xref: /freebsd/sys/dev/sym/sym_fw2.h (revision 911f0260390e18cf85f3dbf2c719b593efdc1e3c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
5  *  PCI-SCSI controllers.
6  *
7  *  Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
8  *
9  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
10  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
11  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
12  *
13  *
14  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
15  *  Copyright (C) 1998-1999  Gerard Roudier
16  *
17  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
18  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
19  *
20  *  The original ncr driver has been written for 386bsd and FreeBSD by
21  *          Wolfgang Stanglmeier        <wolf@cologne.de>
22  *          Stefan Esser                <se@mi.Uni-Koeln.de>
23  *  Copyright (C) 1994  Wolfgang Stanglmeier
24  *
25  *  The initialisation code, and part of the code that addresses
26  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
27  *  written by Justin T. Gibbs.
28  *
29  *  Other major contributions:
30  *
31  *  NVRAM detection and reading.
32  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
33  *
34  *-----------------------------------------------------------------------------
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. The name of the author may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
51  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  */
59 
60 /* $FreeBSD$ */
61 
62 /*
63  *  Scripts for SYMBIOS-Processor
64  *
65  *  We have to know the offsets of all labels before we reach
66  *  them (for forward jumps). Therefore we declare a struct
67  *  here. If you make changes inside the script,
68  *
69  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
70  */
71 
72 /*
73  *  Script fragments which are loaded into the on-chip RAM
74  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
75  *  Must not exceed 4K bytes.
76  */
77 struct SYM_FWA_SCR {
78 	u32 start		[ 14];
79 	u32 getjob_begin	[  4];
80 	u32 getjob_end		[  4];
81 	u32 select		[  8];
82 	u32 wf_sel_done		[  2];
83 	u32 sel_done		[  2];
84 	u32 send_ident		[  2];
85 #ifdef SYM_CONF_IARB_SUPPORT
86 	u32 select2		[  8];
87 #else
88 	u32 select2		[  2];
89 #endif
90 	u32 command		[  2];
91 	u32 dispatch		[ 28];
92 	u32 sel_no_cmd		[ 10];
93 	u32 init		[  6];
94 	u32 clrack		[  4];
95 	u32 disp_status		[  4];
96 	u32 datai_done		[ 26];
97 	u32 datao_done		[ 12];
98 	u32 datai_phase		[  2];
99 	u32 datao_phase		[  4];
100 	u32 msg_in		[  2];
101 	u32 msg_in2		[ 10];
102 #ifdef SYM_CONF_IARB_SUPPORT
103 	u32 status		[ 14];
104 #else
105 	u32 status		[ 10];
106 #endif
107 	u32 complete		[  8];
108 	u32 complete2		[ 12];
109 	u32 complete_error	[  4];
110 	u32 done		[ 14];
111 	u32 done_end		[  2];
112 	u32 save_dp		[  8];
113 	u32 restore_dp		[  4];
114 	u32 disconnect		[ 20];
115 #ifdef SYM_CONF_IARB_SUPPORT
116 	u32 idle		[  4];
117 #else
118 	u32 idle		[  2];
119 #endif
120 #ifdef SYM_CONF_IARB_SUPPORT
121 	u32 ungetjob		[  6];
122 #else
123 	u32 ungetjob		[  4];
124 #endif
125 	u32 reselect		[  4];
126 	u32 reselected		[ 22];
127 	u32 resel_scntl4	[ 20];
128 	u32 resel_lun0		[  6];
129 #if   SYM_CONF_MAX_TASK*4 > 512
130 	u32 resel_tag		[ 26];
131 #elif SYM_CONF_MAX_TASK*4 > 256
132 	u32 resel_tag		[ 20];
133 #else
134 	u32 resel_tag		[ 16];
135 #endif
136 	u32 resel_dsa		[  2];
137 	u32 resel_dsa1		[  6];
138 	u32 resel_no_tag	[  6];
139 	u32 data_in		[SYM_CONF_MAX_SG * 2];
140 	u32 data_in2		[  4];
141 	u32 data_out		[SYM_CONF_MAX_SG * 2];
142 	u32 data_out2		[  4];
143 	u32 pm0_data		[ 12];
144 	u32 pm0_data_out	[  6];
145 	u32 pm0_data_end	[  6];
146 	u32 pm1_data		[ 12];
147 	u32 pm1_data_out	[  6];
148 	u32 pm1_data_end	[  6];
149 };
150 
151 /*
152  *  Script fragments which stay in main memory for all chips
153  *  except for chips that support 8K on-chip RAM.
154  */
155 struct SYM_FWB_SCR {
156 	u32 start64		[  2];
157 	u32 no_data		[  2];
158 	u32 sel_for_abort	[ 18];
159 	u32 sel_for_abort_1	[  2];
160 	u32 msg_in_etc		[ 12];
161 	u32 msg_received	[  4];
162 	u32 msg_weird_seen	[  4];
163 	u32 msg_extended	[ 20];
164 	u32 msg_bad		[  6];
165 	u32 msg_weird		[  4];
166 	u32 msg_weird1		[  8];
167 
168 	u32 wdtr_resp		[  6];
169 	u32 send_wdtr		[  4];
170 	u32 sdtr_resp		[  6];
171 	u32 send_sdtr		[  4];
172 	u32 ppr_resp		[  6];
173 	u32 send_ppr		[  4];
174 	u32 nego_bad_phase	[  4];
175 	u32 msg_out		[  4];
176 	u32 msg_out_done	[  4];
177 	u32 data_ovrun		[  2];
178 	u32 data_ovrun1		[ 22];
179 	u32 data_ovrun2		[  8];
180 	u32 abort_resel		[ 16];
181 	u32 resend_ident	[  4];
182 	u32 ident_break		[  4];
183 	u32 ident_break_atn	[  4];
184 	u32 sdata_in		[  6];
185 	u32 resel_bad_lun	[  4];
186 	u32 bad_i_t_l		[  4];
187 	u32 bad_i_t_l_q		[  4];
188 	u32 bad_status		[  6];
189 	u32 pm_handle		[ 20];
190 	u32 pm_handle1		[  4];
191 	u32 pm_save		[  4];
192 	u32 pm0_save		[ 14];
193 	u32 pm1_save		[ 14];
194 
195 	/* WSR handling */
196 	u32 pm_wsr_handle	[ 42];
197 	u32 wsr_ma_helper	[  4];
198 
199 	/* Data area */
200 	u32 zero		[  1];
201 	u32 scratch		[  1];
202 	u32 pm0_data_addr	[  1];
203 	u32 pm1_data_addr	[  1];
204 	u32 saved_dsa		[  1];
205 	u32 saved_drs		[  1];
206 	u32 done_pos		[  1];
207 	u32 startpos		[  1];
208 	u32 targtbl		[  1];
209 	/* End of data area */
210 
211 	u32 snooptest		[  6];
212 	u32 snoopend		[  2];
213 };
214 
215 static const struct SYM_FWA_SCR SYM_FWA_SCR = {
216 /*--------------------------< START >----------------------------*/ {
217 	/*
218 	 *  Switch the LED on.
219 	 *  Will be patched with a NO_OP if LED
220 	 *  not needed or not desired.
221 	 */
222 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
223 		0,
224 	/*
225 	 *      Clear SIGP.
226 	 */
227 	SCR_FROM_REG (ctest2),
228 		0,
229 	/*
230 	 *  Stop here if the C code wants to perform
231 	 *  some error recovery procedure manually.
232 	 *  (Indicate this by setting SEM in ISTAT)
233 	 */
234 	SCR_FROM_REG (istat),
235 		0,
236 	/*
237 	 *  Report to the C code the next position in
238 	 *  the start queue the SCRIPTS will schedule.
239 	 *  The C code must not change SCRATCHA.
240 	 */
241 	SCR_LOAD_ABS (scratcha, 4),
242 		PADDR_B (startpos),
243 	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
244 		SIR_SCRIPT_STOPPED,
245 	/*
246 	 *  Start the next job.
247 	 *
248 	 *  @DSA     = start point for this job.
249 	 *  SCRATCHA = address of this job in the start queue.
250 	 *
251 	 *  We will restore startpos with SCRATCHA if we fails the
252 	 *  arbitration or if it is the idle job.
253 	 *
254 	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
255 	 *  is a critical path. If it is partially executed, it then
256 	 *  may happen that the job address is not yet in the DSA
257 	 *  and the next queue position points to the next JOB.
258 	 */
259 	SCR_LOAD_ABS (dsa, 4),
260 		PADDR_B (startpos),
261 	SCR_LOAD_REL (temp, 4),
262 		4,
263 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
264 	SCR_STORE_ABS (temp, 4),
265 		PADDR_B (startpos),
266 	SCR_LOAD_REL (dsa, 4),
267 		0,
268 }/*-------------------------< GETJOB_END >-----------------------*/,{
269 	SCR_LOAD_REL (temp, 4),
270 		0,
271 	SCR_RETURN,
272 		0,
273 }/*-------------------------< SELECT >---------------------------*/,{
274 	/*
275 	 *  DSA	contains the address of a scheduled
276 	 *  	data structure.
277 	 *
278 	 *  SCRATCHA contains the address of the start queue
279 	 *  	entry which points to the next job.
280 	 *
281 	 *  Set Initiator mode.
282 	 *
283 	 *  (Target mode is left as an exercise for the reader)
284 	 */
285 	SCR_CLR (SCR_TRG),
286 		0,
287 	/*
288 	 *      And try to select this target.
289 	 */
290 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
291 		PADDR_A (ungetjob),
292 	/*
293 	 *  Now there are 4 possibilities:
294 	 *
295 	 *  (1) The chip loses arbitration.
296 	 *  This is ok, because it will try again,
297 	 *  when the bus becomes idle.
298 	 *  (But beware of the timeout function!)
299 	 *
300 	 *  (2) The chip is reselected.
301 	 *  Then the script processor takes the jump
302 	 *  to the RESELECT label.
303 	 *
304 	 *  (3) The chip wins arbitration.
305 	 *  Then it will execute SCRIPTS instruction until
306 	 *  the next instruction that checks SCSI phase.
307 	 *  Then will stop and wait for selection to be
308 	 *  complete or selection time-out to occur.
309 	 *
310 	 *  After having won arbitration, the SCRIPTS
311 	 *  processor is able to execute instructions while
312 	 *  the SCSI core is performing SCSI selection.
313 	 */
314 	/*
315 	 *      load the savep (saved data pointer) into
316 	 *      the actual data pointer.
317 	 */
318 	SCR_LOAD_REL (temp, 4),
319 		offsetof (struct sym_ccb, phys.head.savep),
320 	/*
321 	 *      Initialize the status registers
322 	 */
323 	SCR_LOAD_REL (scr0, 4),
324 		offsetof (struct sym_ccb, phys.head.status),
325 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
326 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
327 		SIR_SEL_ATN_NO_MSG_OUT,
328 }/*-------------------------< SEL_DONE >-------------------------*/,{
329 	/*
330 	 *  C1010-33 errata work-around.
331 	 *  Due to a race, the SCSI core may not have
332 	 *  loaded SCNTL3 on SEL_TBL instruction.
333 	 *  We reload it once phase is stable.
334 	 *  Patched with a NOOP for other chips.
335 	 */
336 	SCR_LOAD_REL (scntl3, 1),
337 		offsetof(struct sym_dsb, select.sel_scntl3),
338 }/*-------------------------< SEND_IDENT >-----------------------*/,{
339 	/*
340 	 *  Selection complete.
341 	 *  Send the IDENTIFY and possibly the TAG message
342 	 *  and negotiation message if present.
343 	 */
344 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
345 		offsetof (struct sym_dsb, smsg),
346 }/*-------------------------< SELECT2 >--------------------------*/,{
347 #ifdef SYM_CONF_IARB_SUPPORT
348 	/*
349 	 *  Set IMMEDIATE ARBITRATION if we have been given
350 	 *  a hint to do so. (Some job to do after this one).
351 	 */
352 	SCR_FROM_REG (HF_REG),
353 		0,
354 	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
355 		8,
356 	SCR_REG_REG (scntl1, SCR_OR, IARB),
357 		0,
358 #endif
359 	/*
360 	 *  Anticipate the COMMAND phase.
361 	 *  This is the PHASE we expect at this point.
362 	 */
363 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
364 		PADDR_A (sel_no_cmd),
365 }/*-------------------------< COMMAND >--------------------------*/,{
366 	/*
367 	 *  ... and send the command
368 	 */
369 	SCR_MOVE_TBL ^ SCR_COMMAND,
370 		offsetof (struct sym_dsb, cmd),
371 }/*-------------------------< DISPATCH >-------------------------*/,{
372 	/*
373 	 *  MSG_IN is the only phase that shall be
374 	 *  entered at least once for each (re)selection.
375 	 *  So we test it first.
376 	 */
377 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
378 		PADDR_A (msg_in),
379 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
380 		PADDR_A (datao_phase),
381 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
382 		PADDR_A (datai_phase),
383 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
384 		PADDR_A (status),
385 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
386 		PADDR_A (command),
387 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
388 		PADDR_B (msg_out),
389 	/*
390 	 *  Discard as many illegal phases as
391 	 *  required and tell the C code about.
392 	 */
393 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
394 		16,
395 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
396 		HADDR_1 (scratch),
397 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
398 		-16,
399 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
400 		16,
401 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
402 		HADDR_1 (scratch),
403 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
404 		-16,
405 	SCR_INT,
406 		SIR_BAD_PHASE,
407 	SCR_JUMP,
408 		PADDR_A (dispatch),
409 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
410 	/*
411 	 *  The target does not switch to command
412 	 *  phase after IDENTIFY has been sent.
413 	 *
414 	 *  If it stays in MSG OUT phase send it
415 	 *  the IDENTIFY again.
416 	 */
417 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
418 		PADDR_B (resend_ident),
419 	/*
420 	 *  If target does not switch to MSG IN phase
421 	 *  and we sent a negotiation, assert the
422 	 *  failure immediately.
423 	 */
424 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
425 		PADDR_A (dispatch),
426 	SCR_FROM_REG (HS_REG),
427 		0,
428 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
429 		SIR_NEGO_FAILED,
430 	/*
431 	 *  Jump to dispatcher.
432 	 */
433 	SCR_JUMP,
434 		PADDR_A (dispatch),
435 }/*-------------------------< INIT >-----------------------------*/,{
436 	/*
437 	 *  Wait for the SCSI RESET signal to be
438 	 *  inactive before restarting operations,
439 	 *  since the chip may hang on SEL_ATN
440 	 *  if SCSI RESET is active.
441 	 */
442 	SCR_FROM_REG (sstat0),
443 		0,
444 	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
445 		-16,
446 	SCR_JUMP,
447 		PADDR_A (start),
448 }/*-------------------------< CLRACK >---------------------------*/,{
449 	/*
450 	 *  Terminate possible pending message phase.
451 	 */
452 	SCR_CLR (SCR_ACK),
453 		0,
454 	SCR_JUMP,
455 		PADDR_A (dispatch),
456 }/*-------------------------< DISP_STATUS >----------------------*/,{
457 	/*
458 	 *  Anticipate STATUS phase.
459 	 *
460 	 *  Does spare 3 SCRIPTS instructions when we have
461 	 *  completed the INPUT of the data.
462 	 */
463 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
464 		PADDR_A (status),
465 	SCR_JUMP,
466 		PADDR_A (dispatch),
467 }/*-------------------------< DATAI_DONE >-----------------------*/,{
468 	/*
469 	 *  If the device still wants to send us data,
470 	 *  we must count the extra bytes.
471 	 */
472 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)),
473 		PADDR_B (data_ovrun),
474 	/*
475 	 *  If the SWIDE is not full, jump to dispatcher.
476 	 *  We anticipate a STATUS phase.
477 	 */
478 	SCR_FROM_REG (scntl2),
479 		0,
480 	SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
481 		PADDR_A (disp_status),
482 	/*
483 	 *  The SWIDE is full.
484 	 *  Clear this condition.
485 	 */
486 	SCR_REG_REG (scntl2, SCR_OR, WSR),
487 		0,
488 	/*
489 	 *  We are expecting an IGNORE RESIDUE message
490 	 *  from the device, otherwise we are in data
491 	 *  overrun condition. Check against MSG_IN phase.
492 	 */
493 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
494 		SIR_SWIDE_OVERRUN,
495 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
496 		PADDR_A (disp_status),
497 	/*
498 	 *  We are in MSG_IN phase,
499 	 *  Read the first byte of the message.
500 	 *  If it is not an IGNORE RESIDUE message,
501 	 *  signal overrun and jump to message
502 	 *  processing.
503 	 */
504 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
505 		HADDR_1 (msgin[0]),
506 	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
507 		SIR_SWIDE_OVERRUN,
508 	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
509 		PADDR_A (msg_in2),
510 	/*
511 	 *  We got the message we expected.
512 	 *  Read the 2nd byte, and jump to dispatcher.
513 	 */
514 	SCR_CLR (SCR_ACK),
515 		0,
516 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
517 		HADDR_1 (msgin[1]),
518 	SCR_CLR (SCR_ACK),
519 		0,
520 	SCR_JUMP,
521 		PADDR_A (disp_status),
522 }/*-------------------------< DATAO_DONE >-----------------------*/,{
523 	/*
524 	 *  If the device wants us to send more data,
525 	 *  we must count the extra bytes.
526 	 */
527 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
528 		PADDR_B (data_ovrun),
529 	/*
530 	 *  If the SODL is not full jump to dispatcher.
531 	 *  We anticipate a STATUS phase.
532 	 */
533 	SCR_FROM_REG (scntl2),
534 		0,
535 	SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
536 		PADDR_A (disp_status),
537 	/*
538 	 *  The SODL is full, clear this condition.
539 	 */
540 	SCR_REG_REG (scntl2, SCR_OR, WSS),
541 		0,
542 	/*
543 	 *  And signal a DATA UNDERRUN condition
544 	 *  to the C code.
545 	 */
546 	SCR_INT,
547 		SIR_SODL_UNDERRUN,
548 	SCR_JUMP,
549 		PADDR_A (dispatch),
550 }/*-------------------------< DATAI_PHASE >----------------------*/,{
551 	SCR_RETURN,
552 		0,
553 }/*-------------------------< DATAO_PHASE >----------------------*/,{
554 	/*
555 	 *  C1010-66 errata work-around.
556 	 *  Extra clocks of data hold must be inserted
557 	 *  in DATA OUT phase on 33 MHz PCI BUS.
558 	 *  Patched with a NOOP for other chips.
559 	 */
560 	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
561 		0,
562 	SCR_RETURN,
563 		0,
564 }/*-------------------------< MSG_IN >---------------------------*/,{
565 	/*
566 	 *  Get the first byte of the message.
567 	 *
568 	 *  The script processor doesn't negate the
569 	 *  ACK signal after this transfer.
570 	 */
571 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
572 		HADDR_1 (msgin[0]),
573 }/*-------------------------< MSG_IN2 >--------------------------*/,{
574 	/*
575 	 *  Check first against 1 byte messages
576 	 *  that we handle from SCRIPTS.
577 	 */
578 	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
579 		PADDR_A (complete),
580 	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
581 		PADDR_A (disconnect),
582 	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
583 		PADDR_A (save_dp),
584 	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
585 		PADDR_A (restore_dp),
586 	/*
587 	 *  We handle all other messages from the
588 	 *  C code, so no need to waste on-chip RAM
589 	 *  for those ones.
590 	 */
591 	SCR_JUMP,
592 		PADDR_B (msg_in_etc),
593 }/*-------------------------< STATUS >---------------------------*/,{
594 	/*
595 	 *  get the status
596 	 */
597 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
598 		HADDR_1 (scratch),
599 #ifdef SYM_CONF_IARB_SUPPORT
600 	/*
601 	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
602 	 *  since we may have to tamper the start queue from
603 	 *  the C code.
604 	 */
605 	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
606 		8,
607 	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
608 		0,
609 #endif
610 	/*
611 	 *  save status to scsi_status.
612 	 *  mark as complete.
613 	 */
614 	SCR_TO_REG (SS_REG),
615 		0,
616 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
617 		0,
618 	/*
619 	 *  Anticipate the MESSAGE PHASE for
620 	 *  the TASK COMPLETE message.
621 	 */
622 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
623 		PADDR_A (msg_in),
624 	SCR_JUMP,
625 		PADDR_A (dispatch),
626 }/*-------------------------< COMPLETE >-------------------------*/,{
627 	/*
628 	 *  Complete message.
629 	 *
630 	 *  Copy the data pointer to LASTP.
631 	 */
632 	SCR_STORE_REL (temp, 4),
633 		offsetof (struct sym_ccb, phys.head.lastp),
634 	/*
635 	 *  When we terminate the cycle by clearing ACK,
636 	 *  the target may disconnect immediately.
637 	 *
638 	 *  We don't want to be told of an "unexpected disconnect",
639 	 *  so we disable this feature.
640 	 */
641 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
642 		0,
643 	/*
644 	 *  Terminate cycle ...
645 	 */
646 	SCR_CLR (SCR_ACK|SCR_ATN),
647 		0,
648 	/*
649 	 *  ... and wait for the disconnect.
650 	 */
651 	SCR_WAIT_DISC,
652 		0,
653 }/*-------------------------< COMPLETE2 >------------------------*/,{
654 	/*
655 	 *  Save host status.
656 	 */
657 	SCR_STORE_REL (scr0, 4),
658 		offsetof (struct sym_ccb, phys.head.status),
659 	/*
660 	 *  Some bridges may reorder DMA writes to memory.
661 	 *  We donnot want the CPU to deal with completions
662 	 *  without all the posted write having been flushed
663 	 *  to memory. This DUMMY READ should flush posted
664 	 *  buffers prior to the CPU having to deal with
665 	 *  completions.
666 	 */
667 	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
668 		offsetof (struct sym_ccb, phys.head.status),
669 
670 	/*
671 	 *  If command resulted in not GOOD status,
672 	 *  call the C code if needed.
673 	 */
674 	SCR_FROM_REG (SS_REG),
675 		0,
676 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
677 		PADDR_B (bad_status),
678 	/*
679 	 *  If we performed an auto-sense, call
680 	 *  the C code to synchronyze task aborts
681 	 *  with UNIT ATTENTION conditions.
682 	 */
683 	SCR_FROM_REG (HF_REG),
684 		0,
685 	SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
686 		16,
687 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
688 	SCR_LOAD_ABS (scratcha, 4),
689 		PADDR_B (startpos),
690 	SCR_INT,
691 		SIR_COMPLETE_ERROR,
692 }/*-------------------------< DONE >-----------------------------*/,{
693 	/*
694 	 *  Copy the DSA to the DONE QUEUE and
695 	 *  signal completion to the host.
696 	 *  If we are interrupted between DONE
697 	 *  and DONE_END, we must reset, otherwise
698 	 *  the completed CCB may be lost.
699 	 */
700 	SCR_STORE_ABS (dsa, 4),
701 		PADDR_B (saved_dsa),
702 	SCR_LOAD_ABS (dsa, 4),
703 		PADDR_B (done_pos),
704 	SCR_LOAD_ABS (scratcha, 4),
705 		PADDR_B (saved_dsa),
706 	SCR_STORE_REL (scratcha, 4),
707 		0,
708 	/*
709 	 *  The instruction below reads the DONE QUEUE next
710 	 *  free position from memory.
711 	 *  In addition it ensures that all PCI posted writes
712 	 *  are flushed and so the DSA value of the done
713 	 *  CCB is visible by the CPU before INTFLY is raised.
714 	 */
715 	SCR_LOAD_REL (temp, 4),
716 		4,
717 	SCR_INT_FLY,
718 		0,
719 	SCR_STORE_ABS (temp, 4),
720 		PADDR_B (done_pos),
721 }/*-------------------------< DONE_END >-------------------------*/,{
722 	SCR_JUMP,
723 		PADDR_A (start),
724 }/*-------------------------< SAVE_DP >--------------------------*/,{
725 	/*
726 	 *  Clear ACK immediately.
727 	 *  No need to delay it.
728 	 */
729 	SCR_CLR (SCR_ACK),
730 		0,
731 	/*
732 	 *  Keep track we received a SAVE DP, so
733 	 *  we will switch to the other PM context
734 	 *  on the next PM since the DP may point
735 	 *  to the current PM context.
736 	 */
737 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
738 		0,
739 	/*
740 	 *  SAVE_DP message:
741 	 *  Copy the data pointer to SAVEP.
742 	 */
743 	SCR_STORE_REL (temp, 4),
744 		offsetof (struct sym_ccb, phys.head.savep),
745 	SCR_JUMP,
746 		PADDR_A (dispatch),
747 }/*-------------------------< RESTORE_DP >-----------------------*/,{
748 	/*
749 	 *  RESTORE_DP message:
750 	 *  Copy SAVEP to actual data pointer.
751 	 */
752 	SCR_LOAD_REL  (temp, 4),
753 		offsetof (struct sym_ccb, phys.head.savep),
754 	SCR_JUMP,
755 		PADDR_A (clrack),
756 }/*-------------------------< DISCONNECT >-----------------------*/,{
757 	/*
758 	 *  DISCONNECTing  ...
759 	 *
760 	 *  disable the "unexpected disconnect" feature,
761 	 *  and remove the ACK signal.
762 	 */
763 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
764 		0,
765 	SCR_CLR (SCR_ACK|SCR_ATN),
766 		0,
767 	/*
768 	 *  Wait for the disconnect.
769 	 */
770 	SCR_WAIT_DISC,
771 		0,
772 	/*
773 	 *  Status is: DISCONNECTED.
774 	 */
775 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
776 		0,
777 	/*
778 	 *  Save host status.
779 	 */
780 	SCR_STORE_REL (scr0, 4),
781 		offsetof (struct sym_ccb, phys.head.status),
782 	/*
783 	 *  If QUIRK_AUTOSAVE is set,
784 	 *  do a "save pointer" operation.
785 	 */
786 	SCR_FROM_REG (QU_REG),
787 		0,
788 	SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
789 		PADDR_A (start),
790 	/*
791 	 *  like SAVE_DP message:
792 	 *  Remember we saved the data pointer.
793 	 *  Copy data pointer to SAVEP.
794 	 */
795 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
796 		0,
797 	SCR_STORE_REL (temp, 4),
798 		offsetof (struct sym_ccb, phys.head.savep),
799 	SCR_JUMP,
800 		PADDR_A (start),
801 }/*-------------------------< IDLE >-----------------------------*/,{
802 	/*
803 	 *  Nothing to do?
804 	 *  Switch the LED off and wait for reselect.
805 	 *  Will be patched with a NO_OP if LED
806 	 *  not needed or not desired.
807 	 */
808 	SCR_REG_REG (gpreg, SCR_OR, 0x01),
809 		0,
810 #ifdef SYM_CONF_IARB_SUPPORT
811 	SCR_JUMPR,
812 		8,
813 #endif
814 }/*-------------------------< UNGETJOB >-------------------------*/,{
815 #ifdef SYM_CONF_IARB_SUPPORT
816 	/*
817 	 *  Set IMMEDIATE ARBITRATION, for the next time.
818 	 *  This will give us better chance to win arbitration
819 	 *  for the job we just wanted to do.
820 	 */
821 	SCR_REG_REG (scntl1, SCR_OR, IARB),
822 		0,
823 #endif
824 	/*
825 	 *  We are not able to restart the SCRIPTS if we are
826 	 *  interrupted and these instruction haven't been
827 	 *  all executed. BTW, this is very unlikely to
828 	 *  happen, but we check that from the C code.
829 	 */
830 	SCR_LOAD_REG (dsa, 0xff),
831 		0,
832 	SCR_STORE_ABS (scratcha, 4),
833 		PADDR_B (startpos),
834 }/*-------------------------< RESELECT >-------------------------*/,{
835 	/*
836 	 *  Make sure we are in initiator mode.
837 	 */
838 	SCR_CLR (SCR_TRG),
839 		0,
840 	/*
841 	 *  Sleep waiting for a reselection.
842 	 */
843 	SCR_WAIT_RESEL,
844 		PADDR_A(start),
845 }/*-------------------------< RESELECTED >-----------------------*/,{
846 	/*
847 	 *  Switch the LED on.
848 	 *  Will be patched with a NO_OP if LED
849 	 *  not needed or not desired.
850 	 */
851 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
852 		0,
853 	/*
854 	 *  load the target id into the sdid
855 	 */
856 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
857 		0,
858 	SCR_TO_REG (sdid),
859 		0,
860 	/*
861 	 *  Load the target control block address
862 	 */
863 	SCR_LOAD_ABS (dsa, 4),
864 		PADDR_B (targtbl),
865 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
866 		0,
867 	SCR_REG_REG (dsa, SCR_SHL, 0),
868 		0,
869 	SCR_REG_REG (dsa, SCR_AND, 0x3c),
870 		0,
871 	SCR_LOAD_REL (dsa, 4),
872 		0,
873 	/*
874 	 *  We expect MESSAGE IN phase.
875 	 *  If not, get help from the C code.
876 	 */
877 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
878 		SIR_RESEL_NO_MSG_IN,
879 	/*
880 	 *  Load the legacy synchronous transfer registers.
881 	 */
882 	SCR_LOAD_REL (scntl3, 1),
883 		offsetof(struct sym_tcb, head.wval),
884 	SCR_LOAD_REL (sxfer, 1),
885 		offsetof(struct sym_tcb, head.sval),
886 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
887 	/*
888 	 *  The C1010 uses a new synchronous timing scheme.
889 	 *  Will be patched with a NO_OP if not a C1010.
890 	 */
891 	SCR_LOAD_REL (scntl4, 1),
892 		offsetof(struct sym_tcb, head.uval),
893 	/*
894 	 *  Get the IDENTIFY message.
895 	 */
896 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
897 		HADDR_1 (msgin),
898 	/*
899 	 *  If IDENTIFY LUN #0, use a faster path
900 	 *  to find the LCB structure.
901 	 */
902 	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
903 		PADDR_A (resel_lun0),
904 	/*
905 	 *  If message isn't an IDENTIFY,
906 	 *  tell the C code about.
907 	 */
908 	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
909 		SIR_RESEL_NO_IDENTIFY,
910 	/*
911 	 *  It is an IDENTIFY message,
912 	 *  Load the LUN control block address.
913 	 */
914 	SCR_LOAD_REL (dsa, 4),
915 		offsetof(struct sym_tcb, head.luntbl_sa),
916 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
917 		0,
918 	SCR_REG_REG (dsa, SCR_SHL, 0),
919 		0,
920 	SCR_REG_REG (dsa, SCR_AND, 0xfc),
921 		0,
922 	SCR_LOAD_REL (dsa, 4),
923 		0,
924 	SCR_JUMPR,
925 		8,
926 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
927 	/*
928 	 *  LUN 0 special case (but usual one :))
929 	 */
930 	SCR_LOAD_REL (dsa, 4),
931 		offsetof(struct sym_tcb, head.lun0_sa),
932 	/*
933 	 *  Jump indirectly to the reselect action for this LUN.
934 	 */
935 	SCR_LOAD_REL (temp, 4),
936 		offsetof(struct sym_lcb, head.resel_sa),
937 	SCR_RETURN,
938 		0,
939 	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
940 }/*-------------------------< RESEL_TAG >------------------------*/,{
941 	/*
942 	 *  ACK the IDENTIFY previously received.
943 	 */
944 	SCR_CLR (SCR_ACK),
945 		0,
946 	/*
947 	 *  It shall be a tagged command.
948 	 *  Read SIMPLE+TAG.
949 	 *  The C code will deal with errors.
950 	 *  Aggressive optimization, isn't it? :)
951 	 */
952 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
953 		HADDR_1 (msgin),
954 	/*
955 	 *  Load the pointer to the tagged task
956 	 *  table for this LUN.
957 	 */
958 	SCR_LOAD_REL (dsa, 4),
959 		offsetof(struct sym_lcb, head.itlq_tbl_sa),
960 	/*
961 	 *  The SIDL still contains the TAG value.
962 	 *  Aggressive optimization, isn't it? :):)
963 	 */
964 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
965 		0,
966 #if SYM_CONF_MAX_TASK*4 > 512
967 	SCR_JUMPR ^ IFFALSE (CARRYSET),
968 		8,
969 	SCR_REG_REG (dsa1, SCR_OR, 2),
970 		0,
971 	SCR_REG_REG (sfbr, SCR_SHL, 0),
972 		0,
973 	SCR_JUMPR ^ IFFALSE (CARRYSET),
974 		8,
975 	SCR_REG_REG (dsa1, SCR_OR, 1),
976 		0,
977 #elif SYM_CONF_MAX_TASK*4 > 256
978 	SCR_JUMPR ^ IFFALSE (CARRYSET),
979 		8,
980 	SCR_REG_REG (dsa1, SCR_OR, 1),
981 		0,
982 #endif
983 	/*
984 	 *  Retrieve the DSA of this task.
985 	 *  JUMP indirectly to the restart point of the CCB.
986 	 */
987 	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
988 		0,
989 	SCR_LOAD_REL (dsa, 4),
990 		0,
991 	SCR_LOAD_REL (temp, 4),
992 		offsetof(struct sym_ccb, phys.head.go.restart),
993 	SCR_RETURN,
994 		0,
995 	/* In normal situations we branch to RESEL_DSA */
996 }/*-------------------------< RESEL_DSA >------------------------*/,{
997 	/*
998 	 *  ACK the IDENTIFY or TAG previously received.
999 	 */
1000 	SCR_CLR (SCR_ACK),
1001 		0,
1002 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1003 	/*
1004 	 *      load the savep (saved pointer) into
1005 	 *      the actual data pointer.
1006 	 */
1007 	SCR_LOAD_REL (temp, 4),
1008 		offsetof (struct sym_ccb, phys.head.savep),
1009 	/*
1010 	 *      Initialize the status registers
1011 	 */
1012 	SCR_LOAD_REL (scr0, 4),
1013 		offsetof (struct sym_ccb, phys.head.status),
1014 	/*
1015 	 *  Jump to dispatcher.
1016 	 */
1017 	SCR_JUMP,
1018 		PADDR_A (dispatch),
1019 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1020 	/*
1021 	 *  Load the DSA with the unique ITL task.
1022 	 */
1023 	SCR_LOAD_REL (dsa, 4),
1024 		offsetof(struct sym_lcb, head.itl_task_sa),
1025 	/*
1026 	 *  JUMP indirectly to the restart point of the CCB.
1027 	 */
1028 	SCR_LOAD_REL (temp, 4),
1029 		offsetof(struct sym_ccb, phys.head.go.restart),
1030 	SCR_RETURN,
1031 		0,
1032 	/* In normal situations we branch to RESEL_DSA */
1033 }/*-------------------------< DATA_IN >--------------------------*/,{
1034 /*
1035  *  Because the size depends on the
1036  *  #define SYM_CONF_MAX_SG parameter,
1037  *  it is filled in at runtime.
1038  *
1039  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1040  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1041  *  ||		offsetof (struct sym_dsb, data[ i]),
1042  *  ##==========================================
1043  */
1044 0
1045 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1046 	SCR_CALL,
1047 		PADDR_A (datai_done),
1048 	SCR_JUMP,
1049 		PADDR_B (data_ovrun),
1050 }/*-------------------------< DATA_OUT >-------------------------*/,{
1051 /*
1052  *  Because the size depends on the
1053  *  #define SYM_CONF_MAX_SG parameter,
1054  *  it is filled in at runtime.
1055  *
1056  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1057  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1058  *  ||		offsetof (struct sym_dsb, data[ i]),
1059  *  ##==========================================
1060  */
1061 0
1062 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1063 	SCR_CALL,
1064 		PADDR_A (datao_done),
1065 	SCR_JUMP,
1066 		PADDR_B (data_ovrun),
1067 }/*-------------------------< PM0_DATA >-------------------------*/,{
1068 	/*
1069 	 *  Read our host flags to SFBR, so we will be able
1070 	 *  to check against the data direction we expect.
1071 	 */
1072 	SCR_FROM_REG (HF_REG),
1073 		0,
1074 	/*
1075 	 *  Check against actual DATA PHASE.
1076 	 */
1077 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1078 		PADDR_A (pm0_data_out),
1079 	/*
1080 	 *  Actual phase is DATA IN.
1081 	 *  Check against expected direction.
1082 	 */
1083 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1084 		PADDR_B (data_ovrun),
1085 	/*
1086 	 *  Keep track we are moving data from the
1087 	 *  PM0 DATA mini-script.
1088 	 */
1089 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1090 		0,
1091 	/*
1092 	 *  Move the data to memory.
1093 	 */
1094 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1095 		offsetof (struct sym_ccb, phys.pm0.sg),
1096 	SCR_JUMP,
1097 		PADDR_A (pm0_data_end),
1098 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1099 	/*
1100 	 *  Actual phase is DATA OUT.
1101 	 *  Check against expected direction.
1102 	 */
1103 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1104 		PADDR_B (data_ovrun),
1105 	/*
1106 	 *  Keep track we are moving data from the
1107 	 *  PM0 DATA mini-script.
1108 	 */
1109 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1110 		0,
1111 	/*
1112 	 *  Move the data from memory.
1113 	 */
1114 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1115 		offsetof (struct sym_ccb, phys.pm0.sg),
1116 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1117 	/*
1118 	 *  Clear the flag that told we were moving
1119 	 *  data from the PM0 DATA mini-script.
1120 	 */
1121 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1122 		0,
1123 	/*
1124 	 *  Return to the previous DATA script which
1125 	 *  is guaranteed by design (if no bug) to be
1126 	 *  the main DATA script for this transfer.
1127 	 */
1128 	SCR_LOAD_REL (temp, 4),
1129 		offsetof (struct sym_ccb, phys.pm0.ret),
1130 	SCR_RETURN,
1131 		0,
1132 }/*-------------------------< PM1_DATA >-------------------------*/,{
1133 	/*
1134 	 *  Read our host flags to SFBR, so we will be able
1135 	 *  to check against the data direction we expect.
1136 	 */
1137 	SCR_FROM_REG (HF_REG),
1138 		0,
1139 	/*
1140 	 *  Check against actual DATA PHASE.
1141 	 */
1142 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1143 		PADDR_A (pm1_data_out),
1144 	/*
1145 	 *  Actual phase is DATA IN.
1146 	 *  Check against expected direction.
1147 	 */
1148 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1149 		PADDR_B (data_ovrun),
1150 	/*
1151 	 *  Keep track we are moving data from the
1152 	 *  PM1 DATA mini-script.
1153 	 */
1154 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1155 		0,
1156 	/*
1157 	 *  Move the data to memory.
1158 	 */
1159 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1160 		offsetof (struct sym_ccb, phys.pm1.sg),
1161 	SCR_JUMP,
1162 		PADDR_A (pm1_data_end),
1163 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1164 	/*
1165 	 *  Actual phase is DATA OUT.
1166 	 *  Check against expected direction.
1167 	 */
1168 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1169 		PADDR_B (data_ovrun),
1170 	/*
1171 	 *  Keep track we are moving data from the
1172 	 *  PM1 DATA mini-script.
1173 	 */
1174 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1175 		0,
1176 	/*
1177 	 *  Move the data from memory.
1178 	 */
1179 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1180 		offsetof (struct sym_ccb, phys.pm1.sg),
1181 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1182 	/*
1183 	 *  Clear the flag that told we were moving
1184 	 *  data from the PM1 DATA mini-script.
1185 	 */
1186 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1187 		0,
1188 	/*
1189 	 *  Return to the previous DATA script which
1190 	 *  is guaranteed by design (if no bug) to be
1191 	 *  the main DATA script for this transfer.
1192 	 */
1193 	SCR_LOAD_REL (temp, 4),
1194 		offsetof (struct sym_ccb, phys.pm1.ret),
1195 	SCR_RETURN,
1196 		0,
1197 }/*-------------------------<>-----------------------------------*/
1198 };
1199 
1200 static const struct SYM_FWB_SCR SYM_FWB_SCR = {
1201 /*--------------------------< START64 >--------------------------*/ {
1202 	/*
1203 	 *  SCRIPT entry point for the 895A, 896 and 1010.
1204 	 *  For now, there is no specific stuff for those
1205 	 *  chips at this point, but this may come.
1206 	 */
1207 	SCR_JUMP,
1208 		PADDR_A (init),
1209 }/*-------------------------< NO_DATA >--------------------------*/,{
1210 	SCR_JUMP,
1211 		PADDR_B (data_ovrun),
1212 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1213 	/*
1214 	 *  We are jumped here by the C code, if we have
1215 	 *  some target to reset or some disconnected
1216 	 *  job to abort. Since error recovery is a serious
1217 	 *  busyness, we will really reset the SCSI BUS, if
1218 	 *  case of a SCSI interrupt occurring in this path.
1219 	 */
1220 
1221 	/*
1222 	 *  Set initiator mode.
1223 	 */
1224 	SCR_CLR (SCR_TRG),
1225 		0,
1226 	/*
1227 	 *      And try to select this target.
1228 	 */
1229 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1230 		PADDR_A (reselect),
1231 	/*
1232 	 *  Wait for the selection to complete or
1233 	 *  the selection to time out.
1234 	 */
1235 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1236 		-8,
1237 	/*
1238 	 *  Call the C code.
1239 	 */
1240 	SCR_INT,
1241 		SIR_TARGET_SELECTED,
1242 	/*
1243 	 *  The C code should let us continue here.
1244 	 *  Send the 'kiss of death' message.
1245 	 *  We expect an immediate disconnect once
1246 	 *  the target has eaten the message.
1247 	 */
1248 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1249 		0,
1250 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1251 		offsetof (struct sym_hcb, abrt_tbl),
1252 	SCR_CLR (SCR_ACK|SCR_ATN),
1253 		0,
1254 	SCR_WAIT_DISC,
1255 		0,
1256 	/*
1257 	 *  Tell the C code that we are done.
1258 	 */
1259 	SCR_INT,
1260 		SIR_ABORT_SENT,
1261 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1262 	/*
1263 	 *  Jump at scheduler.
1264 	 */
1265 	SCR_JUMP,
1266 		PADDR_A (start),
1267 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1268 	/*
1269 	 *  If it is an EXTENDED (variable size message)
1270 	 *  Handle it.
1271 	 */
1272 	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1273 		PADDR_B (msg_extended),
1274 	/*
1275 	 *  Let the C code handle any other
1276 	 *  1 byte message.
1277 	 */
1278 	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1279 		PADDR_B (msg_received),
1280 	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1281 		PADDR_B (msg_received),
1282 	/*
1283 	 *  We donnot handle 2 bytes messages from SCRIPTS.
1284 	 *  So, let the C code deal with these ones too.
1285 	 */
1286 	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1287 		PADDR_B (msg_weird_seen),
1288 	SCR_CLR (SCR_ACK),
1289 		0,
1290 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1291 		HADDR_1 (msgin[1]),
1292 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1293 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1294 		0,
1295 	SCR_INT,
1296 		SIR_MSG_RECEIVED,
1297 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1298 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1299 		0,
1300 	SCR_INT,
1301 		SIR_MSG_WEIRD,
1302 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1303 	/*
1304 	 *  Clear ACK and get the next byte
1305 	 *  assumed to be the message length.
1306 	 */
1307 	SCR_CLR (SCR_ACK),
1308 		0,
1309 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1310 		HADDR_1 (msgin[1]),
1311 	/*
1312 	 *  Try to catch some unlikely situations as 0 length
1313 	 *  or too large the length.
1314 	 */
1315 	SCR_JUMP ^ IFTRUE (DATA (0)),
1316 		PADDR_B (msg_weird_seen),
1317 	SCR_TO_REG (scratcha),
1318 		0,
1319 	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1320 		0,
1321 	SCR_JUMP ^ IFTRUE (CARRYSET),
1322 		PADDR_B (msg_weird_seen),
1323 	/*
1324 	 *  We donnot handle extended messages from SCRIPTS.
1325 	 *  Read the amount of data corresponding to the
1326 	 *  message length and call the C code.
1327 	 */
1328 	SCR_STORE_REL (scratcha, 1),
1329 		offsetof (struct sym_dsb, smsg_ext.size),
1330 	SCR_CLR (SCR_ACK),
1331 		0,
1332 	SCR_MOVE_TBL ^ SCR_MSG_IN,
1333 		offsetof (struct sym_dsb, smsg_ext),
1334 	SCR_JUMP,
1335 		PADDR_B (msg_received),
1336 }/*-------------------------< MSG_BAD >--------------------------*/,{
1337 	/*
1338 	 *  unimplemented message - reject it.
1339 	 */
1340 	SCR_INT,
1341 		SIR_REJECT_TO_SEND,
1342 	SCR_SET (SCR_ATN),
1343 		0,
1344 	SCR_JUMP,
1345 		PADDR_A (clrack),
1346 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1347 	/*
1348 	 *  weird message received
1349 	 *  ignore all MSG IN phases and reject it.
1350 	 */
1351 	SCR_INT,
1352 		SIR_REJECT_TO_SEND,
1353 	SCR_SET (SCR_ATN),
1354 		0,
1355 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1356 	SCR_CLR (SCR_ACK),
1357 		0,
1358 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1359 		PADDR_A (dispatch),
1360 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1361 		HADDR_1 (scratch),
1362 	SCR_JUMP,
1363 		PADDR_B (msg_weird1),
1364 }/*-------------------------< WDTR_RESP >------------------------*/,{
1365 	/*
1366 	 *  let the target fetch our answer.
1367 	 */
1368 	SCR_SET (SCR_ATN),
1369 		0,
1370 	SCR_CLR (SCR_ACK),
1371 		0,
1372 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1373 		PADDR_B (nego_bad_phase),
1374 }/*-------------------------< SEND_WDTR >------------------------*/,{
1375 	/*
1376 	 *  Send the M_X_WIDE_REQ
1377 	 */
1378 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1379 		HADDR_1 (msgout),
1380 	SCR_JUMP,
1381 		PADDR_B (msg_out_done),
1382 }/*-------------------------< SDTR_RESP >------------------------*/,{
1383 	/*
1384 	 *  let the target fetch our answer.
1385 	 */
1386 	SCR_SET (SCR_ATN),
1387 		0,
1388 	SCR_CLR (SCR_ACK),
1389 		0,
1390 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1391 		PADDR_B (nego_bad_phase),
1392 }/*-------------------------< SEND_SDTR >------------------------*/,{
1393 	/*
1394 	 *  Send the M_X_SYNC_REQ
1395 	 */
1396 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1397 		HADDR_1 (msgout),
1398 	SCR_JUMP,
1399 		PADDR_B (msg_out_done),
1400 }/*-------------------------< PPR_RESP >-------------------------*/,{
1401 	/*
1402 	 *  let the target fetch our answer.
1403 	 */
1404 	SCR_SET (SCR_ATN),
1405 		0,
1406 	SCR_CLR (SCR_ACK),
1407 		0,
1408 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1409 		PADDR_B (nego_bad_phase),
1410 }/*-------------------------< SEND_PPR >-------------------------*/,{
1411 	/*
1412 	 *  Send the M_X_PPR_REQ
1413 	 */
1414 	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1415 		HADDR_1 (msgout),
1416 	SCR_JUMP,
1417 		PADDR_B (msg_out_done),
1418 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1419 	SCR_INT,
1420 		SIR_NEGO_PROTO,
1421 	SCR_JUMP,
1422 		PADDR_A (dispatch),
1423 }/*-------------------------< MSG_OUT >--------------------------*/,{
1424 	/*
1425 	 *  The target requests a message.
1426 	 *  We donnot send messages that may
1427 	 *  require the device to go to bus free.
1428 	 */
1429 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1430 		HADDR_1 (msgout),
1431 	/*
1432 	 *  ... wait for the next phase
1433 	 *  if it's a message out, send it again, ...
1434 	 */
1435 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1436 		PADDR_B (msg_out),
1437 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1438 	/*
1439 	 *  Let the C code be aware of the
1440 	 *  sent message and clear the message.
1441 	 */
1442 	SCR_INT,
1443 		SIR_MSG_OUT_DONE,
1444 	/*
1445 	 *  ... and process the next phase
1446 	 */
1447 	SCR_JUMP,
1448 		PADDR_A (dispatch),
1449 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1450 	/*
1451 	 *  Use scratcha to count the extra bytes.
1452 	 */
1453 	SCR_LOAD_ABS (scratcha, 4),
1454 		PADDR_B (zero),
1455 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1456 	/*
1457 	 *  The target may want to transfer too much data.
1458 	 *
1459 	 *  If phase is DATA OUT write 1 byte and count it.
1460 	 */
1461 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1462 		16,
1463 	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1464 		HADDR_1 (scratch),
1465 	SCR_JUMP,
1466 		PADDR_B (data_ovrun2),
1467 	/*
1468 	 *  If WSR is set, clear this condition, and
1469 	 *  count this byte.
1470 	 */
1471 	SCR_FROM_REG (scntl2),
1472 		0,
1473 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1474 		16,
1475 	SCR_REG_REG (scntl2, SCR_OR, WSR),
1476 		0,
1477 	SCR_JUMP,
1478 		PADDR_B (data_ovrun2),
1479 	/*
1480 	 *  Finally check against DATA IN phase.
1481 	 *  Signal data overrun to the C code
1482 	 *  and jump to dispatcher if not so.
1483 	 *  Read 1 byte otherwise and count it.
1484 	 */
1485 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1486 		16,
1487 	SCR_INT,
1488 		SIR_DATA_OVERRUN,
1489 	SCR_JUMP,
1490 		PADDR_A (dispatch),
1491 	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1492 		HADDR_1 (scratch),
1493 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1494 	/*
1495 	 *  Count this byte.
1496 	 *  This will allow to return a negative
1497 	 *  residual to user.
1498 	 */
1499 	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1500 		0,
1501 	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1502 		0,
1503 	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1504 		0,
1505 	/*
1506 	 *  .. and repeat as required.
1507 	 */
1508 	SCR_JUMP,
1509 		PADDR_B (data_ovrun1),
1510 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1511 	SCR_SET (SCR_ATN),
1512 		0,
1513 	SCR_CLR (SCR_ACK),
1514 		0,
1515 	/*
1516 	 *  send the abort/abortag/reset message
1517 	 *  we expect an immediate disconnect
1518 	 */
1519 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1520 		0,
1521 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1522 		HADDR_1 (msgout),
1523 	SCR_CLR (SCR_ACK|SCR_ATN),
1524 		0,
1525 	SCR_WAIT_DISC,
1526 		0,
1527 	SCR_INT,
1528 		SIR_RESEL_ABORTED,
1529 	SCR_JUMP,
1530 		PADDR_A (start),
1531 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1532 	/*
1533 	 *  The target stays in MSG OUT phase after having acked
1534 	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
1535 	 *  behave this way on parity error.
1536 	 *  We must send it again all the messages.
1537 	 */
1538 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1539 		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1540 	SCR_JUMP,
1541 		PADDR_A (send_ident),
1542 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1543 	SCR_CLR (SCR_ATN),
1544 		0,
1545 	SCR_JUMP,
1546 		PADDR_A (select2),
1547 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1548 	SCR_SET (SCR_ATN),
1549 		0,
1550 	SCR_JUMP,
1551 		PADDR_A (select2),
1552 }/*-------------------------< SDATA_IN >-------------------------*/,{
1553 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1554 		offsetof (struct sym_dsb, sense),
1555 	SCR_CALL,
1556 		PADDR_A (datai_done),
1557 	SCR_JUMP,
1558 		PADDR_B (data_ovrun),
1559 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1560 	/*
1561 	 *  Message is an IDENTIFY, but lun is unknown.
1562 	 *  Signal problem to C code for logging the event.
1563 	 *  Send a M_ABORT to clear all pending tasks.
1564 	 */
1565 	SCR_INT,
1566 		SIR_RESEL_BAD_LUN,
1567 	SCR_JUMP,
1568 		PADDR_B (abort_resel),
1569 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1570 	/*
1571 	 *  We donnot have a task for that I_T_L.
1572 	 *  Signal problem to C code for logging the event.
1573 	 *  Send a M_ABORT message.
1574 	 */
1575 	SCR_INT,
1576 		SIR_RESEL_BAD_I_T_L,
1577 	SCR_JUMP,
1578 		PADDR_B (abort_resel),
1579 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1580 	/*
1581 	 *  We donnot have a task that matches the tag.
1582 	 *  Signal problem to C code for logging the event.
1583 	 *  Send a M_ABORTTAG message.
1584 	 */
1585 	SCR_INT,
1586 		SIR_RESEL_BAD_I_T_L_Q,
1587 	SCR_JUMP,
1588 		PADDR_B (abort_resel),
1589 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1590 	/*
1591 	 *  Anything different from INTERMEDIATE
1592 	 *  CONDITION MET should be a bad SCSI status,
1593 	 *  given that GOOD status has already been tested.
1594 	 *  Call the C code.
1595 	 */
1596 	SCR_LOAD_ABS (scratcha, 4),
1597 		PADDR_B (startpos),
1598 	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1599 		SIR_BAD_SCSI_STATUS,
1600 	SCR_RETURN,
1601 		0,
1602 }/*-------------------------< PM_HANDLE >------------------------*/,{
1603 	/*
1604 	 *  Phase mismatch handling.
1605 	 *
1606 	 *  Since we have to deal with 2 SCSI data pointers
1607 	 *  (current and saved), we need at least 2 contexts.
1608 	 *  Each context (pm0 and pm1) has a saved area, a
1609 	 *  SAVE mini-script and a DATA phase mini-script.
1610 	 */
1611 	/*
1612 	 *  Get the PM handling flags.
1613 	 */
1614 	SCR_FROM_REG (HF_REG),
1615 		0,
1616 	/*
1617 	 *  If no flags (1rst PM for example), avoid
1618 	 *  all the below heavy flags testing.
1619 	 *  This makes the normal case a bit faster.
1620 	 */
1621 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1622 		PADDR_B (pm_handle1),
1623 	/*
1624 	 *  If we received a SAVE DP, switch to the
1625 	 *  other PM context since the savep may point
1626 	 *  to the current PM context.
1627 	 */
1628 	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1629 		8,
1630 	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1631 		0,
1632 	/*
1633 	 *  If we have been interrupt in a PM DATA mini-script,
1634 	 *  we take the return address from the corresponding
1635 	 *  saved area.
1636 	 *  This ensure the return address always points to the
1637 	 *  main DATA script for this transfer.
1638 	 */
1639 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1640 		PADDR_B (pm_handle1),
1641 	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1642 		16,
1643 	SCR_LOAD_REL (ia, 4),
1644 		offsetof(struct sym_ccb, phys.pm0.ret),
1645 	SCR_JUMP,
1646 		PADDR_B (pm_save),
1647 	SCR_LOAD_REL (ia, 4),
1648 		offsetof(struct sym_ccb, phys.pm1.ret),
1649 	SCR_JUMP,
1650 		PADDR_B (pm_save),
1651 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1652 	/*
1653 	 *  Normal case.
1654 	 *  Update the return address so that it
1655 	 *  will point after the interrupted MOVE.
1656 	 */
1657 	SCR_REG_REG (ia, SCR_ADD, 8),
1658 		0,
1659 	SCR_REG_REG (ia1, SCR_ADDC, 0),
1660 		0,
1661 }/*-------------------------< PM_SAVE >--------------------------*/,{
1662 	/*
1663 	 *  Clear all the flags that told us if we were
1664 	 *  interrupted in a PM DATA mini-script and/or
1665 	 *  we received a SAVE DP.
1666 	 */
1667 	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1668 		0,
1669 	/*
1670 	 *  Choose the current PM context.
1671 	 */
1672 	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1673 		PADDR_B (pm1_save),
1674 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1675 	SCR_STORE_REL (ia, 4),
1676 		offsetof(struct sym_ccb, phys.pm0.ret),
1677 	/*
1678 	 *  If WSR bit is set, either UA and RBC may
1679 	 *  have to be changed whether the device wants
1680 	 *  to ignore this residue or not.
1681 	 */
1682 	SCR_FROM_REG (scntl2),
1683 		0,
1684 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1685 		PADDR_B (pm_wsr_handle),
1686 	/*
1687 	 *  Save the remaining byte count, the updated
1688 	 *  address and the return address.
1689 	 */
1690 	SCR_STORE_REL (rbc, 4),
1691 		offsetof(struct sym_ccb, phys.pm0.sg.size),
1692 	SCR_STORE_REL (ua, 4),
1693 		offsetof(struct sym_ccb, phys.pm0.sg.addr),
1694 	/*
1695 	 *  Set the current pointer at the PM0 DATA mini-script.
1696 	 */
1697 	SCR_LOAD_ABS (temp, 4),
1698 		PADDR_B (pm0_data_addr),
1699 	SCR_JUMP,
1700 		PADDR_A (dispatch),
1701 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1702 	SCR_STORE_REL (ia, 4),
1703 		offsetof(struct sym_ccb, phys.pm1.ret),
1704 	/*
1705 	 *  If WSR bit is set, either UA and RBC may
1706 	 *  have to be changed whether the device wants
1707 	 *  to ignore this residue or not.
1708 	 */
1709 	SCR_FROM_REG (scntl2),
1710 		0,
1711 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1712 		PADDR_B (pm_wsr_handle),
1713 	/*
1714 	 *  Save the remaining byte count, the updated
1715 	 *  address and the return address.
1716 	 */
1717 	SCR_STORE_REL (rbc, 4),
1718 		offsetof(struct sym_ccb, phys.pm1.sg.size),
1719 	SCR_STORE_REL (ua, 4),
1720 		offsetof(struct sym_ccb, phys.pm1.sg.addr),
1721 	/*
1722 	 *  Set the current pointer at the PM1 DATA mini-script.
1723 	 */
1724 	SCR_LOAD_ABS (temp, 4),
1725 		PADDR_B (pm1_data_addr),
1726 	SCR_JUMP,
1727 		PADDR_A (dispatch),
1728 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1729 	/*
1730 	 *  Phase mismatch handling from SCRIPT with WSR set.
1731 	 *  Such a condition can occur if the chip wants to
1732 	 *  execute a CHMOV(size > 1) when the WSR bit is
1733 	 *  set and the target changes PHASE.
1734 	 *
1735 	 *  We must move the residual byte to memory.
1736 	 *
1737 	 *  UA contains bit 0..31 of the address to
1738 	 *  move the residual byte.
1739 	 *  Move it to the table indirect.
1740 	 */
1741 	SCR_STORE_REL (ua, 4),
1742 		offsetof (struct sym_ccb, phys.wresid.addr),
1743 	/*
1744 	 *  Increment UA (move address to next position).
1745 	 */
1746 	SCR_REG_REG (ua, SCR_ADD, 1),
1747 		0,
1748 	SCR_REG_REG (ua1, SCR_ADDC, 0),
1749 		0,
1750 	SCR_REG_REG (ua2, SCR_ADDC, 0),
1751 		0,
1752 	SCR_REG_REG (ua3, SCR_ADDC, 0),
1753 		0,
1754 	/*
1755 	 *  Compute SCRATCHA as:
1756 	 *  - size to transfer = 1 byte.
1757 	 *  - bit 24..31 = high address bit [32...39].
1758 	 */
1759 	SCR_LOAD_ABS (scratcha, 4),
1760 		PADDR_B (zero),
1761 	SCR_REG_REG (scratcha, SCR_OR, 1),
1762 		0,
1763 	SCR_FROM_REG (rbc3),
1764 		0,
1765 	SCR_TO_REG (scratcha3),
1766 		0,
1767 	/*
1768 	 *  Move this value to the table indirect.
1769 	 */
1770 	SCR_STORE_REL (scratcha, 4),
1771 		offsetof (struct sym_ccb, phys.wresid.size),
1772 	/*
1773 	 *  Wait for a valid phase.
1774 	 *  While testing with bogus QUANTUM drives, the C1010
1775 	 *  sometimes raised a spurious phase mismatch with
1776 	 *  WSR and the CHMOV(1) triggered another PM.
1777 	 *  Waiting explicitly for the PHASE seemed to avoid
1778 	 *  the nested phase mismatch. Btw, this didn't happen
1779 	 *  using my IBM drives.
1780 	 */
1781 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1782 		0,
1783 	/*
1784 	 *  Perform the move of the residual byte.
1785 	 */
1786 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1787 		offsetof (struct sym_ccb, phys.wresid),
1788 	/*
1789 	 *  We can now handle the phase mismatch with UA fixed.
1790 	 *  RBC[0..23]=0 is a special case that does not require
1791 	 *  a PM context. The C code also checks against this.
1792 	 */
1793 	SCR_FROM_REG (rbc),
1794 		0,
1795 	SCR_RETURN ^ IFFALSE (DATA (0)),
1796 		0,
1797 	SCR_FROM_REG (rbc1),
1798 		0,
1799 	SCR_RETURN ^ IFFALSE (DATA (0)),
1800 		0,
1801 	SCR_FROM_REG (rbc2),
1802 		0,
1803 	SCR_RETURN ^ IFFALSE (DATA (0)),
1804 		0,
1805 	/*
1806 	 *  RBC[0..23]=0.
1807 	 *  Not only we donnot need a PM context, but this would
1808 	 *  lead to a bogus CHMOV(0). This condition means that
1809 	 *  the residual was the last byte to move from this CHMOV.
1810 	 *  So, we just have to move the current data script pointer
1811 	 *  (i.e. TEMP) to the SCRIPTS address following the
1812 	 *  interrupted CHMOV and jump to dispatcher.
1813 	 */
1814 	SCR_STORE_ABS (ia, 4),
1815 		PADDR_B (scratch),
1816 	SCR_LOAD_ABS (temp, 4),
1817 		PADDR_B (scratch),
1818 	SCR_JUMP,
1819 		PADDR_A (dispatch),
1820 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1821 	/*
1822 	 *  Helper for the C code when WSR bit is set.
1823 	 *  Perform the move of the residual byte.
1824 	 */
1825 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1826 		offsetof (struct sym_ccb, phys.wresid),
1827 	SCR_JUMP,
1828 		PADDR_A (dispatch),
1829 }/*-------------------------< ZERO >-----------------------------*/,{
1830 	SCR_DATA_ZERO,
1831 }/*-------------------------< SCRATCH >--------------------------*/,{
1832 	SCR_DATA_ZERO,
1833 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1834 	SCR_DATA_ZERO,
1835 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1836 	SCR_DATA_ZERO,
1837 }/*-------------------------< SAVED_DSA >------------------------*/,{
1838 	SCR_DATA_ZERO,
1839 }/*-------------------------< SAVED_DRS >------------------------*/,{
1840 	SCR_DATA_ZERO,
1841 }/*-------------------------< DONE_POS >-------------------------*/,{
1842 	SCR_DATA_ZERO,
1843 }/*-------------------------< STARTPOS >-------------------------*/,{
1844 	SCR_DATA_ZERO,
1845 }/*-------------------------< TARGTBL >--------------------------*/,{
1846 	SCR_DATA_ZERO,
1847 
1848 }/*-------------------------< SNOOPTEST >------------------------*/,{
1849 	/*
1850 	 *  Read the variable from memory.
1851 	 */
1852 	SCR_LOAD_REL (scratcha, 4),
1853 		offsetof(struct sym_hcb, cache),
1854 	/*
1855 	 *  Write the variable to memory.
1856 	 */
1857 	SCR_STORE_REL (temp, 4),
1858 		offsetof(struct sym_hcb, cache),
1859 	/*
1860 	 *  Read back the variable from memory.
1861 	 */
1862 	SCR_LOAD_REL (temp, 4),
1863 		offsetof(struct sym_hcb, cache),
1864 }/*-------------------------< SNOOPEND >-------------------------*/,{
1865 	/*
1866 	 *  And stop.
1867 	 */
1868 	SCR_INT,
1869 		99,
1870 }/*-------------------------<>-----------------------------------*/
1871 };
1872