xref: /freebsd/sys/dev/ti/if_ti.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 /*
36  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37  * Manuals, sample driver and firmware source kits are available
38  * from http://www.alteon.com/support/openkits.
39  *
40  * Written by Bill Paul <wpaul@ctr.columbia.edu>
41  * Electrical Engineering Department
42  * Columbia University, New York City
43  */
44 
45 /*
46  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50  * filtering and jumbo (9014 byte) frames. The hardware is largely
51  * controlled by firmware, which must be loaded into the NIC during
52  * initialization.
53  *
54  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55  * revision, which supports new features such as extended commands,
56  * extended jumbo receive ring desciptors and a mini receive ring.
57  *
58  * Alteon Networks is to be commended for releasing such a vast amount
59  * of development material for the Tigon NIC without requiring an NDA
60  * (although they really should have done it a long time ago). With
61  * any luck, the other vendors will finally wise up and follow Alteon's
62  * stellar example.
63  *
64  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65  * this driver by #including it as a C header file. This bloats the
66  * driver somewhat, but it's the easiest method considering that the
67  * driver code and firmware code need to be kept in sync. The source
68  * for the firmware is not provided with the FreeBSD distribution since
69  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70  *
71  * The following people deserve special thanks:
72  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73  *   for testing
74  * - Raymond Lee of Netgear, for providing a pair of Netgear
75  *   GA620 Tigon 2 boards for testing
76  * - Ulf Zimmermann, for bringing the GA260 to my attention and
77  *   convincing me to write this driver.
78  * - Andrew Gallatin for providing FreeBSD/Alpha support.
79  */
80 
81 #include "opt_ti.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/queue.h>
91 #include <sys/conf.h>
92 
93 #include <net/if.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 #include <net/if_vlan_var.h>
100 
101 #include <net/bpf.h>
102 
103 #include <netinet/in_systm.h>
104 #include <netinet/in.h>
105 #include <netinet/ip.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/bus_memio.h>
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 /* #define TI_PRIVATE_JUMBOS */
116 
117 #if !defined(TI_PRIVATE_JUMBOS)
118 #include <sys/sockio.h>
119 #include <sys/uio.h>
120 #include <sys/lock.h>
121 #include <vm/vm_extern.h>
122 #include <vm/pmap.h>
123 #include <vm/vm_map.h>
124 #include <vm/vm_map.h>
125 #include <vm/vm_param.h>
126 #include <vm/vm_pageout.h>
127 #include <sys/vmmeter.h>
128 #include <vm/vm_page.h>
129 #include <vm/vm_object.h>
130 #include <vm/vm_kern.h>
131 #include <sys/proc.h>
132 #include <sys/jumbo.h>
133 #endif /* !TI_PRIVATE_JUMBOS */
134 #include <sys/vnode.h> /* for vfindev, vgone */
135 
136 #include <pci/pcireg.h>
137 #include <pci/pcivar.h>
138 
139 #include <sys/tiio.h>
140 #include <pci/if_tireg.h>
141 #include <pci/ti_fw.h>
142 #include <pci/ti_fw2.h>
143 
144 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
145 /*
146  * We can only turn on header splitting if we're using extended receive
147  * BDs.
148  */
149 #if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
150 #error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
151 #endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
152 
153 #if !defined(lint)
154 static const char rcsid[] =
155   "$FreeBSD$";
156 #endif
157 
158 struct ti_softc *tis[8];
159 
160 typedef enum {
161 	TI_SWAP_HTON,
162 	TI_SWAP_NTOH
163 } ti_swap_type;
164 
165 
166 /*
167  * Various supported device vendors/types and their names.
168  */
169 
170 static struct ti_type ti_devs[] = {
171 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
172 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
173 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
174 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
175 	{ TC_VENDORID,	TC_DEVICEID_3C985,
176 		"3Com 3c985-SX Gigabit Ethernet" },
177 	{ NG_VENDORID, NG_DEVICEID_GA620,
178 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
179 	{ NG_VENDORID, NG_DEVICEID_GA620T,
180 		"Netgear GA620 1000baseT Gigabit Ethernet" },
181 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
182 		"Silicon Graphics Gigabit Ethernet" },
183 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
184 		"Farallon PN9000SX Gigabit Ethernet" },
185 	{ 0, 0, NULL }
186 };
187 
188 #define	TI_CDEV_MAJOR	153
189 
190 static	d_open_t	ti_open;
191 static	d_close_t	ti_close;
192 static	d_ioctl_t	ti_ioctl2;
193 
194 static struct cdevsw ti_cdevsw = {
195         /* open */      ti_open,
196         /* close */     ti_close,
197         /* read */      NULL,
198         /* write */     NULL,
199         /* ioctl */     ti_ioctl2,
200         /* poll */      seltrue,
201         /* mmap */      nommap,
202         /* strategy */  nostrategy,
203         /* name */      "ti",
204         /* maj */       TI_CDEV_MAJOR,
205         /* dump */      nodump,
206         /* psize */     nopsize,
207         /* flags */     0,
208 };
209 
210 static int ti_probe		(device_t);
211 static int ti_attach		(device_t);
212 static int ti_detach		(device_t);
213 static void ti_txeof		(struct ti_softc *);
214 static void ti_rxeof		(struct ti_softc *);
215 
216 static void ti_stats_update	(struct ti_softc *);
217 static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
218 
219 static void ti_intr		(void *);
220 static void ti_start		(struct ifnet *);
221 static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
222 static void ti_init		(void *);
223 static void ti_init2		(struct ti_softc *);
224 static void ti_stop		(struct ti_softc *);
225 static void ti_watchdog		(struct ifnet *);
226 static void ti_shutdown		(device_t);
227 static int ti_ifmedia_upd	(struct ifnet *);
228 static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
229 
230 static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
231 static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
232 static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
233 
234 static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
235 static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
236 static void ti_setmulti		(struct ti_softc *);
237 
238 static void ti_mem		(struct ti_softc *, u_int32_t,
239 					u_int32_t, caddr_t);
240 static int ti_copy_mem		(struct ti_softc *, u_int32_t,
241 					u_int32_t, caddr_t, int, int);
242 static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
243 					u_int32_t, caddr_t, int, int, int);
244 static int ti_bcopy_swap	(const void *, void *, size_t,
245 					ti_swap_type);
246 static void ti_loadfw		(struct ti_softc *);
247 static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
248 static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
249 					caddr_t, int);
250 static void ti_handle_events	(struct ti_softc *);
251 #ifdef TI_PRIVATE_JUMBOS
252 static int ti_alloc_jumbo_mem	(struct ti_softc *);
253 static void *ti_jalloc		(struct ti_softc *);
254 static void ti_jfree		(caddr_t, void *);
255 #endif /* TI_PRIVATE_JUMBOS */
256 static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
257 static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
258 static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
259 static int ti_init_rx_ring_std	(struct ti_softc *);
260 static void ti_free_rx_ring_std	(struct ti_softc *);
261 static int ti_init_rx_ring_jumbo	(struct ti_softc *);
262 static void ti_free_rx_ring_jumbo	(struct ti_softc *);
263 static int ti_init_rx_ring_mini	(struct ti_softc *);
264 static void ti_free_rx_ring_mini	(struct ti_softc *);
265 static void ti_free_tx_ring	(struct ti_softc *);
266 static int ti_init_tx_ring	(struct ti_softc *);
267 
268 static int ti_64bitslot_war	(struct ti_softc *);
269 static int ti_chipinit		(struct ti_softc *);
270 static int ti_gibinit		(struct ti_softc *);
271 
272 #ifdef TI_JUMBO_HDRSPLIT
273 static __inline void ti_hdr_split	__P((struct mbuf *top, int hdr_len,
274 					     int pkt_len, int idx));
275 #endif /* TI_JUMBO_HDRSPLIT */
276 
277 static device_method_t ti_methods[] = {
278 	/* Device interface */
279 	DEVMETHOD(device_probe,		ti_probe),
280 	DEVMETHOD(device_attach,	ti_attach),
281 	DEVMETHOD(device_detach,	ti_detach),
282 	DEVMETHOD(device_shutdown,	ti_shutdown),
283 	{ 0, 0 }
284 };
285 
286 static driver_t ti_driver = {
287 	"ti",
288 	ti_methods,
289 	sizeof(struct ti_softc)
290 };
291 
292 static devclass_t ti_devclass;
293 
294 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
295 
296 /* List of Tigon softcs */
297 static STAILQ_HEAD(ti_softc_list, ti_softc) ti_sc_list;
298 
299 static struct ti_softc *
300 ti_lookup_softc(int unit)
301 {
302 	struct ti_softc *sc;
303 	for (sc = STAILQ_FIRST(&ti_sc_list); sc != NULL;
304 	     sc = STAILQ_NEXT(sc, ti_links))
305 		if (sc->ti_unit == unit)
306 			return(sc);
307 	return(NULL);
308 }
309 
310 /*
311  * Send an instruction or address to the EEPROM, check for ACK.
312  */
313 static u_int32_t ti_eeprom_putbyte(sc, byte)
314 	struct ti_softc		*sc;
315 	int			byte;
316 {
317 	register int		i, ack = 0;
318 
319 	/*
320 	 * Make sure we're in TX mode.
321 	 */
322 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
323 
324 	/*
325 	 * Feed in each bit and stobe the clock.
326 	 */
327 	for (i = 0x80; i; i >>= 1) {
328 		if (byte & i) {
329 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
330 		} else {
331 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
332 		}
333 		DELAY(1);
334 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
335 		DELAY(1);
336 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
337 	}
338 
339 	/*
340 	 * Turn off TX mode.
341 	 */
342 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
343 
344 	/*
345 	 * Check for ack.
346 	 */
347 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
348 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
349 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
350 
351 	return(ack);
352 }
353 
354 /*
355  * Read a byte of data stored in the EEPROM at address 'addr.'
356  * We have to send two address bytes since the EEPROM can hold
357  * more than 256 bytes of data.
358  */
359 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
360 	struct ti_softc		*sc;
361 	int			addr;
362 	u_int8_t		*dest;
363 {
364 	register int		i;
365 	u_int8_t		byte = 0;
366 
367 	EEPROM_START;
368 
369 	/*
370 	 * Send write control code to EEPROM.
371 	 */
372 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
373 		printf("ti%d: failed to send write command, status: %x\n",
374 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
375 		return(1);
376 	}
377 
378 	/*
379 	 * Send first byte of address of byte we want to read.
380 	 */
381 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
382 		printf("ti%d: failed to send address, status: %x\n",
383 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
384 		return(1);
385 	}
386 	/*
387 	 * Send second byte address of byte we want to read.
388 	 */
389 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
390 		printf("ti%d: failed to send address, status: %x\n",
391 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
392 		return(1);
393 	}
394 
395 	EEPROM_STOP;
396 	EEPROM_START;
397 	/*
398 	 * Send read control code to EEPROM.
399 	 */
400 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
401 		printf("ti%d: failed to send read command, status: %x\n",
402 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
403 		return(1);
404 	}
405 
406 	/*
407 	 * Start reading bits from EEPROM.
408 	 */
409 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
410 	for (i = 0x80; i; i >>= 1) {
411 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
412 		DELAY(1);
413 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
414 			byte |= i;
415 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
416 		DELAY(1);
417 	}
418 
419 	EEPROM_STOP;
420 
421 	/*
422 	 * No ACK generated for read, so just return byte.
423 	 */
424 
425 	*dest = byte;
426 
427 	return(0);
428 }
429 
430 /*
431  * Read a sequence of bytes from the EEPROM.
432  */
433 static int ti_read_eeprom(sc, dest, off, cnt)
434 	struct ti_softc		*sc;
435 	caddr_t			dest;
436 	int			off;
437 	int			cnt;
438 {
439 	int			err = 0, i;
440 	u_int8_t		byte = 0;
441 
442 	for (i = 0; i < cnt; i++) {
443 		err = ti_eeprom_getbyte(sc, off + i, &byte);
444 		if (err)
445 			break;
446 		*(dest + i) = byte;
447 	}
448 
449 	return(err ? 1 : 0);
450 }
451 
452 /*
453  * NIC memory access function. Can be used to either clear a section
454  * of NIC local memory or (if buf is non-NULL) copy data into it.
455  */
456 static void ti_mem(sc, addr, len, buf)
457 	struct ti_softc		*sc;
458 	u_int32_t		addr, len;
459 	caddr_t			buf;
460 {
461 	int			segptr, segsize, cnt;
462 	caddr_t			ti_winbase, ptr;
463 
464 	segptr = addr;
465 	cnt = len;
466 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
467 	ptr = buf;
468 
469 	while(cnt) {
470 		if (cnt < TI_WINLEN)
471 			segsize = cnt;
472 		else
473 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
474 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
475 		if (buf == NULL)
476 			bzero((char *)ti_winbase + (segptr &
477 			    (TI_WINLEN - 1)), segsize);
478 		else {
479 			bcopy((char *)ptr, (char *)ti_winbase +
480 			    (segptr & (TI_WINLEN - 1)), segsize);
481 			ptr += segsize;
482 		}
483 		segptr += segsize;
484 		cnt -= segsize;
485 	}
486 
487 	return;
488 }
489 
490 static int
491 ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
492 	struct ti_softc		*sc;
493 	u_int32_t		tigon_addr, len;
494 	caddr_t			buf;
495 	int			useraddr, readdata;
496 {
497 	int		segptr, segsize, cnt;
498 	caddr_t		ptr;
499 	u_int32_t	origwin;
500 	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
501 	int		resid, segresid;
502 	int		first_pass;
503 
504 	/*
505 	 * At the moment, we don't handle non-aligned cases, we just bail.
506 	 * If this proves to be a problem, it will be fixed.
507 	 */
508 	if ((readdata == 0)
509 	 && (tigon_addr & 0x3)) {
510 		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
511 		       "word-aligned\n", sc->ti_unit, tigon_addr);
512 		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
513 		       "supported\n", sc->ti_unit);
514 		return(EINVAL);
515 	}
516 
517 	segptr = tigon_addr & ~0x3;
518 	segresid = tigon_addr - segptr;
519 
520 	/*
521 	 * This is the non-aligned amount left over that we'll need to
522 	 * copy.
523 	 */
524 	resid = len & 0x3;
525 
526 	/* Add in the left over amount at the front of the buffer */
527 	resid += segresid;
528 
529 	cnt = len & ~0x3;
530 	/*
531 	 * If resid + segresid is >= 4, add multiples of 4 to the count and
532 	 * decrease the residual by that much.
533 	 */
534 	cnt += resid & ~0x3;
535 	resid -= resid & ~0x3;
536 
537 	ptr = buf;
538 
539 	first_pass = 1;
540 
541 	/*
542 	 * Make sure we aren't interrupted while we're changing the window
543 	 * pointer.
544 	 */
545 	TI_LOCK(sc);
546 
547 	/*
548 	 * Save the old window base value.
549 	 */
550 	origwin = CSR_READ_4(sc, TI_WINBASE);
551 
552 	while(cnt) {
553 		bus_size_t ti_offset;
554 
555 		if (cnt < TI_WINLEN)
556 			segsize = cnt;
557 		else
558 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
559 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
560 
561 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
562 
563 		if (readdata) {
564 
565 			bus_space_read_region_4(sc->ti_btag,
566 						sc->ti_bhandle, ti_offset,
567 						(u_int32_t *)tmparray,
568 						segsize >> 2);
569 			if (useraddr) {
570 				/*
571 				 * Yeah, this is a little on the kludgy
572 				 * side, but at least this code is only
573 				 * used for debugging.
574 				 */
575 				ti_bcopy_swap(tmparray, tmparray2, segsize,
576 					      TI_SWAP_NTOH);
577 
578 				if (first_pass) {
579 					copyout(&tmparray2[segresid], ptr,
580 						segsize - segresid);
581 					first_pass = 0;
582 				} else
583 					copyout(tmparray2, ptr, segsize);
584 			} else {
585 				if (first_pass) {
586 
587 					ti_bcopy_swap(tmparray, tmparray2,
588 						      segsize, TI_SWAP_NTOH);
589 					bcopy(&tmparray2[segresid], ptr,
590 					      segsize - segresid);
591 					first_pass = 0;
592 				} else
593 					ti_bcopy_swap(tmparray, ptr, segsize,
594 						      TI_SWAP_NTOH);
595 			}
596 
597 		} else {
598 			if (useraddr) {
599 				copyin(ptr, tmparray2, segsize);
600 				ti_bcopy_swap(tmparray2, tmparray, segsize,
601 					      TI_SWAP_HTON);
602 			} else
603 				ti_bcopy_swap(ptr, tmparray, segsize,
604 					      TI_SWAP_HTON);
605 
606 			bus_space_write_region_4(sc->ti_btag,
607 						 sc->ti_bhandle, ti_offset,
608 						 (u_int32_t *)tmparray,
609 						 segsize >> 2);
610 		}
611 		segptr += segsize;
612 		ptr += segsize;
613 		cnt -= segsize;
614 	}
615 
616 	/*
617 	 * Handle leftover, non-word-aligned bytes.
618 	 */
619 	if (resid != 0) {
620 		u_int32_t	tmpval, tmpval2;
621 		bus_size_t	ti_offset;
622 
623 		/*
624 		 * Set the segment pointer.
625 		 */
626 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
627 
628 		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
629 
630 		/*
631 		 * First, grab whatever is in our source/destination.
632 		 * We'll obviously need this for reads, but also for
633 		 * writes, since we'll be doing read/modify/write.
634 		 */
635 		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
636 					ti_offset, &tmpval, 1);
637 
638 		/*
639 		 * Next, translate this from little-endian to big-endian
640 		 * (at least on i386 boxes).
641 		 */
642 		tmpval2 = ntohl(tmpval);
643 
644 		if (readdata) {
645 			/*
646 			 * If we're reading, just copy the leftover number
647 			 * of bytes from the host byte order buffer to
648 			 * the user's buffer.
649 			 */
650 			if (useraddr)
651 				copyout(&tmpval2, ptr, resid);
652 			else
653 				bcopy(&tmpval2, ptr, resid);
654 		} else {
655 			/*
656 			 * If we're writing, first copy the bytes to be
657 			 * written into the network byte order buffer,
658 			 * leaving the rest of the buffer with whatever was
659 			 * originally in there.  Then, swap the bytes
660 			 * around into host order and write them out.
661 			 *
662 			 * XXX KDM the read side of this has been verified
663 			 * to work, but the write side of it has not been
664 			 * verified.  So user beware.
665 			 */
666 			if (useraddr)
667 				copyin(ptr, &tmpval2, resid);
668 			else
669 				bcopy(ptr, &tmpval2, resid);
670 
671 			tmpval = htonl(tmpval2);
672 
673 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
674 						 ti_offset, &tmpval, 1);
675 		}
676 	}
677 
678 	CSR_WRITE_4(sc, TI_WINBASE, origwin);
679 
680 	TI_UNLOCK(sc);
681 
682 	return(0);
683 }
684 
685 static int
686 ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
687 	struct ti_softc		*sc;
688 	u_int32_t		tigon_addr, len;
689 	caddr_t			buf;
690 	int			useraddr, readdata;
691 	int			cpu;
692 {
693 	u_int32_t	segptr;
694 	int		cnt;
695 	u_int32_t	tmpval, tmpval2;
696 	caddr_t		ptr;
697 
698 	/*
699 	 * At the moment, we don't handle non-aligned cases, we just bail.
700 	 * If this proves to be a problem, it will be fixed.
701 	 */
702 	if (tigon_addr & 0x3) {
703 		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
704 		       "word-aligned\n", sc->ti_unit, tigon_addr);
705 		return(EINVAL);
706 	}
707 
708 	if (len & 0x3) {
709 		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
710 		       "word-aligned\n", sc->ti_unit, len);
711 		return(EINVAL);
712 	}
713 
714 	segptr = tigon_addr;
715 	cnt = len;
716 	ptr = buf;
717 
718 	TI_LOCK(sc);
719 
720 	while (cnt) {
721 		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
722 
723 		if (readdata) {
724 			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
725 
726 			tmpval = ntohl(tmpval2);
727 
728 			/*
729 			 * Note:  I've used this debugging interface
730 			 * extensively with Alteon's 12.3.15 firmware,
731 			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
732 			 *
733 			 * When you compile the firmware without
734 			 * optimization, which is necessary sometimes in
735 			 * order to properly step through it, you sometimes
736 			 * read out a bogus value of 0xc0017c instead of
737 			 * whatever was supposed to be in that scratchpad
738 			 * location.  That value is on the stack somewhere,
739 			 * but I've never been able to figure out what was
740 			 * causing the problem.
741 			 *
742 			 * The address seems to pop up in random places,
743 			 * often not in the same place on two subsequent
744 			 * reads.
745 			 *
746 			 * In any case, the underlying data doesn't seem
747 			 * to be affected, just the value read out.
748 			 *
749 			 * KDM, 3/7/2000
750 			 */
751 
752 			if (tmpval2 == 0xc0017c)
753 				printf("ti%d: found 0xc0017c at %#x "
754 				       "(tmpval2)\n", sc->ti_unit, segptr);
755 
756 			if (tmpval == 0xc0017c)
757 				printf("ti%d: found 0xc0017c at %#x "
758 				       "(tmpval)\n", sc->ti_unit, segptr);
759 
760 			if (useraddr)
761 				copyout(&tmpval, ptr, 4);
762 			else
763 				bcopy(&tmpval, ptr, 4);
764 		} else {
765 			if (useraddr)
766 				copyin(ptr, &tmpval2, 4);
767 			else
768 				bcopy(ptr, &tmpval2, 4);
769 
770 			tmpval = htonl(tmpval2);
771 
772 			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
773 		}
774 
775 		cnt -= 4;
776 		segptr += 4;
777 		ptr += 4;
778 	}
779 
780 	TI_UNLOCK(sc);
781 
782 	return(0);
783 }
784 
785 static int
786 ti_bcopy_swap(src, dst, len, swap_type)
787 	const void	*src;
788 	void		*dst;
789 	size_t		len;
790 	ti_swap_type	swap_type;
791 {
792 	const u_int8_t *tmpsrc;
793 	u_int8_t *tmpdst;
794 	size_t tmplen;
795 
796 	if (len & 0x3) {
797 		printf("ti_bcopy_swap: length %d isn't 32-bit aligned\n",
798 		       len);
799 		return(-1);
800 	}
801 
802 	tmpsrc = src;
803 	tmpdst = dst;
804 	tmplen = len;
805 
806 	while (tmplen) {
807 		if (swap_type == TI_SWAP_NTOH)
808 			*(u_int32_t *)tmpdst =
809 				ntohl(*(const u_int32_t *)tmpsrc);
810 		else
811 			*(u_int32_t *)tmpdst =
812 				htonl(*(const u_int32_t *)tmpsrc);
813 
814 		tmpsrc += 4;
815 		tmpdst += 4;
816 		tmplen -= 4;
817 	}
818 
819 	return(0);
820 }
821 
822 /*
823  * Load firmware image into the NIC. Check that the firmware revision
824  * is acceptable and see if we want the firmware for the Tigon 1 or
825  * Tigon 2.
826  */
827 static void ti_loadfw(sc)
828 	struct ti_softc		*sc;
829 {
830 	switch(sc->ti_hwrev) {
831 	case TI_HWREV_TIGON:
832 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
833 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
834 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
835 			printf("ti%d: firmware revision mismatch; want "
836 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
837 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
838 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
839 			    tigonFwReleaseMinor, tigonFwReleaseFix);
840 			return;
841 		}
842 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
843 		    (caddr_t)tigonFwText);
844 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
845 		    (caddr_t)tigonFwData);
846 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
847 		    (caddr_t)tigonFwRodata);
848 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
849 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
850 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
851 		break;
852 	case TI_HWREV_TIGON_II:
853 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
854 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
855 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
856 			printf("ti%d: firmware revision mismatch; want "
857 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
858 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
859 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
860 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
861 			return;
862 		}
863 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
864 		    (caddr_t)tigon2FwText);
865 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
866 		    (caddr_t)tigon2FwData);
867 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
868 		    (caddr_t)tigon2FwRodata);
869 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
870 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
871 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
872 		break;
873 	default:
874 		printf("ti%d: can't load firmware: unknown hardware rev\n",
875 		    sc->ti_unit);
876 		break;
877 	}
878 
879 	return;
880 }
881 
882 /*
883  * Send the NIC a command via the command ring.
884  */
885 static void ti_cmd(sc, cmd)
886 	struct ti_softc		*sc;
887 	struct ti_cmd_desc	*cmd;
888 {
889 	u_int32_t		index;
890 
891 	if (sc->ti_rdata->ti_cmd_ring == NULL)
892 		return;
893 
894 	index = sc->ti_cmd_saved_prodidx;
895 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
896 	TI_INC(index, TI_CMD_RING_CNT);
897 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
898 	sc->ti_cmd_saved_prodidx = index;
899 
900 	return;
901 }
902 
903 /*
904  * Send the NIC an extended command. The 'len' parameter specifies the
905  * number of command slots to include after the initial command.
906  */
907 static void ti_cmd_ext(sc, cmd, arg, len)
908 	struct ti_softc		*sc;
909 	struct ti_cmd_desc	*cmd;
910 	caddr_t			arg;
911 	int			len;
912 {
913 	u_int32_t		index;
914 	register int		i;
915 
916 	if (sc->ti_rdata->ti_cmd_ring == NULL)
917 		return;
918 
919 	index = sc->ti_cmd_saved_prodidx;
920 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
921 	TI_INC(index, TI_CMD_RING_CNT);
922 	for (i = 0; i < len; i++) {
923 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
924 		    *(u_int32_t *)(&arg[i * 4]));
925 		TI_INC(index, TI_CMD_RING_CNT);
926 	}
927 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
928 	sc->ti_cmd_saved_prodidx = index;
929 
930 	return;
931 }
932 
933 /*
934  * Handle events that have triggered interrupts.
935  */
936 static void ti_handle_events(sc)
937 	struct ti_softc		*sc;
938 {
939 	struct ti_event_desc	*e;
940 
941 	if (sc->ti_rdata->ti_event_ring == NULL)
942 		return;
943 
944 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
945 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
946 		switch(e->ti_event) {
947 		case TI_EV_LINKSTAT_CHANGED:
948 			sc->ti_linkstat = e->ti_code;
949 			if (e->ti_code == TI_EV_CODE_LINK_UP)
950 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
951 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
952 				printf("ti%d: gigabit link up\n", sc->ti_unit);
953 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
954 				printf("ti%d: link down\n", sc->ti_unit);
955 			break;
956 		case TI_EV_ERROR:
957 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
958 				printf("ti%d: invalid command\n", sc->ti_unit);
959 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
960 				printf("ti%d: unknown command\n", sc->ti_unit);
961 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
962 				printf("ti%d: bad config data\n", sc->ti_unit);
963 			break;
964 		case TI_EV_FIRMWARE_UP:
965 			ti_init2(sc);
966 			break;
967 		case TI_EV_STATS_UPDATED:
968 			ti_stats_update(sc);
969 			break;
970 		case TI_EV_RESET_JUMBO_RING:
971 		case TI_EV_MCAST_UPDATED:
972 			/* Who cares. */
973 			break;
974 		default:
975 			printf("ti%d: unknown event: %d\n",
976 			    sc->ti_unit, e->ti_event);
977 			break;
978 		}
979 		/* Advance the consumer index. */
980 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
981 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
982 	}
983 
984 	return;
985 }
986 
987 #ifdef TI_PRIVATE_JUMBOS
988 
989 /*
990  * Memory management for the jumbo receive ring is a pain in the
991  * butt. We need to allocate at least 9018 bytes of space per frame,
992  * _and_ it has to be contiguous (unless you use the extended
993  * jumbo descriptor format). Using malloc() all the time won't
994  * work: malloc() allocates memory in powers of two, which means we
995  * would end up wasting a considerable amount of space by allocating
996  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
997  * to do our own memory management.
998  *
999  * The driver needs to allocate a contiguous chunk of memory at boot
1000  * time. We then chop this up ourselves into 9K pieces and use them
1001  * as external mbuf storage.
1002  *
1003  * One issue here is how much memory to allocate. The jumbo ring has
1004  * 256 slots in it, but at 9K per slot than can consume over 2MB of
1005  * RAM. This is a bit much, especially considering we also need
1006  * RAM for the standard ring and mini ring (on the Tigon 2). To
1007  * save space, we only actually allocate enough memory for 64 slots
1008  * by default, which works out to between 500 and 600K. This can
1009  * be tuned by changing a #define in if_tireg.h.
1010  */
1011 
1012 static int ti_alloc_jumbo_mem(sc)
1013 	struct ti_softc		*sc;
1014 {
1015 	caddr_t			ptr;
1016 	register int		i;
1017 	struct ti_jpool_entry   *entry;
1018 
1019 	/* Grab a big chunk o' storage. */
1020 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
1021 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1022 
1023 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
1024 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
1025 		return(ENOBUFS);
1026 	}
1027 
1028 	SLIST_INIT(&sc->ti_jfree_listhead);
1029 	SLIST_INIT(&sc->ti_jinuse_listhead);
1030 
1031 	/*
1032 	 * Now divide it up into 9K pieces and save the addresses
1033 	 * in an array.
1034 	 */
1035 	ptr = sc->ti_cdata.ti_jumbo_buf;
1036 	for (i = 0; i < TI_JSLOTS; i++) {
1037 		sc->ti_cdata.ti_jslots[i] = ptr;
1038 		ptr += TI_JLEN;
1039 		entry = malloc(sizeof(struct ti_jpool_entry),
1040 			       M_DEVBUF, M_NOWAIT);
1041 		if (entry == NULL) {
1042 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1043 			           M_DEVBUF);
1044 			sc->ti_cdata.ti_jumbo_buf = NULL;
1045 			printf("ti%d: no memory for jumbo "
1046 			    "buffer queue!\n", sc->ti_unit);
1047 			return(ENOBUFS);
1048 		}
1049 		entry->slot = i;
1050 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1051 	}
1052 
1053 	return(0);
1054 }
1055 
1056 /*
1057  * Allocate a jumbo buffer.
1058  */
1059 static void *ti_jalloc(sc)
1060 	struct ti_softc		*sc;
1061 {
1062 	struct ti_jpool_entry   *entry;
1063 
1064 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1065 
1066 	if (entry == NULL) {
1067 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1068 		return(NULL);
1069 	}
1070 
1071 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1072 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1073 	return(sc->ti_cdata.ti_jslots[entry->slot]);
1074 }
1075 
1076 /*
1077  * Release a jumbo buffer.
1078  */
1079 static void ti_jfree(buf, args)
1080 	caddr_t			buf;
1081 	void			*args;
1082 {
1083 	struct ti_softc		*sc;
1084 	int		        i;
1085 	struct ti_jpool_entry   *entry;
1086 
1087 	/* Extract the softc struct pointer. */
1088 	sc = (struct ti_softc *)args;
1089 
1090 	if (sc == NULL)
1091 		panic("ti_jfree: didn't get softc pointer!");
1092 
1093 	/* calculate the slot this buffer belongs to */
1094 	i = ((vm_offset_t)buf
1095 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1096 
1097 	if ((i < 0) || (i >= TI_JSLOTS))
1098 		panic("ti_jfree: asked to free buffer that we don't manage!");
1099 
1100 	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1101 	if (entry == NULL)
1102 		panic("ti_jfree: buffer not in use!");
1103 	entry->slot = i;
1104 	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1105 	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1106 
1107 	return;
1108 }
1109 
1110 #endif /* TI_PRIVATE_JUMBOS */
1111 
1112 /*
1113  * Intialize a standard receive ring descriptor.
1114  */
1115 static int ti_newbuf_std(sc, i, m)
1116 	struct ti_softc		*sc;
1117 	int			i;
1118 	struct mbuf		*m;
1119 {
1120 	struct mbuf		*m_new = NULL;
1121 	struct ti_rx_desc	*r;
1122 
1123 	if (m == NULL) {
1124 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1125 		if (m_new == NULL)
1126 			return(ENOBUFS);
1127 
1128 		MCLGET(m_new, M_DONTWAIT);
1129 		if (!(m_new->m_flags & M_EXT)) {
1130 			m_freem(m_new);
1131 			return(ENOBUFS);
1132 		}
1133 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1134 	} else {
1135 		m_new = m;
1136 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1137 		m_new->m_data = m_new->m_ext.ext_buf;
1138 	}
1139 
1140 	m_adj(m_new, ETHER_ALIGN);
1141 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1142 	r = &sc->ti_rdata->ti_rx_std_ring[i];
1143 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1144 	r->ti_type = TI_BDTYPE_RECV_BD;
1145 	r->ti_flags = 0;
1146 	if (sc->arpcom.ac_if.if_hwassist)
1147 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1148 	r->ti_len = m_new->m_len;
1149 	r->ti_idx = i;
1150 
1151 	return(0);
1152 }
1153 
1154 /*
1155  * Intialize a mini receive ring descriptor. This only applies to
1156  * the Tigon 2.
1157  */
1158 static int ti_newbuf_mini(sc, i, m)
1159 	struct ti_softc		*sc;
1160 	int			i;
1161 	struct mbuf		*m;
1162 {
1163 	struct mbuf		*m_new = NULL;
1164 	struct ti_rx_desc	*r;
1165 
1166 	if (m == NULL) {
1167 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1168 		if (m_new == NULL) {
1169 			return(ENOBUFS);
1170 		}
1171 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1172 	} else {
1173 		m_new = m;
1174 		m_new->m_data = m_new->m_pktdat;
1175 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1176 	}
1177 
1178 	m_adj(m_new, ETHER_ALIGN);
1179 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1180 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1181 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1182 	r->ti_type = TI_BDTYPE_RECV_BD;
1183 	r->ti_flags = TI_BDFLAG_MINI_RING;
1184 	if (sc->arpcom.ac_if.if_hwassist)
1185 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1186 	r->ti_len = m_new->m_len;
1187 	r->ti_idx = i;
1188 
1189 	return(0);
1190 }
1191 
1192 #ifdef TI_PRIVATE_JUMBOS
1193 
1194 /*
1195  * Initialize a jumbo receive ring descriptor. This allocates
1196  * a jumbo buffer from the pool managed internally by the driver.
1197  */
1198 static int ti_newbuf_jumbo(sc, i, m)
1199 	struct ti_softc		*sc;
1200 	int			i;
1201 	struct mbuf		*m;
1202 {
1203 	struct mbuf		*m_new = NULL;
1204 	struct ti_rx_desc	*r;
1205 
1206 	if (m == NULL) {
1207 		caddr_t			*buf = NULL;
1208 
1209 		/* Allocate the mbuf. */
1210 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1211 		if (m_new == NULL) {
1212 			return(ENOBUFS);
1213 		}
1214 
1215 		/* Allocate the jumbo buffer */
1216 		buf = ti_jalloc(sc);
1217 		if (buf == NULL) {
1218 			m_freem(m_new);
1219 			printf("ti%d: jumbo allocation failed "
1220 			    "-- packet dropped!\n", sc->ti_unit);
1221 			return(ENOBUFS);
1222 		}
1223 
1224 		/* Attach the buffer to the mbuf. */
1225 		m_new->m_data = (void *) buf;
1226 		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1227 		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1228 		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1229 	} else {
1230 		m_new = m;
1231 		m_new->m_data = m_new->m_ext.ext_buf;
1232 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1233 	}
1234 
1235 	m_adj(m_new, ETHER_ALIGN);
1236 	/* Set up the descriptor. */
1237 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1238 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1239 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1240 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1241 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1242 	if (sc->arpcom.ac_if.if_hwassist)
1243 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1244 	r->ti_len = m_new->m_len;
1245 	r->ti_idx = i;
1246 
1247 	return(0);
1248 }
1249 
1250 #else
1251 #include <vm/vm_page.h>
1252 
1253 #if (PAGE_SIZE == 4096)
1254 #define NPAYLOAD 2
1255 #else
1256 #define NPAYLOAD 1
1257 #endif
1258 
1259 #define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1260 #define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1261 #define NFS_HDR_LEN (UDP_HDR_LEN)
1262 int HDR_LEN =  TCP_HDR_LEN;
1263 
1264 
1265  /*
1266   * Initialize a jumbo receive ring descriptor. This allocates
1267   * a jumbo buffer from the pool managed internally by the driver.
1268   */
1269 static int
1270 ti_newbuf_jumbo(sc, idx, m_old)
1271         struct ti_softc         *sc;
1272         int                     idx;
1273         struct mbuf             *m_old;
1274 {
1275 	struct mbuf		*cur, *m_new = NULL;
1276 	struct mbuf		*m[3] = {NULL, NULL, NULL};
1277 	struct ti_rx_desc_ext	*r;
1278 	vm_page_t		frame;
1279 				/* 1 extra buf to make nobufs easy*/
1280 	caddr_t			buf[3] = {NULL, NULL, NULL};
1281 	int			i;
1282 
1283 	if (m_old != NULL) {
1284 		m_new = m_old;
1285 		cur = m_old->m_next;
1286 		for (i = 0; i <= NPAYLOAD; i++){
1287 			m[i] = cur;
1288 			cur = cur->m_next;
1289 		}
1290 	} else {
1291 		/* Allocate the mbufs. */
1292 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1293 		if (m_new == NULL) {
1294 			printf("ti%d: mbuf allocation failed "
1295    			       "-- packet dropped!\n", sc->ti_unit);
1296 			goto nobufs;
1297 		}
1298 		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1299 		if (m[NPAYLOAD] == NULL) {
1300 			printf("ti%d: cluster mbuf allocation failed "
1301 			       "-- packet dropped!\n", sc->ti_unit);
1302 			goto nobufs;
1303 		}
1304 		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1305 		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1306 			printf("ti%d: mbuf allocation failed "
1307 			       "-- packet dropped!\n", sc->ti_unit);
1308 			goto nobufs;
1309 		}
1310 		m[NPAYLOAD]->m_len = MCLBYTES;
1311 
1312 		for (i = 0; i < NPAYLOAD; i++){
1313 			MGET(m[i], M_DONTWAIT, MT_DATA);
1314 			if (m[i] == NULL) {
1315 				printf("ti%d: mbuf allocation failed "
1316 				       "-- packet dropped!\n", sc->ti_unit);
1317 				goto nobufs;
1318 			}
1319 			if (!(frame = jumbo_pg_alloc())){
1320   				printf("ti%d: buffer allocation failed "
1321    				       "-- packet dropped!\n", sc->ti_unit);
1322 				printf("      index %d page %d\n", idx, i);
1323    				goto nobufs;
1324 			}
1325 			buf[i] = jumbo_phys_to_kva(VM_PAGE_TO_PHYS(frame));
1326 		}
1327 		for (i = 0; i < NPAYLOAD; i++){
1328   		/* Attach the buffer to the mbuf. */
1329    			m[i]->m_data = (void *)buf[i];
1330 			m[i]->m_len = PAGE_SIZE;
1331 			MEXTADD(m[i], (void *)buf[i], PAGE_SIZE,
1332 				jumbo_freem, NULL, 0, EXT_DISPOSABLE);
1333 			m[i]->m_next = m[i+1];
1334 		}
1335 		/* link the buffers to the header */
1336 		m_new->m_next = m[0];
1337 		m_new->m_data += ETHER_ALIGN;
1338 		if (sc->ti_hdrsplit)
1339 			m_new->m_len = MHLEN - ETHER_ALIGN;
1340 		else
1341    			m_new->m_len = HDR_LEN;
1342 		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1343 	}
1344 
1345 	/* Set up the descriptor. */
1346 	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1347 	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1348 	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1349 	r->ti_len0 = m_new->m_len;
1350 
1351 	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1352 	r->ti_len1 = PAGE_SIZE;
1353 
1354 	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1355 	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1356 
1357 	if (PAGE_SIZE == 4096) {
1358 		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1359 		r->ti_len3 = MCLBYTES;
1360 	} else {
1361 		r->ti_len3 = 0;
1362 	}
1363         r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1364 
1365         r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1366 
1367 	if (sc->arpcom.ac_if.if_hwassist)
1368 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1369 
1370         r->ti_idx = idx;
1371 
1372         return(0);
1373 
1374  nobufs:
1375 
1376 	/*
1377 	 * Warning! :
1378 	 * This can only be called before the mbufs are strung together.
1379 	 * If the mbufs are strung together, m_freem() will free the chain,
1380 	 * so that the later mbufs will be freed multiple times.
1381 	 */
1382         if (m_new)
1383                 m_freem(m_new);
1384 
1385         for(i = 0; i < 3; i++){
1386                 if (m[i])
1387                         m_freem(m[i]);
1388                 if (buf[i])
1389                         jumbo_pg_free((vm_offset_t)buf[i]);
1390         }
1391         return ENOBUFS;
1392 }
1393 #endif
1394 
1395 
1396 
1397 /*
1398  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1399  * that's 1MB or memory, which is a lot. For now, we fill only the first
1400  * 256 ring entries and hope that our CPU is fast enough to keep up with
1401  * the NIC.
1402  */
1403 static int ti_init_rx_ring_std(sc)
1404 	struct ti_softc		*sc;
1405 {
1406 	register int		i;
1407 	struct ti_cmd_desc	cmd;
1408 
1409 	for (i = 0; i < TI_SSLOTS; i++) {
1410 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1411 			return(ENOBUFS);
1412 	};
1413 
1414 	TI_UPDATE_STDPROD(sc, i - 1);
1415 	sc->ti_std = i - 1;
1416 
1417 	return(0);
1418 }
1419 
1420 static void ti_free_rx_ring_std(sc)
1421 	struct ti_softc		*sc;
1422 {
1423 	register int		i;
1424 
1425 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1426 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1427 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1428 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1429 		}
1430 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1431 		    sizeof(struct ti_rx_desc));
1432 	}
1433 
1434 	return;
1435 }
1436 
1437 static int ti_init_rx_ring_jumbo(sc)
1438 	struct ti_softc		*sc;
1439 {
1440 	register int		i;
1441 	struct ti_cmd_desc	cmd;
1442 
1443 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1444 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1445 			return(ENOBUFS);
1446 	};
1447 
1448 	TI_UPDATE_JUMBOPROD(sc, i - 1);
1449 	sc->ti_jumbo = i - 1;
1450 
1451 	return(0);
1452 }
1453 
1454 static void ti_free_rx_ring_jumbo(sc)
1455 	struct ti_softc		*sc;
1456 {
1457 	register int		i;
1458 
1459 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1460 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1461 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1462 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1463 		}
1464 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1465 		    sizeof(struct ti_rx_desc));
1466 	}
1467 
1468 	return;
1469 }
1470 
1471 static int ti_init_rx_ring_mini(sc)
1472 	struct ti_softc		*sc;
1473 {
1474 	register int		i;
1475 
1476 	for (i = 0; i < TI_MSLOTS; i++) {
1477 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1478 			return(ENOBUFS);
1479 	};
1480 
1481 	TI_UPDATE_MINIPROD(sc, i - 1);
1482 	sc->ti_mini = i - 1;
1483 
1484 	return(0);
1485 }
1486 
1487 static void ti_free_rx_ring_mini(sc)
1488 	struct ti_softc		*sc;
1489 {
1490 	register int		i;
1491 
1492 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1493 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1494 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1495 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1496 		}
1497 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1498 		    sizeof(struct ti_rx_desc));
1499 	}
1500 
1501 	return;
1502 }
1503 
1504 static void ti_free_tx_ring(sc)
1505 	struct ti_softc		*sc;
1506 {
1507 	register int		i;
1508 
1509 	if (sc->ti_rdata->ti_tx_ring == NULL)
1510 		return;
1511 
1512 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1513 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1514 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1515 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1516 		}
1517 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1518 		    sizeof(struct ti_tx_desc));
1519 	}
1520 
1521 	return;
1522 }
1523 
1524 static int ti_init_tx_ring(sc)
1525 	struct ti_softc		*sc;
1526 {
1527 	sc->ti_txcnt = 0;
1528 	sc->ti_tx_saved_considx = 0;
1529 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1530 	return(0);
1531 }
1532 
1533 /*
1534  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1535  * but we have to support the old way too so that Tigon 1 cards will
1536  * work.
1537  */
1538 void ti_add_mcast(sc, addr)
1539 	struct ti_softc		*sc;
1540 	struct ether_addr	*addr;
1541 {
1542 	struct ti_cmd_desc	cmd;
1543 	u_int16_t		*m;
1544 	u_int32_t		ext[2] = {0, 0};
1545 
1546 	m = (u_int16_t *)&addr->octet[0];
1547 
1548 	switch(sc->ti_hwrev) {
1549 	case TI_HWREV_TIGON:
1550 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1551 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1552 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1553 		break;
1554 	case TI_HWREV_TIGON_II:
1555 		ext[0] = htons(m[0]);
1556 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1557 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1558 		break;
1559 	default:
1560 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1561 		break;
1562 	}
1563 
1564 	return;
1565 }
1566 
1567 void ti_del_mcast(sc, addr)
1568 	struct ti_softc		*sc;
1569 	struct ether_addr	*addr;
1570 {
1571 	struct ti_cmd_desc	cmd;
1572 	u_int16_t		*m;
1573 	u_int32_t		ext[2] = {0, 0};
1574 
1575 	m = (u_int16_t *)&addr->octet[0];
1576 
1577 	switch(sc->ti_hwrev) {
1578 	case TI_HWREV_TIGON:
1579 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1580 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1581 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1582 		break;
1583 	case TI_HWREV_TIGON_II:
1584 		ext[0] = htons(m[0]);
1585 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1586 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1587 		break;
1588 	default:
1589 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1590 		break;
1591 	}
1592 
1593 	return;
1594 }
1595 
1596 /*
1597  * Configure the Tigon's multicast address filter.
1598  *
1599  * The actual multicast table management is a bit of a pain, thanks to
1600  * slight brain damage on the part of both Alteon and us. With our
1601  * multicast code, we are only alerted when the multicast address table
1602  * changes and at that point we only have the current list of addresses:
1603  * we only know the current state, not the previous state, so we don't
1604  * actually know what addresses were removed or added. The firmware has
1605  * state, but we can't get our grubby mits on it, and there is no 'delete
1606  * all multicast addresses' command. Hence, we have to maintain our own
1607  * state so we know what addresses have been programmed into the NIC at
1608  * any given time.
1609  */
1610 static void ti_setmulti(sc)
1611 	struct ti_softc		*sc;
1612 {
1613 	struct ifnet		*ifp;
1614 	struct ifmultiaddr	*ifma;
1615 	struct ti_cmd_desc	cmd;
1616 	struct ti_mc_entry	*mc;
1617 	u_int32_t		intrs;
1618 
1619 	ifp = &sc->arpcom.ac_if;
1620 
1621 	if (ifp->if_flags & IFF_ALLMULTI) {
1622 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1623 		return;
1624 	} else {
1625 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1626 	}
1627 
1628 	/* Disable interrupts. */
1629 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1630 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1631 
1632 	/* First, zot all the existing filters. */
1633 	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1634 		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1635 		ti_del_mcast(sc, &mc->mc_addr);
1636 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1637 		free(mc, M_DEVBUF);
1638 	}
1639 
1640 	/* Now program new ones. */
1641 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1642 		if (ifma->ifma_addr->sa_family != AF_LINK)
1643 			continue;
1644 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1645 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1646 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1647 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1648 		ti_add_mcast(sc, &mc->mc_addr);
1649 	}
1650 
1651 	/* Re-enable interrupts. */
1652 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1653 
1654 	return;
1655 }
1656 
1657 /*
1658  * Check to see if the BIOS has configured us for a 64 bit slot when
1659  * we aren't actually in one. If we detect this condition, we can work
1660  * around it on the Tigon 2 by setting a bit in the PCI state register,
1661  * but for the Tigon 1 we must give up and abort the interface attach.
1662  */
1663 static int ti_64bitslot_war(sc)
1664 	struct ti_softc		*sc;
1665 {
1666 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1667 		CSR_WRITE_4(sc, 0x600, 0);
1668 		CSR_WRITE_4(sc, 0x604, 0);
1669 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1670 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1671 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1672 				return(EINVAL);
1673 			else {
1674 				TI_SETBIT(sc, TI_PCI_STATE,
1675 				    TI_PCISTATE_32BIT_BUS);
1676 				return(0);
1677 			}
1678 		}
1679 	}
1680 
1681 	return(0);
1682 }
1683 
1684 /*
1685  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1686  * self-test results.
1687  */
1688 static int ti_chipinit(sc)
1689 	struct ti_softc		*sc;
1690 {
1691 	u_int32_t		cacheline;
1692 	u_int32_t		pci_writemax = 0;
1693 	u_int32_t		hdrsplit;
1694 
1695 	/* Initialize link to down state. */
1696 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1697 
1698 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1699 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1700 	else
1701 		sc->arpcom.ac_if.if_hwassist = 0;
1702 
1703 	/* Set endianness before we access any non-PCI registers. */
1704 #if BYTE_ORDER == BIG_ENDIAN
1705 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1706 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1707 #else
1708 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1709 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1710 #endif
1711 
1712 	/* Check the ROM failed bit to see if self-tests passed. */
1713 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1714 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1715 		return(ENODEV);
1716 	}
1717 
1718 	/* Halt the CPU. */
1719 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1720 
1721 	/* Figure out the hardware revision. */
1722 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1723 	case TI_REV_TIGON_I:
1724 		sc->ti_hwrev = TI_HWREV_TIGON;
1725 		break;
1726 	case TI_REV_TIGON_II:
1727 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1728 		break;
1729 	default:
1730 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1731 		return(ENODEV);
1732 	}
1733 
1734 	/* Do special setup for Tigon 2. */
1735 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1736 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1737 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1738 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1739 	}
1740 
1741 	/*
1742 	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1743 	 * can't do header splitting.
1744 	 */
1745 #ifdef TI_JUMBO_HDRSPLIT
1746 	if (sc->ti_hwrev != TI_HWREV_TIGON)
1747 		sc->ti_hdrsplit = 1;
1748 	else
1749 		printf("ti%d: can't do header splitting on a Tigon I board\n",
1750 		       sc->ti_unit);
1751 #endif /* TI_JUMBO_HDRSPLIT */
1752 
1753 	/* Set up the PCI state register. */
1754 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1755 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1756 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1757 	}
1758 
1759 	/* Clear the read/write max DMA parameters. */
1760 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1761 	    TI_PCISTATE_READ_MAXDMA));
1762 
1763 	/* Get cache line size. */
1764 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1765 
1766 	/*
1767 	 * If the system has set enabled the PCI memory write
1768 	 * and invalidate command in the command register, set
1769 	 * the write max parameter accordingly. This is necessary
1770 	 * to use MWI with the Tigon 2.
1771 	 */
1772 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1773 		switch(cacheline) {
1774 		case 1:
1775 		case 4:
1776 		case 8:
1777 		case 16:
1778 		case 32:
1779 		case 64:
1780 			break;
1781 		default:
1782 		/* Disable PCI memory write and invalidate. */
1783 			if (bootverbose)
1784 				printf("ti%d: cache line size %d not "
1785 				    "supported; disabling PCI MWI\n",
1786 				    sc->ti_unit, cacheline);
1787 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1788 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1789 			break;
1790 		}
1791 	}
1792 
1793 #ifdef __brokenalpha__
1794 	/*
1795 	 * From the Alteon sample driver:
1796 	 * Must insure that we do not cross an 8K (bytes) boundary
1797 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1798 	 * restriction on some ALPHA platforms with early revision
1799 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1800 	 */
1801 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1802 #else
1803 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1804 #endif
1805 
1806 	/* This sets the min dma param all the way up (0xff). */
1807 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1808 
1809 	if (sc->ti_hdrsplit)
1810 		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1811 	else
1812 		hdrsplit = 0;
1813 
1814 	/* Configure DMA variables. */
1815 #if BYTE_ORDER == BIG_ENDIAN
1816 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1817 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1818 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1819 	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1820 #else /* BYTE_ORDER */
1821 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1822 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1823 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1824 #endif /* BYTE_ORDER */
1825 
1826 	/*
1827 	 * Only allow 1 DMA channel to be active at a time.
1828 	 * I don't think this is a good idea, but without it
1829 	 * the firmware racks up lots of nicDmaReadRingFull
1830 	 * errors.  This is not compatible with hardware checksums.
1831 	 */
1832 	if (sc->arpcom.ac_if.if_hwassist == 0)
1833 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1834 
1835 	/* Recommended settings from Tigon manual. */
1836 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1837 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1838 
1839 	if (ti_64bitslot_war(sc)) {
1840 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1841 		    "but we aren't", sc->ti_unit);
1842 		return(EINVAL);
1843 	}
1844 
1845 	return(0);
1846 }
1847 
1848 /*
1849  * Initialize the general information block and firmware, and
1850  * start the CPU(s) running.
1851  */
1852 static int ti_gibinit(sc)
1853 	struct ti_softc		*sc;
1854 {
1855 	struct ti_rcb		*rcb;
1856 	int			i;
1857 	struct ifnet		*ifp;
1858 
1859 	ifp = &sc->arpcom.ac_if;
1860 
1861 	/* Disable interrupts for now. */
1862 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1863 
1864 	/* Tell the chip where to find the general information block. */
1865 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1866 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1867 
1868 	/* Load the firmware into SRAM. */
1869 	ti_loadfw(sc);
1870 
1871 	/* Set up the contents of the general info and ring control blocks. */
1872 
1873 	/* Set up the event ring and producer pointer. */
1874 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1875 
1876 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1877 	rcb->ti_flags = 0;
1878 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1879 	    vtophys(&sc->ti_ev_prodidx);
1880 	sc->ti_ev_prodidx.ti_idx = 0;
1881 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1882 	sc->ti_ev_saved_considx = 0;
1883 
1884 	/* Set up the command ring and producer mailbox. */
1885 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1886 
1887 	sc->ti_rdata->ti_cmd_ring =
1888 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1889 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1890 	rcb->ti_flags = 0;
1891 	rcb->ti_max_len = 0;
1892 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1893 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1894 	}
1895 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1896 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1897 	sc->ti_cmd_saved_prodidx = 0;
1898 
1899 	/*
1900 	 * Assign the address of the stats refresh buffer.
1901 	 * We re-use the current stats buffer for this to
1902 	 * conserve memory.
1903 	 */
1904 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1905 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1906 
1907 	/* Set up the standard receive ring. */
1908 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1909 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1910 	rcb->ti_max_len = TI_FRAMELEN;
1911 	rcb->ti_flags = 0;
1912 	if (sc->arpcom.ac_if.if_hwassist)
1913 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1914 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1915 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1916 
1917 	/* Set up the jumbo receive ring. */
1918 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1919 	TI_HOSTADDR(rcb->ti_hostaddr) =
1920 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1921 
1922 #ifdef TI_PRIVATE_JUMBOS
1923 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1924 	rcb->ti_flags = 0;
1925 #else
1926 	rcb->ti_max_len = PAGE_SIZE;
1927 	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1928 #endif
1929 	if (sc->arpcom.ac_if.if_hwassist)
1930 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1931 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1932 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1933 
1934 	/*
1935 	 * Set up the mini ring. Only activated on the
1936 	 * Tigon 2 but the slot in the config block is
1937 	 * still there on the Tigon 1.
1938 	 */
1939 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1940 	TI_HOSTADDR(rcb->ti_hostaddr) =
1941 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1942 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1943 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1944 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1945 	else
1946 		rcb->ti_flags = 0;
1947 	if (sc->arpcom.ac_if.if_hwassist)
1948 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1949 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1950 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1951 
1952 	/*
1953 	 * Set up the receive return ring.
1954 	 */
1955 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1956 	TI_HOSTADDR(rcb->ti_hostaddr) =
1957 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1958 	rcb->ti_flags = 0;
1959 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1960 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1961 	    vtophys(&sc->ti_return_prodidx);
1962 
1963 	/*
1964 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1965 	 * of putting the transmit ring in the host's address space and
1966 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1967 	 * memory and accessing it through the shared memory region. We
1968 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1969 	 * so we have to revert to the shared memory scheme if we detect
1970 	 * a Tigon 1 chip.
1971 	 */
1972 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1973 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1974 		sc->ti_rdata->ti_tx_ring_nic =
1975 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1976 	}
1977 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1978 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1979 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1980 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1981 		rcb->ti_flags = 0;
1982 	else
1983 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1984 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1985 	if (sc->arpcom.ac_if.if_hwassist)
1986 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1987 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1988 	rcb->ti_max_len = TI_TX_RING_CNT;
1989 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1990 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1991 	else
1992 		TI_HOSTADDR(rcb->ti_hostaddr) =
1993 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1994 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1995 	    vtophys(&sc->ti_tx_considx);
1996 
1997 	/* Set up tuneables */
1998 #if 0
1999 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2000 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
2001 		    (sc->ti_rx_coal_ticks / 10));
2002 	else
2003 #endif
2004 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
2005 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
2006 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
2007 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
2008 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
2009 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
2010 
2011 	/* Turn interrupts on. */
2012 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2013 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2014 
2015 	/* Start CPU. */
2016 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2017 
2018 	return(0);
2019 }
2020 
2021 /*
2022  * Probe for a Tigon chip. Check the PCI vendor and device IDs
2023  * against our list and return its name if we find a match.
2024  */
2025 static int ti_probe(dev)
2026 	device_t		dev;
2027 {
2028 	struct ti_type		*t;
2029 
2030 	t = ti_devs;
2031 
2032 	while(t->ti_name != NULL) {
2033 		if ((pci_get_vendor(dev) == t->ti_vid) &&
2034 		    (pci_get_device(dev) == t->ti_did)) {
2035 			device_set_desc(dev, t->ti_name);
2036 			return(0);
2037 		}
2038 		t++;
2039 	}
2040 
2041 	return(ENXIO);
2042 }
2043 
2044 #ifdef KLD_MODULE
2045 static int
2046 log2rndup(int len)
2047 {
2048 	int log2size = 0, t = len;
2049 	while (t > 1) {
2050 		log2size++;
2051 		t >>= 1;
2052 	}
2053 	if (len != (1 << log2size))
2054 		log2size++;
2055 	return log2size;
2056 }
2057 
2058 static int
2059 ti_mbuf_sanity(device_t dev)
2060 {
2061 	if ((mbstat.m_msize != MSIZE) || mbstat.m_mclbytes != MCLBYTES){
2062 		device_printf(dev, "\n");
2063 		device_printf(dev, "This module was compiled with "
2064 				   "-DMCLSHIFT=%d -DMSIZE=%d\n", MCLSHIFT,
2065 				   MSIZE);
2066 		device_printf(dev, "The kernel was compiled with MCLSHIFT=%d,"
2067 			      " MSIZE=%d\n", log2rndup(mbstat.m_mclbytes),
2068 			      (int)mbstat.m_msize);
2069 		return(EINVAL);
2070 	}
2071 	return(0);
2072 }
2073 #endif
2074 
2075 
2076 static int ti_attach(dev)
2077 	device_t		dev;
2078 {
2079 	u_int32_t		command;
2080 	struct ifnet		*ifp;
2081 	struct ti_softc		*sc;
2082 	int			unit, error = 0, rid;
2083 
2084 	sc = NULL;
2085 
2086 #ifdef KLD_MODULE
2087 	if (ti_mbuf_sanity(dev)){
2088 		device_printf(dev, "Module mbuf constants do not match "
2089 			      "kernel constants!\n");
2090 		device_printf(dev, "Rebuild the module or the kernel so "
2091 			      "they match\n");
2092 		device_printf(dev, "\n");
2093 		error = EINVAL;
2094 		goto fail;
2095 	}
2096 #endif
2097 
2098 	sc = device_get_softc(dev);
2099 	unit = device_get_unit(dev);
2100 	bzero(sc, sizeof(struct ti_softc));
2101 
2102 	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2103 	    MTX_DEF | MTX_RECURSE);
2104 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
2105 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2106 
2107 	/*
2108 	 * Map control/status registers.
2109 	 */
2110 	pci_enable_busmaster(dev);
2111 	pci_enable_io(dev, SYS_RES_MEMORY);
2112 	command = pci_read_config(dev, PCIR_COMMAND, 4);
2113 
2114 	if (!(command & PCIM_CMD_MEMEN)) {
2115 		printf("ti%d: failed to enable memory mapping!\n", unit);
2116 		error = ENXIO;
2117 		goto fail;
2118 	}
2119 
2120 	rid = TI_PCI_LOMEM;
2121 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
2122 	    0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
2123 
2124 	if (sc->ti_res == NULL) {
2125 		printf ("ti%d: couldn't map memory\n", unit);
2126 		error = ENXIO;
2127 		goto fail;
2128 	}
2129 
2130 	sc->ti_btag = rman_get_bustag(sc->ti_res);
2131 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2132 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2133 
2134 	/* Allocate interrupt */
2135 	rid = 0;
2136 
2137 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
2138 	    RF_SHAREABLE | RF_ACTIVE);
2139 
2140 	if (sc->ti_irq == NULL) {
2141 		printf("ti%d: couldn't map interrupt\n", unit);
2142 		error = ENXIO;
2143 		goto fail;
2144 	}
2145 
2146 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2147 	   ti_intr, sc, &sc->ti_intrhand);
2148 
2149 	if (error) {
2150 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2151 		bus_release_resource(dev, SYS_RES_MEMORY,
2152 		    TI_PCI_LOMEM, sc->ti_res);
2153 		printf("ti%d: couldn't set up irq\n", unit);
2154 		goto fail;
2155 	}
2156 
2157 	sc->ti_unit = unit;
2158 
2159 	if (ti_chipinit(sc)) {
2160 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2161 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2162 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2163 		bus_release_resource(dev, SYS_RES_MEMORY,
2164 		    TI_PCI_LOMEM, sc->ti_res);
2165 		error = ENXIO;
2166 		goto fail;
2167 	}
2168 
2169 	/* Zero out the NIC's on-board SRAM. */
2170 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2171 
2172 	/* Init again -- zeroing memory may have clobbered some registers. */
2173 	if (ti_chipinit(sc)) {
2174 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2175 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2176 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2177 		bus_release_resource(dev, SYS_RES_MEMORY,
2178 		    TI_PCI_LOMEM, sc->ti_res);
2179 		error = ENXIO;
2180 		goto fail;
2181 	}
2182 
2183 	/*
2184 	 * Get station address from the EEPROM. Note: the manual states
2185 	 * that the MAC address is at offset 0x8c, however the data is
2186 	 * stored as two longwords (since that's how it's loaded into
2187 	 * the NIC). This means the MAC address is actually preceded
2188 	 * by two zero bytes. We need to skip over those.
2189 	 */
2190 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2191 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2192 		printf("ti%d: failed to read station address\n", unit);
2193 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2194 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2195 		bus_release_resource(dev, SYS_RES_MEMORY,
2196 		    TI_PCI_LOMEM, sc->ti_res);
2197 		error = ENXIO;
2198 		goto fail;
2199 	}
2200 
2201 	/*
2202 	 * A Tigon chip was detected. Inform the world.
2203 	 */
2204 	printf("ti%d: Ethernet address: %6D\n", unit,
2205 				sc->arpcom.ac_enaddr, ":");
2206 
2207 	/* Allocate the general information block and ring buffers. */
2208 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2209 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2210 
2211 	if (sc->ti_rdata == NULL) {
2212 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2213 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2214 		bus_release_resource(dev, SYS_RES_MEMORY,
2215 		    TI_PCI_LOMEM, sc->ti_res);
2216 		error = ENXIO;
2217 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2218 		goto fail;
2219 	}
2220 
2221 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2222 
2223 	/* Try to allocate memory for jumbo buffers. */
2224 #ifdef TI_PRIVATE_JUMBOS
2225 	if (ti_alloc_jumbo_mem(sc)) {
2226 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2227 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2228 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2229 		bus_release_resource(dev, SYS_RES_MEMORY,
2230 		    TI_PCI_LOMEM, sc->ti_res);
2231 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
2232 		    M_DEVBUF);
2233 		error = ENXIO;
2234 		goto fail;
2235 	}
2236 #else
2237 	if (!jumbo_vm_init()) {
2238 		printf("ti%d: VM initialization failed!\n", sc->ti_unit);
2239 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2240 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2241 		bus_release_resource(dev, SYS_RES_MEMORY,
2242 		    TI_PCI_LOMEM, sc->ti_res);
2243 		free(sc->ti_rdata, M_DEVBUF);
2244 		error = ENOMEM;
2245 		goto fail;
2246 	}
2247 #endif
2248 
2249 	/*
2250 	 * We really need a better way to tell a 1000baseTX card
2251 	 * from a 1000baseSX one, since in theory there could be
2252 	 * OEMed 1000baseTX cards from lame vendors who aren't
2253 	 * clever enough to change the PCI ID. For the moment
2254 	 * though, the AceNIC is the only copper card available.
2255 	 */
2256 	if (pci_get_vendor(dev) == ALT_VENDORID &&
2257 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2258 		sc->ti_copper = 1;
2259 	/* Ok, it's not the only copper card available. */
2260 	if (pci_get_vendor(dev) == NG_VENDORID &&
2261 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2262 		sc->ti_copper = 1;
2263 
2264 	/* Set default tuneable values. */
2265 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2266 #if 0
2267 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2268 #endif
2269 	sc->ti_rx_coal_ticks = 170;
2270 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2271 	sc->ti_rx_max_coal_bds = 64;
2272 #if 0
2273 	sc->ti_tx_max_coal_bds = 128;
2274 #endif
2275 	sc->ti_tx_max_coal_bds = 32;
2276 	sc->ti_tx_buf_ratio = 21;
2277 
2278 	/* Set up ifnet structure */
2279 	ifp = &sc->arpcom.ac_if;
2280 	ifp->if_softc = sc;
2281 	ifp->if_unit = sc->ti_unit;
2282 	ifp->if_name = "ti";
2283 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2284 	tis[unit] = sc;
2285 	ifp->if_ioctl = ti_ioctl;
2286 	ifp->if_output = ether_output;
2287 	ifp->if_start = ti_start;
2288 	ifp->if_watchdog = ti_watchdog;
2289 	ifp->if_init = ti_init;
2290 	ifp->if_mtu = ETHERMTU;
2291 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2292 
2293 	/* Set up ifmedia support. */
2294 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2295 	if (sc->ti_copper) {
2296 		/*
2297 		 * Copper cards allow manual 10/100 mode selection,
2298 		 * but not manual 1000baseTX mode selection. Why?
2299 		 * Becuase currently there's no way to specify the
2300 		 * master/slave setting through the firmware interface,
2301 		 * so Alteon decided to just bag it and handle it
2302 		 * via autonegotiation.
2303 		 */
2304 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2305 		ifmedia_add(&sc->ifmedia,
2306 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2307 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2308 		ifmedia_add(&sc->ifmedia,
2309 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2310 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2311 		ifmedia_add(&sc->ifmedia,
2312 		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2313 	} else {
2314 		/* Fiber cards don't support 10/100 modes. */
2315 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2316 		ifmedia_add(&sc->ifmedia,
2317 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2318 	}
2319 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2320 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2321 
2322 	/*
2323 	 * We're assuming here that card initialization is a sequential
2324 	 * thing.  If it isn't, multiple cards probing at the same time
2325 	 * could stomp on the list of softcs here.
2326 	 */
2327 	/*
2328 	 * If this is the first card to be initialized, initialize the
2329 	 * softc queue.
2330 	 */
2331 	if (unit == 0)
2332 		STAILQ_INIT(&ti_sc_list);
2333 
2334 	STAILQ_INSERT_TAIL(&ti_sc_list, sc, ti_links);
2335 
2336 	/* Register the device */
2337 	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2338 			   0600, "ti%d", sc->ti_unit);
2339 
2340 	/*
2341 	 * Call MI attach routine.
2342 	 */
2343 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
2344 	return(0);
2345 
2346 fail:
2347 	mtx_destroy(&sc->ti_mtx);
2348 	return(error);
2349 }
2350 
2351 /*
2352  * Verify that our character special device is not currently
2353  * open.  Also track down any cached vnodes & kill them before
2354  * the module is unloaded
2355  */
2356 static int
2357 ti_unref_special(device_t dev)
2358 {
2359 	struct vnode *ti_vn;
2360 	int count;
2361 	struct ti_softc *sc = sc = device_get_softc(dev);
2362 
2363 	if (!vfinddev(sc->dev, VCHR, &ti_vn)) {
2364 		return 0;
2365 	}
2366 
2367 	if ((count = vcount(ti_vn))) {
2368 		device_printf(dev, "%d refs to special device, "
2369 			      "denying unload\n", count);
2370 		return count;
2371 	}
2372 	/* now we know that there's a vnode in the cache. We hunt it
2373 	   down and kill it now, before unloading */
2374 	vgone(ti_vn);
2375 	return(0);
2376 }
2377 
2378 
2379 static int ti_detach(dev)
2380 	device_t		dev;
2381 {
2382 	struct ti_softc		*sc;
2383 	struct ifnet		*ifp;
2384 
2385 	if (ti_unref_special(dev))
2386 		return EBUSY;
2387 
2388 	sc = device_get_softc(dev);
2389 	TI_LOCK(sc);
2390 	ifp = &sc->arpcom.ac_if;
2391 
2392 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
2393 	ti_stop(sc);
2394 
2395 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2396 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2397 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
2398 
2399 #ifdef TI_PRIVATE_JUMBOS
2400 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2401 #endif
2402 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2403 	ifmedia_removeall(&sc->ifmedia);
2404 
2405 	TI_UNLOCK(sc);
2406 	mtx_destroy(&sc->ti_mtx);
2407 
2408 	return(0);
2409 }
2410 
2411 #ifdef TI_JUMBO_HDRSPLIT
2412 /*
2413  * If hdr_len is 0, that means that header splitting wasn't done on
2414  * this packet for some reason.  The two most likely reasons are that
2415  * the protocol isn't a supported protocol for splitting, or this
2416  * packet had a fragment offset that wasn't 0.
2417  *
2418  * The header length, if it is non-zero, will always be the length of
2419  * the headers on the packet, but that length could be longer than the
2420  * first mbuf.  So we take the minimum of the two as the actual
2421  * length.
2422  */
2423 static __inline void
2424 ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2425 {
2426 	int i = 0;
2427 	int lengths[4] = {0, 0, 0, 0};
2428 	struct mbuf *m, *mp;
2429 
2430 	if (hdr_len != 0)
2431 		top->m_len = min(hdr_len, top->m_len);
2432 	pkt_len -= top->m_len;
2433 	lengths[i++] = top->m_len;
2434 
2435 	mp = top;
2436 	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2437 		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2438 		pkt_len -= m->m_len;
2439 		lengths[i++] = m->m_len;
2440 		mp = m;
2441 	}
2442 
2443 #if 0
2444 	if (hdr_len != 0)
2445 		printf("got split packet: ");
2446 	else
2447 		printf("got non-split packet: ");
2448 
2449 	printf("%d,%d,%d,%d = %d\n", lengths[0],
2450 	    lengths[1], lengths[2], lengths[3],
2451 	    lengths[0] + lengths[1] + lengths[2] +
2452 	    lengths[3]);
2453 #endif
2454 
2455 	if (pkt_len)
2456 		panic("header splitting didn't");
2457 
2458 	if (m) {
2459 		m_freem(m);
2460 		mp->m_next = NULL;
2461 
2462 	}
2463 	if (mp->m_next != NULL)
2464 		panic("ti_hdr_split: last mbuf in chain should be null");
2465 }
2466 #endif /* TI_JUMBO_HDRSPLIT */
2467 
2468 /*
2469  * Frame reception handling. This is called if there's a frame
2470  * on the receive return list.
2471  *
2472  * Note: we have to be able to handle three possibilities here:
2473  * 1) the frame is from the mini receive ring (can only happen)
2474  *    on Tigon 2 boards)
2475  * 2) the frame is from the jumbo recieve ring
2476  * 3) the frame is from the standard receive ring
2477  */
2478 
2479 static void ti_rxeof(sc)
2480 	struct ti_softc		*sc;
2481 {
2482 	struct ifnet		*ifp;
2483 	struct ti_cmd_desc	cmd;
2484 
2485 	ifp = &sc->arpcom.ac_if;
2486 
2487 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2488 		struct ti_rx_desc	*cur_rx;
2489 		u_int32_t		rxidx;
2490 		struct ether_header	*eh;
2491 		struct mbuf		*m = NULL;
2492 		u_int16_t		vlan_tag = 0;
2493 		int			have_tag = 0;
2494 
2495 		cur_rx =
2496 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2497 		rxidx = cur_rx->ti_idx;
2498 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2499 
2500 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2501 			have_tag = 1;
2502 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2503 		}
2504 
2505 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2506 
2507 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2508 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2509 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2510 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2511 				ifp->if_ierrors++;
2512 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2513 				continue;
2514 			}
2515 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2516 				ifp->if_ierrors++;
2517 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2518 				continue;
2519 			}
2520 #ifdef TI_PRIVATE_JUMBOS
2521                         m->m_len = cur_rx->ti_len;
2522 #else /* TI_PRIVATE_JUMBOS */
2523 #ifdef TI_JUMBO_HDRSPLIT
2524 			if (sc->ti_hdrsplit)
2525 				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2526 					     cur_rx->ti_len, rxidx);
2527 			else
2528 #endif /* TI_JUMBO_HDRSPLIT */
2529                         	m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2530 #endif /* TI_PRIVATE_JUMBOS */
2531 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2532 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2533 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2534 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2535 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2536 				ifp->if_ierrors++;
2537 				ti_newbuf_mini(sc, sc->ti_mini, m);
2538 				continue;
2539 			}
2540 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2541 				ifp->if_ierrors++;
2542 				ti_newbuf_mini(sc, sc->ti_mini, m);
2543 				continue;
2544 			}
2545 			m->m_len = cur_rx->ti_len;
2546 		} else {
2547 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2548 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2549 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2550 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2551 				ifp->if_ierrors++;
2552 				ti_newbuf_std(sc, sc->ti_std, m);
2553 				continue;
2554 			}
2555 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2556 				ifp->if_ierrors++;
2557 				ti_newbuf_std(sc, sc->ti_std, m);
2558 				continue;
2559 			}
2560 			m->m_len = cur_rx->ti_len;
2561 		}
2562 
2563 		m->m_pkthdr.len = cur_rx->ti_len;
2564 		ifp->if_ipackets++;
2565 		eh = mtod(m, struct ether_header *);
2566 		m->m_pkthdr.rcvif = ifp;
2567 
2568 		/* Remove header from mbuf and pass it on. */
2569 		m_adj(m, sizeof(struct ether_header));
2570 
2571 		if (ifp->if_hwassist) {
2572 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2573 			    CSUM_DATA_VALID;
2574 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2575 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2576 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2577 		}
2578 
2579 		/*
2580 		 * If we received a packet with a vlan tag, pass it
2581 		 * to vlan_input() instead of ether_input().
2582 		 */
2583 		if (have_tag) {
2584 			VLAN_INPUT_TAG(eh, m, vlan_tag);
2585 			have_tag = vlan_tag = 0;
2586 			continue;
2587 		}
2588 		ether_input(ifp, eh, m);
2589 	}
2590 
2591 	/* Only necessary on the Tigon 1. */
2592 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2593 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2594 		    sc->ti_rx_saved_considx);
2595 
2596 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2597 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2598 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2599 
2600 	return;
2601 }
2602 
2603 static void ti_txeof(sc)
2604 	struct ti_softc		*sc;
2605 {
2606 	struct ti_tx_desc	*cur_tx = NULL;
2607 	struct ifnet		*ifp;
2608 
2609 	ifp = &sc->arpcom.ac_if;
2610 
2611 	/*
2612 	 * Go through our tx ring and free mbufs for those
2613 	 * frames that have been sent.
2614 	 */
2615 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2616 		u_int32_t		idx = 0;
2617 
2618 		idx = sc->ti_tx_saved_considx;
2619 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2620 			if (idx > 383)
2621 				CSR_WRITE_4(sc, TI_WINBASE,
2622 				    TI_TX_RING_BASE + 6144);
2623 			else if (idx > 255)
2624 				CSR_WRITE_4(sc, TI_WINBASE,
2625 				    TI_TX_RING_BASE + 4096);
2626 			else if (idx > 127)
2627 				CSR_WRITE_4(sc, TI_WINBASE,
2628 				    TI_TX_RING_BASE + 2048);
2629 			else
2630 				CSR_WRITE_4(sc, TI_WINBASE,
2631 				    TI_TX_RING_BASE);
2632 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2633 		} else
2634 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2635 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2636 			ifp->if_opackets++;
2637 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2638 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2639 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2640 		}
2641 		sc->ti_txcnt--;
2642 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2643 		ifp->if_timer = 0;
2644 	}
2645 
2646 	if (cur_tx != NULL)
2647 		ifp->if_flags &= ~IFF_OACTIVE;
2648 
2649 	return;
2650 }
2651 
2652 static void ti_intr(xsc)
2653 	void			*xsc;
2654 {
2655 	struct ti_softc		*sc;
2656 	struct ifnet		*ifp;
2657 
2658 	sc = xsc;
2659 	TI_LOCK(sc);
2660 	ifp = &sc->arpcom.ac_if;
2661 
2662 /*#ifdef notdef*/
2663 	/* Avoid this for now -- checking this register is expensive. */
2664 	/* Make sure this is really our interrupt. */
2665 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2666 		TI_UNLOCK(sc);
2667 		return;
2668 	}
2669 /*#endif*/
2670 
2671 	/* Ack interrupt and stop others from occuring. */
2672 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2673 
2674 	if (ifp->if_flags & IFF_RUNNING) {
2675 		/* Check RX return ring producer/consumer */
2676 		ti_rxeof(sc);
2677 
2678 		/* Check TX ring producer/consumer */
2679 		ti_txeof(sc);
2680 	}
2681 
2682 	ti_handle_events(sc);
2683 
2684 	/* Re-enable interrupts. */
2685 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2686 
2687 	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2688 		ti_start(ifp);
2689 
2690 	TI_UNLOCK(sc);
2691 
2692 	return;
2693 }
2694 
2695 static void ti_stats_update(sc)
2696 	struct ti_softc		*sc;
2697 {
2698 	struct ifnet		*ifp;
2699 
2700 	ifp = &sc->arpcom.ac_if;
2701 
2702 	ifp->if_collisions +=
2703 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2704 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2705 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2706 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2707 	   ifp->if_collisions;
2708 
2709 	return;
2710 }
2711 
2712 /*
2713  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2714  * pointers to descriptors.
2715  */
2716 static int ti_encap(sc, m_head, txidx)
2717 	struct ti_softc		*sc;
2718 	struct mbuf		*m_head;
2719 	u_int32_t		*txidx;
2720 {
2721 	struct ti_tx_desc	*f = NULL;
2722 	struct mbuf		*m;
2723 	u_int32_t		frag, cur, cnt = 0;
2724 	u_int16_t		csum_flags = 0;
2725 	struct ifvlan		*ifv = NULL;
2726 
2727 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2728 	    m_head->m_pkthdr.rcvif != NULL &&
2729 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2730 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2731 
2732 	m = m_head;
2733 	cur = frag = *txidx;
2734 
2735 	if (m_head->m_pkthdr.csum_flags) {
2736 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2737 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2738 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2739 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2740 		if (m_head->m_flags & M_LASTFRAG)
2741 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2742 		else if (m_head->m_flags & M_FRAG)
2743 			csum_flags |= TI_BDFLAG_IP_FRAG;
2744 	}
2745 	/*
2746  	 * Start packing the mbufs in this chain into
2747 	 * the fragment pointers. Stop when we run out
2748  	 * of fragments or hit the end of the mbuf chain.
2749 	 */
2750 	for (m = m_head; m != NULL; m = m->m_next) {
2751 		if (m->m_len != 0) {
2752 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2753 				if (frag > 383)
2754 					CSR_WRITE_4(sc, TI_WINBASE,
2755 					    TI_TX_RING_BASE + 6144);
2756 				else if (frag > 255)
2757 					CSR_WRITE_4(sc, TI_WINBASE,
2758 					    TI_TX_RING_BASE + 4096);
2759 				else if (frag > 127)
2760 					CSR_WRITE_4(sc, TI_WINBASE,
2761 					    TI_TX_RING_BASE + 2048);
2762 				else
2763 					CSR_WRITE_4(sc, TI_WINBASE,
2764 					    TI_TX_RING_BASE);
2765 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2766 			} else
2767 				f = &sc->ti_rdata->ti_tx_ring[frag];
2768 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2769 				break;
2770 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2771 			f->ti_len = m->m_len;
2772 			f->ti_flags = csum_flags;
2773 
2774 			if (ifv != NULL) {
2775 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2776 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
2777 			} else {
2778 				f->ti_vlan_tag = 0;
2779 			}
2780 
2781 			/*
2782 			 * Sanity check: avoid coming within 16 descriptors
2783 			 * of the end of the ring.
2784 			 */
2785 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2786 				return(ENOBUFS);
2787 			cur = frag;
2788 			TI_INC(frag, TI_TX_RING_CNT);
2789 			cnt++;
2790 		}
2791 	}
2792 
2793 	if (m != NULL)
2794 		return(ENOBUFS);
2795 
2796 	if (frag == sc->ti_tx_saved_considx)
2797 		return(ENOBUFS);
2798 
2799 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2800 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2801 	            TI_BDFLAG_END;
2802 	else
2803 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2804 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2805 	sc->ti_txcnt += cnt;
2806 
2807 	*txidx = frag;
2808 
2809 	return(0);
2810 }
2811 
2812 /*
2813  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2814  * to the mbuf data regions directly in the transmit descriptors.
2815  */
2816 static void ti_start(ifp)
2817 	struct ifnet		*ifp;
2818 {
2819 	struct ti_softc		*sc;
2820 	struct mbuf		*m_head = NULL;
2821 	u_int32_t		prodidx = 0;
2822 
2823 	sc = ifp->if_softc;
2824 	TI_LOCK(sc);
2825 
2826 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2827 
2828 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2829 		IF_DEQUEUE(&ifp->if_snd, m_head);
2830 		if (m_head == NULL)
2831 			break;
2832 
2833 		/*
2834 		 * XXX
2835 		 * safety overkill.  If this is a fragmented packet chain
2836 		 * with delayed TCP/UDP checksums, then only encapsulate
2837 		 * it if we have enough descriptors to handle the entire
2838 		 * chain at once.
2839 		 * (paranoia -- may not actually be needed)
2840 		 */
2841 		if (m_head->m_flags & M_FIRSTFRAG &&
2842 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2843 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2844 			    m_head->m_pkthdr.csum_data + 16) {
2845 				IF_PREPEND(&ifp->if_snd, m_head);
2846 				ifp->if_flags |= IFF_OACTIVE;
2847 				break;
2848 			}
2849 		}
2850 
2851 		/*
2852 		 * Pack the data into the transmit ring. If we
2853 		 * don't have room, set the OACTIVE flag and wait
2854 		 * for the NIC to drain the ring.
2855 		 */
2856 		if (ti_encap(sc, m_head, &prodidx)) {
2857 			IF_PREPEND(&ifp->if_snd, m_head);
2858 			ifp->if_flags |= IFF_OACTIVE;
2859 			break;
2860 		}
2861 
2862 		/*
2863 		 * If there's a BPF listener, bounce a copy of this frame
2864 		 * to him.
2865 		 */
2866 		if (ifp->if_bpf)
2867 			bpf_mtap(ifp, m_head);
2868 	}
2869 
2870 	/* Transmit */
2871 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2872 
2873 	/*
2874 	 * Set a timeout in case the chip goes out to lunch.
2875 	 */
2876 	ifp->if_timer = 5;
2877 	TI_UNLOCK(sc);
2878 
2879 	return;
2880 }
2881 
2882 static void ti_init(xsc)
2883 	void			*xsc;
2884 {
2885 	struct ti_softc		*sc = xsc;
2886 
2887 	/* Cancel pending I/O and flush buffers. */
2888 	ti_stop(sc);
2889 
2890 	TI_LOCK(sc);
2891 	/* Init the gen info block, ring control blocks and firmware. */
2892 	if (ti_gibinit(sc)) {
2893 		printf("ti%d: initialization failure\n", sc->ti_unit);
2894 		TI_UNLOCK(sc);
2895 		return;
2896 	}
2897 
2898 	TI_UNLOCK(sc);
2899 
2900 	return;
2901 }
2902 
2903 static void ti_init2(sc)
2904 	struct ti_softc		*sc;
2905 {
2906 	struct ti_cmd_desc	cmd;
2907 	struct ifnet		*ifp;
2908 	u_int16_t		*m;
2909 	struct ifmedia		*ifm;
2910 	int			tmp;
2911 
2912 	ifp = &sc->arpcom.ac_if;
2913 
2914 	/* Specify MTU and interface index. */
2915 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2916 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2917 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2918 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2919 
2920 	/* Load our MAC address. */
2921 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2922 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2923 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2924 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2925 
2926 	/* Enable or disable promiscuous mode as needed. */
2927 	if (ifp->if_flags & IFF_PROMISC) {
2928 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2929 	} else {
2930 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2931 	}
2932 
2933 	/* Program multicast filter. */
2934 	ti_setmulti(sc);
2935 
2936 	/*
2937 	 * If this is a Tigon 1, we should tell the
2938 	 * firmware to use software packet filtering.
2939 	 */
2940 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2941 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2942 	}
2943 
2944 	/* Init RX ring. */
2945 	ti_init_rx_ring_std(sc);
2946 
2947 	/* Init jumbo RX ring. */
2948 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2949 		ti_init_rx_ring_jumbo(sc);
2950 
2951 	/*
2952 	 * If this is a Tigon 2, we can also configure the
2953 	 * mini ring.
2954 	 */
2955 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2956 		ti_init_rx_ring_mini(sc);
2957 
2958 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2959 	sc->ti_rx_saved_considx = 0;
2960 
2961 	/* Init TX ring. */
2962 	ti_init_tx_ring(sc);
2963 
2964 	/* Tell firmware we're alive. */
2965 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2966 
2967 	/* Enable host interrupts. */
2968 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2969 
2970 	ifp->if_flags |= IFF_RUNNING;
2971 	ifp->if_flags &= ~IFF_OACTIVE;
2972 
2973 	/*
2974 	 * Make sure to set media properly. We have to do this
2975 	 * here since we have to issue commands in order to set
2976 	 * the link negotiation and we can't issue commands until
2977 	 * the firmware is running.
2978 	 */
2979 	ifm = &sc->ifmedia;
2980 	tmp = ifm->ifm_media;
2981 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2982 	ti_ifmedia_upd(ifp);
2983 	ifm->ifm_media = tmp;
2984 
2985 	return;
2986 }
2987 
2988 /*
2989  * Set media options.
2990  */
2991 static int ti_ifmedia_upd(ifp)
2992 	struct ifnet		*ifp;
2993 {
2994 	struct ti_softc		*sc;
2995 	struct ifmedia		*ifm;
2996 	struct ti_cmd_desc	cmd;
2997 	u_int32_t		flowctl;
2998 
2999 	sc = ifp->if_softc;
3000 	ifm = &sc->ifmedia;
3001 
3002 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3003 		return(EINVAL);
3004 
3005 	flowctl = 0;
3006 
3007 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
3008 	case IFM_AUTO:
3009 		/*
3010 		 * Transmit flow control doesn't work on the Tigon 1.
3011 		 */
3012 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3013 
3014 		/*
3015 		 * Transmit flow control can also cause problems on the
3016 		 * Tigon 2, apparantly with both the copper and fiber
3017 		 * boards.  The symptom is that the interface will just
3018 		 * hang.  This was reproduced with Alteon 180 switches.
3019 		 */
3020 #if 0
3021 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3022 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3023 #endif
3024 
3025 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3026 		    TI_GLNK_FULL_DUPLEX| flowctl |
3027 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
3028 
3029 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3030 #if 0
3031 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3032 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3033 #endif
3034 
3035 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
3036 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
3037 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
3038 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3039 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
3040 		break;
3041 	case IFM_1000_SX:
3042 	case IFM_1000_T:
3043 		flowctl = TI_GLNK_RX_FLOWCTL_Y;
3044 #if 0
3045 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3046 			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
3047 #endif
3048 
3049 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
3050 		    flowctl |TI_GLNK_ENB);
3051 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
3052 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3053 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
3054 		}
3055 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3056 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
3057 		break;
3058 	case IFM_100_FX:
3059 	case IFM_10_FL:
3060 	case IFM_100_TX:
3061 	case IFM_10_T:
3062 		flowctl = TI_LNK_RX_FLOWCTL_Y;
3063 #if 0
3064 		if (sc->ti_hwrev != TI_HWREV_TIGON)
3065 			flowctl |= TI_LNK_TX_FLOWCTL_Y;
3066 #endif
3067 
3068 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
3069 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
3070 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
3071 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
3072 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
3073 		} else {
3074 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
3075 		}
3076 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3077 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
3078 		} else {
3079 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
3080 		}
3081 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
3082 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
3083 		break;
3084 	}
3085 
3086 	return(0);
3087 }
3088 
3089 /*
3090  * Report current media status.
3091  */
3092 static void ti_ifmedia_sts(ifp, ifmr)
3093 	struct ifnet		*ifp;
3094 	struct ifmediareq	*ifmr;
3095 {
3096 	struct ti_softc		*sc;
3097 	u_int32_t		media = 0;
3098 
3099 	sc = ifp->if_softc;
3100 
3101 	ifmr->ifm_status = IFM_AVALID;
3102 	ifmr->ifm_active = IFM_ETHER;
3103 
3104 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
3105 		return;
3106 
3107 	ifmr->ifm_status |= IFM_ACTIVE;
3108 
3109 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
3110 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
3111 		if (sc->ti_copper)
3112 			ifmr->ifm_active |= IFM_1000_T;
3113 		else
3114 			ifmr->ifm_active |= IFM_1000_SX;
3115 		if (media & TI_GLNK_FULL_DUPLEX)
3116 			ifmr->ifm_active |= IFM_FDX;
3117 		else
3118 			ifmr->ifm_active |= IFM_HDX;
3119 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
3120 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
3121 		if (sc->ti_copper) {
3122 			if (media & TI_LNK_100MB)
3123 				ifmr->ifm_active |= IFM_100_TX;
3124 			if (media & TI_LNK_10MB)
3125 				ifmr->ifm_active |= IFM_10_T;
3126 		} else {
3127 			if (media & TI_LNK_100MB)
3128 				ifmr->ifm_active |= IFM_100_FX;
3129 			if (media & TI_LNK_10MB)
3130 				ifmr->ifm_active |= IFM_10_FL;
3131 		}
3132 		if (media & TI_LNK_FULL_DUPLEX)
3133 			ifmr->ifm_active |= IFM_FDX;
3134 		if (media & TI_LNK_HALF_DUPLEX)
3135 			ifmr->ifm_active |= IFM_HDX;
3136 	}
3137 
3138 	return;
3139 }
3140 
3141 static int ti_ioctl(ifp, command, data)
3142 	struct ifnet		*ifp;
3143 	u_long			command;
3144 	caddr_t			data;
3145 {
3146 	struct ti_softc		*sc = ifp->if_softc;
3147 	struct ifreq		*ifr = (struct ifreq *) data;
3148 	int			mask, error = 0;
3149 	struct ti_cmd_desc	cmd;
3150 
3151 	TI_LOCK(sc);
3152 
3153 	switch(command) {
3154 	case SIOCSIFADDR:
3155 	case SIOCGIFADDR:
3156 		error = ether_ioctl(ifp, command, data);
3157 		break;
3158 	case SIOCSIFMTU:
3159 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3160 			error = EINVAL;
3161 		else {
3162 			ifp->if_mtu = ifr->ifr_mtu;
3163 			ti_init(sc);
3164 		}
3165 		break;
3166 	case SIOCSIFFLAGS:
3167 		if (ifp->if_flags & IFF_UP) {
3168 			/*
3169 			 * If only the state of the PROMISC flag changed,
3170 			 * then just use the 'set promisc mode' command
3171 			 * instead of reinitializing the entire NIC. Doing
3172 			 * a full re-init means reloading the firmware and
3173 			 * waiting for it to start up, which may take a
3174 			 * second or two.
3175 			 */
3176 			if (ifp->if_flags & IFF_RUNNING &&
3177 			    ifp->if_flags & IFF_PROMISC &&
3178 			    !(sc->ti_if_flags & IFF_PROMISC)) {
3179 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3180 				    TI_CMD_CODE_PROMISC_ENB, 0);
3181 			} else if (ifp->if_flags & IFF_RUNNING &&
3182 			    !(ifp->if_flags & IFF_PROMISC) &&
3183 			    sc->ti_if_flags & IFF_PROMISC) {
3184 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3185 				    TI_CMD_CODE_PROMISC_DIS, 0);
3186 			} else
3187 				ti_init(sc);
3188 		} else {
3189 			if (ifp->if_flags & IFF_RUNNING) {
3190 				ti_stop(sc);
3191 			}
3192 		}
3193 		sc->ti_if_flags = ifp->if_flags;
3194 		error = 0;
3195 		break;
3196 	case SIOCADDMULTI:
3197 	case SIOCDELMULTI:
3198 		if (ifp->if_flags & IFF_RUNNING) {
3199 			ti_setmulti(sc);
3200 			error = 0;
3201 		}
3202 		break;
3203 	case SIOCSIFMEDIA:
3204 	case SIOCGIFMEDIA:
3205 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3206 		break;
3207 	case SIOCSIFCAP:
3208 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3209 		if (mask & IFCAP_HWCSUM) {
3210 			if (IFCAP_HWCSUM & ifp->if_capenable)
3211 				ifp->if_capenable &= ~IFCAP_HWCSUM;
3212                         else
3213                                 ifp->if_capenable |= IFCAP_HWCSUM;
3214 			if (ifp->if_flags & IFF_RUNNING)
3215 				ti_init(sc);
3216                 }
3217 		error = 0;
3218 		break;
3219 	default:
3220 		error = EINVAL;
3221 		break;
3222 	}
3223 
3224 	TI_UNLOCK(sc);
3225 
3226 	return(error);
3227 }
3228 
3229 static int
3230 ti_open(dev_t dev, int flags, int fmt, struct thread *td)
3231 {
3232 	int unit;
3233 	struct ti_softc *sc;
3234 
3235 	unit = minor(dev) & 0xff;
3236 
3237 	sc = ti_lookup_softc(unit);
3238 
3239 	if (sc == NULL)
3240 		return(ENODEV);
3241 
3242 	TI_LOCK(sc);
3243 	sc->ti_flags |= TI_FLAG_DEBUGING;
3244 	TI_UNLOCK(sc);
3245 
3246 	return(0);
3247 }
3248 
3249 static int
3250 ti_close(dev_t dev, int flag, int fmt, struct thread *td)
3251 {
3252 	int unit;
3253 	struct ti_softc *sc;
3254 
3255 	unit = minor(dev) & 0xff;
3256 
3257 	sc = ti_lookup_softc(unit);
3258 
3259 	if (sc == NULL)
3260 		return(ENODEV);
3261 
3262 	TI_LOCK(sc);
3263 	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3264 	TI_UNLOCK(sc);
3265 
3266 	return(0);
3267 }
3268 
3269 /*
3270  * This ioctl routine goes along with the Tigon character device.
3271  */
3272 static int
3273 ti_ioctl2(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3274 {
3275 	int unit, error;
3276 	struct ti_softc *sc;
3277 
3278 	unit = minor(dev) & 0xff;
3279 
3280 	sc = ti_lookup_softc(unit);
3281 
3282 	if (sc == NULL)
3283 		return(ENODEV);
3284 
3285 	error = 0;
3286 
3287 	switch(cmd) {
3288 	case TIIOCGETSTATS:
3289 	{
3290 		struct ti_stats *outstats;
3291 
3292 		outstats = (struct ti_stats *)addr;
3293 
3294 		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3295 		      sizeof(struct ti_stats));
3296 		break;
3297 	}
3298 	case TIIOCGETPARAMS:
3299 	{
3300 		struct ti_params	*params;
3301 
3302 		params = (struct ti_params *)addr;
3303 
3304 		params->ti_stat_ticks = sc->ti_stat_ticks;
3305 		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3306 		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3307 		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3308 		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3309 		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3310 		params->param_mask = TI_PARAM_ALL;
3311 
3312 		error = 0;
3313 
3314 		break;
3315 	}
3316 	case TIIOCSETPARAMS:
3317 	{
3318 		struct ti_params *params;
3319 
3320 		params = (struct ti_params *)addr;
3321 
3322 		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3323 			sc->ti_stat_ticks = params->ti_stat_ticks;
3324 			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3325 		}
3326 
3327 		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3328 			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3329 			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3330 				    sc->ti_rx_coal_ticks);
3331 		}
3332 
3333 		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3334 			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3335 			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3336 				    sc->ti_tx_coal_ticks);
3337 		}
3338 
3339 		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3340 			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3341 			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3342 				    sc->ti_rx_max_coal_bds);
3343 		}
3344 
3345 		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3346 			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3347 			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3348 				    sc->ti_tx_max_coal_bds);
3349 		}
3350 
3351 		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3352 			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3353 			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3354 				    sc->ti_tx_buf_ratio);
3355 		}
3356 
3357 		error = 0;
3358 
3359 		break;
3360 	}
3361 	case TIIOCSETTRACE: {
3362 		ti_trace_type	trace_type;
3363 
3364 		trace_type = *(ti_trace_type *)addr;
3365 
3366 		/*
3367 		 * Set tracing to whatever the user asked for.  Setting
3368 		 * this register to 0 should have the effect of disabling
3369 		 * tracing.
3370 		 */
3371 		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3372 
3373 		error = 0;
3374 
3375 		break;
3376 	}
3377 	case TIIOCGETTRACE: {
3378 		struct ti_trace_buf	*trace_buf;
3379 		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3380 
3381 		trace_buf = (struct ti_trace_buf *)addr;
3382 
3383 		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3384 		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3385 		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3386 
3387 #if 0
3388 		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3389 		       "trace_len = %d\n", sc->ti_unit, trace_start,
3390 		       cur_trace_ptr, trace_len);
3391 		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3392 		       trace_buf->buf_len);
3393 #endif
3394 
3395 		error = ti_copy_mem(sc, trace_start, min(trace_len,
3396 				    trace_buf->buf_len),
3397 				    (caddr_t)trace_buf->buf, 1, 1);
3398 
3399 		if (error == 0) {
3400 			trace_buf->fill_len = min(trace_len,
3401 						  trace_buf->buf_len);
3402 			if (cur_trace_ptr < trace_start)
3403 				trace_buf->cur_trace_ptr =
3404 					trace_start - cur_trace_ptr;
3405 			else
3406 				trace_buf->cur_trace_ptr =
3407 					cur_trace_ptr - trace_start;
3408 		} else
3409 			trace_buf->fill_len = 0;
3410 
3411 
3412 		break;
3413 	}
3414 
3415 	/*
3416 	 * For debugging, five ioctls are needed:
3417 	 * ALT_ATTACH
3418 	 * ALT_READ_TG_REG
3419 	 * ALT_WRITE_TG_REG
3420 	 * ALT_READ_TG_MEM
3421 	 * ALT_WRITE_TG_MEM
3422 	 */
3423 	case ALT_ATTACH:
3424 		/*
3425 		 * From what I can tell, Alteon's Solaris Tigon driver
3426 		 * only has one character device, so you have to attach
3427 		 * to the Tigon board you're interested in.  This seems
3428 		 * like a not-so-good way to do things, since unless you
3429 		 * subsequently specify the unit number of the device
3430 		 * you're interested in in every ioctl, you'll only be
3431 		 * able to debug one board at a time.
3432 		 */
3433 		error = 0;
3434 		break;
3435 	case ALT_READ_TG_MEM:
3436 	case ALT_WRITE_TG_MEM:
3437 	{
3438 		struct tg_mem *mem_param;
3439 		u_int32_t sram_end, scratch_end;
3440 
3441 		mem_param = (struct tg_mem *)addr;
3442 
3443 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3444 			sram_end = TI_END_SRAM_I;
3445 			scratch_end = TI_END_SCRATCH_I;
3446 		} else {
3447 			sram_end = TI_END_SRAM_II;
3448 			scratch_end = TI_END_SCRATCH_II;
3449 		}
3450 
3451 		/*
3452 		 * For now, we'll only handle accessing regular SRAM,
3453 		 * nothing else.
3454 		 */
3455 		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3456 		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3457 			/*
3458 			 * In this instance, we always copy to/from user
3459 			 * space, so the user space argument is set to 1.
3460 			 */
3461 			error = ti_copy_mem(sc, mem_param->tgAddr,
3462 					    mem_param->len,
3463 					    mem_param->userAddr, 1,
3464 					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3465 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3466 			&& (mem_param->tgAddr <= scratch_end)) {
3467 			error = ti_copy_scratch(sc, mem_param->tgAddr,
3468 						mem_param->len,
3469 						mem_param->userAddr, 1,
3470 						(cmd == ALT_READ_TG_MEM) ?
3471 						1 : 0, TI_PROCESSOR_A);
3472 		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3473 			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3474 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3475 				printf("ti%d:  invalid memory range for "
3476 				       "Tigon I\n", sc->ti_unit);
3477 				error = EINVAL;
3478 				break;
3479 			}
3480 			error = ti_copy_scratch(sc, mem_param->tgAddr -
3481 						TI_SCRATCH_DEBUG_OFF,
3482 						mem_param->len,
3483 						mem_param->userAddr, 1,
3484 						(cmd == ALT_READ_TG_MEM) ?
3485 						1 : 0, TI_PROCESSOR_B);
3486 		} else {
3487 			printf("ti%d: memory address %#x len %d is out of "
3488 			       "supported range\n", sc->ti_unit,
3489 			        mem_param->tgAddr, mem_param->len);
3490 			error = EINVAL;
3491 		}
3492 
3493 		break;
3494 	}
3495 	case ALT_READ_TG_REG:
3496 	case ALT_WRITE_TG_REG:
3497 	{
3498 		struct tg_reg	*regs;
3499 		u_int32_t	tmpval;
3500 
3501 		regs = (struct tg_reg *)addr;
3502 
3503 		/*
3504 		 * Make sure the address in question isn't out of range.
3505 		 */
3506 		if (regs->addr > TI_REG_MAX) {
3507 			error = EINVAL;
3508 			break;
3509 		}
3510 		if (cmd == ALT_READ_TG_REG) {
3511 			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3512 						regs->addr, &tmpval, 1);
3513 			regs->data = ntohl(tmpval);
3514 #if 0
3515 			if ((regs->addr == TI_CPU_STATE)
3516 			 || (regs->addr == TI_CPU_CTL_B)) {
3517 				printf("ti%d: register %#x = %#x\n",
3518 				       sc->ti_unit, regs->addr, tmpval);
3519 			}
3520 #endif
3521 		} else {
3522 			tmpval = htonl(regs->data);
3523 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3524 						 regs->addr, &tmpval, 1);
3525 		}
3526 
3527 		break;
3528 	}
3529 	default:
3530 		error = ENOTTY;
3531 		break;
3532 	}
3533 	return(error);
3534 }
3535 
3536 static void ti_watchdog(ifp)
3537 	struct ifnet		*ifp;
3538 {
3539 	struct ti_softc		*sc;
3540 
3541 	sc = ifp->if_softc;
3542 	TI_LOCK(sc);
3543 
3544 	/*
3545 	 * When we're debugging, the chip is often stopped for long periods
3546 	 * of time, and that would normally cause the watchdog timer to fire.
3547 	 * Since that impedes debugging, we don't want to do that.
3548 	 */
3549 	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3550 		TI_UNLOCK(sc);
3551 		return;
3552 	}
3553 
3554 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3555 	ti_stop(sc);
3556 	ti_init(sc);
3557 
3558 	ifp->if_oerrors++;
3559 	TI_UNLOCK(sc);
3560 
3561 	return;
3562 }
3563 
3564 /*
3565  * Stop the adapter and free any mbufs allocated to the
3566  * RX and TX lists.
3567  */
3568 static void ti_stop(sc)
3569 	struct ti_softc		*sc;
3570 {
3571 	struct ifnet		*ifp;
3572 	struct ti_cmd_desc	cmd;
3573 
3574 	TI_LOCK(sc);
3575 
3576 	ifp = &sc->arpcom.ac_if;
3577 
3578 	/* Disable host interrupts. */
3579 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3580 	/*
3581 	 * Tell firmware we're shutting down.
3582 	 */
3583 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3584 
3585 	/* Halt and reinitialize. */
3586 	ti_chipinit(sc);
3587 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3588 	ti_chipinit(sc);
3589 
3590 	/* Free the RX lists. */
3591 	ti_free_rx_ring_std(sc);
3592 
3593 	/* Free jumbo RX list. */
3594 	ti_free_rx_ring_jumbo(sc);
3595 
3596 	/* Free mini RX list. */
3597 	ti_free_rx_ring_mini(sc);
3598 
3599 	/* Free TX buffers. */
3600 	ti_free_tx_ring(sc);
3601 
3602 	sc->ti_ev_prodidx.ti_idx = 0;
3603 	sc->ti_return_prodidx.ti_idx = 0;
3604 	sc->ti_tx_considx.ti_idx = 0;
3605 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3606 
3607 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3608 	TI_UNLOCK(sc);
3609 
3610 	return;
3611 }
3612 
3613 /*
3614  * Stop all chip I/O so that the kernel's probe routines don't
3615  * get confused by errant DMAs when rebooting.
3616  */
3617 static void ti_shutdown(dev)
3618 	device_t		dev;
3619 {
3620 	struct ti_softc		*sc;
3621 
3622 	sc = device_get_softc(dev);
3623 	TI_LOCK(sc);
3624 	ti_chipinit(sc);
3625 	TI_UNLOCK(sc);
3626 
3627 	return;
3628 }
3629