xref: /freebsd/sys/dev/sym/sym_fw2.h (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 
61 /*
62  *  Scripts for SYMBIOS-Processor
63  *
64  *  We have to know the offsets of all labels before we reach
65  *  them (for forward jumps). Therefore we declare a struct
66  *  here. If you make changes inside the script,
67  *
68  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
69  */
70 
71 /*
72  *  Script fragments which are loaded into the on-chip RAM
73  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
74  *  Must not exceed 4K bytes.
75  */
76 struct SYM_FWA_SCR {
77 	u32 start		[ 14];
78 	u32 getjob_begin	[  4];
79 	u32 getjob_end		[  4];
80 	u32 select		[  8];
81 	u32 wf_sel_done		[  2];
82 	u32 sel_done		[  2];
83 	u32 send_ident		[  2];
84 #ifdef SYM_CONF_IARB_SUPPORT
85 	u32 select2		[  8];
86 #else
87 	u32 select2		[  2];
88 #endif
89 	u32 command		[  2];
90 	u32 dispatch		[ 28];
91 	u32 sel_no_cmd		[ 10];
92 	u32 init		[  6];
93 	u32 clrack		[  4];
94 	u32 disp_status		[  4];
95 	u32 datai_done		[ 26];
96 	u32 datao_done		[ 12];
97 	u32 datai_phase		[  2];
98 	u32 datao_phase		[  4];
99 	u32 msg_in		[  2];
100 	u32 msg_in2		[ 10];
101 #ifdef SYM_CONF_IARB_SUPPORT
102 	u32 status		[ 14];
103 #else
104 	u32 status		[ 10];
105 #endif
106 	u32 complete		[  8];
107 	u32 complete2		[ 12];
108 	u32 complete_error	[  4];
109 	u32 done		[ 14];
110 	u32 done_end		[  2];
111 	u32 save_dp		[  8];
112 	u32 restore_dp		[  4];
113 	u32 disconnect		[ 20];
114 #ifdef SYM_CONF_IARB_SUPPORT
115 	u32 idle		[  4];
116 #else
117 	u32 idle		[  2];
118 #endif
119 #ifdef SYM_CONF_IARB_SUPPORT
120 	u32 ungetjob		[  6];
121 #else
122 	u32 ungetjob		[  4];
123 #endif
124 	u32 reselect		[  4];
125 	u32 reselected		[ 22];
126 	u32 resel_scntl4	[ 20];
127 	u32 resel_lun0		[  6];
128 #if   SYM_CONF_MAX_TASK*4 > 512
129 	u32 resel_tag		[ 26];
130 #elif SYM_CONF_MAX_TASK*4 > 256
131 	u32 resel_tag		[ 20];
132 #else
133 	u32 resel_tag		[ 16];
134 #endif
135 	u32 resel_dsa		[  2];
136 	u32 resel_dsa1		[  6];
137 	u32 resel_no_tag	[  6];
138 	u32 data_in		[SYM_CONF_MAX_SG * 2];
139 	u32 data_in2		[  4];
140 	u32 data_out		[SYM_CONF_MAX_SG * 2];
141 	u32 data_out2		[  4];
142 	u32 pm0_data		[ 12];
143 	u32 pm0_data_out	[  6];
144 	u32 pm0_data_end	[  6];
145 	u32 pm1_data		[ 12];
146 	u32 pm1_data_out	[  6];
147 	u32 pm1_data_end	[  6];
148 };
149 
150 /*
151  *  Script fragments which stay in main memory for all chips
152  *  except for chips that support 8K on-chip RAM.
153  */
154 struct SYM_FWB_SCR {
155 	u32 start64		[  2];
156 	u32 no_data		[  2];
157 	u32 sel_for_abort	[ 18];
158 	u32 sel_for_abort_1	[  2];
159 	u32 msg_in_etc		[ 12];
160 	u32 msg_received	[  4];
161 	u32 msg_weird_seen	[  4];
162 	u32 msg_extended	[ 20];
163 	u32 msg_bad		[  6];
164 	u32 msg_weird		[  4];
165 	u32 msg_weird1		[  8];
166 
167 	u32 wdtr_resp		[  6];
168 	u32 send_wdtr		[  4];
169 	u32 sdtr_resp		[  6];
170 	u32 send_sdtr		[  4];
171 	u32 ppr_resp		[  6];
172 	u32 send_ppr		[  4];
173 	u32 nego_bad_phase	[  4];
174 	u32 msg_out		[  4];
175 	u32 msg_out_done	[  4];
176 	u32 data_ovrun		[  2];
177 	u32 data_ovrun1		[ 22];
178 	u32 data_ovrun2		[  8];
179 	u32 abort_resel		[ 16];
180 	u32 resend_ident	[  4];
181 	u32 ident_break		[  4];
182 	u32 ident_break_atn	[  4];
183 	u32 sdata_in		[  6];
184 	u32 resel_bad_lun	[  4];
185 	u32 bad_i_t_l		[  4];
186 	u32 bad_i_t_l_q		[  4];
187 	u32 bad_status		[  6];
188 	u32 pm_handle		[ 20];
189 	u32 pm_handle1		[  4];
190 	u32 pm_save		[  4];
191 	u32 pm0_save		[ 14];
192 	u32 pm1_save		[ 14];
193 
194 	/* WSR handling */
195 	u32 pm_wsr_handle	[ 42];
196 	u32 wsr_ma_helper	[  4];
197 
198 	/* Data area */
199 	u32 zero		[  1];
200 	u32 scratch		[  1];
201 	u32 pm0_data_addr	[  1];
202 	u32 pm1_data_addr	[  1];
203 	u32 saved_dsa		[  1];
204 	u32 saved_drs		[  1];
205 	u32 done_pos		[  1];
206 	u32 startpos		[  1];
207 	u32 targtbl		[  1];
208 	/* End of data area */
209 
210 	u32 snooptest		[  6];
211 	u32 snoopend		[  2];
212 };
213 
214 static const struct SYM_FWA_SCR SYM_FWA_SCR = {
215 /*--------------------------< START >----------------------------*/ {
216 	/*
217 	 *  Switch the LED on.
218 	 *  Will be patched with a NO_OP if LED
219 	 *  not needed or not desired.
220 	 */
221 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
222 		0,
223 	/*
224 	 *      Clear SIGP.
225 	 */
226 	SCR_FROM_REG (ctest2),
227 		0,
228 	/*
229 	 *  Stop here if the C code wants to perform
230 	 *  some error recovery procedure manually.
231 	 *  (Indicate this by setting SEM in ISTAT)
232 	 */
233 	SCR_FROM_REG (istat),
234 		0,
235 	/*
236 	 *  Report to the C code the next position in
237 	 *  the start queue the SCRIPTS will schedule.
238 	 *  The C code must not change SCRATCHA.
239 	 */
240 	SCR_LOAD_ABS (scratcha, 4),
241 		PADDR_B (startpos),
242 	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
243 		SIR_SCRIPT_STOPPED,
244 	/*
245 	 *  Start the next job.
246 	 *
247 	 *  @DSA     = start point for this job.
248 	 *  SCRATCHA = address of this job in the start queue.
249 	 *
250 	 *  We will restore startpos with SCRATCHA if we fails the
251 	 *  arbitration or if it is the idle job.
252 	 *
253 	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
254 	 *  is a critical path. If it is partially executed, it then
255 	 *  may happen that the job address is not yet in the DSA
256 	 *  and the next queue position points to the next JOB.
257 	 */
258 	SCR_LOAD_ABS (dsa, 4),
259 		PADDR_B (startpos),
260 	SCR_LOAD_REL (temp, 4),
261 		4,
262 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
263 	SCR_STORE_ABS (temp, 4),
264 		PADDR_B (startpos),
265 	SCR_LOAD_REL (dsa, 4),
266 		0,
267 }/*-------------------------< GETJOB_END >-----------------------*/,{
268 	SCR_LOAD_REL (temp, 4),
269 		0,
270 	SCR_RETURN,
271 		0,
272 }/*-------------------------< SELECT >---------------------------*/,{
273 	/*
274 	 *  DSA	contains the address of a scheduled
275 	 *  	data structure.
276 	 *
277 	 *  SCRATCHA contains the address of the start queue
278 	 *  	entry which points to the next job.
279 	 *
280 	 *  Set Initiator mode.
281 	 *
282 	 *  (Target mode is left as an exercise for the reader)
283 	 */
284 	SCR_CLR (SCR_TRG),
285 		0,
286 	/*
287 	 *      And try to select this target.
288 	 */
289 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
290 		PADDR_A (ungetjob),
291 	/*
292 	 *  Now there are 4 possibilities:
293 	 *
294 	 *  (1) The chip loses arbitration.
295 	 *  This is ok, because it will try again,
296 	 *  when the bus becomes idle.
297 	 *  (But beware of the timeout function!)
298 	 *
299 	 *  (2) The chip is reselected.
300 	 *  Then the script processor takes the jump
301 	 *  to the RESELECT label.
302 	 *
303 	 *  (3) The chip wins arbitration.
304 	 *  Then it will execute SCRIPTS instruction until
305 	 *  the next instruction that checks SCSI phase.
306 	 *  Then will stop and wait for selection to be
307 	 *  complete or selection time-out to occur.
308 	 *
309 	 *  After having won arbitration, the SCRIPTS
310 	 *  processor is able to execute instructions while
311 	 *  the SCSI core is performing SCSI selection.
312 	 */
313 	/*
314 	 *      load the savep (saved data pointer) into
315 	 *      the actual data pointer.
316 	 */
317 	SCR_LOAD_REL (temp, 4),
318 		offsetof (struct sym_ccb, phys.head.savep),
319 	/*
320 	 *      Initialize the status registers
321 	 */
322 	SCR_LOAD_REL (scr0, 4),
323 		offsetof (struct sym_ccb, phys.head.status),
324 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
325 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
326 		SIR_SEL_ATN_NO_MSG_OUT,
327 }/*-------------------------< SEL_DONE >-------------------------*/,{
328 	/*
329 	 *  C1010-33 errata work-around.
330 	 *  Due to a race, the SCSI core may not have
331 	 *  loaded SCNTL3 on SEL_TBL instruction.
332 	 *  We reload it once phase is stable.
333 	 *  Patched with a NOOP for other chips.
334 	 */
335 	SCR_LOAD_REL (scntl3, 1),
336 		offsetof(struct sym_dsb, select.sel_scntl3),
337 }/*-------------------------< SEND_IDENT >-----------------------*/,{
338 	/*
339 	 *  Selection complete.
340 	 *  Send the IDENTIFY and possibly the TAG message
341 	 *  and negotiation message if present.
342 	 */
343 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
344 		offsetof (struct sym_dsb, smsg),
345 }/*-------------------------< SELECT2 >--------------------------*/,{
346 #ifdef SYM_CONF_IARB_SUPPORT
347 	/*
348 	 *  Set IMMEDIATE ARBITRATION if we have been given
349 	 *  a hint to do so. (Some job to do after this one).
350 	 */
351 	SCR_FROM_REG (HF_REG),
352 		0,
353 	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
354 		8,
355 	SCR_REG_REG (scntl1, SCR_OR, IARB),
356 		0,
357 #endif
358 	/*
359 	 *  Anticipate the COMMAND phase.
360 	 *  This is the PHASE we expect at this point.
361 	 */
362 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
363 		PADDR_A (sel_no_cmd),
364 }/*-------------------------< COMMAND >--------------------------*/,{
365 	/*
366 	 *  ... and send the command
367 	 */
368 	SCR_MOVE_TBL ^ SCR_COMMAND,
369 		offsetof (struct sym_dsb, cmd),
370 }/*-------------------------< DISPATCH >-------------------------*/,{
371 	/*
372 	 *  MSG_IN is the only phase that shall be
373 	 *  entered at least once for each (re)selection.
374 	 *  So we test it first.
375 	 */
376 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
377 		PADDR_A (msg_in),
378 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
379 		PADDR_A (datao_phase),
380 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
381 		PADDR_A (datai_phase),
382 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
383 		PADDR_A (status),
384 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
385 		PADDR_A (command),
386 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
387 		PADDR_B (msg_out),
388 	/*
389 	 *  Discard as many illegal phases as
390 	 *  required and tell the C code about.
391 	 */
392 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
393 		16,
394 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
395 		HADDR_1 (scratch),
396 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
397 		-16,
398 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
399 		16,
400 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
401 		HADDR_1 (scratch),
402 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
403 		-16,
404 	SCR_INT,
405 		SIR_BAD_PHASE,
406 	SCR_JUMP,
407 		PADDR_A (dispatch),
408 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
409 	/*
410 	 *  The target does not switch to command
411 	 *  phase after IDENTIFY has been sent.
412 	 *
413 	 *  If it stays in MSG OUT phase send it
414 	 *  the IDENTIFY again.
415 	 */
416 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
417 		PADDR_B (resend_ident),
418 	/*
419 	 *  If target does not switch to MSG IN phase
420 	 *  and we sent a negotiation, assert the
421 	 *  failure immediately.
422 	 */
423 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
424 		PADDR_A (dispatch),
425 	SCR_FROM_REG (HS_REG),
426 		0,
427 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
428 		SIR_NEGO_FAILED,
429 	/*
430 	 *  Jump to dispatcher.
431 	 */
432 	SCR_JUMP,
433 		PADDR_A (dispatch),
434 }/*-------------------------< INIT >-----------------------------*/,{
435 	/*
436 	 *  Wait for the SCSI RESET signal to be
437 	 *  inactive before restarting operations,
438 	 *  since the chip may hang on SEL_ATN
439 	 *  if SCSI RESET is active.
440 	 */
441 	SCR_FROM_REG (sstat0),
442 		0,
443 	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
444 		-16,
445 	SCR_JUMP,
446 		PADDR_A (start),
447 }/*-------------------------< CLRACK >---------------------------*/,{
448 	/*
449 	 *  Terminate possible pending message phase.
450 	 */
451 	SCR_CLR (SCR_ACK),
452 		0,
453 	SCR_JUMP,
454 		PADDR_A (dispatch),
455 }/*-------------------------< DISP_STATUS >----------------------*/,{
456 	/*
457 	 *  Anticipate STATUS phase.
458 	 *
459 	 *  Does spare 3 SCRIPTS instructions when we have
460 	 *  completed the INPUT of the data.
461 	 */
462 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
463 		PADDR_A (status),
464 	SCR_JUMP,
465 		PADDR_A (dispatch),
466 }/*-------------------------< DATAI_DONE >-----------------------*/,{
467 	/*
468 	 *  If the device still wants to send us data,
469 	 *  we must count the extra bytes.
470 	 */
471 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)),
472 		PADDR_B (data_ovrun),
473 	/*
474 	 *  If the SWIDE is not full, jump to dispatcher.
475 	 *  We anticipate a STATUS phase.
476 	 */
477 	SCR_FROM_REG (scntl2),
478 		0,
479 	SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
480 		PADDR_A (disp_status),
481 	/*
482 	 *  The SWIDE is full.
483 	 *  Clear this condition.
484 	 */
485 	SCR_REG_REG (scntl2, SCR_OR, WSR),
486 		0,
487 	/*
488 	 *  We are expecting an IGNORE RESIDUE message
489 	 *  from the device, otherwise we are in data
490 	 *  overrun condition. Check against MSG_IN phase.
491 	 */
492 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
493 		SIR_SWIDE_OVERRUN,
494 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
495 		PADDR_A (disp_status),
496 	/*
497 	 *  We are in MSG_IN phase,
498 	 *  Read the first byte of the message.
499 	 *  If it is not an IGNORE RESIDUE message,
500 	 *  signal overrun and jump to message
501 	 *  processing.
502 	 */
503 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
504 		HADDR_1 (msgin[0]),
505 	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
506 		SIR_SWIDE_OVERRUN,
507 	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
508 		PADDR_A (msg_in2),
509 	/*
510 	 *  We got the message we expected.
511 	 *  Read the 2nd byte, and jump to dispatcher.
512 	 */
513 	SCR_CLR (SCR_ACK),
514 		0,
515 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
516 		HADDR_1 (msgin[1]),
517 	SCR_CLR (SCR_ACK),
518 		0,
519 	SCR_JUMP,
520 		PADDR_A (disp_status),
521 }/*-------------------------< DATAO_DONE >-----------------------*/,{
522 	/*
523 	 *  If the device wants us to send more data,
524 	 *  we must count the extra bytes.
525 	 */
526 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
527 		PADDR_B (data_ovrun),
528 	/*
529 	 *  If the SODL is not full jump to dispatcher.
530 	 *  We anticipate a STATUS phase.
531 	 */
532 	SCR_FROM_REG (scntl2),
533 		0,
534 	SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
535 		PADDR_A (disp_status),
536 	/*
537 	 *  The SODL is full, clear this condition.
538 	 */
539 	SCR_REG_REG (scntl2, SCR_OR, WSS),
540 		0,
541 	/*
542 	 *  And signal a DATA UNDERRUN condition
543 	 *  to the C code.
544 	 */
545 	SCR_INT,
546 		SIR_SODL_UNDERRUN,
547 	SCR_JUMP,
548 		PADDR_A (dispatch),
549 }/*-------------------------< DATAI_PHASE >----------------------*/,{
550 	SCR_RETURN,
551 		0,
552 }/*-------------------------< DATAO_PHASE >----------------------*/,{
553 	/*
554 	 *  C1010-66 errata work-around.
555 	 *  Extra clocks of data hold must be inserted
556 	 *  in DATA OUT phase on 33 MHz PCI BUS.
557 	 *  Patched with a NOOP for other chips.
558 	 */
559 	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
560 		0,
561 	SCR_RETURN,
562 		0,
563 }/*-------------------------< MSG_IN >---------------------------*/,{
564 	/*
565 	 *  Get the first byte of the message.
566 	 *
567 	 *  The script processor doesn't negate the
568 	 *  ACK signal after this transfer.
569 	 */
570 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
571 		HADDR_1 (msgin[0]),
572 }/*-------------------------< MSG_IN2 >--------------------------*/,{
573 	/*
574 	 *  Check first against 1 byte messages
575 	 *  that we handle from SCRIPTS.
576 	 */
577 	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
578 		PADDR_A (complete),
579 	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
580 		PADDR_A (disconnect),
581 	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
582 		PADDR_A (save_dp),
583 	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
584 		PADDR_A (restore_dp),
585 	/*
586 	 *  We handle all other messages from the
587 	 *  C code, so no need to waste on-chip RAM
588 	 *  for those ones.
589 	 */
590 	SCR_JUMP,
591 		PADDR_B (msg_in_etc),
592 }/*-------------------------< STATUS >---------------------------*/,{
593 	/*
594 	 *  get the status
595 	 */
596 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
597 		HADDR_1 (scratch),
598 #ifdef SYM_CONF_IARB_SUPPORT
599 	/*
600 	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
601 	 *  since we may have to tamper the start queue from
602 	 *  the C code.
603 	 */
604 	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
605 		8,
606 	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
607 		0,
608 #endif
609 	/*
610 	 *  save status to scsi_status.
611 	 *  mark as complete.
612 	 */
613 	SCR_TO_REG (SS_REG),
614 		0,
615 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
616 		0,
617 	/*
618 	 *  Anticipate the MESSAGE PHASE for
619 	 *  the TASK COMPLETE message.
620 	 */
621 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
622 		PADDR_A (msg_in),
623 	SCR_JUMP,
624 		PADDR_A (dispatch),
625 }/*-------------------------< COMPLETE >-------------------------*/,{
626 	/*
627 	 *  Complete message.
628 	 *
629 	 *  Copy the data pointer to LASTP.
630 	 */
631 	SCR_STORE_REL (temp, 4),
632 		offsetof (struct sym_ccb, phys.head.lastp),
633 	/*
634 	 *  When we terminate the cycle by clearing ACK,
635 	 *  the target may disconnect immediately.
636 	 *
637 	 *  We don't want to be told of an "unexpected disconnect",
638 	 *  so we disable this feature.
639 	 */
640 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
641 		0,
642 	/*
643 	 *  Terminate cycle ...
644 	 */
645 	SCR_CLR (SCR_ACK|SCR_ATN),
646 		0,
647 	/*
648 	 *  ... and wait for the disconnect.
649 	 */
650 	SCR_WAIT_DISC,
651 		0,
652 }/*-------------------------< COMPLETE2 >------------------------*/,{
653 	/*
654 	 *  Save host status.
655 	 */
656 	SCR_STORE_REL (scr0, 4),
657 		offsetof (struct sym_ccb, phys.head.status),
658 	/*
659 	 *  Some bridges may reorder DMA writes to memory.
660 	 *  We donnot want the CPU to deal with completions
661 	 *  without all the posted write having been flushed
662 	 *  to memory. This DUMMY READ should flush posted
663 	 *  buffers prior to the CPU having to deal with
664 	 *  completions.
665 	 */
666 	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
667 		offsetof (struct sym_ccb, phys.head.status),
668 
669 	/*
670 	 *  If command resulted in not GOOD status,
671 	 *  call the C code if needed.
672 	 */
673 	SCR_FROM_REG (SS_REG),
674 		0,
675 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
676 		PADDR_B (bad_status),
677 	/*
678 	 *  If we performed an auto-sense, call
679 	 *  the C code to synchronyze task aborts
680 	 *  with UNIT ATTENTION conditions.
681 	 */
682 	SCR_FROM_REG (HF_REG),
683 		0,
684 	SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
685 		16,
686 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
687 	SCR_LOAD_ABS (scratcha, 4),
688 		PADDR_B (startpos),
689 	SCR_INT,
690 		SIR_COMPLETE_ERROR,
691 }/*-------------------------< DONE >-----------------------------*/,{
692 	/*
693 	 *  Copy the DSA to the DONE QUEUE and
694 	 *  signal completion to the host.
695 	 *  If we are interrupted between DONE
696 	 *  and DONE_END, we must reset, otherwise
697 	 *  the completed CCB may be lost.
698 	 */
699 	SCR_STORE_ABS (dsa, 4),
700 		PADDR_B (saved_dsa),
701 	SCR_LOAD_ABS (dsa, 4),
702 		PADDR_B (done_pos),
703 	SCR_LOAD_ABS (scratcha, 4),
704 		PADDR_B (saved_dsa),
705 	SCR_STORE_REL (scratcha, 4),
706 		0,
707 	/*
708 	 *  The instruction below reads the DONE QUEUE next
709 	 *  free position from memory.
710 	 *  In addition it ensures that all PCI posted writes
711 	 *  are flushed and so the DSA value of the done
712 	 *  CCB is visible by the CPU before INTFLY is raised.
713 	 */
714 	SCR_LOAD_REL (temp, 4),
715 		4,
716 	SCR_INT_FLY,
717 		0,
718 	SCR_STORE_ABS (temp, 4),
719 		PADDR_B (done_pos),
720 }/*-------------------------< DONE_END >-------------------------*/,{
721 	SCR_JUMP,
722 		PADDR_A (start),
723 }/*-------------------------< SAVE_DP >--------------------------*/,{
724 	/*
725 	 *  Clear ACK immediately.
726 	 *  No need to delay it.
727 	 */
728 	SCR_CLR (SCR_ACK),
729 		0,
730 	/*
731 	 *  Keep track we received a SAVE DP, so
732 	 *  we will switch to the other PM context
733 	 *  on the next PM since the DP may point
734 	 *  to the current PM context.
735 	 */
736 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
737 		0,
738 	/*
739 	 *  SAVE_DP message:
740 	 *  Copy the data pointer to SAVEP.
741 	 */
742 	SCR_STORE_REL (temp, 4),
743 		offsetof (struct sym_ccb, phys.head.savep),
744 	SCR_JUMP,
745 		PADDR_A (dispatch),
746 }/*-------------------------< RESTORE_DP >-----------------------*/,{
747 	/*
748 	 *  RESTORE_DP message:
749 	 *  Copy SAVEP to actual data pointer.
750 	 */
751 	SCR_LOAD_REL  (temp, 4),
752 		offsetof (struct sym_ccb, phys.head.savep),
753 	SCR_JUMP,
754 		PADDR_A (clrack),
755 }/*-------------------------< DISCONNECT >-----------------------*/,{
756 	/*
757 	 *  DISCONNECTing  ...
758 	 *
759 	 *  disable the "unexpected disconnect" feature,
760 	 *  and remove the ACK signal.
761 	 */
762 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
763 		0,
764 	SCR_CLR (SCR_ACK|SCR_ATN),
765 		0,
766 	/*
767 	 *  Wait for the disconnect.
768 	 */
769 	SCR_WAIT_DISC,
770 		0,
771 	/*
772 	 *  Status is: DISCONNECTED.
773 	 */
774 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
775 		0,
776 	/*
777 	 *  Save host status.
778 	 */
779 	SCR_STORE_REL (scr0, 4),
780 		offsetof (struct sym_ccb, phys.head.status),
781 	/*
782 	 *  If QUIRK_AUTOSAVE is set,
783 	 *  do a "save pointer" operation.
784 	 */
785 	SCR_FROM_REG (QU_REG),
786 		0,
787 	SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
788 		PADDR_A (start),
789 	/*
790 	 *  like SAVE_DP message:
791 	 *  Remember we saved the data pointer.
792 	 *  Copy data pointer to SAVEP.
793 	 */
794 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
795 		0,
796 	SCR_STORE_REL (temp, 4),
797 		offsetof (struct sym_ccb, phys.head.savep),
798 	SCR_JUMP,
799 		PADDR_A (start),
800 }/*-------------------------< IDLE >-----------------------------*/,{
801 	/*
802 	 *  Nothing to do?
803 	 *  Switch the LED off and wait for reselect.
804 	 *  Will be patched with a NO_OP if LED
805 	 *  not needed or not desired.
806 	 */
807 	SCR_REG_REG (gpreg, SCR_OR, 0x01),
808 		0,
809 #ifdef SYM_CONF_IARB_SUPPORT
810 	SCR_JUMPR,
811 		8,
812 #endif
813 }/*-------------------------< UNGETJOB >-------------------------*/,{
814 #ifdef SYM_CONF_IARB_SUPPORT
815 	/*
816 	 *  Set IMMEDIATE ARBITRATION, for the next time.
817 	 *  This will give us better chance to win arbitration
818 	 *  for the job we just wanted to do.
819 	 */
820 	SCR_REG_REG (scntl1, SCR_OR, IARB),
821 		0,
822 #endif
823 	/*
824 	 *  We are not able to restart the SCRIPTS if we are
825 	 *  interrupted and these instruction haven't been
826 	 *  all executed. BTW, this is very unlikely to
827 	 *  happen, but we check that from the C code.
828 	 */
829 	SCR_LOAD_REG (dsa, 0xff),
830 		0,
831 	SCR_STORE_ABS (scratcha, 4),
832 		PADDR_B (startpos),
833 }/*-------------------------< RESELECT >-------------------------*/,{
834 	/*
835 	 *  Make sure we are in initiator mode.
836 	 */
837 	SCR_CLR (SCR_TRG),
838 		0,
839 	/*
840 	 *  Sleep waiting for a reselection.
841 	 */
842 	SCR_WAIT_RESEL,
843 		PADDR_A(start),
844 }/*-------------------------< RESELECTED >-----------------------*/,{
845 	/*
846 	 *  Switch the LED on.
847 	 *  Will be patched with a NO_OP if LED
848 	 *  not needed or not desired.
849 	 */
850 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
851 		0,
852 	/*
853 	 *  load the target id into the sdid
854 	 */
855 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
856 		0,
857 	SCR_TO_REG (sdid),
858 		0,
859 	/*
860 	 *  Load the target control block address
861 	 */
862 	SCR_LOAD_ABS (dsa, 4),
863 		PADDR_B (targtbl),
864 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
865 		0,
866 	SCR_REG_REG (dsa, SCR_SHL, 0),
867 		0,
868 	SCR_REG_REG (dsa, SCR_AND, 0x3c),
869 		0,
870 	SCR_LOAD_REL (dsa, 4),
871 		0,
872 	/*
873 	 *  We expect MESSAGE IN phase.
874 	 *  If not, get help from the C code.
875 	 */
876 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
877 		SIR_RESEL_NO_MSG_IN,
878 	/*
879 	 *  Load the legacy synchronous transfer registers.
880 	 */
881 	SCR_LOAD_REL (scntl3, 1),
882 		offsetof(struct sym_tcb, head.wval),
883 	SCR_LOAD_REL (sxfer, 1),
884 		offsetof(struct sym_tcb, head.sval),
885 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
886 	/*
887 	 *  The C1010 uses a new synchronous timing scheme.
888 	 *  Will be patched with a NO_OP if not a C1010.
889 	 */
890 	SCR_LOAD_REL (scntl4, 1),
891 		offsetof(struct sym_tcb, head.uval),
892 	/*
893 	 *  Get the IDENTIFY message.
894 	 */
895 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
896 		HADDR_1 (msgin),
897 	/*
898 	 *  If IDENTIFY LUN #0, use a faster path
899 	 *  to find the LCB structure.
900 	 */
901 	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
902 		PADDR_A (resel_lun0),
903 	/*
904 	 *  If message isn't an IDENTIFY,
905 	 *  tell the C code about.
906 	 */
907 	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
908 		SIR_RESEL_NO_IDENTIFY,
909 	/*
910 	 *  It is an IDENTIFY message,
911 	 *  Load the LUN control block address.
912 	 */
913 	SCR_LOAD_REL (dsa, 4),
914 		offsetof(struct sym_tcb, head.luntbl_sa),
915 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
916 		0,
917 	SCR_REG_REG (dsa, SCR_SHL, 0),
918 		0,
919 	SCR_REG_REG (dsa, SCR_AND, 0xfc),
920 		0,
921 	SCR_LOAD_REL (dsa, 4),
922 		0,
923 	SCR_JUMPR,
924 		8,
925 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
926 	/*
927 	 *  LUN 0 special case (but usual one :))
928 	 */
929 	SCR_LOAD_REL (dsa, 4),
930 		offsetof(struct sym_tcb, head.lun0_sa),
931 	/*
932 	 *  Jump indirectly to the reselect action for this LUN.
933 	 */
934 	SCR_LOAD_REL (temp, 4),
935 		offsetof(struct sym_lcb, head.resel_sa),
936 	SCR_RETURN,
937 		0,
938 	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
939 }/*-------------------------< RESEL_TAG >------------------------*/,{
940 	/*
941 	 *  ACK the IDENTIFY previously received.
942 	 */
943 	SCR_CLR (SCR_ACK),
944 		0,
945 	/*
946 	 *  It shall be a tagged command.
947 	 *  Read SIMPLE+TAG.
948 	 *  The C code will deal with errors.
949 	 *  Aggressive optimization, isn't it? :)
950 	 */
951 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
952 		HADDR_1 (msgin),
953 	/*
954 	 *  Load the pointer to the tagged task
955 	 *  table for this LUN.
956 	 */
957 	SCR_LOAD_REL (dsa, 4),
958 		offsetof(struct sym_lcb, head.itlq_tbl_sa),
959 	/*
960 	 *  The SIDL still contains the TAG value.
961 	 *  Aggressive optimization, isn't it? :):)
962 	 */
963 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
964 		0,
965 #if SYM_CONF_MAX_TASK*4 > 512
966 	SCR_JUMPR ^ IFFALSE (CARRYSET),
967 		8,
968 	SCR_REG_REG (dsa1, SCR_OR, 2),
969 		0,
970 	SCR_REG_REG (sfbr, SCR_SHL, 0),
971 		0,
972 	SCR_JUMPR ^ IFFALSE (CARRYSET),
973 		8,
974 	SCR_REG_REG (dsa1, SCR_OR, 1),
975 		0,
976 #elif SYM_CONF_MAX_TASK*4 > 256
977 	SCR_JUMPR ^ IFFALSE (CARRYSET),
978 		8,
979 	SCR_REG_REG (dsa1, SCR_OR, 1),
980 		0,
981 #endif
982 	/*
983 	 *  Retrieve the DSA of this task.
984 	 *  JUMP indirectly to the restart point of the CCB.
985 	 */
986 	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
987 		0,
988 	SCR_LOAD_REL (dsa, 4),
989 		0,
990 	SCR_LOAD_REL (temp, 4),
991 		offsetof(struct sym_ccb, phys.head.go.restart),
992 	SCR_RETURN,
993 		0,
994 	/* In normal situations we branch to RESEL_DSA */
995 }/*-------------------------< RESEL_DSA >------------------------*/,{
996 	/*
997 	 *  ACK the IDENTIFY or TAG previously received.
998 	 */
999 	SCR_CLR (SCR_ACK),
1000 		0,
1001 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1002 	/*
1003 	 *      load the savep (saved pointer) into
1004 	 *      the actual data pointer.
1005 	 */
1006 	SCR_LOAD_REL (temp, 4),
1007 		offsetof (struct sym_ccb, phys.head.savep),
1008 	/*
1009 	 *      Initialize the status registers
1010 	 */
1011 	SCR_LOAD_REL (scr0, 4),
1012 		offsetof (struct sym_ccb, phys.head.status),
1013 	/*
1014 	 *  Jump to dispatcher.
1015 	 */
1016 	SCR_JUMP,
1017 		PADDR_A (dispatch),
1018 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1019 	/*
1020 	 *  Load the DSA with the unique ITL task.
1021 	 */
1022 	SCR_LOAD_REL (dsa, 4),
1023 		offsetof(struct sym_lcb, head.itl_task_sa),
1024 	/*
1025 	 *  JUMP indirectly to the restart point of the CCB.
1026 	 */
1027 	SCR_LOAD_REL (temp, 4),
1028 		offsetof(struct sym_ccb, phys.head.go.restart),
1029 	SCR_RETURN,
1030 		0,
1031 	/* In normal situations we branch to RESEL_DSA */
1032 }/*-------------------------< DATA_IN >--------------------------*/,{
1033 /*
1034  *  Because the size depends on the
1035  *  #define SYM_CONF_MAX_SG parameter,
1036  *  it is filled in at runtime.
1037  *
1038  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1039  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1040  *  ||		offsetof (struct sym_dsb, data[ i]),
1041  *  ##==========================================
1042  */
1043 0
1044 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1045 	SCR_CALL,
1046 		PADDR_A (datai_done),
1047 	SCR_JUMP,
1048 		PADDR_B (data_ovrun),
1049 }/*-------------------------< DATA_OUT >-------------------------*/,{
1050 /*
1051  *  Because the size depends on the
1052  *  #define SYM_CONF_MAX_SG parameter,
1053  *  it is filled in at runtime.
1054  *
1055  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1056  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1057  *  ||		offsetof (struct sym_dsb, data[ i]),
1058  *  ##==========================================
1059  */
1060 0
1061 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1062 	SCR_CALL,
1063 		PADDR_A (datao_done),
1064 	SCR_JUMP,
1065 		PADDR_B (data_ovrun),
1066 }/*-------------------------< PM0_DATA >-------------------------*/,{
1067 	/*
1068 	 *  Read our host flags to SFBR, so we will be able
1069 	 *  to check against the data direction we expect.
1070 	 */
1071 	SCR_FROM_REG (HF_REG),
1072 		0,
1073 	/*
1074 	 *  Check against actual DATA PHASE.
1075 	 */
1076 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1077 		PADDR_A (pm0_data_out),
1078 	/*
1079 	 *  Actual phase is DATA IN.
1080 	 *  Check against expected direction.
1081 	 */
1082 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1083 		PADDR_B (data_ovrun),
1084 	/*
1085 	 *  Keep track we are moving data from the
1086 	 *  PM0 DATA mini-script.
1087 	 */
1088 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1089 		0,
1090 	/*
1091 	 *  Move the data to memory.
1092 	 */
1093 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1094 		offsetof (struct sym_ccb, phys.pm0.sg),
1095 	SCR_JUMP,
1096 		PADDR_A (pm0_data_end),
1097 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1098 	/*
1099 	 *  Actual phase is DATA OUT.
1100 	 *  Check against expected direction.
1101 	 */
1102 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1103 		PADDR_B (data_ovrun),
1104 	/*
1105 	 *  Keep track we are moving data from the
1106 	 *  PM0 DATA mini-script.
1107 	 */
1108 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1109 		0,
1110 	/*
1111 	 *  Move the data from memory.
1112 	 */
1113 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1114 		offsetof (struct sym_ccb, phys.pm0.sg),
1115 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1116 	/*
1117 	 *  Clear the flag that told we were moving
1118 	 *  data from the PM0 DATA mini-script.
1119 	 */
1120 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1121 		0,
1122 	/*
1123 	 *  Return to the previous DATA script which
1124 	 *  is guaranteed by design (if no bug) to be
1125 	 *  the main DATA script for this transfer.
1126 	 */
1127 	SCR_LOAD_REL (temp, 4),
1128 		offsetof (struct sym_ccb, phys.pm0.ret),
1129 	SCR_RETURN,
1130 		0,
1131 }/*-------------------------< PM1_DATA >-------------------------*/,{
1132 	/*
1133 	 *  Read our host flags to SFBR, so we will be able
1134 	 *  to check against the data direction we expect.
1135 	 */
1136 	SCR_FROM_REG (HF_REG),
1137 		0,
1138 	/*
1139 	 *  Check against actual DATA PHASE.
1140 	 */
1141 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1142 		PADDR_A (pm1_data_out),
1143 	/*
1144 	 *  Actual phase is DATA IN.
1145 	 *  Check against expected direction.
1146 	 */
1147 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1148 		PADDR_B (data_ovrun),
1149 	/*
1150 	 *  Keep track we are moving data from the
1151 	 *  PM1 DATA mini-script.
1152 	 */
1153 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1154 		0,
1155 	/*
1156 	 *  Move the data to memory.
1157 	 */
1158 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1159 		offsetof (struct sym_ccb, phys.pm1.sg),
1160 	SCR_JUMP,
1161 		PADDR_A (pm1_data_end),
1162 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1163 	/*
1164 	 *  Actual phase is DATA OUT.
1165 	 *  Check against expected direction.
1166 	 */
1167 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1168 		PADDR_B (data_ovrun),
1169 	/*
1170 	 *  Keep track we are moving data from the
1171 	 *  PM1 DATA mini-script.
1172 	 */
1173 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1174 		0,
1175 	/*
1176 	 *  Move the data from memory.
1177 	 */
1178 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1179 		offsetof (struct sym_ccb, phys.pm1.sg),
1180 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1181 	/*
1182 	 *  Clear the flag that told we were moving
1183 	 *  data from the PM1 DATA mini-script.
1184 	 */
1185 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1186 		0,
1187 	/*
1188 	 *  Return to the previous DATA script which
1189 	 *  is guaranteed by design (if no bug) to be
1190 	 *  the main DATA script for this transfer.
1191 	 */
1192 	SCR_LOAD_REL (temp, 4),
1193 		offsetof (struct sym_ccb, phys.pm1.ret),
1194 	SCR_RETURN,
1195 		0,
1196 }/*-------------------------<>-----------------------------------*/
1197 };
1198 
1199 static const struct SYM_FWB_SCR SYM_FWB_SCR = {
1200 /*--------------------------< START64 >--------------------------*/ {
1201 	/*
1202 	 *  SCRIPT entry point for the 895A, 896 and 1010.
1203 	 *  For now, there is no specific stuff for those
1204 	 *  chips at this point, but this may come.
1205 	 */
1206 	SCR_JUMP,
1207 		PADDR_A (init),
1208 }/*-------------------------< NO_DATA >--------------------------*/,{
1209 	SCR_JUMP,
1210 		PADDR_B (data_ovrun),
1211 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1212 	/*
1213 	 *  We are jumped here by the C code, if we have
1214 	 *  some target to reset or some disconnected
1215 	 *  job to abort. Since error recovery is a serious
1216 	 *  busyness, we will really reset the SCSI BUS, if
1217 	 *  case of a SCSI interrupt occurring in this path.
1218 	 */
1219 
1220 	/*
1221 	 *  Set initiator mode.
1222 	 */
1223 	SCR_CLR (SCR_TRG),
1224 		0,
1225 	/*
1226 	 *      And try to select this target.
1227 	 */
1228 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1229 		PADDR_A (reselect),
1230 	/*
1231 	 *  Wait for the selection to complete or
1232 	 *  the selection to time out.
1233 	 */
1234 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1235 		-8,
1236 	/*
1237 	 *  Call the C code.
1238 	 */
1239 	SCR_INT,
1240 		SIR_TARGET_SELECTED,
1241 	/*
1242 	 *  The C code should let us continue here.
1243 	 *  Send the 'kiss of death' message.
1244 	 *  We expect an immediate disconnect once
1245 	 *  the target has eaten the message.
1246 	 */
1247 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1248 		0,
1249 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1250 		offsetof (struct sym_hcb, abrt_tbl),
1251 	SCR_CLR (SCR_ACK|SCR_ATN),
1252 		0,
1253 	SCR_WAIT_DISC,
1254 		0,
1255 	/*
1256 	 *  Tell the C code that we are done.
1257 	 */
1258 	SCR_INT,
1259 		SIR_ABORT_SENT,
1260 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1261 	/*
1262 	 *  Jump at scheduler.
1263 	 */
1264 	SCR_JUMP,
1265 		PADDR_A (start),
1266 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1267 	/*
1268 	 *  If it is an EXTENDED (variable size message)
1269 	 *  Handle it.
1270 	 */
1271 	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1272 		PADDR_B (msg_extended),
1273 	/*
1274 	 *  Let the C code handle any other
1275 	 *  1 byte message.
1276 	 */
1277 	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1278 		PADDR_B (msg_received),
1279 	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1280 		PADDR_B (msg_received),
1281 	/*
1282 	 *  We donnot handle 2 bytes messages from SCRIPTS.
1283 	 *  So, let the C code deal with these ones too.
1284 	 */
1285 	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1286 		PADDR_B (msg_weird_seen),
1287 	SCR_CLR (SCR_ACK),
1288 		0,
1289 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1290 		HADDR_1 (msgin[1]),
1291 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1292 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1293 		0,
1294 	SCR_INT,
1295 		SIR_MSG_RECEIVED,
1296 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1297 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1298 		0,
1299 	SCR_INT,
1300 		SIR_MSG_WEIRD,
1301 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1302 	/*
1303 	 *  Clear ACK and get the next byte
1304 	 *  assumed to be the message length.
1305 	 */
1306 	SCR_CLR (SCR_ACK),
1307 		0,
1308 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1309 		HADDR_1 (msgin[1]),
1310 	/*
1311 	 *  Try to catch some unlikely situations as 0 length
1312 	 *  or too large the length.
1313 	 */
1314 	SCR_JUMP ^ IFTRUE (DATA (0)),
1315 		PADDR_B (msg_weird_seen),
1316 	SCR_TO_REG (scratcha),
1317 		0,
1318 	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1319 		0,
1320 	SCR_JUMP ^ IFTRUE (CARRYSET),
1321 		PADDR_B (msg_weird_seen),
1322 	/*
1323 	 *  We donnot handle extended messages from SCRIPTS.
1324 	 *  Read the amount of data corresponding to the
1325 	 *  message length and call the C code.
1326 	 */
1327 	SCR_STORE_REL (scratcha, 1),
1328 		offsetof (struct sym_dsb, smsg_ext.size),
1329 	SCR_CLR (SCR_ACK),
1330 		0,
1331 	SCR_MOVE_TBL ^ SCR_MSG_IN,
1332 		offsetof (struct sym_dsb, smsg_ext),
1333 	SCR_JUMP,
1334 		PADDR_B (msg_received),
1335 }/*-------------------------< MSG_BAD >--------------------------*/,{
1336 	/*
1337 	 *  unimplemented message - reject it.
1338 	 */
1339 	SCR_INT,
1340 		SIR_REJECT_TO_SEND,
1341 	SCR_SET (SCR_ATN),
1342 		0,
1343 	SCR_JUMP,
1344 		PADDR_A (clrack),
1345 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1346 	/*
1347 	 *  weird message received
1348 	 *  ignore all MSG IN phases and reject it.
1349 	 */
1350 	SCR_INT,
1351 		SIR_REJECT_TO_SEND,
1352 	SCR_SET (SCR_ATN),
1353 		0,
1354 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1355 	SCR_CLR (SCR_ACK),
1356 		0,
1357 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1358 		PADDR_A (dispatch),
1359 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1360 		HADDR_1 (scratch),
1361 	SCR_JUMP,
1362 		PADDR_B (msg_weird1),
1363 }/*-------------------------< WDTR_RESP >------------------------*/,{
1364 	/*
1365 	 *  let the target fetch our answer.
1366 	 */
1367 	SCR_SET (SCR_ATN),
1368 		0,
1369 	SCR_CLR (SCR_ACK),
1370 		0,
1371 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1372 		PADDR_B (nego_bad_phase),
1373 }/*-------------------------< SEND_WDTR >------------------------*/,{
1374 	/*
1375 	 *  Send the M_X_WIDE_REQ
1376 	 */
1377 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1378 		HADDR_1 (msgout),
1379 	SCR_JUMP,
1380 		PADDR_B (msg_out_done),
1381 }/*-------------------------< SDTR_RESP >------------------------*/,{
1382 	/*
1383 	 *  let the target fetch our answer.
1384 	 */
1385 	SCR_SET (SCR_ATN),
1386 		0,
1387 	SCR_CLR (SCR_ACK),
1388 		0,
1389 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1390 		PADDR_B (nego_bad_phase),
1391 }/*-------------------------< SEND_SDTR >------------------------*/,{
1392 	/*
1393 	 *  Send the M_X_SYNC_REQ
1394 	 */
1395 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1396 		HADDR_1 (msgout),
1397 	SCR_JUMP,
1398 		PADDR_B (msg_out_done),
1399 }/*-------------------------< PPR_RESP >-------------------------*/,{
1400 	/*
1401 	 *  let the target fetch our answer.
1402 	 */
1403 	SCR_SET (SCR_ATN),
1404 		0,
1405 	SCR_CLR (SCR_ACK),
1406 		0,
1407 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1408 		PADDR_B (nego_bad_phase),
1409 }/*-------------------------< SEND_PPR >-------------------------*/,{
1410 	/*
1411 	 *  Send the M_X_PPR_REQ
1412 	 */
1413 	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1414 		HADDR_1 (msgout),
1415 	SCR_JUMP,
1416 		PADDR_B (msg_out_done),
1417 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1418 	SCR_INT,
1419 		SIR_NEGO_PROTO,
1420 	SCR_JUMP,
1421 		PADDR_A (dispatch),
1422 }/*-------------------------< MSG_OUT >--------------------------*/,{
1423 	/*
1424 	 *  The target requests a message.
1425 	 *  We donnot send messages that may
1426 	 *  require the device to go to bus free.
1427 	 */
1428 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1429 		HADDR_1 (msgout),
1430 	/*
1431 	 *  ... wait for the next phase
1432 	 *  if it's a message out, send it again, ...
1433 	 */
1434 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1435 		PADDR_B (msg_out),
1436 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1437 	/*
1438 	 *  Let the C code be aware of the
1439 	 *  sent message and clear the message.
1440 	 */
1441 	SCR_INT,
1442 		SIR_MSG_OUT_DONE,
1443 	/*
1444 	 *  ... and process the next phase
1445 	 */
1446 	SCR_JUMP,
1447 		PADDR_A (dispatch),
1448 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1449 	/*
1450 	 *  Use scratcha to count the extra bytes.
1451 	 */
1452 	SCR_LOAD_ABS (scratcha, 4),
1453 		PADDR_B (zero),
1454 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1455 	/*
1456 	 *  The target may want to transfer too much data.
1457 	 *
1458 	 *  If phase is DATA OUT write 1 byte and count it.
1459 	 */
1460 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1461 		16,
1462 	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1463 		HADDR_1 (scratch),
1464 	SCR_JUMP,
1465 		PADDR_B (data_ovrun2),
1466 	/*
1467 	 *  If WSR is set, clear this condition, and
1468 	 *  count this byte.
1469 	 */
1470 	SCR_FROM_REG (scntl2),
1471 		0,
1472 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1473 		16,
1474 	SCR_REG_REG (scntl2, SCR_OR, WSR),
1475 		0,
1476 	SCR_JUMP,
1477 		PADDR_B (data_ovrun2),
1478 	/*
1479 	 *  Finally check against DATA IN phase.
1480 	 *  Signal data overrun to the C code
1481 	 *  and jump to dispatcher if not so.
1482 	 *  Read 1 byte otherwise and count it.
1483 	 */
1484 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1485 		16,
1486 	SCR_INT,
1487 		SIR_DATA_OVERRUN,
1488 	SCR_JUMP,
1489 		PADDR_A (dispatch),
1490 	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1491 		HADDR_1 (scratch),
1492 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1493 	/*
1494 	 *  Count this byte.
1495 	 *  This will allow to return a negative
1496 	 *  residual to user.
1497 	 */
1498 	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1499 		0,
1500 	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1501 		0,
1502 	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1503 		0,
1504 	/*
1505 	 *  .. and repeat as required.
1506 	 */
1507 	SCR_JUMP,
1508 		PADDR_B (data_ovrun1),
1509 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1510 	SCR_SET (SCR_ATN),
1511 		0,
1512 	SCR_CLR (SCR_ACK),
1513 		0,
1514 	/*
1515 	 *  send the abort/abortag/reset message
1516 	 *  we expect an immediate disconnect
1517 	 */
1518 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1519 		0,
1520 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1521 		HADDR_1 (msgout),
1522 	SCR_CLR (SCR_ACK|SCR_ATN),
1523 		0,
1524 	SCR_WAIT_DISC,
1525 		0,
1526 	SCR_INT,
1527 		SIR_RESEL_ABORTED,
1528 	SCR_JUMP,
1529 		PADDR_A (start),
1530 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1531 	/*
1532 	 *  The target stays in MSG OUT phase after having acked
1533 	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
1534 	 *  behave this way on parity error.
1535 	 *  We must send it again all the messages.
1536 	 */
1537 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1538 		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1539 	SCR_JUMP,
1540 		PADDR_A (send_ident),
1541 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1542 	SCR_CLR (SCR_ATN),
1543 		0,
1544 	SCR_JUMP,
1545 		PADDR_A (select2),
1546 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1547 	SCR_SET (SCR_ATN),
1548 		0,
1549 	SCR_JUMP,
1550 		PADDR_A (select2),
1551 }/*-------------------------< SDATA_IN >-------------------------*/,{
1552 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1553 		offsetof (struct sym_dsb, sense),
1554 	SCR_CALL,
1555 		PADDR_A (datai_done),
1556 	SCR_JUMP,
1557 		PADDR_B (data_ovrun),
1558 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1559 	/*
1560 	 *  Message is an IDENTIFY, but lun is unknown.
1561 	 *  Signal problem to C code for logging the event.
1562 	 *  Send a M_ABORT to clear all pending tasks.
1563 	 */
1564 	SCR_INT,
1565 		SIR_RESEL_BAD_LUN,
1566 	SCR_JUMP,
1567 		PADDR_B (abort_resel),
1568 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1569 	/*
1570 	 *  We donnot have a task for that I_T_L.
1571 	 *  Signal problem to C code for logging the event.
1572 	 *  Send a M_ABORT message.
1573 	 */
1574 	SCR_INT,
1575 		SIR_RESEL_BAD_I_T_L,
1576 	SCR_JUMP,
1577 		PADDR_B (abort_resel),
1578 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1579 	/*
1580 	 *  We donnot have a task that matches the tag.
1581 	 *  Signal problem to C code for logging the event.
1582 	 *  Send a M_ABORTTAG message.
1583 	 */
1584 	SCR_INT,
1585 		SIR_RESEL_BAD_I_T_L_Q,
1586 	SCR_JUMP,
1587 		PADDR_B (abort_resel),
1588 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1589 	/*
1590 	 *  Anything different from INTERMEDIATE
1591 	 *  CONDITION MET should be a bad SCSI status,
1592 	 *  given that GOOD status has already been tested.
1593 	 *  Call the C code.
1594 	 */
1595 	SCR_LOAD_ABS (scratcha, 4),
1596 		PADDR_B (startpos),
1597 	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1598 		SIR_BAD_SCSI_STATUS,
1599 	SCR_RETURN,
1600 		0,
1601 }/*-------------------------< PM_HANDLE >------------------------*/,{
1602 	/*
1603 	 *  Phase mismatch handling.
1604 	 *
1605 	 *  Since we have to deal with 2 SCSI data pointers
1606 	 *  (current and saved), we need at least 2 contexts.
1607 	 *  Each context (pm0 and pm1) has a saved area, a
1608 	 *  SAVE mini-script and a DATA phase mini-script.
1609 	 */
1610 	/*
1611 	 *  Get the PM handling flags.
1612 	 */
1613 	SCR_FROM_REG (HF_REG),
1614 		0,
1615 	/*
1616 	 *  If no flags (1rst PM for example), avoid
1617 	 *  all the below heavy flags testing.
1618 	 *  This makes the normal case a bit faster.
1619 	 */
1620 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1621 		PADDR_B (pm_handle1),
1622 	/*
1623 	 *  If we received a SAVE DP, switch to the
1624 	 *  other PM context since the savep may point
1625 	 *  to the current PM context.
1626 	 */
1627 	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1628 		8,
1629 	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1630 		0,
1631 	/*
1632 	 *  If we have been interrupt in a PM DATA mini-script,
1633 	 *  we take the return address from the corresponding
1634 	 *  saved area.
1635 	 *  This ensure the return address always points to the
1636 	 *  main DATA script for this transfer.
1637 	 */
1638 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1639 		PADDR_B (pm_handle1),
1640 	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1641 		16,
1642 	SCR_LOAD_REL (ia, 4),
1643 		offsetof(struct sym_ccb, phys.pm0.ret),
1644 	SCR_JUMP,
1645 		PADDR_B (pm_save),
1646 	SCR_LOAD_REL (ia, 4),
1647 		offsetof(struct sym_ccb, phys.pm1.ret),
1648 	SCR_JUMP,
1649 		PADDR_B (pm_save),
1650 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1651 	/*
1652 	 *  Normal case.
1653 	 *  Update the return address so that it
1654 	 *  will point after the interrupted MOVE.
1655 	 */
1656 	SCR_REG_REG (ia, SCR_ADD, 8),
1657 		0,
1658 	SCR_REG_REG (ia1, SCR_ADDC, 0),
1659 		0,
1660 }/*-------------------------< PM_SAVE >--------------------------*/,{
1661 	/*
1662 	 *  Clear all the flags that told us if we were
1663 	 *  interrupted in a PM DATA mini-script and/or
1664 	 *  we received a SAVE DP.
1665 	 */
1666 	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1667 		0,
1668 	/*
1669 	 *  Choose the current PM context.
1670 	 */
1671 	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1672 		PADDR_B (pm1_save),
1673 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1674 	SCR_STORE_REL (ia, 4),
1675 		offsetof(struct sym_ccb, phys.pm0.ret),
1676 	/*
1677 	 *  If WSR bit is set, either UA and RBC may
1678 	 *  have to be changed whether the device wants
1679 	 *  to ignore this residue or not.
1680 	 */
1681 	SCR_FROM_REG (scntl2),
1682 		0,
1683 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1684 		PADDR_B (pm_wsr_handle),
1685 	/*
1686 	 *  Save the remaining byte count, the updated
1687 	 *  address and the return address.
1688 	 */
1689 	SCR_STORE_REL (rbc, 4),
1690 		offsetof(struct sym_ccb, phys.pm0.sg.size),
1691 	SCR_STORE_REL (ua, 4),
1692 		offsetof(struct sym_ccb, phys.pm0.sg.addr),
1693 	/*
1694 	 *  Set the current pointer at the PM0 DATA mini-script.
1695 	 */
1696 	SCR_LOAD_ABS (temp, 4),
1697 		PADDR_B (pm0_data_addr),
1698 	SCR_JUMP,
1699 		PADDR_A (dispatch),
1700 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1701 	SCR_STORE_REL (ia, 4),
1702 		offsetof(struct sym_ccb, phys.pm1.ret),
1703 	/*
1704 	 *  If WSR bit is set, either UA and RBC may
1705 	 *  have to be changed whether the device wants
1706 	 *  to ignore this residue or not.
1707 	 */
1708 	SCR_FROM_REG (scntl2),
1709 		0,
1710 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1711 		PADDR_B (pm_wsr_handle),
1712 	/*
1713 	 *  Save the remaining byte count, the updated
1714 	 *  address and the return address.
1715 	 */
1716 	SCR_STORE_REL (rbc, 4),
1717 		offsetof(struct sym_ccb, phys.pm1.sg.size),
1718 	SCR_STORE_REL (ua, 4),
1719 		offsetof(struct sym_ccb, phys.pm1.sg.addr),
1720 	/*
1721 	 *  Set the current pointer at the PM1 DATA mini-script.
1722 	 */
1723 	SCR_LOAD_ABS (temp, 4),
1724 		PADDR_B (pm1_data_addr),
1725 	SCR_JUMP,
1726 		PADDR_A (dispatch),
1727 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1728 	/*
1729 	 *  Phase mismatch handling from SCRIPT with WSR set.
1730 	 *  Such a condition can occur if the chip wants to
1731 	 *  execute a CHMOV(size > 1) when the WSR bit is
1732 	 *  set and the target changes PHASE.
1733 	 *
1734 	 *  We must move the residual byte to memory.
1735 	 *
1736 	 *  UA contains bit 0..31 of the address to
1737 	 *  move the residual byte.
1738 	 *  Move it to the table indirect.
1739 	 */
1740 	SCR_STORE_REL (ua, 4),
1741 		offsetof (struct sym_ccb, phys.wresid.addr),
1742 	/*
1743 	 *  Increment UA (move address to next position).
1744 	 */
1745 	SCR_REG_REG (ua, SCR_ADD, 1),
1746 		0,
1747 	SCR_REG_REG (ua1, SCR_ADDC, 0),
1748 		0,
1749 	SCR_REG_REG (ua2, SCR_ADDC, 0),
1750 		0,
1751 	SCR_REG_REG (ua3, SCR_ADDC, 0),
1752 		0,
1753 	/*
1754 	 *  Compute SCRATCHA as:
1755 	 *  - size to transfer = 1 byte.
1756 	 *  - bit 24..31 = high address bit [32...39].
1757 	 */
1758 	SCR_LOAD_ABS (scratcha, 4),
1759 		PADDR_B (zero),
1760 	SCR_REG_REG (scratcha, SCR_OR, 1),
1761 		0,
1762 	SCR_FROM_REG (rbc3),
1763 		0,
1764 	SCR_TO_REG (scratcha3),
1765 		0,
1766 	/*
1767 	 *  Move this value to the table indirect.
1768 	 */
1769 	SCR_STORE_REL (scratcha, 4),
1770 		offsetof (struct sym_ccb, phys.wresid.size),
1771 	/*
1772 	 *  Wait for a valid phase.
1773 	 *  While testing with bogus QUANTUM drives, the C1010
1774 	 *  sometimes raised a spurious phase mismatch with
1775 	 *  WSR and the CHMOV(1) triggered another PM.
1776 	 *  Waiting explicitly for the PHASE seemed to avoid
1777 	 *  the nested phase mismatch. Btw, this didn't happen
1778 	 *  using my IBM drives.
1779 	 */
1780 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1781 		0,
1782 	/*
1783 	 *  Perform the move of the residual byte.
1784 	 */
1785 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1786 		offsetof (struct sym_ccb, phys.wresid),
1787 	/*
1788 	 *  We can now handle the phase mismatch with UA fixed.
1789 	 *  RBC[0..23]=0 is a special case that does not require
1790 	 *  a PM context. The C code also checks against this.
1791 	 */
1792 	SCR_FROM_REG (rbc),
1793 		0,
1794 	SCR_RETURN ^ IFFALSE (DATA (0)),
1795 		0,
1796 	SCR_FROM_REG (rbc1),
1797 		0,
1798 	SCR_RETURN ^ IFFALSE (DATA (0)),
1799 		0,
1800 	SCR_FROM_REG (rbc2),
1801 		0,
1802 	SCR_RETURN ^ IFFALSE (DATA (0)),
1803 		0,
1804 	/*
1805 	 *  RBC[0..23]=0.
1806 	 *  Not only we donnot need a PM context, but this would
1807 	 *  lead to a bogus CHMOV(0). This condition means that
1808 	 *  the residual was the last byte to move from this CHMOV.
1809 	 *  So, we just have to move the current data script pointer
1810 	 *  (i.e. TEMP) to the SCRIPTS address following the
1811 	 *  interrupted CHMOV and jump to dispatcher.
1812 	 */
1813 	SCR_STORE_ABS (ia, 4),
1814 		PADDR_B (scratch),
1815 	SCR_LOAD_ABS (temp, 4),
1816 		PADDR_B (scratch),
1817 	SCR_JUMP,
1818 		PADDR_A (dispatch),
1819 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1820 	/*
1821 	 *  Helper for the C code when WSR bit is set.
1822 	 *  Perform the move of the residual byte.
1823 	 */
1824 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1825 		offsetof (struct sym_ccb, phys.wresid),
1826 	SCR_JUMP,
1827 		PADDR_A (dispatch),
1828 }/*-------------------------< ZERO >-----------------------------*/,{
1829 	SCR_DATA_ZERO,
1830 }/*-------------------------< SCRATCH >--------------------------*/,{
1831 	SCR_DATA_ZERO,
1832 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1833 	SCR_DATA_ZERO,
1834 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1835 	SCR_DATA_ZERO,
1836 }/*-------------------------< SAVED_DSA >------------------------*/,{
1837 	SCR_DATA_ZERO,
1838 }/*-------------------------< SAVED_DRS >------------------------*/,{
1839 	SCR_DATA_ZERO,
1840 }/*-------------------------< DONE_POS >-------------------------*/,{
1841 	SCR_DATA_ZERO,
1842 }/*-------------------------< STARTPOS >-------------------------*/,{
1843 	SCR_DATA_ZERO,
1844 }/*-------------------------< TARGTBL >--------------------------*/,{
1845 	SCR_DATA_ZERO,
1846 
1847 }/*-------------------------< SNOOPTEST >------------------------*/,{
1848 	/*
1849 	 *  Read the variable from memory.
1850 	 */
1851 	SCR_LOAD_REL (scratcha, 4),
1852 		offsetof(struct sym_hcb, cache),
1853 	/*
1854 	 *  Write the variable to memory.
1855 	 */
1856 	SCR_STORE_REL (temp, 4),
1857 		offsetof(struct sym_hcb, cache),
1858 	/*
1859 	 *  Read back the variable from memory.
1860 	 */
1861 	SCR_LOAD_REL (temp, 4),
1862 		offsetof(struct sym_hcb, cache),
1863 }/*-------------------------< SNOOPEND >-------------------------*/,{
1864 	/*
1865 	 *  And stop.
1866 	 */
1867 	SCR_INT,
1868 		99,
1869 }/*-------------------------<>-----------------------------------*/
1870 };
1871