xref: /freebsd/sys/dev/stge/if_stge.c (revision f18d3c411697ff46d85e579a72be54ca0cc67dd0)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #ifdef HAVE_KERNEL_OPTION_HEADERS
41 #include "opt_device_polling.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/endian.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/kernel.h>
50 #include <sys/module.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #include <machine/bus.h>
66 #include <machine/resource.h>
67 #include <sys/bus.h>
68 #include <sys/rman.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/mii_bitbang.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 
77 #include <dev/stge/if_stgereg.h>
78 
79 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(stge, pci, 1, 1, 1);
82 MODULE_DEPEND(stge, ether, 1, 1, 1);
83 MODULE_DEPEND(stge, miibus, 1, 1, 1);
84 
85 /* "device miibus" required.  See GENERIC if you get errors here. */
86 #include "miibus_if.h"
87 
88 /*
89  * Devices supported by this driver.
90  */
91 static const struct stge_product {
92 	uint16_t	stge_vendorid;
93 	uint16_t	stge_deviceid;
94 	const char	*stge_name;
95 } stge_products[] = {
96 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
97 	  "Sundance ST-1023 Gigabit Ethernet" },
98 
99 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
100 	  "Sundance ST-2021 Gigabit Ethernet" },
101 
102 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
103 	  "Tamarack TC9021 Gigabit Ethernet" },
104 
105 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
106 	  "Tamarack TC9021 Gigabit Ethernet" },
107 
108 	/*
109 	 * The Sundance sample boards use the Sundance vendor ID,
110 	 * but the Tamarack product ID.
111 	 */
112 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
113 	  "Sundance TC9021 Gigabit Ethernet" },
114 
115 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
116 	  "Sundance TC9021 Gigabit Ethernet" },
117 
118 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
119 	  "D-Link DL-4000 Gigabit Ethernet" },
120 
121 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
122 	  "Antares Gigabit Ethernet" }
123 };
124 
125 static int	stge_probe(device_t);
126 static int	stge_attach(device_t);
127 static int	stge_detach(device_t);
128 static int	stge_shutdown(device_t);
129 static int	stge_suspend(device_t);
130 static int	stge_resume(device_t);
131 
132 static int	stge_encap(struct stge_softc *, struct mbuf **);
133 static void	stge_start(struct ifnet *);
134 static void	stge_start_locked(struct ifnet *);
135 static void	stge_watchdog(struct stge_softc *);
136 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void	stge_init(void *);
138 static void	stge_init_locked(struct stge_softc *);
139 static void	stge_vlan_setup(struct stge_softc *);
140 static void	stge_stop(struct stge_softc *);
141 static void	stge_start_tx(struct stge_softc *);
142 static void	stge_start_rx(struct stge_softc *);
143 static void	stge_stop_tx(struct stge_softc *);
144 static void	stge_stop_rx(struct stge_softc *);
145 
146 static void	stge_reset(struct stge_softc *, uint32_t);
147 static int	stge_eeprom_wait(struct stge_softc *);
148 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
149 static void	stge_tick(void *);
150 static void	stge_stats_update(struct stge_softc *);
151 static void	stge_set_filter(struct stge_softc *);
152 static void	stge_set_multi(struct stge_softc *);
153 
154 static void	stge_link_task(void *, int);
155 static void	stge_intr(void *);
156 static __inline int stge_tx_error(struct stge_softc *);
157 static void	stge_txeof(struct stge_softc *);
158 static int	stge_rxeof(struct stge_softc *);
159 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
160 static int	stge_newbuf(struct stge_softc *, int);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
163 #endif
164 
165 static int	stge_miibus_readreg(device_t, int, int);
166 static int	stge_miibus_writereg(device_t, int, int, int);
167 static void	stge_miibus_statchg(device_t);
168 static int	stge_mediachange(struct ifnet *);
169 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
170 
171 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
172 static int	stge_dma_alloc(struct stge_softc *);
173 static void	stge_dma_free(struct stge_softc *);
174 static void	stge_dma_wait(struct stge_softc *);
175 static void	stge_init_tx_ring(struct stge_softc *);
176 static int	stge_init_rx_ring(struct stge_softc *);
177 #ifdef DEVICE_POLLING
178 static int	stge_poll(struct ifnet *, enum poll_cmd, int);
179 #endif
180 
181 static void	stge_setwol(struct stge_softc *);
182 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
183 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
184 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
185 
186 /*
187  * MII bit-bang glue
188  */
189 static uint32_t stge_mii_bitbang_read(device_t);
190 static void	stge_mii_bitbang_write(device_t, uint32_t);
191 
192 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
193 	stge_mii_bitbang_read,
194 	stge_mii_bitbang_write,
195 	{
196 		PC_MgmtData,		/* MII_BIT_MDO */
197 		PC_MgmtData,		/* MII_BIT_MDI */
198 		PC_MgmtClk,		/* MII_BIT_MDC */
199 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
200 		0,			/* MII_BIT_DIR_PHY_HOST */
201 	}
202 };
203 
204 static device_method_t stge_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		stge_probe),
207 	DEVMETHOD(device_attach,	stge_attach),
208 	DEVMETHOD(device_detach,	stge_detach),
209 	DEVMETHOD(device_shutdown,	stge_shutdown),
210 	DEVMETHOD(device_suspend,	stge_suspend),
211 	DEVMETHOD(device_resume,	stge_resume),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
217 
218 	DEVMETHOD_END
219 };
220 
221 static driver_t stge_driver = {
222 	"stge",
223 	stge_methods,
224 	sizeof(struct stge_softc)
225 };
226 
227 static devclass_t stge_devclass;
228 
229 DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
231 
232 static struct resource_spec stge_res_spec_io[] = {
233 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
234 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
235 	{ -1,			0,		0 }
236 };
237 
238 static struct resource_spec stge_res_spec_mem[] = {
239 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
240 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
241 	{ -1,			0,		0 }
242 };
243 
244 /*
245  * stge_mii_bitbang_read: [mii bit-bang interface function]
246  *
247  *	Read the MII serial port for the MII bit-bang module.
248  */
249 static uint32_t
250 stge_mii_bitbang_read(device_t dev)
251 {
252 	struct stge_softc *sc;
253 	uint32_t val;
254 
255 	sc = device_get_softc(dev);
256 
257 	val = CSR_READ_1(sc, STGE_PhyCtrl);
258 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
259 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
260 	return (val);
261 }
262 
263 /*
264  * stge_mii_bitbang_write: [mii big-bang interface function]
265  *
266  *	Write the MII serial port for the MII bit-bang module.
267  */
268 static void
269 stge_mii_bitbang_write(device_t dev, uint32_t val)
270 {
271 	struct stge_softc *sc;
272 
273 	sc = device_get_softc(dev);
274 
275 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
276 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
277 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
278 }
279 
280 /*
281  * sc_miibus_readreg:	[mii interface function]
282  *
283  *	Read a PHY register on the MII of the TC9021.
284  */
285 static int
286 stge_miibus_readreg(device_t dev, int phy, int reg)
287 {
288 	struct stge_softc *sc;
289 	int error, val;
290 
291 	sc = device_get_softc(dev);
292 
293 	if (reg == STGE_PhyCtrl) {
294 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
295 		STGE_MII_LOCK(sc);
296 		error = CSR_READ_1(sc, STGE_PhyCtrl);
297 		STGE_MII_UNLOCK(sc);
298 		return (error);
299 	}
300 
301 	STGE_MII_LOCK(sc);
302 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
303 	STGE_MII_UNLOCK(sc);
304 	return (val);
305 }
306 
307 /*
308  * stge_miibus_writereg:	[mii interface function]
309  *
310  *	Write a PHY register on the MII of the TC9021.
311  */
312 static int
313 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
314 {
315 	struct stge_softc *sc;
316 
317 	sc = device_get_softc(dev);
318 
319 	STGE_MII_LOCK(sc);
320 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
321 	STGE_MII_UNLOCK(sc);
322 	return (0);
323 }
324 
325 /*
326  * stge_miibus_statchg:	[mii interface function]
327  *
328  *	Callback from MII layer when media changes.
329  */
330 static void
331 stge_miibus_statchg(device_t dev)
332 {
333 	struct stge_softc *sc;
334 
335 	sc = device_get_softc(dev);
336 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
337 }
338 
339 /*
340  * stge_mediastatus:	[ifmedia interface function]
341  *
342  *	Get the current interface media status.
343  */
344 static void
345 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
346 {
347 	struct stge_softc *sc;
348 	struct mii_data *mii;
349 
350 	sc = ifp->if_softc;
351 	mii = device_get_softc(sc->sc_miibus);
352 
353 	mii_pollstat(mii);
354 	ifmr->ifm_status = mii->mii_media_status;
355 	ifmr->ifm_active = mii->mii_media_active;
356 }
357 
358 /*
359  * stge_mediachange:	[ifmedia interface function]
360  *
361  *	Set hardware to newly-selected media.
362  */
363 static int
364 stge_mediachange(struct ifnet *ifp)
365 {
366 	struct stge_softc *sc;
367 	struct mii_data *mii;
368 
369 	sc = ifp->if_softc;
370 	mii = device_get_softc(sc->sc_miibus);
371 	mii_mediachg(mii);
372 
373 	return (0);
374 }
375 
376 static int
377 stge_eeprom_wait(struct stge_softc *sc)
378 {
379 	int i;
380 
381 	for (i = 0; i < STGE_TIMEOUT; i++) {
382 		DELAY(1000);
383 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
384 			return (0);
385 	}
386 	return (1);
387 }
388 
389 /*
390  * stge_read_eeprom:
391  *
392  *	Read data from the serial EEPROM.
393  */
394 static void
395 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
396 {
397 
398 	if (stge_eeprom_wait(sc))
399 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
400 
401 	CSR_WRITE_2(sc, STGE_EepromCtrl,
402 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
403 	if (stge_eeprom_wait(sc))
404 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
405 	*data = CSR_READ_2(sc, STGE_EepromData);
406 }
407 
408 
409 static int
410 stge_probe(device_t dev)
411 {
412 	const struct stge_product *sp;
413 	int i;
414 	uint16_t vendor, devid;
415 
416 	vendor = pci_get_vendor(dev);
417 	devid = pci_get_device(dev);
418 	sp = stge_products;
419 	for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
420 	    i++, sp++) {
421 		if (vendor == sp->stge_vendorid &&
422 		    devid == sp->stge_deviceid) {
423 			device_set_desc(dev, sp->stge_name);
424 			return (BUS_PROBE_DEFAULT);
425 		}
426 	}
427 
428 	return (ENXIO);
429 }
430 
431 static int
432 stge_attach(device_t dev)
433 {
434 	struct stge_softc *sc;
435 	struct ifnet *ifp;
436 	uint8_t enaddr[ETHER_ADDR_LEN];
437 	int error, flags, i;
438 	uint16_t cmd;
439 	uint32_t val;
440 
441 	error = 0;
442 	sc = device_get_softc(dev);
443 	sc->sc_dev = dev;
444 
445 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
446 	    MTX_DEF);
447 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
448 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
449 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
450 
451 	/*
452 	 * Map the device.
453 	 */
454 	pci_enable_busmaster(dev);
455 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
456 	val = pci_read_config(dev, PCIR_BAR(1), 4);
457 	if (PCI_BAR_IO(val))
458 		sc->sc_spec = stge_res_spec_mem;
459 	else {
460 		val = pci_read_config(dev, PCIR_BAR(0), 4);
461 		if (!PCI_BAR_IO(val)) {
462 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
463 			error = ENXIO;
464 			goto fail;
465 		}
466 		sc->sc_spec = stge_res_spec_io;
467 	}
468 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
469 	if (error != 0) {
470 		device_printf(dev, "couldn't allocate %s resources\n",
471 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
472 		goto fail;
473 	}
474 	sc->sc_rev = pci_get_revid(dev);
475 
476 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
477 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
478 	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
479 	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
480 
481 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
482 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
483 	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
484 	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
485 
486 	/* Pull in device tunables. */
487 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
488 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
489 	    "rxint_nframe", &sc->sc_rxint_nframe);
490 	if (error == 0) {
491 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
492 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
493 			device_printf(dev, "rxint_nframe value out of range; "
494 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
495 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
496 		}
497 	}
498 
499 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
500 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
501 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
502 	if (error == 0) {
503 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
504 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
505 			device_printf(dev, "rxint_dmawait value out of range; "
506 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
507 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
508 		}
509 	}
510 
511 	if ((error = stge_dma_alloc(sc) != 0))
512 		goto fail;
513 
514 	/*
515 	 * Determine if we're copper or fiber.  It affects how we
516 	 * reset the card.
517 	 */
518 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
519 		sc->sc_usefiber = 1;
520 	else
521 		sc->sc_usefiber = 0;
522 
523 	/* Load LED configuration from EEPROM. */
524 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
525 
526 	/*
527 	 * Reset the chip to a known state.
528 	 */
529 	STGE_LOCK(sc);
530 	stge_reset(sc, STGE_RESET_FULL);
531 	STGE_UNLOCK(sc);
532 
533 	/*
534 	 * Reading the station address from the EEPROM doesn't seem
535 	 * to work, at least on my sample boards.  Instead, since
536 	 * the reset sequence does AutoInit, read it from the station
537 	 * address registers. For Sundance 1023 you can only read it
538 	 * from EEPROM.
539 	 */
540 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
541 		uint16_t v;
542 
543 		v = CSR_READ_2(sc, STGE_StationAddress0);
544 		enaddr[0] = v & 0xff;
545 		enaddr[1] = v >> 8;
546 		v = CSR_READ_2(sc, STGE_StationAddress1);
547 		enaddr[2] = v & 0xff;
548 		enaddr[3] = v >> 8;
549 		v = CSR_READ_2(sc, STGE_StationAddress2);
550 		enaddr[4] = v & 0xff;
551 		enaddr[5] = v >> 8;
552 		sc->sc_stge1023 = 0;
553 	} else {
554 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
555 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
556 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
557 			    &myaddr[i]);
558 			myaddr[i] = le16toh(myaddr[i]);
559 		}
560 		bcopy(myaddr, enaddr, sizeof(enaddr));
561 		sc->sc_stge1023 = 1;
562 	}
563 
564 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
565 	if (ifp == NULL) {
566 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
567 		error = ENXIO;
568 		goto fail;
569 	}
570 
571 	ifp->if_softc = sc;
572 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
573 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
574 	ifp->if_ioctl = stge_ioctl;
575 	ifp->if_start = stge_start;
576 	ifp->if_init = stge_init;
577 	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
578 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
579 	IFQ_SET_READY(&ifp->if_snd);
580 	/* Revision B3 and earlier chips have checksum bug. */
581 	if (sc->sc_rev >= 0x0c) {
582 		ifp->if_hwassist = STGE_CSUM_FEATURES;
583 		ifp->if_capabilities = IFCAP_HWCSUM;
584 	} else {
585 		ifp->if_hwassist = 0;
586 		ifp->if_capabilities = 0;
587 	}
588 	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
589 	ifp->if_capenable = ifp->if_capabilities;
590 
591 	/*
592 	 * Read some important bits from the PhyCtrl register.
593 	 */
594 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
595 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
596 
597 	/* Set up MII bus. */
598 	flags = MIIF_DOPAUSE;
599 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
600 		flags |= MIIF_MACPRIV0;
601 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
602 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
603 	    flags);
604 	if (error != 0) {
605 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
606 		goto fail;
607 	}
608 
609 	ether_ifattach(ifp, enaddr);
610 
611 	/* VLAN capability setup */
612 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
613 	if (sc->sc_rev >= 0x0c)
614 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
615 	ifp->if_capenable = ifp->if_capabilities;
616 #ifdef DEVICE_POLLING
617 	ifp->if_capabilities |= IFCAP_POLLING;
618 #endif
619 	/*
620 	 * Tell the upper layer(s) we support long frames.
621 	 * Must appear after the call to ether_ifattach() because
622 	 * ether_ifattach() sets ifi_hdrlen to the default value.
623 	 */
624 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
625 
626 	/*
627 	 * The manual recommends disabling early transmit, so we
628 	 * do.  It's disabled anyway, if using IP checksumming,
629 	 * since the entire packet must be in the FIFO in order
630 	 * for the chip to perform the checksum.
631 	 */
632 	sc->sc_txthresh = 0x0fff;
633 
634 	/*
635 	 * Disable MWI if the PCI layer tells us to.
636 	 */
637 	sc->sc_DMACtrl = 0;
638 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
639 		sc->sc_DMACtrl |= DMAC_MWIDisable;
640 
641 	/*
642 	 * Hookup IRQ
643 	 */
644 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
645 	    NULL, stge_intr, sc, &sc->sc_ih);
646 	if (error != 0) {
647 		ether_ifdetach(ifp);
648 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
649 		sc->sc_ifp = NULL;
650 		goto fail;
651 	}
652 
653 fail:
654 	if (error != 0)
655 		stge_detach(dev);
656 
657 	return (error);
658 }
659 
660 static int
661 stge_detach(device_t dev)
662 {
663 	struct stge_softc *sc;
664 	struct ifnet *ifp;
665 
666 	sc = device_get_softc(dev);
667 
668 	ifp = sc->sc_ifp;
669 #ifdef DEVICE_POLLING
670 	if (ifp && ifp->if_capenable & IFCAP_POLLING)
671 		ether_poll_deregister(ifp);
672 #endif
673 	if (device_is_attached(dev)) {
674 		STGE_LOCK(sc);
675 		/* XXX */
676 		sc->sc_detach = 1;
677 		stge_stop(sc);
678 		STGE_UNLOCK(sc);
679 		callout_drain(&sc->sc_tick_ch);
680 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
681 		ether_ifdetach(ifp);
682 	}
683 
684 	if (sc->sc_miibus != NULL) {
685 		device_delete_child(dev, sc->sc_miibus);
686 		sc->sc_miibus = NULL;
687 	}
688 	bus_generic_detach(dev);
689 	stge_dma_free(sc);
690 
691 	if (ifp != NULL) {
692 		if_free(ifp);
693 		sc->sc_ifp = NULL;
694 	}
695 
696 	if (sc->sc_ih) {
697 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
698 		sc->sc_ih = NULL;
699 	}
700 	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
701 
702 	mtx_destroy(&sc->sc_mii_mtx);
703 	mtx_destroy(&sc->sc_mtx);
704 
705 	return (0);
706 }
707 
708 struct stge_dmamap_arg {
709 	bus_addr_t	stge_busaddr;
710 };
711 
712 static void
713 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
714 {
715 	struct stge_dmamap_arg *ctx;
716 
717 	if (error != 0)
718 		return;
719 
720 	ctx = (struct stge_dmamap_arg *)arg;
721 	ctx->stge_busaddr = segs[0].ds_addr;
722 }
723 
724 static int
725 stge_dma_alloc(struct stge_softc *sc)
726 {
727 	struct stge_dmamap_arg ctx;
728 	struct stge_txdesc *txd;
729 	struct stge_rxdesc *rxd;
730 	int error, i;
731 
732 	/* create parent tag. */
733 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
734 		    1, 0,			/* algnmnt, boundary */
735 		    STGE_DMA_MAXADDR,		/* lowaddr */
736 		    BUS_SPACE_MAXADDR,		/* highaddr */
737 		    NULL, NULL,			/* filter, filterarg */
738 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
739 		    0,				/* nsegments */
740 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
741 		    0,				/* flags */
742 		    NULL, NULL,			/* lockfunc, lockarg */
743 		    &sc->sc_cdata.stge_parent_tag);
744 	if (error != 0) {
745 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
746 		goto fail;
747 	}
748 	/* create tag for Tx ring. */
749 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
750 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
751 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
752 		    BUS_SPACE_MAXADDR,		/* highaddr */
753 		    NULL, NULL,			/* filter, filterarg */
754 		    STGE_TX_RING_SZ,		/* maxsize */
755 		    1,				/* nsegments */
756 		    STGE_TX_RING_SZ,		/* maxsegsize */
757 		    0,				/* flags */
758 		    NULL, NULL,			/* lockfunc, lockarg */
759 		    &sc->sc_cdata.stge_tx_ring_tag);
760 	if (error != 0) {
761 		device_printf(sc->sc_dev,
762 		    "failed to allocate Tx ring DMA tag\n");
763 		goto fail;
764 	}
765 
766 	/* create tag for Rx ring. */
767 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
768 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
769 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
770 		    BUS_SPACE_MAXADDR,		/* highaddr */
771 		    NULL, NULL,			/* filter, filterarg */
772 		    STGE_RX_RING_SZ,		/* maxsize */
773 		    1,				/* nsegments */
774 		    STGE_RX_RING_SZ,		/* maxsegsize */
775 		    0,				/* flags */
776 		    NULL, NULL,			/* lockfunc, lockarg */
777 		    &sc->sc_cdata.stge_rx_ring_tag);
778 	if (error != 0) {
779 		device_printf(sc->sc_dev,
780 		    "failed to allocate Rx ring DMA tag\n");
781 		goto fail;
782 	}
783 
784 	/* create tag for Tx buffers. */
785 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
786 		    1, 0,			/* algnmnt, boundary */
787 		    BUS_SPACE_MAXADDR,		/* lowaddr */
788 		    BUS_SPACE_MAXADDR,		/* highaddr */
789 		    NULL, NULL,			/* filter, filterarg */
790 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
791 		    STGE_MAXTXSEGS,		/* nsegments */
792 		    MCLBYTES,			/* maxsegsize */
793 		    0,				/* flags */
794 		    NULL, NULL,			/* lockfunc, lockarg */
795 		    &sc->sc_cdata.stge_tx_tag);
796 	if (error != 0) {
797 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
798 		goto fail;
799 	}
800 
801 	/* create tag for Rx buffers. */
802 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
803 		    1, 0,			/* algnmnt, boundary */
804 		    BUS_SPACE_MAXADDR,		/* lowaddr */
805 		    BUS_SPACE_MAXADDR,		/* highaddr */
806 		    NULL, NULL,			/* filter, filterarg */
807 		    MCLBYTES,			/* maxsize */
808 		    1,				/* nsegments */
809 		    MCLBYTES,			/* maxsegsize */
810 		    0,				/* flags */
811 		    NULL, NULL,			/* lockfunc, lockarg */
812 		    &sc->sc_cdata.stge_rx_tag);
813 	if (error != 0) {
814 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
815 		goto fail;
816 	}
817 
818 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
819 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
820 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
821 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
822 	if (error != 0) {
823 		device_printf(sc->sc_dev,
824 		    "failed to allocate DMA'able memory for Tx ring\n");
825 		goto fail;
826 	}
827 
828 	ctx.stge_busaddr = 0;
829 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
830 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
831 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
832 	if (error != 0 || ctx.stge_busaddr == 0) {
833 		device_printf(sc->sc_dev,
834 		    "failed to load DMA'able memory for Tx ring\n");
835 		goto fail;
836 	}
837 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
838 
839 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
840 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
841 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
842 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
843 	if (error != 0) {
844 		device_printf(sc->sc_dev,
845 		    "failed to allocate DMA'able memory for Rx ring\n");
846 		goto fail;
847 	}
848 
849 	ctx.stge_busaddr = 0;
850 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
851 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
852 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
853 	if (error != 0 || ctx.stge_busaddr == 0) {
854 		device_printf(sc->sc_dev,
855 		    "failed to load DMA'able memory for Rx ring\n");
856 		goto fail;
857 	}
858 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
859 
860 	/* create DMA maps for Tx buffers. */
861 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
862 		txd = &sc->sc_cdata.stge_txdesc[i];
863 		txd->tx_m = NULL;
864 		txd->tx_dmamap = 0;
865 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
866 		    &txd->tx_dmamap);
867 		if (error != 0) {
868 			device_printf(sc->sc_dev,
869 			    "failed to create Tx dmamap\n");
870 			goto fail;
871 		}
872 	}
873 	/* create DMA maps for Rx buffers. */
874 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
875 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
876 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
877 		goto fail;
878 	}
879 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
880 		rxd = &sc->sc_cdata.stge_rxdesc[i];
881 		rxd->rx_m = NULL;
882 		rxd->rx_dmamap = 0;
883 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
884 		    &rxd->rx_dmamap);
885 		if (error != 0) {
886 			device_printf(sc->sc_dev,
887 			    "failed to create Rx dmamap\n");
888 			goto fail;
889 		}
890 	}
891 
892 fail:
893 	return (error);
894 }
895 
896 static void
897 stge_dma_free(struct stge_softc *sc)
898 {
899 	struct stge_txdesc *txd;
900 	struct stge_rxdesc *rxd;
901 	int i;
902 
903 	/* Tx ring */
904 	if (sc->sc_cdata.stge_tx_ring_tag) {
905 		if (sc->sc_cdata.stge_tx_ring_map)
906 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
907 			    sc->sc_cdata.stge_tx_ring_map);
908 		if (sc->sc_cdata.stge_tx_ring_map &&
909 		    sc->sc_rdata.stge_tx_ring)
910 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
911 			    sc->sc_rdata.stge_tx_ring,
912 			    sc->sc_cdata.stge_tx_ring_map);
913 		sc->sc_rdata.stge_tx_ring = NULL;
914 		sc->sc_cdata.stge_tx_ring_map = 0;
915 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
916 		sc->sc_cdata.stge_tx_ring_tag = NULL;
917 	}
918 	/* Rx ring */
919 	if (sc->sc_cdata.stge_rx_ring_tag) {
920 		if (sc->sc_cdata.stge_rx_ring_map)
921 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
922 			    sc->sc_cdata.stge_rx_ring_map);
923 		if (sc->sc_cdata.stge_rx_ring_map &&
924 		    sc->sc_rdata.stge_rx_ring)
925 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
926 			    sc->sc_rdata.stge_rx_ring,
927 			    sc->sc_cdata.stge_rx_ring_map);
928 		sc->sc_rdata.stge_rx_ring = NULL;
929 		sc->sc_cdata.stge_rx_ring_map = 0;
930 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
931 		sc->sc_cdata.stge_rx_ring_tag = NULL;
932 	}
933 	/* Tx buffers */
934 	if (sc->sc_cdata.stge_tx_tag) {
935 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
936 			txd = &sc->sc_cdata.stge_txdesc[i];
937 			if (txd->tx_dmamap) {
938 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
939 				    txd->tx_dmamap);
940 				txd->tx_dmamap = 0;
941 			}
942 		}
943 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
944 		sc->sc_cdata.stge_tx_tag = NULL;
945 	}
946 	/* Rx buffers */
947 	if (sc->sc_cdata.stge_rx_tag) {
948 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
949 			rxd = &sc->sc_cdata.stge_rxdesc[i];
950 			if (rxd->rx_dmamap) {
951 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
952 				    rxd->rx_dmamap);
953 				rxd->rx_dmamap = 0;
954 			}
955 		}
956 		if (sc->sc_cdata.stge_rx_sparemap) {
957 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
958 			    sc->sc_cdata.stge_rx_sparemap);
959 			sc->sc_cdata.stge_rx_sparemap = 0;
960 		}
961 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
962 		sc->sc_cdata.stge_rx_tag = NULL;
963 	}
964 
965 	if (sc->sc_cdata.stge_parent_tag) {
966 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
967 		sc->sc_cdata.stge_parent_tag = NULL;
968 	}
969 }
970 
971 /*
972  * stge_shutdown:
973  *
974  *	Make sure the interface is stopped at reboot time.
975  */
976 static int
977 stge_shutdown(device_t dev)
978 {
979 
980 	return (stge_suspend(dev));
981 }
982 
983 static void
984 stge_setwol(struct stge_softc *sc)
985 {
986 	struct ifnet *ifp;
987 	uint8_t v;
988 
989 	STGE_LOCK_ASSERT(sc);
990 
991 	ifp = sc->sc_ifp;
992 	v = CSR_READ_1(sc, STGE_WakeEvent);
993 	/* Disable all WOL bits. */
994 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
995 	    WE_WakeOnLanEnable);
996 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
997 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
998 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
999 	/* Reset Tx and prevent transmission. */
1000 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1001 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1002 	/*
1003 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1004 	 * into sleep so there is no need to try to resetting link speed.
1005 	 */
1006 }
1007 
1008 static int
1009 stge_suspend(device_t dev)
1010 {
1011 	struct stge_softc *sc;
1012 
1013 	sc = device_get_softc(dev);
1014 
1015 	STGE_LOCK(sc);
1016 	stge_stop(sc);
1017 	sc->sc_suspended = 1;
1018 	stge_setwol(sc);
1019 	STGE_UNLOCK(sc);
1020 
1021 	return (0);
1022 }
1023 
1024 static int
1025 stge_resume(device_t dev)
1026 {
1027 	struct stge_softc *sc;
1028 	struct ifnet *ifp;
1029 	uint8_t v;
1030 
1031 	sc = device_get_softc(dev);
1032 
1033 	STGE_LOCK(sc);
1034 	/*
1035 	 * Clear WOL bits, so special frames wouldn't interfere
1036 	 * normal Rx operation anymore.
1037 	 */
1038 	v = CSR_READ_1(sc, STGE_WakeEvent);
1039 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1040 	    WE_WakeOnLanEnable);
1041 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1042 	ifp = sc->sc_ifp;
1043 	if (ifp->if_flags & IFF_UP)
1044 		stge_init_locked(sc);
1045 
1046 	sc->sc_suspended = 0;
1047 	STGE_UNLOCK(sc);
1048 
1049 	return (0);
1050 }
1051 
1052 static void
1053 stge_dma_wait(struct stge_softc *sc)
1054 {
1055 	int i;
1056 
1057 	for (i = 0; i < STGE_TIMEOUT; i++) {
1058 		DELAY(2);
1059 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1060 			break;
1061 	}
1062 
1063 	if (i == STGE_TIMEOUT)
1064 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1065 }
1066 
1067 static int
1068 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1069 {
1070 	struct stge_txdesc *txd;
1071 	struct stge_tfd *tfd;
1072 	struct mbuf *m;
1073 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1074 	int error, i, nsegs, si;
1075 	uint64_t csum_flags, tfc;
1076 
1077 	STGE_LOCK_ASSERT(sc);
1078 
1079 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1080 		return (ENOBUFS);
1081 
1082 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1083 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1084 	if (error == EFBIG) {
1085 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1086 		if (m == NULL) {
1087 			m_freem(*m_head);
1088 			*m_head = NULL;
1089 			return (ENOMEM);
1090 		}
1091 		*m_head = m;
1092 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1093 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1094 		if (error != 0) {
1095 			m_freem(*m_head);
1096 			*m_head = NULL;
1097 			return (error);
1098 		}
1099 	} else if (error != 0)
1100 		return (error);
1101 	if (nsegs == 0) {
1102 		m_freem(*m_head);
1103 		*m_head = NULL;
1104 		return (EIO);
1105 	}
1106 
1107 	m = *m_head;
1108 	csum_flags = 0;
1109 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1110 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1111 			csum_flags |= TFD_IPChecksumEnable;
1112 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1113 			csum_flags |= TFD_TCPChecksumEnable;
1114 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1115 			csum_flags |= TFD_UDPChecksumEnable;
1116 	}
1117 
1118 	si = sc->sc_cdata.stge_tx_prod;
1119 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1120 	for (i = 0; i < nsegs; i++)
1121 		tfd->tfd_frags[i].frag_word0 =
1122 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1123 		    FRAG_LEN(txsegs[i].ds_len));
1124 	sc->sc_cdata.stge_tx_cnt++;
1125 
1126 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1127 	    TFD_FragCount(nsegs) | csum_flags;
1128 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1129 		tfc |= TFD_TxDMAIndicate;
1130 
1131 	/* Update producer index. */
1132 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1133 
1134 	/* Check if we have a VLAN tag to insert. */
1135 	if (m->m_flags & M_VLANTAG)
1136 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1137 	tfd->tfd_control = htole64(tfc);
1138 
1139 	/* Update Tx Queue. */
1140 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1141 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1142 	txd->tx_m = m;
1143 
1144 	/* Sync descriptors. */
1145 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1146 	    BUS_DMASYNC_PREWRITE);
1147 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1148 	    sc->sc_cdata.stge_tx_ring_map,
1149 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1150 
1151 	return (0);
1152 }
1153 
1154 /*
1155  * stge_start:		[ifnet interface function]
1156  *
1157  *	Start packet transmission on the interface.
1158  */
1159 static void
1160 stge_start(struct ifnet *ifp)
1161 {
1162 	struct stge_softc *sc;
1163 
1164 	sc = ifp->if_softc;
1165 	STGE_LOCK(sc);
1166 	stge_start_locked(ifp);
1167 	STGE_UNLOCK(sc);
1168 }
1169 
1170 static void
1171 stge_start_locked(struct ifnet *ifp)
1172 {
1173         struct stge_softc *sc;
1174         struct mbuf *m_head;
1175 	int enq;
1176 
1177 	sc = ifp->if_softc;
1178 
1179 	STGE_LOCK_ASSERT(sc);
1180 
1181 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1182 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1183 		return;
1184 
1185 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1186 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1187 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1188 			break;
1189 		}
1190 
1191 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1192 		if (m_head == NULL)
1193 			break;
1194 		/*
1195 		 * Pack the data into the transmit ring. If we
1196 		 * don't have room, set the OACTIVE flag and wait
1197 		 * for the NIC to drain the ring.
1198 		 */
1199 		if (stge_encap(sc, &m_head)) {
1200 			if (m_head == NULL)
1201 				break;
1202 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1203 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1204 			break;
1205 		}
1206 
1207 		enq++;
1208 		/*
1209 		 * If there's a BPF listener, bounce a copy of this frame
1210 		 * to him.
1211 		 */
1212 		ETHER_BPF_MTAP(ifp, m_head);
1213 	}
1214 
1215 	if (enq > 0) {
1216 		/* Transmit */
1217 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1218 
1219 		/* Set a timeout in case the chip goes out to lunch. */
1220 		sc->sc_watchdog_timer = 5;
1221 	}
1222 }
1223 
1224 /*
1225  * stge_watchdog:
1226  *
1227  *	Watchdog timer handler.
1228  */
1229 static void
1230 stge_watchdog(struct stge_softc *sc)
1231 {
1232 	struct ifnet *ifp;
1233 
1234 	STGE_LOCK_ASSERT(sc);
1235 
1236 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1237 		return;
1238 
1239 	ifp = sc->sc_ifp;
1240 	if_printf(sc->sc_ifp, "device timeout\n");
1241 	ifp->if_oerrors++;
1242 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1243 	stge_init_locked(sc);
1244 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1245 		stge_start_locked(ifp);
1246 }
1247 
1248 /*
1249  * stge_ioctl:		[ifnet interface function]
1250  *
1251  *	Handle control requests from the operator.
1252  */
1253 static int
1254 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1255 {
1256 	struct stge_softc *sc;
1257 	struct ifreq *ifr;
1258 	struct mii_data *mii;
1259 	int error, mask;
1260 
1261 	sc = ifp->if_softc;
1262 	ifr = (struct ifreq *)data;
1263 	error = 0;
1264 	switch (cmd) {
1265 	case SIOCSIFMTU:
1266 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1267 			error = EINVAL;
1268 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1269 			ifp->if_mtu = ifr->ifr_mtu;
1270 			STGE_LOCK(sc);
1271 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1272 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1273 				stge_init_locked(sc);
1274 			}
1275 			STGE_UNLOCK(sc);
1276 		}
1277 		break;
1278 	case SIOCSIFFLAGS:
1279 		STGE_LOCK(sc);
1280 		if ((ifp->if_flags & IFF_UP) != 0) {
1281 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1282 				if (((ifp->if_flags ^ sc->sc_if_flags)
1283 				    & IFF_PROMISC) != 0)
1284 					stge_set_filter(sc);
1285 			} else {
1286 				if (sc->sc_detach == 0)
1287 					stge_init_locked(sc);
1288 			}
1289 		} else {
1290 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1291 				stge_stop(sc);
1292 		}
1293 		sc->sc_if_flags = ifp->if_flags;
1294 		STGE_UNLOCK(sc);
1295 		break;
1296 	case SIOCADDMULTI:
1297 	case SIOCDELMULTI:
1298 		STGE_LOCK(sc);
1299 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1300 			stge_set_multi(sc);
1301 		STGE_UNLOCK(sc);
1302 		break;
1303 	case SIOCSIFMEDIA:
1304 	case SIOCGIFMEDIA:
1305 		mii = device_get_softc(sc->sc_miibus);
1306 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1307 		break;
1308 	case SIOCSIFCAP:
1309 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1310 #ifdef DEVICE_POLLING
1311 		if ((mask & IFCAP_POLLING) != 0) {
1312 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1313 				error = ether_poll_register(stge_poll, ifp);
1314 				if (error != 0)
1315 					break;
1316 				STGE_LOCK(sc);
1317 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1318 				ifp->if_capenable |= IFCAP_POLLING;
1319 				STGE_UNLOCK(sc);
1320 			} else {
1321 				error = ether_poll_deregister(ifp);
1322 				if (error != 0)
1323 					break;
1324 				STGE_LOCK(sc);
1325 				CSR_WRITE_2(sc, STGE_IntEnable,
1326 				    sc->sc_IntEnable);
1327 				ifp->if_capenable &= ~IFCAP_POLLING;
1328 				STGE_UNLOCK(sc);
1329 			}
1330 		}
1331 #endif
1332 		if ((mask & IFCAP_HWCSUM) != 0) {
1333 			ifp->if_capenable ^= IFCAP_HWCSUM;
1334 			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1335 			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1336 				ifp->if_hwassist = STGE_CSUM_FEATURES;
1337 			else
1338 				ifp->if_hwassist = 0;
1339 		}
1340 		if ((mask & IFCAP_WOL) != 0 &&
1341 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1342 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1343 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1344 		}
1345 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1346 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1347 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1348 				STGE_LOCK(sc);
1349 				stge_vlan_setup(sc);
1350 				STGE_UNLOCK(sc);
1351 			}
1352 		}
1353 		VLAN_CAPABILITIES(ifp);
1354 		break;
1355 	default:
1356 		error = ether_ioctl(ifp, cmd, data);
1357 		break;
1358 	}
1359 
1360 	return (error);
1361 }
1362 
1363 static void
1364 stge_link_task(void *arg, int pending)
1365 {
1366 	struct stge_softc *sc;
1367 	struct mii_data *mii;
1368 	uint32_t v, ac;
1369 	int i;
1370 
1371 	sc = (struct stge_softc *)arg;
1372 	STGE_LOCK(sc);
1373 
1374 	mii = device_get_softc(sc->sc_miibus);
1375 	if (mii->mii_media_status & IFM_ACTIVE) {
1376 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1377 			sc->sc_link = 1;
1378 	} else
1379 		sc->sc_link = 0;
1380 
1381 	sc->sc_MACCtrl = 0;
1382 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1383 		sc->sc_MACCtrl |= MC_DuplexSelect;
1384 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1385 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1386 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1387 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1388 	/*
1389 	 * Update STGE_MACCtrl register depending on link status.
1390 	 * (duplex, flow control etc)
1391 	 */
1392 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1393 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1394 	v |= sc->sc_MACCtrl;
1395 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1396 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1397 		/* Duplex setting changed, reset Tx/Rx functions. */
1398 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1399 		ac |= AC_TxReset | AC_RxReset;
1400 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1401 		for (i = 0; i < STGE_TIMEOUT; i++) {
1402 			DELAY(100);
1403 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1404 				break;
1405 		}
1406 		if (i == STGE_TIMEOUT)
1407 			device_printf(sc->sc_dev, "reset failed to complete\n");
1408 	}
1409 	STGE_UNLOCK(sc);
1410 }
1411 
1412 static __inline int
1413 stge_tx_error(struct stge_softc *sc)
1414 {
1415 	uint32_t txstat;
1416 	int error;
1417 
1418 	for (error = 0;;) {
1419 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1420 		if ((txstat & TS_TxComplete) == 0)
1421 			break;
1422 		/* Tx underrun */
1423 		if ((txstat & TS_TxUnderrun) != 0) {
1424 			/*
1425 			 * XXX
1426 			 * There should be a more better way to recover
1427 			 * from Tx underrun instead of a full reset.
1428 			 */
1429 			if (sc->sc_nerr++ < STGE_MAXERR)
1430 				device_printf(sc->sc_dev, "Tx underrun, "
1431 				    "resetting...\n");
1432 			if (sc->sc_nerr == STGE_MAXERR)
1433 				device_printf(sc->sc_dev, "too many errors; "
1434 				    "not reporting any more\n");
1435 			error = -1;
1436 			break;
1437 		}
1438 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1439 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1440 			CSR_WRITE_4(sc, STGE_MACCtrl,
1441 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1442 			    MC_TxEnable);
1443 	}
1444 
1445 	return (error);
1446 }
1447 
1448 /*
1449  * stge_intr:
1450  *
1451  *	Interrupt service routine.
1452  */
1453 static void
1454 stge_intr(void *arg)
1455 {
1456 	struct stge_softc *sc;
1457 	struct ifnet *ifp;
1458 	int reinit;
1459 	uint16_t status;
1460 
1461 	sc = (struct stge_softc *)arg;
1462 	ifp = sc->sc_ifp;
1463 
1464 	STGE_LOCK(sc);
1465 
1466 #ifdef DEVICE_POLLING
1467 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1468 		goto done_locked;
1469 #endif
1470 	status = CSR_READ_2(sc, STGE_IntStatus);
1471 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1472 		goto done_locked;
1473 
1474 	/* Disable interrupts. */
1475 	for (reinit = 0;;) {
1476 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1477 		status &= sc->sc_IntEnable;
1478 		if (status == 0)
1479 			break;
1480 		/* Host interface errors. */
1481 		if ((status & IS_HostError) != 0) {
1482 			device_printf(sc->sc_dev,
1483 			    "Host interface error, resetting...\n");
1484 			reinit = 1;
1485 			goto force_init;
1486 		}
1487 
1488 		/* Receive interrupts. */
1489 		if ((status & IS_RxDMAComplete) != 0) {
1490 			stge_rxeof(sc);
1491 			if ((status & IS_RFDListEnd) != 0)
1492 				CSR_WRITE_4(sc, STGE_DMACtrl,
1493 				    DMAC_RxDMAPollNow);
1494 		}
1495 
1496 		/* Transmit interrupts. */
1497 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1498 			stge_txeof(sc);
1499 
1500 		/* Transmission errors.*/
1501 		if ((status & IS_TxComplete) != 0) {
1502 			if ((reinit = stge_tx_error(sc)) != 0)
1503 				break;
1504 		}
1505 	}
1506 
1507 force_init:
1508 	if (reinit != 0) {
1509 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1510 		stge_init_locked(sc);
1511 	}
1512 
1513 	/* Re-enable interrupts. */
1514 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1515 
1516 	/* Try to get more packets going. */
1517 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1518 		stge_start_locked(ifp);
1519 
1520 done_locked:
1521 	STGE_UNLOCK(sc);
1522 }
1523 
1524 /*
1525  * stge_txeof:
1526  *
1527  *	Helper; handle transmit interrupts.
1528  */
1529 static void
1530 stge_txeof(struct stge_softc *sc)
1531 {
1532 	struct ifnet *ifp;
1533 	struct stge_txdesc *txd;
1534 	uint64_t control;
1535 	int cons;
1536 
1537 	STGE_LOCK_ASSERT(sc);
1538 
1539 	ifp = sc->sc_ifp;
1540 
1541 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1542 	if (txd == NULL)
1543 		return;
1544 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1545 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1546 
1547 	/*
1548 	 * Go through our Tx list and free mbufs for those
1549 	 * frames which have been transmitted.
1550 	 */
1551 	for (cons = sc->sc_cdata.stge_tx_cons;;
1552 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1553 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1554 			break;
1555 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1556 		if ((control & TFD_TFDDone) == 0)
1557 			break;
1558 		sc->sc_cdata.stge_tx_cnt--;
1559 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1560 
1561 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1562 		    BUS_DMASYNC_POSTWRITE);
1563 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1564 
1565 		/* Output counter is updated with statistics register */
1566 		m_freem(txd->tx_m);
1567 		txd->tx_m = NULL;
1568 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1569 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1570 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1571 	}
1572 	sc->sc_cdata.stge_tx_cons = cons;
1573 	if (sc->sc_cdata.stge_tx_cnt == 0)
1574 		sc->sc_watchdog_timer = 0;
1575 
1576         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1577 	    sc->sc_cdata.stge_tx_ring_map,
1578 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1579 }
1580 
1581 static __inline void
1582 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1583 {
1584 	struct stge_rfd *rfd;
1585 
1586 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1587 	rfd->rfd_status = 0;
1588 }
1589 
1590 #ifndef __NO_STRICT_ALIGNMENT
1591 /*
1592  * It seems that TC9021's DMA engine has alignment restrictions in
1593  * DMA scatter operations. The first DMA segment has no address
1594  * alignment restrictins but the rest should be aligned on 4(?) bytes
1595  * boundary. Otherwise it would corrupt random memory. Since we don't
1596  * know which one is used for the first segment in advance we simply
1597  * don't align at all.
1598  * To avoid copying over an entire frame to align, we allocate a new
1599  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1600  * prepended into the existing mbuf chain.
1601  */
1602 static __inline struct mbuf *
1603 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1604 {
1605 	struct mbuf *n;
1606 
1607 	n = NULL;
1608 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1609 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1610 		m->m_data += ETHER_HDR_LEN;
1611 		n = m;
1612 	} else {
1613 		MGETHDR(n, M_NOWAIT, MT_DATA);
1614 		if (n != NULL) {
1615 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1616 			m->m_data += ETHER_HDR_LEN;
1617 			m->m_len -= ETHER_HDR_LEN;
1618 			n->m_len = ETHER_HDR_LEN;
1619 			M_MOVE_PKTHDR(n, m);
1620 			n->m_next = m;
1621 		} else
1622 			m_freem(m);
1623 	}
1624 
1625 	return (n);
1626 }
1627 #endif
1628 
1629 /*
1630  * stge_rxeof:
1631  *
1632  *	Helper; handle receive interrupts.
1633  */
1634 static int
1635 stge_rxeof(struct stge_softc *sc)
1636 {
1637 	struct ifnet *ifp;
1638 	struct stge_rxdesc *rxd;
1639 	struct mbuf *mp, *m;
1640 	uint64_t status64;
1641 	uint32_t status;
1642 	int cons, prog, rx_npkts;
1643 
1644 	STGE_LOCK_ASSERT(sc);
1645 
1646 	rx_npkts = 0;
1647 	ifp = sc->sc_ifp;
1648 
1649 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1650 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1651 
1652 	prog = 0;
1653 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1654 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1655 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1656 		status = RFD_RxStatus(status64);
1657 		if ((status & RFD_RFDDone) == 0)
1658 			break;
1659 #ifdef DEVICE_POLLING
1660 		if (ifp->if_capenable & IFCAP_POLLING) {
1661 			if (sc->sc_cdata.stge_rxcycles <= 0)
1662 				break;
1663 			sc->sc_cdata.stge_rxcycles--;
1664 		}
1665 #endif
1666 		prog++;
1667 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1668 		mp = rxd->rx_m;
1669 
1670 		/*
1671 		 * If the packet had an error, drop it.  Note we count
1672 		 * the error later in the periodic stats update.
1673 		 */
1674 		if ((status & RFD_FrameEnd) != 0 && (status &
1675 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1676 		    RFD_RxAlignmentError | RFD_RxFCSError |
1677 		    RFD_RxLengthError)) != 0) {
1678 			stge_discard_rxbuf(sc, cons);
1679 			if (sc->sc_cdata.stge_rxhead != NULL) {
1680 				m_freem(sc->sc_cdata.stge_rxhead);
1681 				STGE_RXCHAIN_RESET(sc);
1682 			}
1683 			continue;
1684 		}
1685 		/*
1686 		 * Add a new receive buffer to the ring.
1687 		 */
1688 		if (stge_newbuf(sc, cons) != 0) {
1689 			ifp->if_iqdrops++;
1690 			stge_discard_rxbuf(sc, cons);
1691 			if (sc->sc_cdata.stge_rxhead != NULL) {
1692 				m_freem(sc->sc_cdata.stge_rxhead);
1693 				STGE_RXCHAIN_RESET(sc);
1694 			}
1695 			continue;
1696 		}
1697 
1698 		if ((status & RFD_FrameEnd) != 0)
1699 			mp->m_len = RFD_RxDMAFrameLen(status) -
1700 			    sc->sc_cdata.stge_rxlen;
1701 		sc->sc_cdata.stge_rxlen += mp->m_len;
1702 
1703 		/* Chain mbufs. */
1704 		if (sc->sc_cdata.stge_rxhead == NULL) {
1705 			sc->sc_cdata.stge_rxhead = mp;
1706 			sc->sc_cdata.stge_rxtail = mp;
1707 		} else {
1708 			mp->m_flags &= ~M_PKTHDR;
1709 			sc->sc_cdata.stge_rxtail->m_next = mp;
1710 			sc->sc_cdata.stge_rxtail = mp;
1711 		}
1712 
1713 		if ((status & RFD_FrameEnd) != 0) {
1714 			m = sc->sc_cdata.stge_rxhead;
1715 			m->m_pkthdr.rcvif = ifp;
1716 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1717 
1718 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1719 				m_freem(m);
1720 				STGE_RXCHAIN_RESET(sc);
1721 				continue;
1722 			}
1723 			/*
1724 			 * Set the incoming checksum information for
1725 			 * the packet.
1726 			 */
1727 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1728 				if ((status & RFD_IPDetected) != 0) {
1729 					m->m_pkthdr.csum_flags |=
1730 						CSUM_IP_CHECKED;
1731 					if ((status & RFD_IPError) == 0)
1732 						m->m_pkthdr.csum_flags |=
1733 						    CSUM_IP_VALID;
1734 				}
1735 				if (((status & RFD_TCPDetected) != 0 &&
1736 				    (status & RFD_TCPError) == 0) ||
1737 				    ((status & RFD_UDPDetected) != 0 &&
1738 				    (status & RFD_UDPError) == 0)) {
1739 					m->m_pkthdr.csum_flags |=
1740 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1741 					m->m_pkthdr.csum_data = 0xffff;
1742 				}
1743 			}
1744 
1745 #ifndef __NO_STRICT_ALIGNMENT
1746 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1747 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1748 					STGE_RXCHAIN_RESET(sc);
1749 					continue;
1750 				}
1751 			}
1752 #endif
1753 			/* Check for VLAN tagged packets. */
1754 			if ((status & RFD_VLANDetected) != 0 &&
1755 			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1756 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1757 				m->m_flags |= M_VLANTAG;
1758 			}
1759 
1760 			STGE_UNLOCK(sc);
1761 			/* Pass it on. */
1762 			(*ifp->if_input)(ifp, m);
1763 			STGE_LOCK(sc);
1764 			rx_npkts++;
1765 
1766 			STGE_RXCHAIN_RESET(sc);
1767 		}
1768 	}
1769 
1770 	if (prog > 0) {
1771 		/* Update the consumer index. */
1772 		sc->sc_cdata.stge_rx_cons = cons;
1773 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1774 		    sc->sc_cdata.stge_rx_ring_map,
1775 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1776 	}
1777 	return (rx_npkts);
1778 }
1779 
1780 #ifdef DEVICE_POLLING
1781 static int
1782 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1783 {
1784 	struct stge_softc *sc;
1785 	uint16_t status;
1786 	int rx_npkts;
1787 
1788 	rx_npkts = 0;
1789 	sc = ifp->if_softc;
1790 	STGE_LOCK(sc);
1791 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1792 		STGE_UNLOCK(sc);
1793 		return (rx_npkts);
1794 	}
1795 
1796 	sc->sc_cdata.stge_rxcycles = count;
1797 	rx_npkts = stge_rxeof(sc);
1798 	stge_txeof(sc);
1799 
1800 	if (cmd == POLL_AND_CHECK_STATUS) {
1801 		status = CSR_READ_2(sc, STGE_IntStatus);
1802 		status &= sc->sc_IntEnable;
1803 		if (status != 0) {
1804 			if ((status & IS_HostError) != 0) {
1805 				device_printf(sc->sc_dev,
1806 				    "Host interface error, resetting...\n");
1807 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1808 				stge_init_locked(sc);
1809 			}
1810 			if ((status & IS_TxComplete) != 0) {
1811 				if (stge_tx_error(sc) != 0) {
1812 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1813 					stge_init_locked(sc);
1814 				}
1815 			}
1816 		}
1817 
1818 	}
1819 
1820 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1821 		stge_start_locked(ifp);
1822 
1823 	STGE_UNLOCK(sc);
1824 	return (rx_npkts);
1825 }
1826 #endif	/* DEVICE_POLLING */
1827 
1828 /*
1829  * stge_tick:
1830  *
1831  *	One second timer, used to tick the MII.
1832  */
1833 static void
1834 stge_tick(void *arg)
1835 {
1836 	struct stge_softc *sc;
1837 	struct mii_data *mii;
1838 
1839 	sc = (struct stge_softc *)arg;
1840 
1841 	STGE_LOCK_ASSERT(sc);
1842 
1843 	mii = device_get_softc(sc->sc_miibus);
1844 	mii_tick(mii);
1845 
1846 	/* Update statistics counters. */
1847 	stge_stats_update(sc);
1848 
1849 	/*
1850 	 * Relcaim any pending Tx descriptors to release mbufs in a
1851 	 * timely manner as we don't generate Tx completion interrupts
1852 	 * for every frame. This limits the delay to a maximum of one
1853 	 * second.
1854 	 */
1855 	if (sc->sc_cdata.stge_tx_cnt != 0)
1856 		stge_txeof(sc);
1857 
1858 	stge_watchdog(sc);
1859 
1860 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1861 }
1862 
1863 /*
1864  * stge_stats_update:
1865  *
1866  *	Read the TC9021 statistics counters.
1867  */
1868 static void
1869 stge_stats_update(struct stge_softc *sc)
1870 {
1871 	struct ifnet *ifp;
1872 
1873 	STGE_LOCK_ASSERT(sc);
1874 
1875 	ifp = sc->sc_ifp;
1876 
1877 	CSR_READ_4(sc,STGE_OctetRcvOk);
1878 
1879 	ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
1880 
1881 	ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
1882 
1883 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1884 
1885 	ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
1886 
1887 	ifp->if_collisions +=
1888 	    CSR_READ_4(sc, STGE_LateCollisions) +
1889 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1890 	    CSR_READ_4(sc, STGE_SingleColFrames);
1891 
1892 	ifp->if_oerrors +=
1893 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1894 	    CSR_READ_2(sc, STGE_FramesWEXDeferal);
1895 }
1896 
1897 /*
1898  * stge_reset:
1899  *
1900  *	Perform a soft reset on the TC9021.
1901  */
1902 static void
1903 stge_reset(struct stge_softc *sc, uint32_t how)
1904 {
1905 	uint32_t ac;
1906 	uint8_t v;
1907 	int i, dv;
1908 
1909 	STGE_LOCK_ASSERT(sc);
1910 
1911 	dv = 5000;
1912 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1913 	switch (how) {
1914 	case STGE_RESET_TX:
1915 		ac |= AC_TxReset | AC_FIFO;
1916 		dv = 100;
1917 		break;
1918 	case STGE_RESET_RX:
1919 		ac |= AC_RxReset | AC_FIFO;
1920 		dv = 100;
1921 		break;
1922 	case STGE_RESET_FULL:
1923 	default:
1924 		/*
1925 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1926 		 * to be present in order for the reset to complete on fiber
1927 		 * cards.
1928 		 */
1929 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1930 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1931 		    (sc->sc_usefiber ? AC_RstOut : 0);
1932 		break;
1933 	}
1934 
1935 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1936 
1937 	/* Account for reset problem at 10Mbps. */
1938 	DELAY(dv);
1939 
1940 	for (i = 0; i < STGE_TIMEOUT; i++) {
1941 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1942 			break;
1943 		DELAY(dv);
1944 	}
1945 
1946 	if (i == STGE_TIMEOUT)
1947 		device_printf(sc->sc_dev, "reset failed to complete\n");
1948 
1949 	/* Set LED, from Linux IPG driver. */
1950 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1951 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1952 	if ((sc->sc_led & 0x01) != 0)
1953 		ac |= AC_LEDMode;
1954 	if ((sc->sc_led & 0x03) != 0)
1955 		ac |= AC_LEDModeBit1;
1956 	if ((sc->sc_led & 0x08) != 0)
1957 		ac |= AC_LEDSpeed;
1958 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1959 
1960 	/* Set PHY, from Linux IPG driver */
1961 	v = CSR_READ_1(sc, STGE_PhySet);
1962 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1963 	v |= ((sc->sc_led & 0x70) >> 4);
1964 	CSR_WRITE_1(sc, STGE_PhySet, v);
1965 }
1966 
1967 /*
1968  * stge_init:		[ ifnet interface function ]
1969  *
1970  *	Initialize the interface.
1971  */
1972 static void
1973 stge_init(void *xsc)
1974 {
1975 	struct stge_softc *sc;
1976 
1977 	sc = (struct stge_softc *)xsc;
1978 	STGE_LOCK(sc);
1979 	stge_init_locked(sc);
1980 	STGE_UNLOCK(sc);
1981 }
1982 
1983 static void
1984 stge_init_locked(struct stge_softc *sc)
1985 {
1986 	struct ifnet *ifp;
1987 	struct mii_data *mii;
1988 	uint16_t eaddr[3];
1989 	uint32_t v;
1990 	int error;
1991 
1992 	STGE_LOCK_ASSERT(sc);
1993 
1994 	ifp = sc->sc_ifp;
1995 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1996 		return;
1997 	mii = device_get_softc(sc->sc_miibus);
1998 
1999 	/*
2000 	 * Cancel any pending I/O.
2001 	 */
2002 	stge_stop(sc);
2003 
2004 	/*
2005 	 * Reset the chip to a known state.
2006 	 */
2007 	stge_reset(sc, STGE_RESET_FULL);
2008 
2009 	/* Init descriptors. */
2010 	error = stge_init_rx_ring(sc);
2011         if (error != 0) {
2012                 device_printf(sc->sc_dev,
2013                     "initialization failed: no memory for rx buffers\n");
2014                 stge_stop(sc);
2015 		goto out;
2016         }
2017 	stge_init_tx_ring(sc);
2018 
2019 	/* Set the station address. */
2020 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2021 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2022 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2023 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2024 
2025 	/*
2026 	 * Set the statistics masks.  Disable all the RMON stats,
2027 	 * and disable selected stats in the non-RMON stats registers.
2028 	 */
2029 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2030 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2031 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2032 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2033 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2034 	    (1U << 21));
2035 
2036 	/* Set up the receive filter. */
2037 	stge_set_filter(sc);
2038 	/* Program multicast filter. */
2039 	stge_set_multi(sc);
2040 
2041 	/*
2042 	 * Give the transmit and receive ring to the chip.
2043 	 */
2044 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2045 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2046 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2047 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2048 
2049 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2050 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2051 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2052 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2053 
2054 	/*
2055 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2056 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2057 	 * transmit engine when there's actually a packet.
2058 	 */
2059 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2060 
2061 	/* ..and the Rx auto-poll period. */
2062 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2063 
2064 	/* Initialize the Tx start threshold. */
2065 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2066 
2067 	/* Rx DMA thresholds, from Linux */
2068 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2069 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2070 
2071 	/* Rx early threhold, from Linux */
2072 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2073 
2074 	/* Tx DMA thresholds, from Linux */
2075 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2076 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2077 
2078 	/*
2079 	 * Initialize the Rx DMA interrupt control register.  We
2080 	 * request an interrupt after every incoming packet, but
2081 	 * defer it for sc_rxint_dmawait us. When the number of
2082 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2083 	 * deferring the interrupt, and signal it immediately.
2084 	 */
2085 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2086 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2087 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2088 
2089 	/*
2090 	 * Initialize the interrupt mask.
2091 	 */
2092 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2093 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2094 #ifdef DEVICE_POLLING
2095 	/* Disable interrupts if we are polling. */
2096 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2097 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2098 	else
2099 #endif
2100 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2101 
2102 	/*
2103 	 * Configure the DMA engine.
2104 	 * XXX Should auto-tune TxBurstLimit.
2105 	 */
2106 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2107 
2108 	/*
2109 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2110 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2111 	 * in the Rx FIFO.
2112 	 */
2113 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2114 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2115 
2116 	/*
2117 	 * Set the maximum frame size.
2118 	 */
2119 	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2120 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2121 
2122 	/*
2123 	 * Initialize MacCtrl -- do it before setting the media,
2124 	 * as setting the media will actually program the register.
2125 	 *
2126 	 * Note: We have to poke the IFS value before poking
2127 	 * anything else.
2128 	 */
2129 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2130 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2131 
2132 	stge_vlan_setup(sc);
2133 
2134 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2135 		/* Multi-frag frame bug work-around. */
2136 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2137 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2138 
2139 		/* Tx Poll Now bug work-around. */
2140 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2141 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2142 		/* Tx Poll Now bug work-around. */
2143 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2144 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2145 	}
2146 
2147 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2148 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2149 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2150 	/*
2151 	 * It seems that transmitting frames without checking the state of
2152 	 * Rx/Tx MAC wedge the hardware.
2153 	 */
2154 	stge_start_tx(sc);
2155 	stge_start_rx(sc);
2156 
2157 	sc->sc_link = 0;
2158 	/*
2159 	 * Set the current media.
2160 	 */
2161 	mii_mediachg(mii);
2162 
2163 	/*
2164 	 * Start the one second MII clock.
2165 	 */
2166 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2167 
2168 	/*
2169 	 * ...all done!
2170 	 */
2171 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2172 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2173 
2174  out:
2175 	if (error != 0)
2176 		device_printf(sc->sc_dev, "interface not running\n");
2177 }
2178 
2179 static void
2180 stge_vlan_setup(struct stge_softc *sc)
2181 {
2182 	struct ifnet *ifp;
2183 	uint32_t v;
2184 
2185 	ifp = sc->sc_ifp;
2186 	/*
2187 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2188 	 * MC_AutoVLANuntagging bit.
2189 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2190 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2191 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2192 	 * use TFC instead of STGE_VLANTag register.
2193 	 */
2194 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2195 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2196 		v |= MC_AutoVLANuntagging;
2197 	else
2198 		v &= ~MC_AutoVLANuntagging;
2199 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2200 }
2201 
2202 /*
2203  *	Stop transmission on the interface.
2204  */
2205 static void
2206 stge_stop(struct stge_softc *sc)
2207 {
2208 	struct ifnet *ifp;
2209 	struct stge_txdesc *txd;
2210 	struct stge_rxdesc *rxd;
2211 	uint32_t v;
2212 	int i;
2213 
2214 	STGE_LOCK_ASSERT(sc);
2215 	/*
2216 	 * Stop the one second clock.
2217 	 */
2218 	callout_stop(&sc->sc_tick_ch);
2219 	sc->sc_watchdog_timer = 0;
2220 
2221 	/*
2222 	 * Disable interrupts.
2223 	 */
2224 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2225 
2226 	/*
2227 	 * Stop receiver, transmitter, and stats update.
2228 	 */
2229 	stge_stop_rx(sc);
2230 	stge_stop_tx(sc);
2231 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2232 	v |= MC_StatisticsDisable;
2233 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2234 
2235 	/*
2236 	 * Stop the transmit and receive DMA.
2237 	 */
2238 	stge_dma_wait(sc);
2239 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2240 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2241 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2242 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2243 
2244 	/*
2245 	 * Free RX and TX mbufs still in the queues.
2246 	 */
2247 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2248 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2249 		if (rxd->rx_m != NULL) {
2250 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2251 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2252 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2253 			    rxd->rx_dmamap);
2254 			m_freem(rxd->rx_m);
2255 			rxd->rx_m = NULL;
2256 		}
2257         }
2258 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2259 		txd = &sc->sc_cdata.stge_txdesc[i];
2260 		if (txd->tx_m != NULL) {
2261 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2262 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2263 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2264 			    txd->tx_dmamap);
2265 			m_freem(txd->tx_m);
2266 			txd->tx_m = NULL;
2267 		}
2268         }
2269 
2270 	/*
2271 	 * Mark the interface down and cancel the watchdog timer.
2272 	 */
2273 	ifp = sc->sc_ifp;
2274 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2275 	sc->sc_link = 0;
2276 }
2277 
2278 static void
2279 stge_start_tx(struct stge_softc *sc)
2280 {
2281 	uint32_t v;
2282 	int i;
2283 
2284 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2285 	if ((v & MC_TxEnabled) != 0)
2286 		return;
2287 	v |= MC_TxEnable;
2288 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2289 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2290 	for (i = STGE_TIMEOUT; i > 0; i--) {
2291 		DELAY(10);
2292 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2293 		if ((v & MC_TxEnabled) != 0)
2294 			break;
2295 	}
2296 	if (i == 0)
2297 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2298 }
2299 
2300 static void
2301 stge_start_rx(struct stge_softc *sc)
2302 {
2303 	uint32_t v;
2304 	int i;
2305 
2306 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2307 	if ((v & MC_RxEnabled) != 0)
2308 		return;
2309 	v |= MC_RxEnable;
2310 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2311 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2312 	for (i = STGE_TIMEOUT; i > 0; i--) {
2313 		DELAY(10);
2314 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2315 		if ((v & MC_RxEnabled) != 0)
2316 			break;
2317 	}
2318 	if (i == 0)
2319 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2320 }
2321 
2322 static void
2323 stge_stop_tx(struct stge_softc *sc)
2324 {
2325 	uint32_t v;
2326 	int i;
2327 
2328 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2329 	if ((v & MC_TxEnabled) == 0)
2330 		return;
2331 	v |= MC_TxDisable;
2332 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2333 	for (i = STGE_TIMEOUT; i > 0; i--) {
2334 		DELAY(10);
2335 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2336 		if ((v & MC_TxEnabled) == 0)
2337 			break;
2338 	}
2339 	if (i == 0)
2340 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2341 }
2342 
2343 static void
2344 stge_stop_rx(struct stge_softc *sc)
2345 {
2346 	uint32_t v;
2347 	int i;
2348 
2349 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2350 	if ((v & MC_RxEnabled) == 0)
2351 		return;
2352 	v |= MC_RxDisable;
2353 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2354 	for (i = STGE_TIMEOUT; i > 0; i--) {
2355 		DELAY(10);
2356 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2357 		if ((v & MC_RxEnabled) == 0)
2358 			break;
2359 	}
2360 	if (i == 0)
2361 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2362 }
2363 
2364 static void
2365 stge_init_tx_ring(struct stge_softc *sc)
2366 {
2367 	struct stge_ring_data *rd;
2368 	struct stge_txdesc *txd;
2369 	bus_addr_t addr;
2370 	int i;
2371 
2372 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2373 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2374 
2375 	sc->sc_cdata.stge_tx_prod = 0;
2376 	sc->sc_cdata.stge_tx_cons = 0;
2377 	sc->sc_cdata.stge_tx_cnt = 0;
2378 
2379 	rd = &sc->sc_rdata;
2380 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2381 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2382 		if (i == (STGE_TX_RING_CNT - 1))
2383 			addr = STGE_TX_RING_ADDR(sc, 0);
2384 		else
2385 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2386 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2387 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2388 		txd = &sc->sc_cdata.stge_txdesc[i];
2389 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2390 	}
2391 
2392 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2393 	    sc->sc_cdata.stge_tx_ring_map,
2394 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2395 
2396 }
2397 
2398 static int
2399 stge_init_rx_ring(struct stge_softc *sc)
2400 {
2401 	struct stge_ring_data *rd;
2402 	bus_addr_t addr;
2403 	int i;
2404 
2405 	sc->sc_cdata.stge_rx_cons = 0;
2406 	STGE_RXCHAIN_RESET(sc);
2407 
2408 	rd = &sc->sc_rdata;
2409 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2410 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2411 		if (stge_newbuf(sc, i) != 0)
2412 			return (ENOBUFS);
2413 		if (i == (STGE_RX_RING_CNT - 1))
2414 			addr = STGE_RX_RING_ADDR(sc, 0);
2415 		else
2416 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2417 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2418 		rd->stge_rx_ring[i].rfd_status = 0;
2419 	}
2420 
2421 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2422 	    sc->sc_cdata.stge_rx_ring_map,
2423 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2424 
2425 	return (0);
2426 }
2427 
2428 /*
2429  * stge_newbuf:
2430  *
2431  *	Add a receive buffer to the indicated descriptor.
2432  */
2433 static int
2434 stge_newbuf(struct stge_softc *sc, int idx)
2435 {
2436 	struct stge_rxdesc *rxd;
2437 	struct stge_rfd *rfd;
2438 	struct mbuf *m;
2439 	bus_dma_segment_t segs[1];
2440 	bus_dmamap_t map;
2441 	int nsegs;
2442 
2443 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2444 	if (m == NULL)
2445 		return (ENOBUFS);
2446 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2447 	/*
2448 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2449 	 * frame is used.
2450 	 */
2451 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2452 		m_adj(m, ETHER_ALIGN);
2453 
2454 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2455 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2456 		m_freem(m);
2457 		return (ENOBUFS);
2458 	}
2459 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2460 
2461 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2462 	if (rxd->rx_m != NULL) {
2463 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2464 		    BUS_DMASYNC_POSTREAD);
2465 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2466 	}
2467 	map = rxd->rx_dmamap;
2468 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2469 	sc->sc_cdata.stge_rx_sparemap = map;
2470 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2471 	    BUS_DMASYNC_PREREAD);
2472 	rxd->rx_m = m;
2473 
2474 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2475 	rfd->rfd_frag.frag_word0 =
2476 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2477 	rfd->rfd_status = 0;
2478 
2479 	return (0);
2480 }
2481 
2482 /*
2483  * stge_set_filter:
2484  *
2485  *	Set up the receive filter.
2486  */
2487 static void
2488 stge_set_filter(struct stge_softc *sc)
2489 {
2490 	struct ifnet *ifp;
2491 	uint16_t mode;
2492 
2493 	STGE_LOCK_ASSERT(sc);
2494 
2495 	ifp = sc->sc_ifp;
2496 
2497 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2498 	mode |= RM_ReceiveUnicast;
2499 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2500 		mode |= RM_ReceiveBroadcast;
2501 	else
2502 		mode &= ~RM_ReceiveBroadcast;
2503 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2504 		mode |= RM_ReceiveAllFrames;
2505 	else
2506 		mode &= ~RM_ReceiveAllFrames;
2507 
2508 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2509 }
2510 
2511 static void
2512 stge_set_multi(struct stge_softc *sc)
2513 {
2514 	struct ifnet *ifp;
2515 	struct ifmultiaddr *ifma;
2516 	uint32_t crc;
2517 	uint32_t mchash[2];
2518 	uint16_t mode;
2519 	int count;
2520 
2521 	STGE_LOCK_ASSERT(sc);
2522 
2523 	ifp = sc->sc_ifp;
2524 
2525 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2526 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2527 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2528 			mode |= RM_ReceiveAllFrames;
2529 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2530 			mode |= RM_ReceiveMulticast;
2531 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2532 		return;
2533 	}
2534 
2535 	/* clear existing filters. */
2536 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2537 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2538 
2539 	/*
2540 	 * Set up the multicast address filter by passing all multicast
2541 	 * addresses through a CRC generator, and then using the low-order
2542 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2543 	 * high order bits select the register, while the rest of the bits
2544 	 * select the bit within the register.
2545 	 */
2546 
2547 	bzero(mchash, sizeof(mchash));
2548 
2549 	count = 0;
2550 	if_maddr_rlock(sc->sc_ifp);
2551 	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2552 		if (ifma->ifma_addr->sa_family != AF_LINK)
2553 			continue;
2554 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2555 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2556 
2557 		/* Just want the 6 least significant bits. */
2558 		crc &= 0x3f;
2559 
2560 		/* Set the corresponding bit in the hash table. */
2561 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2562 		count++;
2563 	}
2564 	if_maddr_runlock(ifp);
2565 
2566 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2567 	if (count > 0)
2568 		mode |= RM_ReceiveMulticastHash;
2569 	else
2570 		mode &= ~RM_ReceiveMulticastHash;
2571 
2572 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2573 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2574 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2575 }
2576 
2577 static int
2578 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2579 {
2580 	int error, value;
2581 
2582 	if (!arg1)
2583 		return (EINVAL);
2584 	value = *(int *)arg1;
2585 	error = sysctl_handle_int(oidp, &value, 0, req);
2586 	if (error || !req->newptr)
2587 		return (error);
2588 	if (value < low || value > high)
2589 		return (EINVAL);
2590         *(int *)arg1 = value;
2591 
2592         return (0);
2593 }
2594 
2595 static int
2596 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2597 {
2598 	return (sysctl_int_range(oidp, arg1, arg2, req,
2599 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2600 }
2601 
2602 static int
2603 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2604 {
2605 	return (sysctl_int_range(oidp, arg1, arg2, req,
2606 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2607 }
2608