
1875 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1876 {
1877 	struct ti_cmd_desc cmd;
1878 	uint16_t *m;
1879 	uint32_t ext[2] = {0, 0};
1880 
1881 	m = (uint16_t *)&addr->octet[0];
1882 
1883 	switch (sc->ti_hwrev) {
1884 	case TI_HWREV_TIGON:
1885 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1886 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1887 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1888 		break;
1889 	case TI_HWREV_TIGON_II:
1890 		ext[0] = htons(m[0]);
1891 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1892 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1893 		break;
1894 	default:
1895 		device_printf(sc->ti_dev, "unknown hwrev\n");
1896 		break;
1897 	}
1898 }
1899 
1900 static void
1901 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1902 {
1903 	struct ti_cmd_desc cmd;
1904 	uint16_t *m;
1905 	uint32_t ext[2] = {0, 0};
1906 
1907 	m = (uint16_t *)&addr->octet[0];
1908 
1909 	switch (sc->ti_hwrev) {
1910 	case TI_HWREV_TIGON:
1911 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1912 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1913 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1914 		break;
1915 	case TI_HWREV_TIGON_II:
1916 		ext[0] = htons(m[0]);
1917 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1918 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1919 		break;
1920 	default:
1921 		device_printf(sc->ti_dev, "unknown hwrev\n");
1922 		break;
1923 	}
1924 }
1925 
1926 /*
1927  * Configure the Tigon's multicast address filter.
1928  *
1929  * The actual multicast table management is a bit of a pain, thanks to
1930  * slight brain damage on the part of both Alteon and us. With our
1931  * multicast code, we are only alerted when the multicast address table
1932  * changes and at that point we only have the current list of addresses:
1933  * we only know the current state, not the previous state, so we don't
1934  * actually know what addresses were removed or added. The firmware has
1935  * state, but we can't get our grubby mits on it, and there is no 'delete
1936  * all multicast addresses' command. Hence, we have to maintain our own
1937  * state so we know what addresses have been programmed into the NIC at
1938  * any given time.
1939  */
1940 static void
1941 ti_setmulti(struct ti_softc *sc)
1942 {
1943 	struct ifnet *ifp;
1944 	struct ifmultiaddr *ifma;
1945 	struct ti_cmd_desc cmd;
1946 	struct ti_mc_entry *mc;
1947 	uint32_t intrs;
1948 
1949 	TI_LOCK_ASSERT(sc);
1950 
1951 	ifp = sc->ti_ifp;
1952 
1953 	if (ifp->if_flags & IFF_ALLMULTI) {
1954 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1955 		return;
1956 	} else {
1957 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1958 	}
1959 
1960 	/* Disable interrupts. */
1961 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1962 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1963 
1964 	/* First, zot all the existing filters. */
1965 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1966 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1967 		ti_del_mcast(sc, &mc->mc_addr);
1968 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1969 		free(mc, M_DEVBUF);
1970 	}
1971 
1972 	/* Now program new ones. */
1973 	if_maddr_rlock(ifp);
1974 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1975 		if (ifma->ifma_addr->sa_family != AF_LINK)
1976 			continue;
1977 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1978 		if (mc == NULL) {
1979 			device_printf(sc->ti_dev,
1980 			    "no memory for mcast filter entry\n");
1981 			continue;
1982 		}
1983 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1984 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1985 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1986 		ti_add_mcast(sc, &mc->mc_addr);
1987 	}
1988 	if_maddr_runlock(ifp);
1989 
1990 	/* Re-enable interrupts. */
1991 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1992 }
1993 
1994 /*
1995  * Check to see if the BIOS has configured us for a 64 bit slot when
1996  * we aren't actually in one. If we detect this condition, we can work
1997  * around it on the Tigon 2 by setting a bit in the PCI state register,
1998  * but for the Tigon 1 we must give up and abort the interface attach.
1999  */
2000 static int
2001 ti_64bitslot_war(struct ti_softc *sc)
2002 {
2003 
2004 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
2005 		CSR_WRITE_4(sc, 0x600, 0);
2006 		CSR_WRITE_4(sc, 0x604, 0);
2007 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
2008 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
2009 			if (sc->ti_hwrev == TI_HWREV_TIGON)
2010 				return (EINVAL);
2011 			else {
2012 				TI_SETBIT(sc, TI_PCI_STATE,
2013 				    TI_PCISTATE_32BIT_BUS);
2014 				return (0);
2015 			}
2016 		}
2017 	}
2018 
2019 	return (0);
2020 }
2021 
2022 /*
2023  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2024  * self-test results.
2025  */
2026 static int
2027 ti_chipinit(struct ti_softc *sc)
2028 {
2029 	uint32_t cacheline;
2030 	uint32_t pci_writemax = 0;
2031 	uint32_t hdrsplit;
2032 
2033 	/* Initialize link to down state. */
2034 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
2035 
2036 	/* Set endianness before we access any non-PCI registers. */
2037 #if 0 && BYTE_ORDER == BIG_ENDIAN
2038 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2039 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
2040 #else
2041 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
2042 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
2043 #endif
2044 
2045 	/* Check the ROM failed bit to see if self-tests passed. */
2046 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
2047 		device_printf(sc->ti_dev, "board self-diagnostics failed!\n");
2048 		return (ENODEV);
2049 	}
2050 
2051 	/* Halt the CPU. */
2052 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
2053 
2054 	/* Figure out the hardware revision. */
2055 	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
2056 	case TI_REV_TIGON_I:
2057 		sc->ti_hwrev = TI_HWREV_TIGON;
2058 		break;
2059 	case TI_REV_TIGON_II:
2060 		sc->ti_hwrev = TI_HWREV_TIGON_II;
2061 		break;
2062 	default:
2063 		device_printf(sc->ti_dev, "unsupported chip revision\n");
2064 		return (ENODEV);
2065 	}
2066 
2067 	/* Do special setup for Tigon 2. */
2068 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2069 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
2070 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
2071 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
2072 	}
2073 
2074 	/*
2075 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
2076 	 * can't do header splitting.
2077 	 */
2078 #ifdef TI_JUMBO_HDRSPLIT
2079 	if (sc->ti_hwrev != TI_HWREV_TIGON)
2080 		sc->ti_hdrsplit = 1;
2081 	else
2082 		device_printf(sc->ti_dev,
2083 		    "can't do header splitting on a Tigon I board\n");
2084 #endif /* TI_JUMBO_HDRSPLIT */
2085 
2086 	/* Set up the PCI state register. */
2087 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
2088 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
2089 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
2090 	}
2091 
2092 	/* Clear the read/write max DMA parameters. */
2093 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
2094 	    TI_PCISTATE_READ_MAXDMA));
2095 
2096 	/* Get cache line size. */
2097 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
2098 
2099 	/*
2100 	 * If the system has set enabled the PCI memory write
2101 	 * and invalidate command in the command register, set
2102 	 * the write max parameter accordingly. This is necessary
2103 	 * to use MWI with the Tigon 2.
2104 	 */
2105 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
2106 		switch (cacheline) {
2107 		case 1:
2108 		case 4:
2109 		case 8:
2110 		case 16:
2111 		case 32:
2112 		case 64:
2113 			break;
2114 		default:
2115 		/* Disable PCI memory write and invalidate. */
2116 			if (bootverbose)
2117 				device_printf(sc->ti_dev, "cache line size %d"
2118 				    " not supported; disabling PCI MWI\n",
2119 				    cacheline);
2120 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
2121 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
2122 			break;
2123 		}
2124 	}
2125 
2126 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
2127 
2128 	/* This sets the min dma param all the way up (0xff). */
2129 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
2130 
2131 	if (sc->ti_hdrsplit)
2132 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
2133 	else
2134 		hdrsplit = 0;
2135 
2136 	/* Configure DMA variables. */
2137 #if BYTE_ORDER == BIG_ENDIAN
2138 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
2139 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
2140 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
2141 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
2142 #else /* BYTE_ORDER */
2143 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
2144 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
2145 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
2146 #endif /* BYTE_ORDER */
2147 
2148 	/*
2149 	 * Only allow 1 DMA channel to be active at a time.
2150 	 * I don't think this is a good idea, but without it
2151 	 * the firmware racks up lots of nicDmaReadRingFull
2152 	 * errors.  This is not compatible with hardware checksums.
2153 	 */
2154 	if ((sc->ti_ifp->if_capenable & (IFCAP_TXCSUM | IFCAP_RXCSUM)) == 0)
2155 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
2156 
2157 	/* Recommended settings from Tigon manual. */
2158 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
2159 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
2160 
2161 	if (ti_64bitslot_war(sc)) {
2162 		device_printf(sc->ti_dev, "bios thinks we're in a 64 bit slot, "
2163 		    "but we aren't");
2164 		return (EINVAL);
2165 	}
2166 
2167 	return (0);
2168 }
2169 
2170 /*
2171  * Initialize the general information block and firmware, and
2172  * start the CPU(s) running.
2173  */
2174 static int
2175 ti_gibinit(struct ti_softc *sc)
2176 {
2177 	struct ifnet *ifp;
2178 	struct ti_rcb *rcb;
2179 	int i;
2180 
2181 	TI_LOCK_ASSERT(sc);
2182 
2183 	ifp = sc->ti_ifp;
2184 
2185 	/* Disable interrupts for now. */
2186 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2187 
2188 	/* Tell the chip where to find the general information block. */
2189 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI,
2190 	    (uint64_t)sc->ti_rdata.ti_info_paddr >> 32);
2191 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
2192 	    sc->ti_rdata.ti_info_paddr & 0xFFFFFFFF);
2193 
2194 	/* Load the firmware into SRAM. */
2195 	ti_loadfw(sc);
2196 
2197 	/* Set up the contents of the general info and ring control blocks. */
2198 
2199 	/* Set up the event ring and producer pointer. */
2200 	bzero(sc->ti_rdata.ti_event_ring, TI_EVENT_RING_SZ);
2201 	rcb = &sc->ti_rdata.ti_info->ti_ev_rcb;
2202 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_event_ring_paddr);
2203 	rcb->ti_flags = 0;
2204 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_ev_prodidx_ptr,
2205 	    sc->ti_rdata.ti_status_paddr +
2206 	    offsetof(struct ti_status, ti_ev_prodidx_r));
2207 	sc->ti_ev_prodidx.ti_idx = 0;
2208 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
2209 	sc->ti_ev_saved_considx = 0;
2210 
2211 	/* Set up the command ring and producer mailbox. */
2212 	rcb = &sc->ti_rdata.ti_info->ti_cmd_rcb;
2213 	ti_hostaddr64(&rcb->ti_hostaddr, TI_GCR_NIC_ADDR(TI_GCR_CMDRING));
2214 	rcb->ti_flags = 0;
2215 	rcb->ti_max_len = 0;
2216 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
2217 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
2218 	}
2219 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
2220 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
2221 	sc->ti_cmd_saved_prodidx = 0;
2222 
2223 	/*
2224 	 * Assign the address of the stats refresh buffer.
2225 	 * We re-use the current stats buffer for this to
2226 	 * conserve memory.
2227 	 */
2228 	bzero(&sc->ti_rdata.ti_info->ti_stats, sizeof(struct ti_stats));
2229 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_refresh_stats_ptr,
2230 	    sc->ti_rdata.ti_info_paddr + offsetof(struct ti_gib, ti_stats));
2231 
2232 	/* Set up the standard receive ring. */
2233 	rcb = &sc->ti_rdata.ti_info->ti_std_rx_rcb;
2234 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_std_ring_paddr);
2235 	rcb->ti_max_len = TI_FRAMELEN;
2236 	rcb->ti_flags = 0;
2237 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2238 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2239 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2240 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2241 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2242 
2243 	/* Set up the jumbo receive ring. */
2244 	rcb = &sc->ti_rdata.ti_info->ti_jumbo_rx_rcb;
2245 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_jumbo_ring_paddr);
2246 
2247 #ifndef TI_SF_BUF_JUMBO
2248 	rcb->ti_max_len = MJUM9BYTES - ETHER_ALIGN;
2249 	rcb->ti_flags = 0;
2250 #else
2251 	rcb->ti_max_len = PAGE_SIZE;
2252 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
2253 #endif
2254 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2255 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2256 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2257 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2258 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2259 
2260 	/*
2261 	 * Set up the mini ring. Only activated on the
2262 	 * Tigon 2 but the slot in the config block is
2263 	 * still there on the Tigon 1.
2264 	 */
2265 	rcb = &sc->ti_rdata.ti_info->ti_mini_rx_rcb;
2266 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_mini_ring_paddr);
2267 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
2268 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2269 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
2270 	else
2271 		rcb->ti_flags = 0;
2272 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2273 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2274 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2275 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2276 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2277 
2278 	/*
2279 	 * Set up the receive return ring.
2280 	 */
2281 	rcb = &sc->ti_rdata.ti_info->ti_return_rcb;
2282 	ti_hostaddr64(&rcb->ti_hostaddr, sc->ti_rdata.ti_rx_return_ring_paddr);
2283 	rcb->ti_flags = 0;
2284 	rcb->ti_max_len = TI_RETURN_RING_CNT;
2285 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_return_prodidx_ptr,
2286 	    sc->ti_rdata.ti_status_paddr +
2287 	    offsetof(struct ti_status, ti_return_prodidx_r));
2288 
2289 	/*
2290 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
2291 	 * of putting the transmit ring in the host's address space and
2292 	 * letting the chip DMA it instead of leaving the ring in the NIC's
2293 	 * memory and accessing it through the shared memory region. We
2294 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
2295 	 * so we have to revert to the shared memory scheme if we detect
2296 	 * a Tigon 1 chip.
2297 	 */
2298 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
2299 	if (sc->ti_rdata.ti_tx_ring != NULL)
2300 		bzero(sc->ti_rdata.ti_tx_ring, TI_TX_RING_SZ);
2301 	rcb = &sc->ti_rdata.ti_info->ti_tx_rcb;
2302 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2303 		rcb->ti_flags = 0;
2304 	else
2305 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
2306 	if (sc->ti_ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2307 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
2308 	if (sc->ti_ifp->if_capenable & IFCAP_TXCSUM)
2309 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
2310 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
2311 	rcb->ti_max_len = TI_TX_RING_CNT;
2312 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2313 		ti_hostaddr64(&rcb->ti_hostaddr, TI_TX_RING_BASE);
2314 	else
2315 		ti_hostaddr64(&rcb->ti_hostaddr,
2316 		    sc->ti_rdata.ti_tx_ring_paddr);
2317 	ti_hostaddr64(&sc->ti_rdata.ti_info->ti_tx_considx_ptr,
2318 	    sc->ti_rdata.ti_status_paddr +
2319 	    offsetof(struct ti_status, ti_tx_considx_r));
2320 
2321 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
2322 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2323 	bus_dmamap_sync(sc->ti_cdata.ti_status_tag, sc->ti_cdata.ti_status_map,
2324 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2325 	bus_dmamap_sync(sc->ti_cdata.ti_event_ring_tag,
2326 	    sc->ti_cdata.ti_event_ring_map,
2327 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2328 	if (sc->ti_rdata.ti_tx_ring != NULL)
2329 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2330 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
2331 
2332 	/* Set up tunables */
2333 #if 0
2334 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2335 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2336 		    (sc->ti_rx_coal_ticks / 10));
2337 	else
2338 #endif
2339 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2340 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2341 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2342 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2343 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2344 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2345 
2346 	/* Turn interrupts on. */
2347 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2348 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2349 
2350 	/* Start CPU. */
2351 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2352 
2353 	return (0);
2354 }
2355 
2356 /*
2357  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2358  * against our list and return its name if we find a match.
2359  */
2360 static int
2361 ti_probe(device_t dev)
2362 {
2363 	const struct ti_type *t;
2364 
2365 	t = ti_devs;
2366 
2367 	while (t->ti_name != NULL) {
2368 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2369 		    (pci_get_device(dev) == t->ti_did)) {
2370 			device_set_desc(dev, t->ti_name);
2371 			return (BUS_PROBE_DEFAULT);
2372 		}
2373 		t++;
2374 	}
2375 
2376 	return (ENXIO);
2377 }
2378 
2379 static int
2380 ti_attach(device_t dev)
2381 {
2382 	struct ifnet *ifp;
2383 	struct ti_softc *sc;
2384 	int error = 0, rid;
2385 	u_char eaddr[6];
2386 
2387 	sc = device_get_softc(dev);
2388 	sc->ti_dev = dev;
2389 
2390 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2391 	    MTX_DEF);
2392 	callout_init_mtx(&sc->ti_watchdog, &sc->ti_mtx, 0);
2393 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2394 	ifp = sc->ti_ifp = if_alloc(IFT_ETHER);
2395 	if (ifp == NULL) {
2396 		device_printf(dev, "can not if_alloc()\n");
2397 		error = ENOSPC;
2398 		goto fail;
2399 	}
2400 	sc->ti_ifp->if_hwassist = TI_CSUM_FEATURES;
2401 	sc->ti_ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
2402 	sc->ti_ifp->if_capenable = sc->ti_ifp->if_capabilities;
2403 
2404 	/*
2405 	 * Map control/status registers.
2406 	 */
2407 	pci_enable_busmaster(dev);
2408 
2409 	rid = PCIR_BAR(0);
2410 	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2411 	    RF_ACTIVE);
2412 
2413 	if (sc->ti_res == NULL) {
2414 		device_printf(dev, "couldn't map memory\n");
2415 		error = ENXIO;
2416 		goto fail;
2417 	}
2418 
2419 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2420 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2421 
2422 	/* Allocate interrupt */
2423 	rid = 0;
2424 
2425 	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2426 	    RF_SHAREABLE | RF_ACTIVE);
2427 
2428 	if (sc->ti_irq == NULL) {
2429 		device_printf(dev, "couldn't map interrupt\n");
2430 		error = ENXIO;
2431 		goto fail;
2432 	}
2433 
2434 	if (ti_chipinit(sc)) {
2435 		device_printf(dev, "chip initialization failed\n");
2436 		error = ENXIO;
2437 		goto fail;
2438 	}
2439 
2440 	/* Zero out the NIC's on-board SRAM. */
2441 	ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
2442 
2443 	/* Init again -- zeroing memory may have clobbered some registers. */
2444 	if (ti_chipinit(sc)) {
2445 		device_printf(dev, "chip initialization failed\n");
2446 		error = ENXIO;
2447 		goto fail;
2448 	}
2449 
2450 	/*
2451 	 * Get station address from the EEPROM. Note: the manual states
2452 	 * that the MAC address is at offset 0x8c, however the data is
2453 	 * stored as two longwords (since that's how it's loaded into
2454 	 * the NIC). This means the MAC address is actually preceded
2455 	 * by two zero bytes. We need to skip over those.
2456 	 */
2457 	if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2458 		device_printf(dev, "failed to read station address\n");
2459 		error = ENXIO;
2460 		goto fail;
2461 	}
2462 
2463 	/* Allocate working area for memory dump. */
2464 	sc->ti_membuf = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF, M_NOWAIT);
2465 	sc->ti_membuf2 = malloc(sizeof(uint8_t) * TI_WINLEN, M_DEVBUF,
2466 	    M_NOWAIT);
2467 	if (sc->ti_membuf == NULL || sc->ti_membuf2 == NULL) {
2468 		device_printf(dev, "cannot allocate memory buffer\n");
2469 		error = ENOMEM;
2470 		goto fail;
2471 	}
2472 	if ((error = ti_dma_alloc(sc)) != 0)
2473 		goto fail;
2474 
2475 	/*
2476 	 * We really need a better way to tell a 1000baseTX card
2477 	 * from a 1000baseSX one, since in theory there could be
2478 	 * OEMed 1000baseTX cards from lame vendors who aren't
2479 	 * clever enough to change the PCI ID. For the moment
2480 	 * though, the AceNIC is the only copper card available.
2481 	 */
2482 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2483 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2484 		sc->ti_copper = 1;
2485 	/* Ok, it's not the only copper card available. */
2486 	if (pci_get_vendor(dev) == NG_VENDORID &&
2487 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2488 		sc->ti_copper = 1;
2489 
2490 	/* Set default tunable values. */
2491 	ti_sysctl_node(sc);
2492 
2493 	/* Set up ifnet structure */
2494 	ifp->if_softc = sc;
2495 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2496 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2497 	ifp->if_ioctl = ti_ioctl;
2498 	ifp->if_start = ti_start;
2499 	ifp->if_init = ti_init;
2500 	ifp->if_baudrate = IF_Gbps(1UL);
2501 	ifp->if_snd.ifq_drv_maxlen = TI_TX_RING_CNT - 1;
2502 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2503 	IFQ_SET_READY(&ifp->if_snd);
2504 
2505 	/* Set up ifmedia support. */
2506 	if (sc->ti_copper) {
2507 		/*
2508 		 * Copper cards allow manual 10/100 mode selection,
2509 		 * but not manual 1000baseTX mode selection. Why?
2510 		 * Becuase currently there's no way to specify the
2511 		 * master/slave setting through the firmware interface,
2512 		 * so Alteon decided to just bag it and handle it
2513 		 * via autonegotiation.
2514 		 */
2515 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2516 		ifmedia_add(&sc->ifmedia,
2517 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2518 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2519 		ifmedia_add(&sc->ifmedia,
2520 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2521 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2522 		ifmedia_add(&sc->ifmedia,
2523 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2524 	} else {
2525 		/* Fiber cards don't support 10/100 modes. */
2526 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2527 		ifmedia_add(&sc->ifmedia,
2528 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2529 	}
2530 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2531 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2532 
2533 	/*
2534 	 * We're assuming here that card initialization is a sequential
2535 	 * thing.  If it isn't, multiple cards probing at the same time
2536 	 * could stomp on the list of softcs here.
2537 	 */
2538 
2539 	/* Register the device */
2540 	sc->dev = make_dev(&ti_cdevsw, device_get_unit(dev), UID_ROOT,
2541 	    GID_OPERATOR, 0600, "ti%d", device_get_unit(dev));
2542 	sc->dev->si_drv1 = sc;
2543 
2544 	/*
2545 	 * Call MI attach routine.
2546 	 */
2547 	ether_ifattach(ifp, eaddr);
2548 
2549 	/* VLAN capability setup. */
2550 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM |
2551 	    IFCAP_VLAN_HWTAGGING;
2552 	ifp->if_capenable = ifp->if_capabilities;
2553 	/* Tell the upper layer we support VLAN over-sized frames. */
2554 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
2555 
2556 	/* Driver supports link state tracking. */
2557 	ifp->if_capabilities |= IFCAP_LINKSTATE;
2558 	ifp->if_capenable |= IFCAP_LINKSTATE;
2559 
2560 	/* Hook interrupt last to avoid having to lock softc */
2561 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET|INTR_MPSAFE,
2562 	   NULL, ti_intr, sc, &sc->ti_intrhand);
2563 
2564 	if (error) {
2565 		device_printf(dev, "couldn't set up irq\n");
2566 		goto fail;
2567 	}
2568 
2569 fail:
2570 	if (error)
2571 		ti_detach(dev);
2572 
2573 	return (error);
2574 }
2575 
2576 /*
2577  * Shutdown hardware and free up resources. This can be called any
2578  * time after the mutex has been initialized. It is called in both
2579  * the error case in attach and the normal detach case so it needs
2580  * to be careful about only freeing resources that have actually been
2581  * allocated.
2582  */
2583 static int
2584 ti_detach(device_t dev)
2585 {
2586 	struct ti_softc *sc;
2587 	struct ifnet *ifp;
2588 
2589 	sc = device_get_softc(dev);
2590 	if (sc->dev)
2591 		destroy_dev(sc->dev);
2592 	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2593 	ifp = sc->ti_ifp;
2594 	if (device_is_attached(dev)) {
2595 		ether_ifdetach(ifp);
2596 		TI_LOCK(sc);
2597 		ti_stop(sc);
2598 		TI_UNLOCK(sc);
2599 	}
2600 
2601 	/* These should only be active if attach succeeded */
2602 	callout_drain(&sc->ti_watchdog);
2603 	bus_generic_detach(dev);
2604 	ti_dma_free(sc);
2605 	ifmedia_removeall(&sc->ifmedia);
2606 
2607 	if (sc->ti_intrhand)
2608 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2609 	if (sc->ti_irq)
2610 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2611 	if (sc->ti_res) {
2612 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2613 		    sc->ti_res);
2614 	}
2615 	if (ifp)
2616 		if_free(ifp);
2617 	if (sc->ti_membuf)
2618 		free(sc->ti_membuf, M_DEVBUF);
2619 	if (sc->ti_membuf2)
2620 		free(sc->ti_membuf2, M_DEVBUF);
2621 
2622 	mtx_destroy(&sc->ti_mtx);
2623 
2624 	return (0);
2625 }
2626 
2627 #ifdef TI_JUMBO_HDRSPLIT
2628 /*
2629  * If hdr_len is 0, that means that header splitting wasn't done on
2630  * this packet for some reason.  The two most likely reasons are that
2631  * the protocol isn't a supported protocol for splitting, or this
2632  * packet had a fragment offset that wasn't 0.
2633  *
2634  * The header length, if it is non-zero, will always be the length of
2635  * the headers on the packet, but that length could be longer than the
2636  * first mbuf.  So we take the minimum of the two as the actual
2637  * length.
2638  */
2639 static __inline void
2640 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2641 {
2642 	int i = 0;
2643 	int lengths[4] = {0, 0, 0, 0};
2644 	struct mbuf *m, *mp;
2645 
2646 	if (hdr_len != 0)
2647 		top->m_len = min(hdr_len, top->m_len);
2648 	pkt_len -= top->m_len;
2649 	lengths[i++] = top->m_len;
2650 
2651 	mp = top;
2652 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2653 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2654 		pkt_len -= m->m_len;
2655 		lengths[i++] = m->m_len;
2656 		mp = m;
2657 	}
2658 
2659 #if 0
2660 	if (hdr_len != 0)
2661 		printf("got split packet: ");
2662 	else
2663 		printf("got non-split packet: ");
2664 
2665 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2666 	    lengths[1], lengths[2], lengths[3],
2667 	    lengths[0] + lengths[1] + lengths[2] +
2668 	    lengths[3]);
2669 #endif
2670 
2671 	if (pkt_len)
2672 		panic("header splitting didn't");
2673 
2674 	if (m) {
2675 		m_freem(m);
2676 		mp->m_next = NULL;
2677 
2678 	}
2679 	if (mp->m_next != NULL)
2680 		panic("ti_hdr_split: last mbuf in chain should be null");
2681 }
2682 #endif /* TI_JUMBO_HDRSPLIT */
2683 
2684 static void
2685 ti_discard_std(struct ti_softc *sc, int i)
2686 {
2687 
2688 	struct ti_rx_desc *r;
2689 
2690 	r = &sc->ti_rdata.ti_rx_std_ring[i];
2691 	r->ti_len = MCLBYTES - ETHER_ALIGN;
2692 	r->ti_type = TI_BDTYPE_RECV_BD;
2693 	r->ti_flags = 0;
2694 	r->ti_vlan_tag = 0;
2695 	r->ti_tcp_udp_cksum = 0;
2696 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2697 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2698 	r->ti_idx = i;
2699 }
2700 
2701 static void
2702 ti_discard_mini(struct ti_softc *sc, int i)
2703 {
2704 
2705 	struct ti_rx_desc *r;
2706 
2707 	r = &sc->ti_rdata.ti_rx_mini_ring[i];
2708 	r->ti_len = MHLEN - ETHER_ALIGN;
2709 	r->ti_type = TI_BDTYPE_RECV_BD;
2710 	r->ti_flags = TI_BDFLAG_MINI_RING;
2711 	r->ti_vlan_tag = 0;
2712 	r->ti_tcp_udp_cksum = 0;
2713 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2714 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2715 	r->ti_idx = i;
2716 }
2717 
2718 #ifndef TI_SF_BUF_JUMBO
2719 static void
2720 ti_discard_jumbo(struct ti_softc *sc, int i)
2721 {
2722 
2723 	struct ti_rx_desc *r;
2724 
2725 	r = &sc->ti_rdata.ti_rx_jumbo_ring[i];
2726 	r->ti_len = MJUM9BYTES - ETHER_ALIGN;
2727 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
2728 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
2729 	r->ti_vlan_tag = 0;
2730 	r->ti_tcp_udp_cksum = 0;
2731 	if (sc->ti_ifp->if_capenable & IFCAP_RXCSUM)
2732 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
2733 	r->ti_idx = i;
2734 }
2735 #endif
2736 
2737 /*
2738  * Frame reception handling. This is called if there's a frame
2739  * on the receive return list.
2740  *
2741  * Note: we have to be able to handle three possibilities here:
2742  * 1) the frame is from the mini receive ring (can only happen)
2743  *    on Tigon 2 boards)
2744  * 2) the frame is from the jumbo recieve ring
2745  * 3) the frame is from the standard receive ring
2746  */
2747 
2748 static void
2749 ti_rxeof(struct ti_softc *sc)
2750 {
2751 	struct ifnet *ifp;
2752 #ifdef TI_SF_BUF_JUMBO
2753 	bus_dmamap_t map;
2754 #endif
2755 	struct ti_cmd_desc cmd;
2756 	int jumbocnt, minicnt, stdcnt, ti_len;
2757 
2758 	TI_LOCK_ASSERT(sc);
2759 
2760 	ifp = sc->ti_ifp;
2761 
2762 	bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2763 	    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
2764 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)
2765 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2766 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
2767 	if (sc->ti_rdata.ti_rx_mini_ring != NULL)
2768 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2769 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_POSTWRITE);
2770 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2771 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
2772 
2773 	jumbocnt = minicnt = stdcnt = 0;
2774 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2775 		struct ti_rx_desc *cur_rx;
2776 		uint32_t rxidx;
2777 		struct mbuf *m = NULL;
2778 		uint16_t vlan_tag = 0;
2779 		int have_tag = 0;
2780 
2781 		cur_rx =
2782 		    &sc->ti_rdata.ti_rx_return_ring[sc->ti_rx_saved_considx];
2783 		rxidx = cur_rx->ti_idx;
2784 		ti_len = cur_rx->ti_len;
2785 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2786 
2787 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2788 			have_tag = 1;
2789 			vlan_tag = cur_rx->ti_vlan_tag;
2790 		}
2791 
2792 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2793 			jumbocnt++;
2794 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2795 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2796 #ifndef TI_SF_BUF_JUMBO
2797 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2798 				ifp->if_ierrors++;
2799 				ti_discard_jumbo(sc, rxidx);
2800 				continue;
2801 			}
2802 			if (ti_newbuf_jumbo(sc, rxidx, NULL) != 0) {
2803 				ifp->if_iqdrops++;
2804 				ti_discard_jumbo(sc, rxidx);
2805 				continue;
2806 			}
2807 			m->m_len = ti_len;
2808 #else /* !TI_SF_BUF_JUMBO */
2809 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2810 			map = sc->ti_cdata.ti_rx_jumbo_maps[rxidx];
2811 			bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_tag, map,
2812 			    BUS_DMASYNC_POSTREAD);
2813 			bus_dmamap_unload(sc->ti_cdata.ti_rx_jumbo_tag, map);
2814 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2815 				ifp->if_ierrors++;
2816 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2817 				continue;
2818 			}
2819 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2820 				ifp->if_iqdrops++;
2821 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2822 				continue;
2823 			}
2824 #ifdef TI_JUMBO_HDRSPLIT
2825 			if (sc->ti_hdrsplit)
2826 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2827 					     ti_len, rxidx);
2828 			else
2829 #endif /* TI_JUMBO_HDRSPLIT */
2830 			m_adj(m, ti_len - m->m_pkthdr.len);
2831 #endif /* TI_SF_BUF_JUMBO */
2832 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2833 			minicnt++;
2834 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2835 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2836 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2837 				ifp->if_ierrors++;
2838 				ti_discard_mini(sc, rxidx);
2839 				continue;
2840 			}
2841 			if (ti_newbuf_mini(sc, rxidx) != 0) {
2842 				ifp->if_iqdrops++;
2843 				ti_discard_mini(sc, rxidx);
2844 				continue;
2845 			}
2846 			m->m_len = ti_len;
2847 		} else {
2848 			stdcnt++;
2849 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2850 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2851 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2852 				ifp->if_ierrors++;
2853 				ti_discard_std(sc, rxidx);
2854 				continue;
2855 			}
2856 			if (ti_newbuf_std(sc, rxidx) != 0) {
2857 				ifp->if_iqdrops++;
2858 				ti_discard_std(sc, rxidx);
2859 				continue;
2860 			}
2861 			m->m_len = ti_len;
2862 		}
2863 
2864 		m->m_pkthdr.len = ti_len;
2865 		ifp->if_ipackets++;
2866 		m->m_pkthdr.rcvif = ifp;
2867 
2868 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2869 			if (cur_rx->ti_flags & TI_BDFLAG_IP_CKSUM) {
2870 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2871 				if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2872 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2873 			}
2874 			if (cur_rx->ti_flags & TI_BDFLAG_TCP_UDP_CKSUM) {
2875 				m->m_pkthdr.csum_data =
2876 				    cur_rx->ti_tcp_udp_cksum;
2877 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2878 			}
2879 		}
2880 
2881 		/*
2882 		 * If we received a packet with a vlan tag,
2883 		 * tag it before passing the packet upward.
2884 		 */
2885 		if (have_tag) {
2886 			m->m_pkthdr.ether_vtag = vlan_tag;
2887 			m->m_flags |= M_VLANTAG;
2888 		}
2889 		TI_UNLOCK(sc);
2890 		(*ifp->if_input)(ifp, m);
2891 		TI_LOCK(sc);
2892 	}
2893 
2894 	bus_dmamap_sync(sc->ti_cdata.ti_rx_return_ring_tag,
2895 	    sc->ti_cdata.ti_rx_return_ring_map, BUS_DMASYNC_PREREAD);
2896 	/* Only necessary on the Tigon 1. */
2897 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2898 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2899 		    sc->ti_rx_saved_considx);
2900 
2901 	if (stdcnt > 0) {
2902 		bus_dmamap_sync(sc->ti_cdata.ti_rx_std_ring_tag,
2903 		    sc->ti_cdata.ti_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
2904 		TI_UPDATE_STDPROD(sc, sc->ti_std);
2905 	}
2906 	if (minicnt > 0) {
2907 		bus_dmamap_sync(sc->ti_cdata.ti_rx_mini_ring_tag,
2908 		    sc->ti_cdata.ti_rx_mini_ring_map, BUS_DMASYNC_PREWRITE);
2909 		TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2910 	}
2911 	if (jumbocnt > 0) {
2912 		bus_dmamap_sync(sc->ti_cdata.ti_rx_jumbo_ring_tag,
2913 		    sc->ti_cdata.ti_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
2914 		TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2915 	}
2916 }
2917 
2918 static void
2919 ti_txeof(struct ti_softc *sc)
2920 {
2921 	struct ti_txdesc *txd;
2922 	struct ti_tx_desc txdesc;
2923 	struct ti_tx_desc *cur_tx = NULL;
2924 	struct ifnet *ifp;
2925 	int idx;
2926 
2927 	ifp = sc->ti_ifp;
2928 
2929 	txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2930 	if (txd == NULL)
2931 		return;
2932 
2933 	if (sc->ti_rdata.ti_tx_ring != NULL)
2934 		bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
2935 		    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_POSTWRITE);
2936 	/*
2937 	 * Go through our tx ring and free mbufs for those
2938 	 * frames that have been sent.
2939 	 */
2940 	for (idx = sc->ti_tx_saved_considx; idx != sc->ti_tx_considx.ti_idx;
2941 	    TI_INC(idx, TI_TX_RING_CNT)) {
2942 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2943 			ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
2944 			    sizeof(txdesc), &txdesc);
2945 			cur_tx = &txdesc;
2946 		} else
2947 			cur_tx = &sc->ti_rdata.ti_tx_ring[idx];
2948 		sc->ti_txcnt--;
2949 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2950 		if ((cur_tx->ti_flags & TI_BDFLAG_END) == 0)
2951 			continue;
2952 		bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
2953 		    BUS_DMASYNC_POSTWRITE);
2954 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
2955 
2956 		ifp->if_opackets++;
2957 		m_freem(txd->tx_m);
2958 		txd->tx_m = NULL;
2959 		STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txbusyq, tx_q);
2960 		STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txfreeq, txd, tx_q);
2961 		txd = STAILQ_FIRST(&sc->ti_cdata.ti_txbusyq);
2962 	}
2963 	sc->ti_tx_saved_considx = idx;
2964 	if (sc->ti_txcnt == 0)
2965 		sc->ti_timer = 0;
2966 }
2967 
2968 static void
2969 ti_intr(void *xsc)
2970 {
2971 	struct ti_softc *sc;
2972 	struct ifnet *ifp;
2973 
2974 	sc = xsc;
2975 	TI_LOCK(sc);
2976 	ifp = sc->ti_ifp;
2977 
2978 	/* Make sure this is really our interrupt. */
2979 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2980 		TI_UNLOCK(sc);
2981 		return;
2982 	}
2983 
2984 	/* Ack interrupt and stop others from occuring. */
2985 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2986 
2987 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2988 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2989 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_POSTREAD);
2990 		/* Check RX return ring producer/consumer */
2991 		ti_rxeof(sc);
2992 
2993 		/* Check TX ring producer/consumer */
2994 		ti_txeof(sc);
2995 		bus_dmamap_sync(sc->ti_cdata.ti_status_tag,
2996 		    sc->ti_cdata.ti_status_map, BUS_DMASYNC_PREREAD);
2997 	}
2998 
2999 	ti_handle_events(sc);
3000 
3001 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3002 		/* Re-enable interrupts. */
3003 		CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3004 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3005 			ti_start_locked(ifp);
3006 	}
3007 
3008 	TI_UNLOCK(sc);
3009 }
3010 
3011 static void
3012 ti_stats_update(struct ti_softc *sc)
3013 {
3014 	struct ifnet *ifp;
3015 	struct ti_stats *s;
3016 
3017 	ifp = sc->ti_ifp;
3018 
3019 	if (sc->ti_stat_ticks == 0)
3020 		return;
3021 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3022 	    BUS_DMASYNC_POSTREAD);
3023 
3024 	s = &sc->ti_rdata.ti_info->ti_stats;
3025 	ifp->if_collisions += (s->dot3StatsSingleCollisionFrames +
3026 	   s->dot3StatsMultipleCollisionFrames +
3027 	   s->dot3StatsExcessiveCollisions + s->dot3StatsLateCollisions) -
3028 	    ifp->if_collisions;
3029 
3030 	bus_dmamap_sync(sc->ti_cdata.ti_gib_tag, sc->ti_cdata.ti_gib_map,
3031 	    BUS_DMASYNC_PREREAD);
3032 }
3033 
3034 /*
3035  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3036  * pointers to descriptors.
3037  */
3038 static int
3039 ti_encap(struct ti_softc *sc, struct mbuf **m_head)
3040 {
3041 	struct ti_txdesc *txd;
3042 	struct ti_tx_desc *f;
3043 	struct ti_tx_desc txdesc;
3044 	struct mbuf *m;
3045 	bus_dma_segment_t txsegs[TI_MAXTXSEGS];
3046 	uint16_t csum_flags;
3047 	int error, frag, i, nseg;
3048 
3049 	if ((txd = STAILQ_FIRST(&sc->ti_cdata.ti_txfreeq)) == NULL)
3050 		return (ENOBUFS);
3051 
3052 	error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3053 	    *m_head, txsegs, &nseg, 0);
3054 	if (error == EFBIG) {
3055 		m = m_defrag(*m_head, M_DONTWAIT);
3056 		if (m == NULL) {
3057 			m_freem(*m_head);
3058 			*m_head = NULL;
3059 			return (ENOMEM);
3060 		}
3061 		*m_head = m;
3062 		error = bus_dmamap_load_mbuf_sg(sc->ti_cdata.ti_tx_tag,
3063 		    txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
3064 		if (error) {
3065 			m_freem(*m_head);
3066 			*m_head = NULL;
3067 			return (error);
3068 		}
3069 	} else if (error != 0)
3070 		return (error);
3071 	if (nseg == 0) {
3072 		m_freem(*m_head);
3073 		*m_head = NULL;
3074 		return (EIO);
3075 	}
3076 
3077 	if (sc->ti_txcnt + nseg >= TI_TX_RING_CNT) {
3078 		bus_dmamap_unload(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap);
3079 		return (ENOBUFS);
3080 	}
3081 	bus_dmamap_sync(sc->ti_cdata.ti_tx_tag, txd->tx_dmamap,
3082 	    BUS_DMASYNC_PREWRITE);
3083 
3084 	m = *m_head;
3085 	csum_flags = 0;
3086 	if (m->m_pkthdr.csum_flags) {
3087 		if (m->m_pkthdr.csum_flags & CSUM_IP)
3088 			csum_flags |= TI_BDFLAG_IP_CKSUM;
3089 		if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3090 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
3091 		if (m->m_flags & M_LASTFRAG)
3092 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
3093 		else if (m->m_flags & M_FRAG)
3094 			csum_flags |= TI_BDFLAG_IP_FRAG;
3095 	}
3096 
3097 	frag = sc->ti_tx_saved_prodidx;
3098 	for (i = 0; i < nseg; i++) {
3099 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3100 			bzero(&txdesc, sizeof(txdesc));
3101 			f = &txdesc;
3102 		} else
3103 			f = &sc->ti_rdata.ti_tx_ring[frag];
3104 		ti_hostaddr64(&f->ti_addr, txsegs[i].ds_addr);
3105 		f->ti_len = txsegs[i].ds_len;
3106 		f->ti_flags = csum_flags;
3107 		if (m->m_flags & M_VLANTAG) {
3108 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
3109 			f->ti_vlan_tag = m->m_pkthdr.ether_vtag;
3110 		} else {
3111 			f->ti_vlan_tag = 0;
3112 		}
3113 
3114 		if (sc->ti_hwrev == TI_HWREV_TIGON)
3115 			ti_mem_write(sc, TI_TX_RING_BASE + frag *
3116 			    sizeof(txdesc), sizeof(txdesc), &txdesc);
3117 		TI_INC(frag, TI_TX_RING_CNT);
3118 	}
3119 
3120 	sc->ti_tx_saved_prodidx = frag;
3121 	/* set TI_BDFLAG_END on the last descriptor */
3122 	frag = (frag + TI_TX_RING_CNT - 1) % TI_TX_RING_CNT;
3123 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3124 		txdesc.ti_flags |= TI_BDFLAG_END;
3125 		ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
3126 		    sizeof(txdesc), &txdesc);
3127 	} else
3128 		sc->ti_rdata.ti_tx_ring[frag].ti_flags |= TI_BDFLAG_END;
3129 
3130 	STAILQ_REMOVE_HEAD(&sc->ti_cdata.ti_txfreeq, tx_q);
3131 	STAILQ_INSERT_TAIL(&sc->ti_cdata.ti_txbusyq, txd, tx_q);
3132 	txd->tx_m = m;
3133 	sc->ti_txcnt += nseg;
3134 
3135 	return (0);
3136 }
3137 
3138 static void
3139 ti_start(struct ifnet *ifp)
3140 {
3141 	struct ti_softc *sc;
3142 
3143 	sc = ifp->if_softc;
3144 	TI_LOCK(sc);
3145 	ti_start_locked(ifp);
3146 	TI_UNLOCK(sc);
3147 }
3148 
3149 /*
3150  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3151  * to the mbuf data regions directly in the transmit descriptors.
3152  */
3153 static void
3154 ti_start_locked(struct ifnet *ifp)
3155 {
3156 	struct ti_softc *sc;
3157 	struct mbuf *m_head = NULL;
3158 	int enq = 0;
3159 
3160 	sc = ifp->if_softc;
3161 
3162 	for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
3163 	    sc->ti_txcnt < (TI_TX_RING_CNT - 16);) {
3164 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3165 		if (m_head == NULL)
3166 			break;
3167 
3168 		/*
3169 		 * XXX
3170 		 * safety overkill.  If this is a fragmented packet chain
3171 		 * with delayed TCP/UDP checksums, then only encapsulate
3172 		 * it if we have enough descriptors to handle the entire
3173 		 * chain at once.
3174 		 * (paranoia -- may not actually be needed)
3175 		 */
3176 		if (m_head->m_flags & M_FIRSTFRAG &&
3177 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3178 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
3179 			    m_head->m_pkthdr.csum_data + 16) {
3180 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3181 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3182 				break;
3183 			}
3184 		}
3185 
3186 		/*
3187 		 * Pack the data into the transmit ring. If we
3188 		 * don't have room, set the OACTIVE flag and wait
3189 		 * for the NIC to drain the ring.
3190 		 */
3191 		if (ti_encap(sc, &m_head)) {
3192 			if (m_head == NULL)
3193 				break;
3194 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3195 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3196 			break;
3197 		}
3198 
3199 		enq++;
3200 		/*
3201 		 * If there's a BPF listener, bounce a copy of this frame
3202 		 * to him.
3203 		 */
3204 		ETHER_BPF_MTAP(ifp, m_head);
3205 	}
3206 
3207 	if (enq > 0) {
3208 		if (sc->ti_rdata.ti_tx_ring != NULL)
3209 			bus_dmamap_sync(sc->ti_cdata.ti_tx_ring_tag,
3210 			    sc->ti_cdata.ti_tx_ring_map, BUS_DMASYNC_PREWRITE);
3211 		/* Transmit */
3212 		CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, sc->ti_tx_saved_prodidx);
3213 
3214 		/*
3215 		 * Set a timeout in case the chip goes out to lunch.
3216 		 */
3217 		sc->ti_timer = 5;
3218 	}
3219 }
3220 
3221 static void
3222 ti_init(void *xsc)
3223 {
3224 	struct ti_softc *sc;
3225 
3226 	sc = xsc;
3227 	TI_LOCK(sc);
3228 	ti_init_locked(sc);
3229 	TI_UNLOCK(sc);
3230 }
3231 
3232 static void
3233 ti_init_locked(void *xsc)
3234 {
3235 	struct ti_softc *sc = xsc;
3236 
3237 	if (sc->ti_ifp->if_drv_flags & IFF_DRV_RUNNING)
3238 		return;
3239 
3240 	/* Cancel pending I/O and flush buffers. */
3241 	ti_stop(sc);
3242 
3243 	/* Init the gen info block, ring control blocks and firmware. */
3244 	if (ti_gibinit(sc)) {
3245 		device_printf(sc->ti_dev, "initialization failure\n");
3246 		return;
3247 	}
3248 }
3249 
3250 static void ti_init2(struct ti_softc *sc)
3251 {
3252 	struct ti_cmd_desc cmd;
3253 	struct ifnet *ifp;
3254 	uint8_t *ea;
3255 	struct ifmedia *ifm;
3256 	int tmp;
3257 
3258 	TI_LOCK_ASSERT(sc);
3259 
3260 	ifp = sc->ti_ifp;
3261 
3262 	/* Specify MTU and interface index. */
3263 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_get_unit(sc->ti_dev));
3264 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
3265 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3266 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
3267 
3268 	/* Load our MAC address. */
3269 	ea = IF_LLADDR(sc->ti_ifp);
3270 	CSR_WRITE_4(sc, TI_GCR_PAR0, (ea[0] << 8) | ea[1]);
3271 	CSR_WRITE_4(sc, TI_GCR_PAR1,
3272 	    (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]);
3273 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
3274 
3275 	/* Enable or disable promiscuous mode as needed. */
3276 	if (ifp->if_flags & IFF_PROMISC) {
3277 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
3278 	} else {
3279 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
3280 	}
3281 
3282 	/* Program multicast filter. */
3283 	ti_setmulti(sc);
3284 
3285 	/*
3286 	 * If this is a Tigon 1, we should tell the
3287 	 * firmware to use software packet filtering.
3288 	 */
3289 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
3290 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
3291 	}
3292 
3293 	/* Init RX ring. */
3294 	if (ti_init_rx_ring_std(sc) != 0) {
3295 		/* XXX */
3296 		device_printf(sc->ti_dev, "no memory for std Rx buffers.\n");
3297 		return;
3298 	}
3299 
3300 	/* Init jumbo RX ring. */
3301 	if (ifp->if_mtu > ETHERMTU + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) {
3302 		if (ti_init_rx_ring_jumbo(sc) != 0) {
3303 			/* XXX */
3304 			device_printf(sc->ti_dev,
3305 			    "no memory for jumbo Rx buffers.\n");
3306 			return;
3307 		}
3308 	}
3309 
3310 	/*
3311 	 * If this is a Tigon 2, we can also configure the
3312 	 * mini ring.
3313 	 */
3314 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
3315 		if (ti_init_rx_ring_mini(sc) != 0) {
3316 			/* XXX */
3317 			device_printf(sc->ti_dev,
3318 			    "no memory for mini Rx buffers.\n");
3319 			return;
3320 		}
3321 	}
3322 
3323 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
3324 	sc->ti_rx_saved_considx = 0;
3325 
3326 	/* Init TX ring. */
3327 	ti_init_tx_ring(sc);
3328 
3329 	/* Tell firmware we're alive. */
3330 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
3331 
3332 	/* Enable host interrupts. */
3333 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
3334 
3335 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3336 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3337 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3338 
3339 	/*
3340 	 * Make sure to set media properly. We have to do this
3341 	 * here since we have to issue commands in order to set
3342 	 * the link negotiation and we can't issue commands until
3343 	 * the firmware is running.
3344 	 */
3345 	ifm = &sc->ifmedia;
3346 	tmp = ifm->ifm_media;
3347 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
3348 	ti_ifmedia_upd_locked(sc);
3349 	ifm->ifm_media = tmp;
3350 }
3351 
3352 /*
3353  * Set media options.
3354  */
3355 static int
3356 ti_ifmedia_upd(struct ifnet *ifp)
3357 {
3358 	struct ti_softc *sc;
3359 	int error;
3360 
3361 	sc = ifp->if_softc;
3362 	TI_LOCK(sc);
3363 	error = ti_ifmedia_upd(ifp);
3364 	TI_UNLOCK(sc);
3365 
3366 	return (error);
3367 }
3368 
3369 static int
3370 ti_ifmedia_upd_locked(struct ti_softc *sc)
3371 {
3372 	struct ifmedia *ifm;
3373 	struct ti_cmd_desc cmd;
3374 	uint32_t flowctl;
3375 
3376 	ifm = &sc->ifmedia;
3377 
3378 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3379 		return (EINVAL);
3380 
3381 	flowctl = 0;
3382 
3383 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
3384 	case IFM_AUTO:
3385 		/*
3386 		 * Transmit flow control doesn't work on the Tigon 1.
3387 		 */
3388 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3389 
3390 		/*
3391 		 * Transmit flow control can also cause problems on the
3392 		 * Tigon 2, apparantly with both the copper and fiber
3393 		 * boards.  The symptom is that the interface will just
3394 		 * hang.  This was reproduced with Alteon 180 switches.
3395 		 */
3396 #if 0
3397 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3398 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3399 #endif
3400 
3401 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3402 		    TI_GLNK_FULL_DUPLEX| flowctl |
3403 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3404 
3405 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3406 #if 0
3407 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3408 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3409 #endif
3410 
3411 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3412 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3413 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3414 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3415 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3416 		break;
3417 	case IFM_1000_SX:
3418 	case IFM_1000_T:
3419 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3420 #if 0
3421 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3422 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3423 #endif
3424 
3425 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3426 		    flowctl |TI_GLNK_ENB);
3427 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3428 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3429 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3430 		}
3431 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3432 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3433 		break;
3434 	case IFM_100_FX:
3435 	case IFM_10_FL:
3436 	case IFM_100_TX:
3437 	case IFM_10_T:
3438 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3439 #if 0
3440 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3441 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3442 #endif
3443 
3444 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3445 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3446 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3447 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3448 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3449 		} else {
3450 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3451 		}
3452 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3453 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3454 		} else {
3455 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3456 		}
3457 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3458 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3459 		break;
3460 	}
3461 
3462 	return (0);
3463 }
3464 
3465 /*
3466  * Report current media status.
3467  */
3468 static void
3469 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3470 {
3471 	struct ti_softc *sc;
3472 	uint32_t media = 0;
3473 
3474 	sc = ifp->if_softc;
3475 
3476 	TI_LOCK(sc);
3477 
3478 	ifmr->ifm_status = IFM_AVALID;
3479 	ifmr->ifm_active = IFM_ETHER;
3480 
3481 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
3482 		TI_UNLOCK(sc);
3483 		return;
3484 	}
3485 
3486 	ifmr->ifm_status |= IFM_ACTIVE;
3487 
3488 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3489 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3490 		if (sc->ti_copper)
3491 			ifmr->ifm_active |= IFM_1000_T;
3492 		else
3493 			ifmr->ifm_active |= IFM_1000_SX;
3494 		if (media & TI_GLNK_FULL_DUPLEX)
3495 			ifmr->ifm_active |= IFM_FDX;
3496 		else
3497 			ifmr->ifm_active |= IFM_HDX;
3498 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3499 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3500 		if (sc->ti_copper) {
3501 			if (media & TI_LNK_100MB)
3502 				ifmr->ifm_active |= IFM_100_TX;
3503 			if (media & TI_LNK_10MB)
3504 				ifmr->ifm_active |= IFM_10_T;
3505 		} else {
3506 			if (media & TI_LNK_100MB)
3507 				ifmr->ifm_active |= IFM_100_FX;
3508 			if (media & TI_LNK_10MB)
3509 				ifmr->ifm_active |= IFM_10_FL;
3510 		}
3511 		if (media & TI_LNK_FULL_DUPLEX)
3512 			ifmr->ifm_active |= IFM_FDX;
3513 		if (media & TI_LNK_HALF_DUPLEX)
3514 			ifmr->ifm_active |= IFM_HDX;
3515 	}
3516 	TI_UNLOCK(sc);
3517 }
3518 
3519 static int
3520 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3521 {
3522 	struct ti_softc *sc = ifp->if_softc;
3523 	struct ifreq *ifr = (struct ifreq *) data;
3524 	struct ti_cmd_desc cmd;
3525 	int mask, error = 0;
3526 
3527 	switch (command) {
3528 	case SIOCSIFMTU:
3529 		TI_LOCK(sc);
3530 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > TI_JUMBO_MTU)
3531 			error = EINVAL;
3532 		else {
3533 			ifp->if_mtu = ifr->ifr_mtu;
3534 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3535 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3536 				ti_init_locked(sc);
3537 			}
3538 		}
3539 		TI_UNLOCK(sc);
3540 		break;
3541 	case SIOCSIFFLAGS:
3542 		TI_LOCK(sc);
3543 		if (ifp->if_flags & IFF_UP) {
3544 			/*
3545 			 * If only the state of the PROMISC flag changed,
3546 			 * then just use the 'set promisc mode' command
3547 			 * instead of reinitializing the entire NIC. Doing
3548 			 * a full re-init means reloading the firmware and
3549 			 * waiting for it to start up, which may take a
3550 			 * second or two.
3551 			 */
3552 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3553 			    ifp->if_flags & IFF_PROMISC &&
3554 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3555 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3556 				    TI_CMD_CODE_PROMISC_ENB, 0);
3557 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3558 			    !(ifp->if_flags & IFF_PROMISC) &&
3559 			    sc->ti_if_flags & IFF_PROMISC) {
3560 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3561 				    TI_CMD_CODE_PROMISC_DIS, 0);
3562 			} else
3563 				ti_init_locked(sc);
3564 		} else {
3565 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3566 				ti_stop(sc);
3567 			}
3568 		}
3569 		sc->ti_if_flags = ifp->if_flags;
3570 		TI_UNLOCK(sc);
3571 		break;
3572 	case SIOCADDMULTI:
3573 	case SIOCDELMULTI:
3574 		TI_LOCK(sc);
3575 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3576 			ti_setmulti(sc);
3577 		TI_UNLOCK(sc);
3578 		break;
3579 	case SIOCSIFMEDIA:
3580 	case SIOCGIFMEDIA:
3581 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3582 		break;
3583 	case SIOCSIFCAP:
3584 		TI_LOCK(sc);
3585 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3586 		if ((mask & IFCAP_TXCSUM) != 0 &&
3587 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3588 			ifp->if_capenable ^= IFCAP_TXCSUM;
3589 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3590 				ifp->if_hwassist |= TI_CSUM_FEATURES;
3591                         else
3592 				ifp->if_hwassist &= ~TI_CSUM_FEATURES;
3593                 }
3594 		if ((mask & IFCAP_RXCSUM) != 0 &&
3595 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
3596 			ifp->if_capenable ^= IFCAP_RXCSUM;
3597 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3598 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0)
3599                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3600 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
3601 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
3602 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
3603 		if ((mask & (IFCAP_TXCSUM | IFCAP_RXCSUM |
3604 		    IFCAP_VLAN_HWTAGGING)) != 0) {
3605 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3606 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3607 				ti_init_locked(sc);
3608 			}
3609 		}
3610 		TI_UNLOCK(sc);
3611 		VLAN_CAPABILITIES(ifp);
3612 		break;
3613 	default:
3614 		error = ether_ioctl(ifp, command, data);
3615 		break;
3616 	}
3617 
3618 	return (error);
3619 }
3620 
3621 static int
3622 ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3623 {
3624 	struct ti_softc *sc;
3625 
3626 	sc = dev->si_drv1;
3627 	if (sc == NULL)
3628 		return (ENODEV);
3629 
3630 	TI_LOCK(sc);
3631 	sc->ti_flags |= TI_FLAG_DEBUGING;
3632 	TI_UNLOCK(sc);
3633 
3634 	return (0);
3635 }
3636 
3637 static int
3638 ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3639 {
3640 	struct ti_softc *sc;
3641 
3642 	sc = dev->si_drv1;
3643 	if (sc == NULL)
3644 		return (ENODEV);
3645 
3646 	TI_LOCK(sc);
3647 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3648 	TI_UNLOCK(sc);
3649 
3650 	return (0);
3651 }
3652 
3653 /*
3654  * This ioctl routine goes along with the Tigon character device.
3655  */
3656 static int
3657 ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
3658     struct thread *td)
3659 {
3660 	struct ti_softc *sc;
3661 	int error;
3662 
3663 	sc = dev->si_drv1;
3664 	if (sc == NULL)
3665 		return (ENODEV);
3666 
3667 	error = 0;
3668 
3669 	switch (cmd) {
3670 	case TIIOCGETSTATS:
3671 	{
3672 		struct ti_stats *outstats;
3673 
3674 		outstats = (struct ti_stats *)addr;
3675 
3676 		TI_LOCK(sc);
3677 		bus_dmamap_sync(sc->ti_cdata.ti_gib_tag,
3678 		    sc->ti_cdata.ti_gib_map, BUS_DMASYNC_POSTREAD);
3679 		bcopy(&sc->ti_rdata.ti_info->ti_stats, outstats,
3680 		    sizeof(struct ti_stats));
3681 		TI_UNLOCK(sc);
3682 		break;
3683 	}
3684 	case TIIOCGETPARAMS:
3685 	{
3686 		struct ti_params *params;
3687 
3688 		params = (struct ti_params *)addr;
3689 
3690 		TI_LOCK(sc);
3691 		params->ti_stat_ticks = sc->ti_stat_ticks;
3692 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3693 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3694 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3695 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3696 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3697 		params->param_mask = TI_PARAM_ALL;
3698 		TI_UNLOCK(sc);
3699 		break;
3700 	}
3701 	case TIIOCSETPARAMS:
3702 	{
3703 		struct ti_params *params;
3704 
3705 		params = (struct ti_params *)addr;
3706 
3707 		TI_LOCK(sc);
3708 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3709 			sc->ti_stat_ticks = params->ti_stat_ticks;
3710 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3711 		}
3712 
3713 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3714 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3715 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3716 				    sc->ti_rx_coal_ticks);
3717 		}
3718 
3719 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3720 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3721 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3722 				    sc->ti_tx_coal_ticks);
3723 		}
3724 
3725 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3726 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3727 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3728 				    sc->ti_rx_max_coal_bds);
3729 		}
3730 
3731 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3732 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3733 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3734 				    sc->ti_tx_max_coal_bds);
3735 		}
3736 
3737 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3738 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3739 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3740 				    sc->ti_tx_buf_ratio);
3741 		}
3742 		TI_UNLOCK(sc);
3743 		break;
3744 	}
3745 	case TIIOCSETTRACE: {
3746 		ti_trace_type trace_type;
3747 
3748 		trace_type = *(ti_trace_type *)addr;
3749 
3750 		/*
3751 		 * Set tracing to whatever the user asked for.  Setting
3752 		 * this register to 0 should have the effect of disabling
3753 		 * tracing.
3754 		 */
3755 		TI_LOCK(sc);
3756 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3757 		TI_UNLOCK(sc);
3758 		break;
3759 	}
3760 	case TIIOCGETTRACE: {
3761 		struct ti_trace_buf *trace_buf;
3762 		uint32_t trace_start, cur_trace_ptr, trace_len;
3763 
3764 		trace_buf = (struct ti_trace_buf *)addr;
3765 
3766 		TI_LOCK(sc);
3767 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3768 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3769 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3770 #if 0
3771 		if_printf(sc->ti_ifp, "trace_start = %#x, cur_trace_ptr = %#x, "
3772 		       "trace_len = %d\n", trace_start,
3773 		       cur_trace_ptr, trace_len);
3774 		if_printf(sc->ti_ifp, "trace_buf->buf_len = %d\n",
3775 		       trace_buf->buf_len);
3776 #endif
3777 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3778 		    trace_buf->buf_len), (caddr_t)trace_buf->buf, 1, 1);
3779 		if (error == 0) {
3780 			trace_buf->fill_len = min(trace_len,
3781 			    trace_buf->buf_len);
3782 			if (cur_trace_ptr < trace_start)
3783 				trace_buf->cur_trace_ptr =
3784 				    trace_start - cur_trace_ptr;
3785 			else
3786 				trace_buf->cur_trace_ptr =
3787 				    cur_trace_ptr - trace_start;
3788 		} else
3789 			trace_buf->fill_len = 0;
3790 		TI_UNLOCK(sc);
3791 		break;
3792 	}
3793 
3794 	/*
3795 	 * For debugging, five ioctls are needed:
3796 	 * ALT_ATTACH
3797 	 * ALT_READ_TG_REG
3798 	 * ALT_WRITE_TG_REG
3799 	 * ALT_READ_TG_MEM
3800 	 * ALT_WRITE_TG_MEM
3801 	 */
3802 	case ALT_ATTACH:
3803 		/*
3804 		 * From what I can tell, Alteon's Solaris Tigon driver
3805 		 * only has one character device, so you have to attach
3806 		 * to the Tigon board you're interested in.  This seems
3807 		 * like a not-so-good way to do things, since unless you
3808 		 * subsequently specify the unit number of the device
3809 		 * you're interested in every ioctl, you'll only be
3810 		 * able to debug one board at a time.
3811 		 */
3812 		break;
3813 	case ALT_READ_TG_MEM:
3814 	case ALT_WRITE_TG_MEM:
3815 	{
3816 		struct tg_mem *mem_param;
3817 		uint32_t sram_end, scratch_end;
3818 
3819 		mem_param = (struct tg_mem *)addr;
3820 
3821 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3822 			sram_end = TI_END_SRAM_I;
3823 			scratch_end = TI_END_SCRATCH_I;
3824 		} else {
3825 			sram_end = TI_END_SRAM_II;
3826 			scratch_end = TI_END_SCRATCH_II;
3827 		}
3828 
3829 		/*
3830 		 * For now, we'll only handle accessing regular SRAM,
3831 		 * nothing else.
3832 		 */
3833 		TI_LOCK(sc);
3834 		if (mem_param->tgAddr >= TI_BEG_SRAM &&
3835 		    mem_param->tgAddr + mem_param->len <= sram_end) {
3836 			/*
3837 			 * In this instance, we always copy to/from user
3838 			 * space, so the user space argument is set to 1.
3839 			 */
3840 			error = ti_copy_mem(sc, mem_param->tgAddr,
3841 			    mem_param->len, mem_param->userAddr, 1,
3842 			    cmd == ALT_READ_TG_MEM ? 1 : 0);
3843 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH &&
3844 		    mem_param->tgAddr <= scratch_end) {
3845 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3846 			    mem_param->len, mem_param->userAddr, 1,
3847 			    cmd == ALT_READ_TG_MEM ?  1 : 0, TI_PROCESSOR_A);
3848 		} else if (mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG &&
3849 		    mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG) {
3850 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3851 				if_printf(sc->ti_ifp,
3852 				    "invalid memory range for Tigon I\n");
3853 				error = EINVAL;
3854 				break;
3855 			}
3856 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3857 			    TI_SCRATCH_DEBUG_OFF, mem_param->len,
3858 			    mem_param->userAddr, 1,
3859 			    cmd == ALT_READ_TG_MEM ? 1 : 0, TI_PROCESSOR_B);
3860 		} else {
3861 			if_printf(sc->ti_ifp, "memory address %#x len %d is "
3862 			        "out of supported range\n",
3863 			        mem_param->tgAddr, mem_param->len);
3864 			error = EINVAL;
3865 		}
3866 		TI_UNLOCK(sc);
3867 		break;
3868 	}
3869 	case ALT_READ_TG_REG:
3870 	case ALT_WRITE_TG_REG:
3871 	{
3872 		struct tg_reg *regs;
3873 		uint32_t tmpval;
3874 
3875 		regs = (struct tg_reg *)addr;
3876 
3877 		/*
3878 		 * Make sure the address in question isn't out of range.
3879 		 */
3880 		if (regs->addr > TI_REG_MAX) {
3881 			error = EINVAL;
3882 			break;
3883 		}
3884 		TI_LOCK(sc);
3885 		if (cmd == ALT_READ_TG_REG) {
3886 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3887 			    regs->addr, &tmpval, 1);
3888 			regs->data = ntohl(tmpval);
3889 #if 0
3890 			if ((regs->addr == TI_CPU_STATE)
3891 			 || (regs->addr == TI_CPU_CTL_B)) {
3892 				if_printf(sc->ti_ifp, "register %#x = %#x\n",
3893 				       regs->addr, tmpval);
3894 			}
3895 #endif
3896 		} else {
3897 			tmpval = htonl(regs->data);
3898 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3899 			    regs->addr, &tmpval, 1);
3900 		}
3901 		TI_UNLOCK(sc);
3902 		break;
3903 	}
3904 	default:
3905 		error = ENOTTY;
3906 		break;
3907 	}
3908 	return (error);
3909 }
3910 
3911 static void
3912 ti_watchdog(void *arg)
3913 {
3914 	struct ti_softc *sc;
3915 	struct ifnet *ifp;
3916 
3917 	sc = arg;
3918 	TI_LOCK_ASSERT(sc);
3919 	callout_reset(&sc->ti_watchdog, hz, ti_watchdog, sc);
3920 	if (sc->ti_timer == 0 || --sc->ti_timer > 0)
3921 		return;
3922 
3923 	/*
3924 	 * When we're debugging, the chip is often stopped for long periods
3925 	 * of time, and that would normally cause the watchdog timer to fire.
3926 	 * Since that impedes debugging, we don't want to do that.
3927 	 */
3928 	if (sc->ti_flags & TI_FLAG_DEBUGING)
3929 		return;
3930 
3931 	ifp = sc->ti_ifp;
3932 	if_printf(ifp, "watchdog timeout -- resetting\n");
3933 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3934 	ti_init_locked(sc);
3935 
3936 	ifp->if_oerrors++;
3937 }
3938 
3939 /*
3940  * Stop the adapter and free any mbufs allocated to the
3941  * RX and TX lists.
3942  */
3943 static void
3944 ti_stop(struct ti_softc *sc)
3945 {
3946 	struct ifnet *ifp;
3947 	struct ti_cmd_desc cmd;
3948 
3949 	TI_LOCK_ASSERT(sc);
3950 
3951 	ifp = sc->ti_ifp;
3952 
3953 	/* Disable host interrupts. */
3954 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3955 	/*
3956 	 * Tell firmware we're shutting down.
3957 	 */
3958 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3959 
3960 	/* Halt and reinitialize. */
3961 	if (ti_chipinit(sc) == 0) {
3962 		ti_mem_zero(sc, 0x2000, 0x100000 - 0x2000);
3963 		/* XXX ignore init errors. */
3964 		ti_chipinit(sc);
3965 	}
3966 
3967 	/* Free the RX lists. */
3968 	ti_free_rx_ring_std(sc);
3969 
3970 	/* Free jumbo RX list. */
3971 	ti_free_rx_ring_jumbo(sc);
3972 
3973 	/* Free mini RX list. */
3974 	ti_free_rx_ring_mini(sc);
3975 
3976 	/* Free TX buffers. */
3977 	ti_free_tx_ring(sc);
3978 
3979 	sc->ti_ev_prodidx.ti_idx = 0;
3980 	sc->ti_return_prodidx.ti_idx = 0;
3981 	sc->ti_tx_considx.ti_idx = 0;
3982 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3983 
3984 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3985 	callout_stop(&sc->ti_watchdog);
3986 }
3987 
3988 /*
3989  * Stop all chip I/O so that the kernel's probe routines don't
3990  * get confused by errant DMAs when rebooting.
3991  */
3992 static int
3993 ti_shutdown(device_t dev)
3994 {
3995 	struct ti_softc *sc;
3996 
3997 	sc = device_get_softc(dev);
3998 	TI_LOCK(sc);
3999 	ti_chipinit(sc);
4000 	TI_UNLOCK(sc);
4001 
4002 	return (0);
4003 }
4004 
4005 static void
4006 ti_sysctl_node(struct ti_softc *sc)
4007 {
4008 	struct sysctl_ctx_list *ctx;
4009 	struct sysctl_oid_list *child;
4010 	char tname[32];
4011 
4012 	ctx = device_get_sysctl_ctx(sc->ti_dev);
4013 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ti_dev));
4014 
4015 	/* Use DAC */
4016 	sc->ti_dac = 1;
4017 	snprintf(tname, sizeof(tname), "dev.ti.%d.dac",
4018 	    device_get_unit(sc->ti_dev));
4019 	TUNABLE_INT_FETCH(tname, &sc->ti_dac);
4020 
4021 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_coal_ticks", CTLFLAG_RW,
4022 	    &sc->ti_rx_coal_ticks, 0, "Receive coalcesced ticks");
4023 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_max_coal_bds", CTLFLAG_RW,
4024 	    &sc->ti_rx_max_coal_bds, 0, "Receive max coalcesced BDs");
4025 
4026 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_coal_ticks", CTLFLAG_RW,
4027 	    &sc->ti_tx_coal_ticks, 0, "Send coalcesced ticks");
4028 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_max_coal_bds", CTLFLAG_RW,
4029 	    &sc->ti_tx_max_coal_bds, 0, "Send max coalcesced BDs");
4030 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_buf_ratio", CTLFLAG_RW,
4031 	    &sc->ti_tx_buf_ratio, 0,
4032 	    "Ratio of NIC memory devoted to TX buffer");
4033 
4034 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "stat_ticks", CTLFLAG_RW,
4035 	    &sc->ti_stat_ticks, 0,
4036 	    "Number of clock ticks for statistics update interval");
4037 
4038 	/* Pull in device tunables. */
4039 	sc->ti_rx_coal_ticks = 170;
4040 	resource_int_value(device_get_name(sc->ti_dev),
4041 	    device_get_unit(sc->ti_dev), "rx_coal_ticks",
4042 	    &sc->ti_rx_coal_ticks);
4043 	sc->ti_rx_max_coal_bds = 64;
4044 	resource_int_value(device_get_name(sc->ti_dev),
4045 	    device_get_unit(sc->ti_dev), "rx_max_coal_bds",
4046 	    &sc->ti_rx_max_coal_bds);
4047 
4048 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
4049 	resource_int_value(device_get_name(sc->ti_dev),
4050 	    device_get_unit(sc->ti_dev), "tx_coal_ticks",
4051 	    &sc->ti_tx_coal_ticks);
4052 	sc->ti_tx_max_coal_bds = 32;
4053 	resource_int_value(device_get_name(sc->ti_dev),
4054 	    device_get_unit(sc->ti_dev), "tx_max_coal_bds",
4055 	    &sc->ti_tx_max_coal_bds);
4056 	sc->ti_tx_buf_ratio = 21;
4057 	resource_int_value(device_get_name(sc->ti_dev),
4058 	    device_get_unit(sc->ti_dev), "tx_buf_ratio",
4059 	    &sc->ti_tx_buf_ratio);
4060 
4061 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
4062 	resource_int_value(device_get_name(sc->ti_dev),
4063 	    device_get_unit(sc->ti_dev), "stat_ticks",
4064 	    &sc->ti_stat_ticks);
4065 }
4066