xref: /freebsd/sys/dev/sym/sym_fw2.h (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*
2  *  Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
3  *  PCI-SCSI controllers.
4  *
5  *  Copyright (C) 1999-2000  Gerard Roudier <groudier@club-internet.fr>
6  *
7  *  This driver also supports the following Symbios/LSI PCI-SCSI chips:
8  *	53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895,
9  *	53C810,  53C815,  53C825 and the 53C1510D is 53C8XX mode.
10  *
11  *
12  *  This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
13  *  Copyright (C) 1998-1999  Gerard Roudier
14  *
15  *  The sym53c8xx driver is derived from the ncr53c8xx driver that had been
16  *  a port of the FreeBSD ncr driver to Linux-1.2.13.
17  *
18  *  The original ncr driver has been written for 386bsd and FreeBSD by
19  *          Wolfgang Stanglmeier        <wolf@cologne.de>
20  *          Stefan Esser                <se@mi.Uni-Koeln.de>
21  *  Copyright (C) 1994  Wolfgang Stanglmeier
22  *
23  *  The initialisation code, and part of the code that addresses
24  *  FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
25  *  written by Justin T. Gibbs.
26  *
27  *  Other major contributions:
28  *
29  *  NVRAM detection and reading.
30  *  Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
31  *
32  *-----------------------------------------------------------------------------
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. The name of the author may not be used to endorse or promote products
43  *    derived from this software without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
49  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  */
57 
58 /* $FreeBSD$ */
59 
60 /*
61  *  Scripts for SYMBIOS-Processor
62  *
63  *  We have to know the offsets of all labels before we reach
64  *  them (for forward jumps). Therefore we declare a struct
65  *  here. If you make changes inside the script,
66  *
67  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
68  */
69 
70 /*
71  *  Script fragments which are loaded into the on-chip RAM
72  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
73  *  Must not exceed 4K bytes.
74  */
75 struct SYM_FWA_SCR {
76 	u32 start		[ 14];
77 	u32 getjob_begin	[  4];
78 	u32 getjob_end		[  4];
79 	u32 select		[  8];
80 	u32 wf_sel_done		[  2];
81 	u32 send_ident		[  2];
82 #ifdef SYM_CONF_IARB_SUPPORT
83 	u32 select2		[  8];
84 #else
85 	u32 select2		[  2];
86 #endif
87 	u32 command		[  2];
88 	u32 dispatch		[ 28];
89 	u32 sel_no_cmd		[ 10];
90 	u32 init		[  6];
91 	u32 clrack		[  4];
92 	u32 disp_status		[  4];
93 	u32 datai_done		[ 26];
94 	u32 datao_done		[ 12];
95 	u32 datai_phase		[  2];
96 	u32 datao_phase		[  2];
97 	u32 msg_in		[  2];
98 	u32 msg_in2		[ 10];
99 #ifdef SYM_CONF_IARB_SUPPORT
100 	u32 status		[ 14];
101 #else
102 	u32 status		[ 10];
103 #endif
104 	u32 complete		[  8];
105 	u32 complete2		[ 12];
106 	u32 complete_error	[  4];
107 	u32 done		[ 14];
108 	u32 done_end		[  2];
109 	u32 save_dp		[  8];
110 	u32 restore_dp		[  4];
111 	u32 disconnect		[ 20];
112 #ifdef SYM_CONF_IARB_SUPPORT
113 	u32 idle		[  4];
114 #else
115 	u32 idle		[  2];
116 #endif
117 #ifdef SYM_CONF_IARB_SUPPORT
118 	u32 ungetjob		[  6];
119 #else
120 	u32 ungetjob		[  4];
121 #endif
122 	u32 reselect		[  4];
123 	u32 reselected		[ 22];
124 	u32 resel_scntl4	[ 20];
125 	u32 resel_lun0		[  6];
126 #if   SYM_CONF_MAX_TASK*4 > 512
127 	u32 resel_tag		[ 26];
128 #elif SYM_CONF_MAX_TASK*4 > 256
129 	u32 resel_tag		[ 20];
130 #else
131 	u32 resel_tag		[ 16];
132 #endif
133 	u32 resel_dsa		[  2];
134 	u32 resel_dsa1		[  6];
135 	u32 resel_no_tag	[  6];
136 	u32 data_in		[SYM_CONF_MAX_SG * 2];
137 	u32 data_in2		[  4];
138 	u32 data_out		[SYM_CONF_MAX_SG * 2];
139 	u32 data_out2		[  4];
140 	u32 pm0_data		[ 12];
141 	u32 pm0_data_out	[  6];
142 	u32 pm0_data_end	[  6];
143 	u32 pm1_data		[ 12];
144 	u32 pm1_data_out	[  6];
145 	u32 pm1_data_end	[  6];
146 };
147 
148 /*
149  *  Script fragments which stay in main memory for all chips
150  *  except for chips that support 8K on-chip RAM.
151  */
152 struct SYM_FWB_SCR {
153 	u32 start64		[  2];
154 	u32 no_data		[  2];
155 	u32 sel_for_abort	[ 18];
156 	u32 sel_for_abort_1	[  2];
157 	u32 msg_in_etc		[ 12];
158 	u32 msg_received	[  4];
159 	u32 msg_weird_seen	[  4];
160 	u32 msg_extended	[ 20];
161 	u32 msg_bad		[  6];
162 	u32 msg_weird		[  4];
163 	u32 msg_weird1		[  8];
164 
165 	u32 wdtr_resp		[  6];
166 	u32 send_wdtr		[  4];
167 	u32 sdtr_resp		[  6];
168 	u32 send_sdtr		[  4];
169 	u32 ppr_resp		[  6];
170 	u32 send_ppr		[  4];
171 	u32 nego_bad_phase	[  4];
172 	u32 msg_out		[  4];
173 	u32 msg_out_done	[  4];
174 	u32 data_ovrun		[  2];
175 	u32 data_ovrun1		[ 22];
176 	u32 data_ovrun2		[  8];
177 	u32 abort_resel		[ 16];
178 	u32 resend_ident	[  4];
179 	u32 ident_break		[  4];
180 	u32 ident_break_atn	[  4];
181 	u32 sdata_in		[  6];
182 	u32 resel_bad_lun	[  4];
183 	u32 bad_i_t_l		[  4];
184 	u32 bad_i_t_l_q		[  4];
185 	u32 bad_status		[  6];
186 	u32 pm_handle		[ 20];
187 	u32 pm_handle1		[  4];
188 	u32 pm_save		[  4];
189 	u32 pm0_save		[ 14];
190 	u32 pm1_save		[ 14];
191 
192 	/* WSR handling */
193 	u32 pm_wsr_handle	[ 42];
194 	u32 wsr_ma_helper	[  4];
195 
196 	/* Data area */
197 	u32 zero		[  1];
198 	u32 scratch		[  1];
199 	u32 pm0_data_addr	[  1];
200 	u32 pm1_data_addr	[  1];
201 	u32 saved_dsa		[  1];
202 	u32 saved_drs		[  1];
203 	u32 done_pos		[  1];
204 	u32 startpos		[  1];
205 	u32 targtbl		[  1];
206 	/* End of data area */
207 
208 	u32 snooptest		[  6];
209 	u32 snoopend		[  2];
210 };
211 
212 static struct SYM_FWA_SCR SYM_FWA_SCR = {
213 /*--------------------------< START >----------------------------*/ {
214 	/*
215 	 *  Switch the LED on.
216 	 *  Will be patched with a NO_OP if LED
217 	 *  not needed or not desired.
218 	 */
219 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
220 		0,
221 	/*
222 	 *      Clear SIGP.
223 	 */
224 	SCR_FROM_REG (ctest2),
225 		0,
226 	/*
227 	 *  Stop here if the C code wants to perform
228 	 *  some error recovery procedure manually.
229 	 *  (Indicate this by setting SEM in ISTAT)
230 	 */
231 	SCR_FROM_REG (istat),
232 		0,
233 	/*
234 	 *  Report to the C code the next position in
235 	 *  the start queue the SCRIPTS will schedule.
236 	 *  The C code must not change SCRATCHA.
237 	 */
238 	SCR_LOAD_ABS (scratcha, 4),
239 		PADDR_B (startpos),
240 	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
241 		SIR_SCRIPT_STOPPED,
242 	/*
243 	 *  Start the next job.
244 	 *
245 	 *  @DSA     = start point for this job.
246 	 *  SCRATCHA = address of this job in the start queue.
247 	 *
248 	 *  We will restore startpos with SCRATCHA if we fails the
249 	 *  arbitration or if it is the idle job.
250 	 *
251 	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
252 	 *  is a critical path. If it is partially executed, it then
253 	 *  may happen that the job address is not yet in the DSA
254 	 *  and the the next queue position points to the next JOB.
255 	 */
256 	SCR_LOAD_ABS (dsa, 4),
257 		PADDR_B (startpos),
258 	SCR_LOAD_REL (temp, 4),
259 		4,
260 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
261 	SCR_STORE_ABS (temp, 4),
262 		PADDR_B (startpos),
263 	SCR_LOAD_REL (dsa, 4),
264 		0,
265 }/*-------------------------< GETJOB_END >-----------------------*/,{
266 	SCR_LOAD_REL (temp, 4),
267 		0,
268 	SCR_RETURN,
269 		0,
270 }/*-------------------------< SELECT >---------------------------*/,{
271 	/*
272 	 *  DSA	contains the address of a scheduled
273 	 *  	data structure.
274 	 *
275 	 *  SCRATCHA contains the address of the start queue
276 	 *  	entry which points to the next job.
277 	 *
278 	 *  Set Initiator mode.
279 	 *
280 	 *  (Target mode is left as an exercise for the reader)
281 	 */
282 	SCR_CLR (SCR_TRG),
283 		0,
284 	/*
285 	 *      And try to select this target.
286 	 */
287 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
288 		PADDR_A (ungetjob),
289 	/*
290 	 *  Now there are 4 possibilities:
291 	 *
292 	 *  (1) The chip looses arbitration.
293 	 *  This is ok, because it will try again,
294 	 *  when the bus becomes idle.
295 	 *  (But beware of the timeout function!)
296 	 *
297 	 *  (2) The chip is reselected.
298 	 *  Then the script processor takes the jump
299 	 *  to the RESELECT label.
300 	 *
301 	 *  (3) The chip wins arbitration.
302 	 *  Then it will execute SCRIPTS instruction until
303 	 *  the next instruction that checks SCSI phase.
304 	 *  Then will stop and wait for selection to be
305 	 *  complete or selection time-out to occur.
306 	 *
307 	 *  After having won arbitration, the SCRIPTS
308 	 *  processor is able to execute instructions while
309 	 *  the SCSI core is performing SCSI selection.
310 	 */
311 	/*
312 	 *      load the savep (saved data pointer) into
313 	 *      the actual data pointer.
314 	 */
315 	SCR_LOAD_REL (temp, 4),
316 		offsetof (struct sym_ccb, phys.head.savep),
317 	/*
318 	 *      Initialize the status registers
319 	 */
320 	SCR_LOAD_REL (scr0, 4),
321 		offsetof (struct sym_ccb, phys.head.status),
322 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
323 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
324 		SIR_SEL_ATN_NO_MSG_OUT,
325 }/*-------------------------< SEND_IDENT >-----------------------*/,{
326 	/*
327 	 *  Selection complete.
328 	 *  Send the IDENTIFY and possibly the TAG message
329 	 *  and negotiation message if present.
330 	 */
331 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
332 		offsetof (struct sym_dsb, smsg),
333 }/*-------------------------< SELECT2 >--------------------------*/,{
334 #ifdef SYM_CONF_IARB_SUPPORT
335 	/*
336 	 *  Set IMMEDIATE ARBITRATION if we have been given
337 	 *  a hint to do so. (Some job to do after this one).
338 	 */
339 	SCR_FROM_REG (HF_REG),
340 		0,
341 	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
342 		8,
343 	SCR_REG_REG (scntl1, SCR_OR, IARB),
344 		0,
345 #endif
346 	/*
347 	 *  Anticipate the COMMAND phase.
348 	 *  This is the PHASE we expect at this point.
349 	 */
350 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
351 		PADDR_A (sel_no_cmd),
352 }/*-------------------------< COMMAND >--------------------------*/,{
353 	/*
354 	 *  ... and send the command
355 	 */
356 	SCR_MOVE_TBL ^ SCR_COMMAND,
357 		offsetof (struct sym_dsb, cmd),
358 }/*-------------------------< DISPATCH >-------------------------*/,{
359 	/*
360 	 *  MSG_IN is the only phase that shall be
361 	 *  entered at least once for each (re)selection.
362 	 *  So we test it first.
363 	 */
364 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
365 		PADDR_A (msg_in),
366 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
367 		PADDR_A (datao_phase),
368 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
369 		PADDR_A (datai_phase),
370 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
371 		PADDR_A (status),
372 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
373 		PADDR_A (command),
374 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
375 		PADDR_B (msg_out),
376 	/*
377 	 *  Discard as many illegal phases as
378 	 *  required and tell the C code about.
379 	 */
380 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
381 		16,
382 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
383 		HADDR_1 (scratch),
384 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
385 		-16,
386 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
387 		16,
388 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
389 		HADDR_1 (scratch),
390 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
391 		-16,
392 	SCR_INT,
393 		SIR_BAD_PHASE,
394 	SCR_JUMP,
395 		PADDR_A (dispatch),
396 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
397 	/*
398 	 *  The target does not switch to command
399 	 *  phase after IDENTIFY has been sent.
400 	 *
401 	 *  If it stays in MSG OUT phase send it
402 	 *  the IDENTIFY again.
403 	 */
404 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
405 		PADDR_B (resend_ident),
406 	/*
407 	 *  If target does not switch to MSG IN phase
408 	 *  and we sent a negotiation, assert the
409 	 *  failure immediately.
410 	 */
411 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
412 		PADDR_A (dispatch),
413 	SCR_FROM_REG (HS_REG),
414 		0,
415 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
416 		SIR_NEGO_FAILED,
417 	/*
418 	 *  Jump to dispatcher.
419 	 */
420 	SCR_JUMP,
421 		PADDR_A (dispatch),
422 }/*-------------------------< INIT >-----------------------------*/,{
423 	/*
424 	 *  Wait for the SCSI RESET signal to be
425 	 *  inactive before restarting operations,
426 	 *  since the chip may hang on SEL_ATN
427 	 *  if SCSI RESET is active.
428 	 */
429 	SCR_FROM_REG (sstat0),
430 		0,
431 	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
432 		-16,
433 	SCR_JUMP,
434 		PADDR_A (start),
435 }/*-------------------------< CLRACK >---------------------------*/,{
436 	/*
437 	 *  Terminate possible pending message phase.
438 	 */
439 	SCR_CLR (SCR_ACK),
440 		0,
441 	SCR_JUMP,
442 		PADDR_A (dispatch),
443 }/*-------------------------< DISP_STATUS >----------------------*/,{
444 	/*
445 	 *  Anticipate STATUS phase.
446 	 *
447 	 *  Does spare 3 SCRIPTS instructions when we have
448 	 *  completed the INPUT of the data.
449 	 */
450 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
451 		PADDR_A (status),
452 	SCR_JUMP,
453 		PADDR_A (dispatch),
454 }/*-------------------------< DATAI_DONE >-----------------------*/,{
455 	/*
456 	 *  If the device still wants to send us data,
457 	 *  we must count the extra bytes.
458 	 */
459 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)),
460 		PADDR_B (data_ovrun),
461 	/*
462 	 *  If the SWIDE is not full, jump to dispatcher.
463 	 *  We anticipate a STATUS phase.
464 	 */
465 	SCR_FROM_REG (scntl2),
466 		0,
467 	SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
468 		PADDR_A (disp_status),
469 	/*
470 	 *  The SWIDE is full.
471 	 *  Clear this condition.
472 	 */
473 	SCR_REG_REG (scntl2, SCR_OR, WSR),
474 		0,
475 	/*
476 	 *  We are expecting an IGNORE RESIDUE message
477 	 *  from the device, otherwise we are in data
478 	 *  overrun condition. Check against MSG_IN phase.
479 	 */
480 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
481 		SIR_SWIDE_OVERRUN,
482 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
483 		PADDR_A (disp_status),
484 	/*
485 	 *  We are in MSG_IN phase,
486 	 *  Read the first byte of the message.
487 	 *  If it is not an IGNORE RESIDUE message,
488 	 *  signal overrun and jump to message
489 	 *  processing.
490 	 */
491 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
492 		HADDR_1 (msgin[0]),
493 	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
494 		SIR_SWIDE_OVERRUN,
495 	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
496 		PADDR_A (msg_in2),
497 	/*
498 	 *  We got the message we expected.
499 	 *  Read the 2nd byte, and jump to dispatcher.
500 	 */
501 	SCR_CLR (SCR_ACK),
502 		0,
503 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
504 		HADDR_1 (msgin[1]),
505 	SCR_CLR (SCR_ACK),
506 		0,
507 	SCR_JUMP,
508 		PADDR_A (disp_status),
509 }/*-------------------------< DATAO_DONE >-----------------------*/,{
510 	/*
511 	 *  If the device wants us to send more data,
512 	 *  we must count the extra bytes.
513 	 */
514 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
515 		PADDR_B (data_ovrun),
516 	/*
517 	 *  If the SODL is not full jump to dispatcher.
518 	 *  We anticipate a STATUS phase.
519 	 */
520 	SCR_FROM_REG (scntl2),
521 		0,
522 	SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
523 		PADDR_A (disp_status),
524 	/*
525 	 *  The SODL is full, clear this condition.
526 	 */
527 	SCR_REG_REG (scntl2, SCR_OR, WSS),
528 		0,
529 	/*
530 	 *  And signal a DATA UNDERRUN condition
531 	 *  to the C code.
532 	 */
533 	SCR_INT,
534 		SIR_SODL_UNDERRUN,
535 	SCR_JUMP,
536 		PADDR_A (dispatch),
537 }/*-------------------------< DATAI_PHASE >----------------------*/,{
538 	SCR_RETURN,
539 		0,
540 }/*-------------------------< DATAO_PHASE >----------------------*/,{
541 	SCR_RETURN,
542 		0,
543 }/*-------------------------< MSG_IN >---------------------------*/,{
544 	/*
545 	 *  Get the first byte of the message.
546 	 *
547 	 *  The script processor doesn't negate the
548 	 *  ACK signal after this transfer.
549 	 */
550 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
551 		HADDR_1 (msgin[0]),
552 }/*-------------------------< MSG_IN2 >--------------------------*/,{
553 	/*
554 	 *  Check first against 1 byte messages
555 	 *  that we handle from SCRIPTS.
556 	 */
557 	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
558 		PADDR_A (complete),
559 	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
560 		PADDR_A (disconnect),
561 	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
562 		PADDR_A (save_dp),
563 	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
564 		PADDR_A (restore_dp),
565 	/*
566 	 *  We handle all other messages from the
567 	 *  C code, so no need to waste on-chip RAM
568 	 *  for those ones.
569 	 */
570 	SCR_JUMP,
571 		PADDR_B (msg_in_etc),
572 }/*-------------------------< STATUS >---------------------------*/,{
573 	/*
574 	 *  get the status
575 	 */
576 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
577 		HADDR_1 (scratch),
578 #ifdef SYM_CONF_IARB_SUPPORT
579 	/*
580 	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
581 	 *  since we may have to tamper the start queue from
582 	 *  the C code.
583 	 */
584 	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
585 		8,
586 	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
587 		0,
588 #endif
589 	/*
590 	 *  save status to scsi_status.
591 	 *  mark as complete.
592 	 */
593 	SCR_TO_REG (SS_REG),
594 		0,
595 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
596 		0,
597 	/*
598 	 *  Anticipate the MESSAGE PHASE for
599 	 *  the TASK COMPLETE message.
600 	 */
601 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
602 		PADDR_A (msg_in),
603 	SCR_JUMP,
604 		PADDR_A (dispatch),
605 }/*-------------------------< COMPLETE >-------------------------*/,{
606 	/*
607 	 *  Complete message.
608 	 *
609 	 *  Copy the data pointer to LASTP.
610 	 */
611 	SCR_STORE_REL (temp, 4),
612 		offsetof (struct sym_ccb, phys.head.lastp),
613 	/*
614 	 *  When we terminate the cycle by clearing ACK,
615 	 *  the target may disconnect immediately.
616 	 *
617 	 *  We don't want to be told of an "unexpected disconnect",
618 	 *  so we disable this feature.
619 	 */
620 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
621 		0,
622 	/*
623 	 *  Terminate cycle ...
624 	 */
625 	SCR_CLR (SCR_ACK|SCR_ATN),
626 		0,
627 	/*
628 	 *  ... and wait for the disconnect.
629 	 */
630 	SCR_WAIT_DISC,
631 		0,
632 }/*-------------------------< COMPLETE2 >------------------------*/,{
633 	/*
634 	 *  Save host status.
635 	 */
636 	SCR_STORE_REL (scr0, 4),
637 		offsetof (struct sym_ccb, phys.head.status),
638 	/*
639 	 *  Some bridges may reorder DMA writes to memory.
640 	 *  We donnot want the CPU to deal with completions
641 	 *  without all the posted write having been flushed
642 	 *  to memory. This DUMMY READ should flush posted
643 	 *  buffers prior to the CPU having to deal with
644 	 *  completions.
645 	 */
646 	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
647 		offsetof (struct sym_ccb, phys.head.status),
648 
649 	/*
650 	 *  If command resulted in not GOOD status,
651 	 *  call the C code if needed.
652 	 */
653 	SCR_FROM_REG (SS_REG),
654 		0,
655 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
656 		PADDR_B (bad_status),
657 	/*
658 	 *  If we performed an auto-sense, call
659 	 *  the C code to synchronyze task aborts
660 	 *  with UNIT ATTENTION conditions.
661 	 */
662 	SCR_FROM_REG (HF_REG),
663 		0,
664 	SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
665 		16,
666 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
667 	SCR_LOAD_ABS (scratcha, 4),
668 		PADDR_B (startpos),
669 	SCR_INT,
670 		SIR_COMPLETE_ERROR,
671 }/*-------------------------< DONE >-----------------------------*/,{
672 	/*
673 	 *  Copy the DSA to the DONE QUEUE and
674 	 *  signal completion to the host.
675 	 *  If we are interrupted between DONE
676 	 *  and DONE_END, we must reset, otherwise
677 	 *  the completed CCB may be lost.
678 	 */
679 	SCR_STORE_ABS (dsa, 4),
680 		PADDR_B (saved_dsa),
681 	SCR_LOAD_ABS (dsa, 4),
682 		PADDR_B (done_pos),
683 	SCR_LOAD_ABS (scratcha, 4),
684 		PADDR_B (saved_dsa),
685 	SCR_STORE_REL (scratcha, 4),
686 		0,
687 	/*
688 	 *  The instruction below reads the DONE QUEUE next
689 	 *  free position from memory.
690 	 *  In addition it ensures that all PCI posted writes
691 	 *  are flushed and so the DSA value of the done
692 	 *  CCB is visible by the CPU before INTFLY is raised.
693 	 */
694 	SCR_LOAD_REL (temp, 4),
695 		4,
696 	SCR_INT_FLY,
697 		0,
698 	SCR_STORE_ABS (temp, 4),
699 		PADDR_B (done_pos),
700 }/*-------------------------< DONE_END >-------------------------*/,{
701 	SCR_JUMP,
702 		PADDR_A (start),
703 }/*-------------------------< SAVE_DP >--------------------------*/,{
704 	/*
705 	 *  Clear ACK immediately.
706 	 *  No need to delay it.
707 	 */
708 	SCR_CLR (SCR_ACK),
709 		0,
710 	/*
711 	 *  Keep track we received a SAVE DP, so
712 	 *  we will switch to the other PM context
713 	 *  on the next PM since the DP may point
714 	 *  to the current PM context.
715 	 */
716 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
717 		0,
718 	/*
719 	 *  SAVE_DP message:
720 	 *  Copy the data pointer to SAVEP.
721 	 */
722 	SCR_STORE_REL (temp, 4),
723 		offsetof (struct sym_ccb, phys.head.savep),
724 	SCR_JUMP,
725 		PADDR_A (dispatch),
726 }/*-------------------------< RESTORE_DP >-----------------------*/,{
727 	/*
728 	 *  RESTORE_DP message:
729 	 *  Copy SAVEP to actual data pointer.
730 	 */
731 	SCR_LOAD_REL  (temp, 4),
732 		offsetof (struct sym_ccb, phys.head.savep),
733 	SCR_JUMP,
734 		PADDR_A (clrack),
735 }/*-------------------------< DISCONNECT >-----------------------*/,{
736 	/*
737 	 *  DISCONNECTing  ...
738 	 *
739 	 *  disable the "unexpected disconnect" feature,
740 	 *  and remove the ACK signal.
741 	 */
742 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
743 		0,
744 	SCR_CLR (SCR_ACK|SCR_ATN),
745 		0,
746 	/*
747 	 *  Wait for the disconnect.
748 	 */
749 	SCR_WAIT_DISC,
750 		0,
751 	/*
752 	 *  Status is: DISCONNECTED.
753 	 */
754 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
755 		0,
756 	/*
757 	 *  Save host status.
758 	 */
759 	SCR_STORE_REL (scr0, 4),
760 		offsetof (struct sym_ccb, phys.head.status),
761 	/*
762 	 *  If QUIRK_AUTOSAVE is set,
763 	 *  do an "save pointer" operation.
764 	 */
765 	SCR_FROM_REG (QU_REG),
766 		0,
767 	SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
768 		PADDR_A (start),
769 	/*
770 	 *  like SAVE_DP message:
771 	 *  Remember we saved the data pointer.
772 	 *  Copy data pointer to SAVEP.
773 	 */
774 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
775 		0,
776 	SCR_STORE_REL (temp, 4),
777 		offsetof (struct sym_ccb, phys.head.savep),
778 	SCR_JUMP,
779 		PADDR_A (start),
780 }/*-------------------------< IDLE >-----------------------------*/,{
781 	/*
782 	 *  Nothing to do?
783 	 *  Switch the LED off and wait for reselect.
784 	 *  Will be patched with a NO_OP if LED
785 	 *  not needed or not desired.
786 	 */
787 	SCR_REG_REG (gpreg, SCR_OR, 0x01),
788 		0,
789 #ifdef SYM_CONF_IARB_SUPPORT
790 	SCR_JUMPR,
791 		8,
792 #endif
793 }/*-------------------------< UNGETJOB >-------------------------*/,{
794 #ifdef SYM_CONF_IARB_SUPPORT
795 	/*
796 	 *  Set IMMEDIATE ARBITRATION, for the next time.
797 	 *  This will give us better chance to win arbitration
798 	 *  for the job we just wanted to do.
799 	 */
800 	SCR_REG_REG (scntl1, SCR_OR, IARB),
801 		0,
802 #endif
803 	/*
804 	 *  We are not able to restart the SCRIPTS if we are
805 	 *  interrupted and these instruction haven't been
806 	 *  all executed. BTW, this is very unlikely to
807 	 *  happen, but we check that from the C code.
808 	 */
809 	SCR_LOAD_REG (dsa, 0xff),
810 		0,
811 	SCR_STORE_ABS (scratcha, 4),
812 		PADDR_B (startpos),
813 }/*-------------------------< RESELECT >-------------------------*/,{
814 	/*
815 	 *  Make sure we are in initiator mode.
816 	 */
817 	SCR_CLR (SCR_TRG),
818 		0,
819 	/*
820 	 *  Sleep waiting for a reselection.
821 	 */
822 	SCR_WAIT_RESEL,
823 		PADDR_A(start),
824 }/*-------------------------< RESELECTED >-----------------------*/,{
825 	/*
826 	 *  Switch the LED on.
827 	 *  Will be patched with a NO_OP if LED
828 	 *  not needed or not desired.
829 	 */
830 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
831 		0,
832 	/*
833 	 *  load the target id into the sdid
834 	 */
835 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
836 		0,
837 	SCR_TO_REG (sdid),
838 		0,
839 	/*
840 	 *  Load the target control block address
841 	 */
842 	SCR_LOAD_ABS (dsa, 4),
843 		PADDR_B (targtbl),
844 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
845 		0,
846 	SCR_REG_REG (dsa, SCR_SHL, 0),
847 		0,
848 	SCR_REG_REG (dsa, SCR_AND, 0x3c),
849 		0,
850 	SCR_LOAD_REL (dsa, 4),
851 		0,
852 	/*
853 	 *  We expect MESSAGE IN phase.
854 	 *  If not, get help from the C code.
855 	 */
856 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
857 		SIR_RESEL_NO_MSG_IN,
858 	/*
859 	 *  Load the legacy synchronous transfer registers.
860 	 */
861 	SCR_LOAD_REL (scntl3, 1),
862 		offsetof(struct sym_tcb, head.wval),
863 	SCR_LOAD_REL (sxfer, 1),
864 		offsetof(struct sym_tcb, head.sval),
865 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
866 	/*
867 	 *  The C1010 uses a new synchronous timing scheme.
868 	 *  Will be patched with a NO_OP if not a C1010.
869 	 */
870 	SCR_LOAD_REL (scntl4, 1),
871 		offsetof(struct sym_tcb, head.uval),
872 	/*
873 	 *  Get the IDENTIFY message.
874 	 */
875 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
876 		HADDR_1 (msgin),
877 	/*
878 	 *  If IDENTIFY LUN #0, use a faster path
879 	 *  to find the LCB structure.
880 	 */
881 	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
882 		PADDR_A (resel_lun0),
883 	/*
884 	 *  If message isn't an IDENTIFY,
885 	 *  tell the C code about.
886 	 */
887 	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
888 		SIR_RESEL_NO_IDENTIFY,
889 	/*
890 	 *  It is an IDENTIFY message,
891 	 *  Load the LUN control block address.
892 	 */
893 	SCR_LOAD_REL (dsa, 4),
894 		offsetof(struct sym_tcb, head.luntbl_sa),
895 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
896 		0,
897 	SCR_REG_REG (dsa, SCR_SHL, 0),
898 		0,
899 	SCR_REG_REG (dsa, SCR_AND, 0xfc),
900 		0,
901 	SCR_LOAD_REL (dsa, 4),
902 		0,
903 	SCR_JUMPR,
904 		8,
905 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
906 	/*
907 	 *  LUN 0 special case (but usual one :))
908 	 */
909 	SCR_LOAD_REL (dsa, 4),
910 		offsetof(struct sym_tcb, head.lun0_sa),
911 	/*
912 	 *  Jump indirectly to the reselect action for this LUN.
913 	 */
914 	SCR_LOAD_REL (temp, 4),
915 		offsetof(struct sym_lcb, head.resel_sa),
916 	SCR_RETURN,
917 		0,
918 	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
919 }/*-------------------------< RESEL_TAG >------------------------*/,{
920 	/*
921 	 *  ACK the IDENTIFY or TAG previously received.
922 	 */
923 	SCR_CLR (SCR_ACK),
924 		0,
925 	/*
926 	 *  It shall be a tagged command.
927 	 *  Read SIMPLE+TAG.
928 	 *  The C code will deal with errors.
929 	 *  Agressive optimization, is'nt it? :)
930 	 */
931 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
932 		HADDR_1 (msgin),
933 	/*
934 	 *  Load the pointer to the tagged task
935 	 *  table for this LUN.
936 	 */
937 	SCR_LOAD_REL (dsa, 4),
938 		offsetof(struct sym_lcb, head.itlq_tbl_sa),
939 	/*
940 	 *  The SIDL still contains the TAG value.
941 	 *  Agressive optimization, isn't it? :):)
942 	 */
943 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
944 		0,
945 #if SYM_CONF_MAX_TASK*4 > 512
946 	SCR_JUMPR ^ IFFALSE (CARRYSET),
947 		8,
948 	SCR_REG_REG (dsa1, SCR_OR, 2),
949 		0,
950 	SCR_REG_REG (sfbr, SCR_SHL, 0),
951 		0,
952 	SCR_JUMPR ^ IFFALSE (CARRYSET),
953 		8,
954 	SCR_REG_REG (dsa1, SCR_OR, 1),
955 		0,
956 #elif SYM_CONF_MAX_TASK*4 > 256
957 	SCR_JUMPR ^ IFFALSE (CARRYSET),
958 		8,
959 	SCR_REG_REG (dsa1, SCR_OR, 1),
960 		0,
961 #endif
962 	/*
963 	 *  Retrieve the DSA of this task.
964 	 *  JUMP indirectly to the restart point of the CCB.
965 	 */
966 	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
967 		0,
968 	SCR_LOAD_REL (dsa, 4),
969 		0,
970 	SCR_LOAD_REL (temp, 4),
971 		offsetof(struct sym_ccb, phys.head.go.restart),
972 	SCR_RETURN,
973 		0,
974 	/* In normal situations we branch to RESEL_DSA */
975 }/*-------------------------< RESEL_DSA >------------------------*/,{
976 	/*
977 	 *  ACK the IDENTIFY or TAG previously received.
978 	 */
979 	SCR_CLR (SCR_ACK),
980 		0,
981 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
982 	/*
983 	 *      load the savep (saved pointer) into
984 	 *      the actual data pointer.
985 	 */
986 	SCR_LOAD_REL (temp, 4),
987 		offsetof (struct sym_ccb, phys.head.savep),
988 	/*
989 	 *      Initialize the status registers
990 	 */
991 	SCR_LOAD_REL (scr0, 4),
992 		offsetof (struct sym_ccb, phys.head.status),
993 	/*
994 	 *  Jump to dispatcher.
995 	 */
996 	SCR_JUMP,
997 		PADDR_A (dispatch),
998 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
999 	/*
1000 	 *  Load the DSA with the unique ITL task.
1001 	 */
1002 	SCR_LOAD_REL (dsa, 4),
1003 		offsetof(struct sym_lcb, head.itl_task_sa),
1004 	/*
1005 	 *  JUMP indirectly to the restart point of the CCB.
1006 	 */
1007 	SCR_LOAD_REL (temp, 4),
1008 		offsetof(struct sym_ccb, phys.head.go.restart),
1009 	SCR_RETURN,
1010 		0,
1011 	/* In normal situations we branch to RESEL_DSA */
1012 }/*-------------------------< DATA_IN >--------------------------*/,{
1013 /*
1014  *  Because the size depends on the
1015  *  #define SYM_CONF_MAX_SG parameter,
1016  *  it is filled in at runtime.
1017  *
1018  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1019  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1020  *  ||		offsetof (struct sym_dsb, data[ i]),
1021  *  ##==========================================
1022  */
1023 0
1024 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1025 	SCR_CALL,
1026 		PADDR_A (datai_done),
1027 	SCR_JUMP,
1028 		PADDR_B (data_ovrun),
1029 }/*-------------------------< DATA_OUT >-------------------------*/,{
1030 /*
1031  *  Because the size depends on the
1032  *  #define SYM_CONF_MAX_SG parameter,
1033  *  it is filled in at runtime.
1034  *
1035  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1036  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1037  *  ||		offsetof (struct sym_dsb, data[ i]),
1038  *  ##==========================================
1039  */
1040 0
1041 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1042 	SCR_CALL,
1043 		PADDR_A (datao_done),
1044 	SCR_JUMP,
1045 		PADDR_B (data_ovrun),
1046 }/*-------------------------< PM0_DATA >-------------------------*/,{
1047 	/*
1048 	 *  Read our host flags to SFBR, so we will be able
1049 	 *  to check against the data direction we expect.
1050 	 */
1051 	SCR_FROM_REG (HF_REG),
1052 		0,
1053 	/*
1054 	 *  Check against actual DATA PHASE.
1055 	 */
1056 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1057 		PADDR_A (pm0_data_out),
1058 	/*
1059 	 *  Actual phase is DATA IN.
1060 	 *  Check against expected direction.
1061 	 */
1062 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1063 		PADDR_B (data_ovrun),
1064 	/*
1065 	 *  Keep track we are moving data from the
1066 	 *  PM0 DATA mini-script.
1067 	 */
1068 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1069 		0,
1070 	/*
1071 	 *  Move the data to memory.
1072 	 */
1073 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1074 		offsetof (struct sym_ccb, phys.pm0.sg),
1075 	SCR_JUMP,
1076 		PADDR_A (pm0_data_end),
1077 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1078 	/*
1079 	 *  Actual phase is DATA OUT.
1080 	 *  Check against expected direction.
1081 	 */
1082 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1083 		PADDR_B (data_ovrun),
1084 	/*
1085 	 *  Keep track we are moving data from the
1086 	 *  PM0 DATA mini-script.
1087 	 */
1088 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1089 		0,
1090 	/*
1091 	 *  Move the data from memory.
1092 	 */
1093 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1094 		offsetof (struct sym_ccb, phys.pm0.sg),
1095 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1096 	/*
1097 	 *  Clear the flag that told we were moving
1098 	 *  data from the PM0 DATA mini-script.
1099 	 */
1100 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1101 		0,
1102 	/*
1103 	 *  Return to the previous DATA script which
1104 	 *  is guaranteed by design (if no bug) to be
1105 	 *  the main DATA script for this transfer.
1106 	 */
1107 	SCR_LOAD_REL (temp, 4),
1108 		offsetof (struct sym_ccb, phys.pm0.ret),
1109 	SCR_RETURN,
1110 		0,
1111 }/*-------------------------< PM1_DATA >-------------------------*/,{
1112 	/*
1113 	 *  Read our host flags to SFBR, so we will be able
1114 	 *  to check against the data direction we expect.
1115 	 */
1116 	SCR_FROM_REG (HF_REG),
1117 		0,
1118 	/*
1119 	 *  Check against actual DATA PHASE.
1120 	 */
1121 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1122 		PADDR_A (pm1_data_out),
1123 	/*
1124 	 *  Actual phase is DATA IN.
1125 	 *  Check against expected direction.
1126 	 */
1127 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1128 		PADDR_B (data_ovrun),
1129 	/*
1130 	 *  Keep track we are moving data from the
1131 	 *  PM1 DATA mini-script.
1132 	 */
1133 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1134 		0,
1135 	/*
1136 	 *  Move the data to memory.
1137 	 */
1138 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1139 		offsetof (struct sym_ccb, phys.pm1.sg),
1140 	SCR_JUMP,
1141 		PADDR_A (pm1_data_end),
1142 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1143 	/*
1144 	 *  Actual phase is DATA OUT.
1145 	 *  Check against expected direction.
1146 	 */
1147 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1148 		PADDR_B (data_ovrun),
1149 	/*
1150 	 *  Keep track we are moving data from the
1151 	 *  PM1 DATA mini-script.
1152 	 */
1153 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1154 		0,
1155 	/*
1156 	 *  Move the data from memory.
1157 	 */
1158 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1159 		offsetof (struct sym_ccb, phys.pm1.sg),
1160 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1161 	/*
1162 	 *  Clear the flag that told we were moving
1163 	 *  data from the PM1 DATA mini-script.
1164 	 */
1165 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1166 		0,
1167 	/*
1168 	 *  Return to the previous DATA script which
1169 	 *  is guaranteed by design (if no bug) to be
1170 	 *  the main DATA script for this transfer.
1171 	 */
1172 	SCR_LOAD_REL (temp, 4),
1173 		offsetof (struct sym_ccb, phys.pm1.ret),
1174 	SCR_RETURN,
1175 		0,
1176 }/*-------------------------<>-----------------------------------*/
1177 };
1178 
1179 static struct SYM_FWB_SCR SYM_FWB_SCR = {
1180 /*--------------------------< START64 >--------------------------*/ {
1181 	/*
1182 	 *  SCRIPT entry point for the 895A, 896 and 1010.
1183 	 *  For now, there is no specific stuff for those
1184 	 *  chips at this point, but this may come.
1185 	 */
1186 	SCR_JUMP,
1187 		PADDR_A (init),
1188 }/*-------------------------< NO_DATA >--------------------------*/,{
1189 	SCR_JUMP,
1190 		PADDR_B (data_ovrun),
1191 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1192 	/*
1193 	 *  We are jumped here by the C code, if we have
1194 	 *  some target to reset or some disconnected
1195 	 *  job to abort. Since error recovery is a serious
1196 	 *  busyness, we will really reset the SCSI BUS, if
1197 	 *  case of a SCSI interrupt occuring in this path.
1198 	 */
1199 
1200 	/*
1201 	 *  Set initiator mode.
1202 	 */
1203 	SCR_CLR (SCR_TRG),
1204 		0,
1205 	/*
1206 	 *      And try to select this target.
1207 	 */
1208 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1209 		PADDR_A (reselect),
1210 	/*
1211 	 *  Wait for the selection to complete or
1212 	 *  the selection to time out.
1213 	 */
1214 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1215 		-8,
1216 	/*
1217 	 *  Call the C code.
1218 	 */
1219 	SCR_INT,
1220 		SIR_TARGET_SELECTED,
1221 	/*
1222 	 *  The C code should let us continue here.
1223 	 *  Send the 'kiss of death' message.
1224 	 *  We expect an immediate disconnect once
1225 	 *  the target has eaten the message.
1226 	 */
1227 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1228 		0,
1229 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1230 		offsetof (struct sym_hcb, abrt_tbl),
1231 	SCR_CLR (SCR_ACK|SCR_ATN),
1232 		0,
1233 	SCR_WAIT_DISC,
1234 		0,
1235 	/*
1236 	 *  Tell the C code that we are done.
1237 	 */
1238 	SCR_INT,
1239 		SIR_ABORT_SENT,
1240 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1241 	/*
1242 	 *  Jump at scheduler.
1243 	 */
1244 	SCR_JUMP,
1245 		PADDR_A (start),
1246 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1247 	/*
1248 	 *  If it is an EXTENDED (variable size message)
1249 	 *  Handle it.
1250 	 */
1251 	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1252 		PADDR_B (msg_extended),
1253 	/*
1254 	 *  Let the C code handle any other
1255 	 *  1 byte message.
1256 	 */
1257 	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1258 		PADDR_B (msg_received),
1259 	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1260 		PADDR_B (msg_received),
1261 	/*
1262 	 *  We donnot handle 2 bytes messages from SCRIPTS.
1263 	 *  So, let the C code deal with these ones too.
1264 	 */
1265 	SCR_INT ^ IFFALSE (MASK (0x20, 0xf0)),
1266 		SIR_MSG_WEIRD,
1267 	SCR_CLR (SCR_ACK),
1268 		0,
1269 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1270 		HADDR_1 (msgin[1]),
1271 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1272 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1273 		0,
1274 	SCR_INT,
1275 		SIR_MSG_RECEIVED,
1276 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1277 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1278 		0,
1279 	SCR_INT,
1280 		SIR_MSG_WEIRD,
1281 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1282 	/*
1283 	 *  Clear ACK and get the next byte
1284 	 *  assumed to be the message length.
1285 	 */
1286 	SCR_CLR (SCR_ACK),
1287 		0,
1288 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1289 		HADDR_1 (msgin[1]),
1290 	/*
1291 	 *  Try to catch some unlikely situations as 0 length
1292 	 *  or too large the length.
1293 	 */
1294 	SCR_JUMP ^ IFTRUE (DATA (0)),
1295 		PADDR_B (msg_weird_seen),
1296 	SCR_TO_REG (scratcha),
1297 		0,
1298 	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1299 		0,
1300 	SCR_JUMP ^ IFTRUE (CARRYSET),
1301 		PADDR_B (msg_weird_seen),
1302 	/*
1303 	 *  We donnot handle extended messages from SCRIPTS.
1304 	 *  Read the amount of data correponding to the
1305 	 *  message length and call the C code.
1306 	 */
1307 	SCR_STORE_REL (scratcha, 1),
1308 		offsetof (struct sym_dsb, smsg_ext.size),
1309 	SCR_CLR (SCR_ACK),
1310 		0,
1311 	SCR_MOVE_TBL ^ SCR_MSG_IN,
1312 		offsetof (struct sym_dsb, smsg_ext),
1313 	SCR_JUMP,
1314 		PADDR_B (msg_received),
1315 }/*-------------------------< MSG_BAD >--------------------------*/,{
1316 	/*
1317 	 *  unimplemented message - reject it.
1318 	 */
1319 	SCR_INT,
1320 		SIR_REJECT_TO_SEND,
1321 	SCR_SET (SCR_ATN),
1322 		0,
1323 	SCR_JUMP,
1324 		PADDR_A (clrack),
1325 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1326 	/*
1327 	 *  weird message received
1328 	 *  ignore all MSG IN phases and reject it.
1329 	 */
1330 	SCR_INT,
1331 		SIR_REJECT_TO_SEND,
1332 	SCR_SET (SCR_ATN),
1333 		0,
1334 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1335 	SCR_CLR (SCR_ACK),
1336 		0,
1337 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1338 		PADDR_A (dispatch),
1339 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1340 		HADDR_1 (scratch),
1341 	SCR_JUMP,
1342 		PADDR_B (msg_weird1),
1343 }/*-------------------------< WDTR_RESP >------------------------*/,{
1344 	/*
1345 	 *  let the target fetch our answer.
1346 	 */
1347 	SCR_SET (SCR_ATN),
1348 		0,
1349 	SCR_CLR (SCR_ACK),
1350 		0,
1351 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1352 		PADDR_B (nego_bad_phase),
1353 }/*-------------------------< SEND_WDTR >------------------------*/,{
1354 	/*
1355 	 *  Send the M_X_WIDE_REQ
1356 	 */
1357 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1358 		HADDR_1 (msgout),
1359 	SCR_JUMP,
1360 		PADDR_B (msg_out_done),
1361 }/*-------------------------< SDTR_RESP >------------------------*/,{
1362 	/*
1363 	 *  let the target fetch our answer.
1364 	 */
1365 	SCR_SET (SCR_ATN),
1366 		0,
1367 	SCR_CLR (SCR_ACK),
1368 		0,
1369 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1370 		PADDR_B (nego_bad_phase),
1371 }/*-------------------------< SEND_SDTR >------------------------*/,{
1372 	/*
1373 	 *  Send the M_X_SYNC_REQ
1374 	 */
1375 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1376 		HADDR_1 (msgout),
1377 	SCR_JUMP,
1378 		PADDR_B (msg_out_done),
1379 }/*-------------------------< PPR_RESP >-------------------------*/,{
1380 	/*
1381 	 *  let the target fetch our answer.
1382 	 */
1383 	SCR_SET (SCR_ATN),
1384 		0,
1385 	SCR_CLR (SCR_ACK),
1386 		0,
1387 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1388 		PADDR_B (nego_bad_phase),
1389 }/*-------------------------< SEND_PPR >-------------------------*/,{
1390 	/*
1391 	 *  Send the M_X_PPR_REQ
1392 	 */
1393 	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1394 		HADDR_1 (msgout),
1395 	SCR_JUMP,
1396 		PADDR_B (msg_out_done),
1397 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1398 	SCR_INT,
1399 		SIR_NEGO_PROTO,
1400 	SCR_JUMP,
1401 		PADDR_A (dispatch),
1402 }/*-------------------------< MSG_OUT >--------------------------*/,{
1403 	/*
1404 	 *  The target requests a message.
1405 	 *  We donnot send messages that may
1406 	 *  require the device to go to bus free.
1407 	 */
1408 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1409 		HADDR_1 (msgout),
1410 	/*
1411 	 *  ... wait for the next phase
1412 	 *  if it's a message out, send it again, ...
1413 	 */
1414 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1415 		PADDR_B (msg_out),
1416 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1417 	/*
1418 	 *  Let the C code be aware of the
1419 	 *  sent message and clear the message.
1420 	 */
1421 	SCR_INT,
1422 		SIR_MSG_OUT_DONE,
1423 	/*
1424 	 *  ... and process the next phase
1425 	 */
1426 	SCR_JUMP,
1427 		PADDR_A (dispatch),
1428 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1429 	/*
1430 	 *  Use scratcha to count the extra bytes.
1431 	 */
1432 	SCR_LOAD_ABS (scratcha, 4),
1433 		PADDR_B (zero),
1434 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1435 	/*
1436 	 *  The target may want to transfer too much data.
1437 	 *
1438 	 *  If phase is DATA OUT write 1 byte and count it.
1439 	 */
1440 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1441 		16,
1442 	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1443 		HADDR_1 (scratch),
1444 	SCR_JUMP,
1445 		PADDR_B (data_ovrun2),
1446 	/*
1447 	 *  If WSR is set, clear this condition, and
1448 	 *  count this byte.
1449 	 */
1450 	SCR_FROM_REG (scntl2),
1451 		0,
1452 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1453 		16,
1454 	SCR_REG_REG (scntl2, SCR_OR, WSR),
1455 		0,
1456 	SCR_JUMP,
1457 		PADDR_B (data_ovrun2),
1458 	/*
1459 	 *  Finally check against DATA IN phase.
1460 	 *  Signal data overrun to the C code
1461 	 *  and jump to dispatcher if not so.
1462 	 *  Read 1 byte otherwise and count it.
1463 	 */
1464 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1465 		16,
1466 	SCR_INT,
1467 		SIR_DATA_OVERRUN,
1468 	SCR_JUMP,
1469 		PADDR_A (dispatch),
1470 	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1471 		HADDR_1 (scratch),
1472 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1473 	/*
1474 	 *  Count this byte.
1475 	 *  This will allow to return a negative
1476 	 *  residual to user.
1477 	 */
1478 	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1479 		0,
1480 	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1481 		0,
1482 	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1483 		0,
1484 	/*
1485 	 *  .. and repeat as required.
1486 	 */
1487 	SCR_JUMP,
1488 		PADDR_B (data_ovrun1),
1489 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1490 	SCR_SET (SCR_ATN),
1491 		0,
1492 	SCR_CLR (SCR_ACK),
1493 		0,
1494 	/*
1495 	 *  send the abort/abortag/reset message
1496 	 *  we expect an immediate disconnect
1497 	 */
1498 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1499 		0,
1500 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1501 		HADDR_1 (msgout),
1502 	SCR_CLR (SCR_ACK|SCR_ATN),
1503 		0,
1504 	SCR_WAIT_DISC,
1505 		0,
1506 	SCR_INT,
1507 		SIR_RESEL_ABORTED,
1508 	SCR_JUMP,
1509 		PADDR_A (start),
1510 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1511 	/*
1512 	 *  The target stays in MSG OUT phase after having acked
1513 	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
1514 	 *  behave this way on parity error.
1515 	 *  We must send it again all the messages.
1516 	 */
1517 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1518 		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1519 	SCR_JUMP,
1520 		PADDR_A (send_ident),
1521 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1522 	SCR_CLR (SCR_ATN),
1523 		0,
1524 	SCR_JUMP,
1525 		PADDR_A (select2),
1526 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1527 	SCR_SET (SCR_ATN),
1528 		0,
1529 	SCR_JUMP,
1530 		PADDR_A (select2),
1531 }/*-------------------------< SDATA_IN >-------------------------*/,{
1532 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1533 		offsetof (struct sym_dsb, sense),
1534 	SCR_CALL,
1535 		PADDR_A (datai_done),
1536 	SCR_JUMP,
1537 		PADDR_B (data_ovrun),
1538 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1539 	/*
1540 	 *  Message is an IDENTIFY, but lun is unknown.
1541 	 *  Signal problem to C code for logging the event.
1542 	 *  Send a M_ABORT to clear all pending tasks.
1543 	 */
1544 	SCR_INT,
1545 		SIR_RESEL_BAD_LUN,
1546 	SCR_JUMP,
1547 		PADDR_B (abort_resel),
1548 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1549 	/*
1550 	 *  We donnot have a task for that I_T_L.
1551 	 *  Signal problem to C code for logging the event.
1552 	 *  Send a M_ABORT message.
1553 	 */
1554 	SCR_INT,
1555 		SIR_RESEL_BAD_I_T_L,
1556 	SCR_JUMP,
1557 		PADDR_B (abort_resel),
1558 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1559 	/*
1560 	 *  We donnot have a task that matches the tag.
1561 	 *  Signal problem to C code for logging the event.
1562 	 *  Send a M_ABORTTAG message.
1563 	 */
1564 	SCR_INT,
1565 		SIR_RESEL_BAD_I_T_L_Q,
1566 	SCR_JUMP,
1567 		PADDR_B (abort_resel),
1568 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1569 	/*
1570 	 *  Anything different from INTERMEDIATE
1571 	 *  CONDITION MET should be a bad SCSI status,
1572 	 *  given that GOOD status has already been tested.
1573 	 *  Call the C code.
1574 	 */
1575 	SCR_LOAD_ABS (scratcha, 4),
1576 		PADDR_B (startpos),
1577 	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1578 		SIR_BAD_SCSI_STATUS,
1579 	SCR_RETURN,
1580 		0,
1581 }/*-------------------------< PM_HANDLE >------------------------*/,{
1582 	/*
1583 	 *  Phase mismatch handling.
1584 	 *
1585 	 *  Since we have to deal with 2 SCSI data pointers
1586 	 *  (current and saved), we need at least 2 contexts.
1587 	 *  Each context (pm0 and pm1) has a saved area, a
1588 	 *  SAVE mini-script and a DATA phase mini-script.
1589 	 */
1590 	/*
1591 	 *  Get the PM handling flags.
1592 	 */
1593 	SCR_FROM_REG (HF_REG),
1594 		0,
1595 	/*
1596 	 *  If no flags (1rst PM for example), avoid
1597 	 *  all the below heavy flags testing.
1598 	 *  This makes the normal case a bit faster.
1599 	 */
1600 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1601 		PADDR_B (pm_handle1),
1602 	/*
1603 	 *  If we received a SAVE DP, switch to the
1604 	 *  other PM context since the savep may point
1605 	 *  to the current PM context.
1606 	 */
1607 	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1608 		8,
1609 	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1610 		0,
1611 	/*
1612 	 *  If we have been interrupt in a PM DATA mini-script,
1613 	 *  we take the return address from the corresponding
1614 	 *  saved area.
1615 	 *  This ensure the return address always points to the
1616 	 *  main DATA script for this transfer.
1617 	 */
1618 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1619 		PADDR_B (pm_handle1),
1620 	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1621 		16,
1622 	SCR_LOAD_REL (ia, 4),
1623 		offsetof(struct sym_ccb, phys.pm0.ret),
1624 	SCR_JUMP,
1625 		PADDR_B (pm_save),
1626 	SCR_LOAD_REL (ia, 4),
1627 		offsetof(struct sym_ccb, phys.pm1.ret),
1628 	SCR_JUMP,
1629 		PADDR_B (pm_save),
1630 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1631 	/*
1632 	 *  Normal case.
1633 	 *  Update the return address so that it
1634 	 *  will point after the interrupted MOVE.
1635 	 */
1636 	SCR_REG_REG (ia, SCR_ADD, 8),
1637 		0,
1638 	SCR_REG_REG (ia1, SCR_ADDC, 0),
1639 		0,
1640 }/*-------------------------< PM_SAVE >--------------------------*/,{
1641 	/*
1642 	 *  Clear all the flags that told us if we were
1643 	 *  interrupted in a PM DATA mini-script and/or
1644 	 *  we received a SAVE DP.
1645 	 */
1646 	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1647 		0,
1648 	/*
1649 	 *  Choose the current PM context.
1650 	 */
1651 	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1652 		PADDR_B (pm1_save),
1653 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1654 	SCR_STORE_REL (ia, 4),
1655 		offsetof(struct sym_ccb, phys.pm0.ret),
1656 	/*
1657 	 *  If WSR bit is set, either UA and RBC may
1658 	 *  have to be changed whether the device wants
1659 	 *  to ignore this residue or not.
1660 	 */
1661 	SCR_FROM_REG (scntl2),
1662 		0,
1663 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1664 		PADDR_B (pm_wsr_handle),
1665 	/*
1666 	 *  Save the remaining byte count, the updated
1667 	 *  address and the return address.
1668 	 */
1669 	SCR_STORE_REL (rbc, 4),
1670 		offsetof(struct sym_ccb, phys.pm0.sg.size),
1671 	SCR_STORE_REL (ua, 4),
1672 		offsetof(struct sym_ccb, phys.pm0.sg.addr),
1673 	/*
1674 	 *  Set the current pointer at the PM0 DATA mini-script.
1675 	 */
1676 	SCR_LOAD_ABS (temp, 4),
1677 		PADDR_B (pm0_data_addr),
1678 	SCR_JUMP,
1679 		PADDR_A (dispatch),
1680 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1681 	SCR_STORE_REL (ia, 4),
1682 		offsetof(struct sym_ccb, phys.pm1.ret),
1683 	/*
1684 	 *  If WSR bit is set, either UA and RBC may
1685 	 *  have to be changed whether the device wants
1686 	 *  to ignore this residue or not.
1687 	 */
1688 	SCR_FROM_REG (scntl2),
1689 		0,
1690 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1691 		PADDR_B (pm_wsr_handle),
1692 	/*
1693 	 *  Save the remaining byte count, the updated
1694 	 *  address and the return address.
1695 	 */
1696 	SCR_STORE_REL (rbc, 4),
1697 		offsetof(struct sym_ccb, phys.pm1.sg.size),
1698 	SCR_STORE_REL (ua, 4),
1699 		offsetof(struct sym_ccb, phys.pm1.sg.addr),
1700 	/*
1701 	 *  Set the current pointer at the PM1 DATA mini-script.
1702 	 */
1703 	SCR_LOAD_ABS (temp, 4),
1704 		PADDR_B (pm1_data_addr),
1705 	SCR_JUMP,
1706 		PADDR_A (dispatch),
1707 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1708 	/*
1709 	 *  Phase mismatch handling from SCRIPT with WSR set.
1710 	 *  Such a condition can occur if the chip wants to
1711 	 *  execute a CHMOV(size > 1) when the WSR bit is
1712 	 *  set and the target changes PHASE.
1713 	 *
1714 	 *  We must move the residual byte to memory.
1715 	 *
1716 	 *  UA contains bit 0..31 of the address to
1717 	 *  move the residual byte.
1718 	 *  Move it to the table indirect.
1719 	 */
1720 	SCR_STORE_REL (ua, 4),
1721 		offsetof (struct sym_ccb, phys.wresid.addr),
1722 	/*
1723 	 *  Increment UA (move address to next position).
1724 	 */
1725 	SCR_REG_REG (ua, SCR_ADD, 1),
1726 		0,
1727 	SCR_REG_REG (ua1, SCR_ADDC, 0),
1728 		0,
1729 	SCR_REG_REG (ua2, SCR_ADDC, 0),
1730 		0,
1731 	SCR_REG_REG (ua3, SCR_ADDC, 0),
1732 		0,
1733 	/*
1734 	 *  Compute SCRATCHA as:
1735 	 *  - size to transfer = 1 byte.
1736 	 *  - bit 24..31 = high address bit [32...39].
1737 	 */
1738 	SCR_LOAD_ABS (scratcha, 4),
1739 		PADDR_B (zero),
1740 	SCR_REG_REG (scratcha, SCR_OR, 1),
1741 		0,
1742 	SCR_FROM_REG (rbc3),
1743 		0,
1744 	SCR_TO_REG (scratcha3),
1745 		0,
1746 	/*
1747 	 *  Move this value to the table indirect.
1748 	 */
1749 	SCR_STORE_REL (scratcha, 4),
1750 		offsetof (struct sym_ccb, phys.wresid.size),
1751 	/*
1752 	 *  Wait for a valid phase.
1753 	 *  While testing with bogus QUANTUM drives, the C1010
1754 	 *  sometimes raised a spurious phase mismatch with
1755 	 *  WSR and the CHMOV(1) triggered another PM.
1756 	 *  Waiting explicitely for the PHASE seemed to avoid
1757 	 *  the nested phase mismatch. Btw, this didn't happen
1758 	 *  using my IBM drives.
1759 	 */
1760 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1761 		0,
1762 	/*
1763 	 *  Perform the move of the residual byte.
1764 	 */
1765 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1766 		offsetof (struct sym_ccb, phys.wresid),
1767 	/*
1768 	 *  We can now handle the phase mismatch with UA fixed.
1769 	 *  RBC[0..23]=0 is a special case that does not require
1770 	 *  a PM context. The C code also checks against this.
1771 	 */
1772 	SCR_FROM_REG (rbc),
1773 		0,
1774 	SCR_RETURN ^ IFFALSE (DATA (0)),
1775 		0,
1776 	SCR_FROM_REG (rbc1),
1777 		0,
1778 	SCR_RETURN ^ IFFALSE (DATA (0)),
1779 		0,
1780 	SCR_FROM_REG (rbc2),
1781 		0,
1782 	SCR_RETURN ^ IFFALSE (DATA (0)),
1783 		0,
1784 	/*
1785 	 *  RBC[0..23]=0.
1786 	 *  Not only we donnot need a PM context, but this would
1787 	 *  lead to a bogus CHMOV(0). This condition means that
1788 	 *  the residual was the last byte to move from this CHMOV.
1789 	 *  So, we just have to move the current data script pointer
1790 	 *  (i.e. TEMP) to the SCRIPTS address following the
1791 	 *  interrupted CHMOV and jump to dispatcher.
1792 	 */
1793 	SCR_STORE_ABS (ia, 4),
1794 		PADDR_B (scratch),
1795 	SCR_LOAD_ABS (temp, 4),
1796 		PADDR_B (scratch),
1797 	SCR_JUMP,
1798 		PADDR_A (dispatch),
1799 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1800 	/*
1801 	 *  Helper for the C code when WSR bit is set.
1802 	 *  Perform the move of the residual byte.
1803 	 */
1804 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1805 		offsetof (struct sym_ccb, phys.wresid),
1806 	SCR_JUMP,
1807 		PADDR_A (dispatch),
1808 }/*-------------------------< ZERO >-----------------------------*/,{
1809 	SCR_DATA_ZERO,
1810 }/*-------------------------< SCRATCH >--------------------------*/,{
1811 	SCR_DATA_ZERO,
1812 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1813 	SCR_DATA_ZERO,
1814 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1815 	SCR_DATA_ZERO,
1816 }/*-------------------------< SAVED_DSA >------------------------*/,{
1817 	SCR_DATA_ZERO,
1818 }/*-------------------------< SAVED_DRS >------------------------*/,{
1819 	SCR_DATA_ZERO,
1820 }/*-------------------------< DONE_POS >-------------------------*/,{
1821 	SCR_DATA_ZERO,
1822 }/*-------------------------< STARTPOS >-------------------------*/,{
1823 	SCR_DATA_ZERO,
1824 }/*-------------------------< TARGTBL >--------------------------*/,{
1825 	SCR_DATA_ZERO,
1826 
1827 }/*-------------------------< SNOOPTEST >------------------------*/,{
1828 	/*
1829 	 *  Read the variable from memory.
1830 	 */
1831 	SCR_LOAD_REL (scratcha, 4),
1832 		offsetof(struct sym_hcb, cache),
1833 	/*
1834 	 *  Write the variable to memory.
1835 	 */
1836 	SCR_STORE_REL (temp, 4),
1837 		offsetof(struct sym_hcb, cache),
1838 	/*
1839 	 *  Read back the variable from memory.
1840 	 */
1841 	SCR_LOAD_REL (temp, 4),
1842 		offsetof(struct sym_hcb, cache),
1843 }/*-------------------------< SNOOPEND >-------------------------*/,{
1844 	/*
1845 	 *  And stop.
1846 	 */
1847 	SCR_INT,
1848 		99,
1849 }/*-------------------------<>-----------------------------------*/
1850 };
1851