xref: /freebsd/sys/dev/stge/if_stge.c (revision eb6d21b4ca6d668cf89afd99eef7baeafa712197)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #ifdef HAVE_KERNEL_OPTION_HEADERS
48 #include "opt_device_polling.h"
49 #endif
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/endian.h>
54 #include <sys/mbuf.h>
55 #include <sys/malloc.h>
56 #include <sys/kernel.h>
57 #include <sys/module.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/sysctl.h>
61 #include <sys/taskqueue.h>
62 
63 #include <net/bpf.h>
64 #include <net/ethernet.h>
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 #include <net/if_vlan_var.h>
70 
71 #include <machine/bus.h>
72 #include <machine/resource.h>
73 #include <sys/bus.h>
74 #include <sys/rman.h>
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 
82 #include <dev/stge/if_stgereg.h>
83 
84 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
85 
86 MODULE_DEPEND(stge, pci, 1, 1, 1);
87 MODULE_DEPEND(stge, ether, 1, 1, 1);
88 MODULE_DEPEND(stge, miibus, 1, 1, 1);
89 
90 /* "device miibus" required.  See GENERIC if you get errors here. */
91 #include "miibus_if.h"
92 
93 /*
94  * Devices supported by this driver.
95  */
96 static struct stge_product {
97 	uint16_t	stge_vendorid;
98 	uint16_t	stge_deviceid;
99 	const char	*stge_name;
100 } stge_products[] = {
101 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
102 	  "Sundance ST-1023 Gigabit Ethernet" },
103 
104 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
105 	  "Sundance ST-2021 Gigabit Ethernet" },
106 
107 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
108 	  "Tamarack TC9021 Gigabit Ethernet" },
109 
110 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
111 	  "Tamarack TC9021 Gigabit Ethernet" },
112 
113 	/*
114 	 * The Sundance sample boards use the Sundance vendor ID,
115 	 * but the Tamarack product ID.
116 	 */
117 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
118 	  "Sundance TC9021 Gigabit Ethernet" },
119 
120 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
121 	  "Sundance TC9021 Gigabit Ethernet" },
122 
123 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
124 	  "D-Link DL-4000 Gigabit Ethernet" },
125 
126 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
127 	  "Antares Gigabit Ethernet" }
128 };
129 
130 static int	stge_probe(device_t);
131 static int	stge_attach(device_t);
132 static int	stge_detach(device_t);
133 static int	stge_shutdown(device_t);
134 static int	stge_suspend(device_t);
135 static int	stge_resume(device_t);
136 
137 static int	stge_encap(struct stge_softc *, struct mbuf **);
138 static void	stge_start(struct ifnet *);
139 static void	stge_start_locked(struct ifnet *);
140 static void	stge_watchdog(struct stge_softc *);
141 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
142 static void	stge_init(void *);
143 static void	stge_init_locked(struct stge_softc *);
144 static void	stge_vlan_setup(struct stge_softc *);
145 static void	stge_stop(struct stge_softc *);
146 static void	stge_start_tx(struct stge_softc *);
147 static void	stge_start_rx(struct stge_softc *);
148 static void	stge_stop_tx(struct stge_softc *);
149 static void	stge_stop_rx(struct stge_softc *);
150 
151 static void	stge_reset(struct stge_softc *, uint32_t);
152 static int	stge_eeprom_wait(struct stge_softc *);
153 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
154 static void	stge_tick(void *);
155 static void	stge_stats_update(struct stge_softc *);
156 static void	stge_set_filter(struct stge_softc *);
157 static void	stge_set_multi(struct stge_softc *);
158 
159 static void	stge_link_task(void *, int);
160 static void	stge_intr(void *);
161 static __inline int stge_tx_error(struct stge_softc *);
162 static void	stge_txeof(struct stge_softc *);
163 static int	stge_rxeof(struct stge_softc *);
164 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
165 static int	stge_newbuf(struct stge_softc *, int);
166 #ifndef __NO_STRICT_ALIGNMENT
167 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
168 #endif
169 
170 static void	stge_mii_sync(struct stge_softc *);
171 static void	stge_mii_send(struct stge_softc *, uint32_t, int);
172 static int	stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
173 static int	stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
174 static int	stge_miibus_readreg(device_t, int, int);
175 static int	stge_miibus_writereg(device_t, int, int, int);
176 static void	stge_miibus_statchg(device_t);
177 static int	stge_mediachange(struct ifnet *);
178 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
179 
180 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181 static int	stge_dma_alloc(struct stge_softc *);
182 static void	stge_dma_free(struct stge_softc *);
183 static void	stge_dma_wait(struct stge_softc *);
184 static void	stge_init_tx_ring(struct stge_softc *);
185 static int	stge_init_rx_ring(struct stge_softc *);
186 #ifdef DEVICE_POLLING
187 static int	stge_poll(struct ifnet *, enum poll_cmd, int);
188 #endif
189 
190 static void	stge_setwol(struct stge_softc *);
191 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
192 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
193 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
194 
195 static device_method_t stge_methods[] = {
196 	/* Device interface */
197 	DEVMETHOD(device_probe,		stge_probe),
198 	DEVMETHOD(device_attach,	stge_attach),
199 	DEVMETHOD(device_detach,	stge_detach),
200 	DEVMETHOD(device_shutdown,	stge_shutdown),
201 	DEVMETHOD(device_suspend,	stge_suspend),
202 	DEVMETHOD(device_resume,	stge_resume),
203 
204 	/* MII interface */
205 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
206 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
207 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
208 
209 	{ 0, 0 }
210 
211 };
212 
213 static driver_t stge_driver = {
214 	"stge",
215 	stge_methods,
216 	sizeof(struct stge_softc)
217 };
218 
219 static devclass_t stge_devclass;
220 
221 DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
222 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
223 
224 static struct resource_spec stge_res_spec_io[] = {
225 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
226 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
227 	{ -1,			0,		0 }
228 };
229 
230 static struct resource_spec stge_res_spec_mem[] = {
231 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
232 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
233 	{ -1,			0,		0 }
234 };
235 
236 #define	MII_SET(x)	\
237 	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
238 #define	MII_CLR(x)	\
239 	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
240 
241 /*
242  * Sync the PHYs by setting data bit and strobing the clock 32 times.
243  */
244 static void
245 stge_mii_sync(struct stge_softc	*sc)
246 {
247 	int i;
248 
249 	MII_SET(PC_MgmtDir | PC_MgmtData);
250 
251 	for (i = 0; i < 32; i++) {
252 		MII_SET(PC_MgmtClk);
253 		DELAY(1);
254 		MII_CLR(PC_MgmtClk);
255 		DELAY(1);
256 	}
257 }
258 
259 /*
260  * Clock a series of bits through the MII.
261  */
262 static void
263 stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
264 {
265 	int i;
266 
267 	MII_CLR(PC_MgmtClk);
268 
269 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
270 		if (bits & i)
271 			MII_SET(PC_MgmtData);
272                 else
273 			MII_CLR(PC_MgmtData);
274 		DELAY(1);
275 		MII_CLR(PC_MgmtClk);
276 		DELAY(1);
277 		MII_SET(PC_MgmtClk);
278 	}
279 }
280 
281 /*
282  * Read an PHY register through the MII.
283  */
284 static int
285 stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
286 {
287 	int i, ack;
288 
289 	/*
290 	 * Set up frame for RX.
291 	 */
292 	frame->mii_stdelim = STGE_MII_STARTDELIM;
293 	frame->mii_opcode = STGE_MII_READOP;
294 	frame->mii_turnaround = 0;
295 	frame->mii_data = 0;
296 
297 	CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
298 	/*
299  	 * Turn on data xmit.
300 	 */
301 	MII_SET(PC_MgmtDir);
302 
303 	stge_mii_sync(sc);
304 
305 	/*
306 	 * Send command/address info.
307 	 */
308 	stge_mii_send(sc, frame->mii_stdelim, 2);
309 	stge_mii_send(sc, frame->mii_opcode, 2);
310 	stge_mii_send(sc, frame->mii_phyaddr, 5);
311 	stge_mii_send(sc, frame->mii_regaddr, 5);
312 
313 	/* Turn off xmit. */
314 	MII_CLR(PC_MgmtDir);
315 
316 	/* Idle bit */
317 	MII_CLR((PC_MgmtClk | PC_MgmtData));
318 	DELAY(1);
319 	MII_SET(PC_MgmtClk);
320 	DELAY(1);
321 
322 	/* Check for ack */
323 	MII_CLR(PC_MgmtClk);
324 	DELAY(1);
325 	ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
326 	MII_SET(PC_MgmtClk);
327 	DELAY(1);
328 
329 	/*
330 	 * Now try reading data bits. If the ack failed, we still
331 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
332 	 */
333 	if (ack) {
334 		for(i = 0; i < 16; i++) {
335 			MII_CLR(PC_MgmtClk);
336 			DELAY(1);
337 			MII_SET(PC_MgmtClk);
338 			DELAY(1);
339 		}
340 		goto fail;
341 	}
342 
343 	for (i = 0x8000; i; i >>= 1) {
344 		MII_CLR(PC_MgmtClk);
345 		DELAY(1);
346 		if (!ack) {
347 			if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
348 				frame->mii_data |= i;
349 			DELAY(1);
350 		}
351 		MII_SET(PC_MgmtClk);
352 		DELAY(1);
353 	}
354 
355 fail:
356 	MII_CLR(PC_MgmtClk);
357 	DELAY(1);
358 	MII_SET(PC_MgmtClk);
359 	DELAY(1);
360 
361 	if (ack)
362 		return(1);
363 	return(0);
364 }
365 
366 /*
367  * Write to a PHY register through the MII.
368  */
369 static int
370 stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
371 {
372 
373 	/*
374 	 * Set up frame for TX.
375 	 */
376 	frame->mii_stdelim = STGE_MII_STARTDELIM;
377 	frame->mii_opcode = STGE_MII_WRITEOP;
378 	frame->mii_turnaround = STGE_MII_TURNAROUND;
379 
380 	/*
381  	 * Turn on data output.
382 	 */
383 	MII_SET(PC_MgmtDir);
384 
385 	stge_mii_sync(sc);
386 
387 	stge_mii_send(sc, frame->mii_stdelim, 2);
388 	stge_mii_send(sc, frame->mii_opcode, 2);
389 	stge_mii_send(sc, frame->mii_phyaddr, 5);
390 	stge_mii_send(sc, frame->mii_regaddr, 5);
391 	stge_mii_send(sc, frame->mii_turnaround, 2);
392 	stge_mii_send(sc, frame->mii_data, 16);
393 
394 	/* Idle bit. */
395 	MII_SET(PC_MgmtClk);
396 	DELAY(1);
397 	MII_CLR(PC_MgmtClk);
398 	DELAY(1);
399 
400 	/*
401 	 * Turn off xmit.
402 	 */
403 	MII_CLR(PC_MgmtDir);
404 
405 	return(0);
406 }
407 
408 /*
409  * sc_miibus_readreg:	[mii interface function]
410  *
411  *	Read a PHY register on the MII of the TC9021.
412  */
413 static int
414 stge_miibus_readreg(device_t dev, int phy, int reg)
415 {
416 	struct stge_softc *sc;
417 	struct stge_mii_frame frame;
418 	int error;
419 
420 	sc = device_get_softc(dev);
421 
422 	if (reg == STGE_PhyCtrl) {
423 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
424 		STGE_MII_LOCK(sc);
425 		error = CSR_READ_1(sc, STGE_PhyCtrl);
426 		STGE_MII_UNLOCK(sc);
427 		return (error);
428 	}
429 	bzero(&frame, sizeof(frame));
430 	frame.mii_phyaddr = phy;
431 	frame.mii_regaddr = reg;
432 
433 	STGE_MII_LOCK(sc);
434 	error = stge_mii_readreg(sc, &frame);
435 	STGE_MII_UNLOCK(sc);
436 
437 	if (error != 0) {
438 		/* Don't show errors for PHY probe request */
439 		if (reg != 1)
440 			device_printf(sc->sc_dev, "phy read fail\n");
441 		return (0);
442 	}
443 	return (frame.mii_data);
444 }
445 
446 /*
447  * stge_miibus_writereg:	[mii interface function]
448  *
449  *	Write a PHY register on the MII of the TC9021.
450  */
451 static int
452 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
453 {
454 	struct stge_softc *sc;
455 	struct stge_mii_frame frame;
456 	int error;
457 
458 	sc = device_get_softc(dev);
459 
460 	bzero(&frame, sizeof(frame));
461 	frame.mii_phyaddr = phy;
462 	frame.mii_regaddr = reg;
463 	frame.mii_data = val;
464 
465 	STGE_MII_LOCK(sc);
466 	error = stge_mii_writereg(sc, &frame);
467 	STGE_MII_UNLOCK(sc);
468 
469 	if (error != 0)
470 		device_printf(sc->sc_dev, "phy write fail\n");
471 	return (0);
472 }
473 
474 /*
475  * stge_miibus_statchg:	[mii interface function]
476  *
477  *	Callback from MII layer when media changes.
478  */
479 static void
480 stge_miibus_statchg(device_t dev)
481 {
482 	struct stge_softc *sc;
483 
484 	sc = device_get_softc(dev);
485 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
486 }
487 
488 /*
489  * stge_mediastatus:	[ifmedia interface function]
490  *
491  *	Get the current interface media status.
492  */
493 static void
494 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
495 {
496 	struct stge_softc *sc;
497 	struct mii_data *mii;
498 
499 	sc = ifp->if_softc;
500 	mii = device_get_softc(sc->sc_miibus);
501 
502 	mii_pollstat(mii);
503 	ifmr->ifm_status = mii->mii_media_status;
504 	ifmr->ifm_active = mii->mii_media_active;
505 }
506 
507 /*
508  * stge_mediachange:	[ifmedia interface function]
509  *
510  *	Set hardware to newly-selected media.
511  */
512 static int
513 stge_mediachange(struct ifnet *ifp)
514 {
515 	struct stge_softc *sc;
516 	struct mii_data *mii;
517 
518 	sc = ifp->if_softc;
519 	mii = device_get_softc(sc->sc_miibus);
520 	mii_mediachg(mii);
521 
522 	return (0);
523 }
524 
525 static int
526 stge_eeprom_wait(struct stge_softc *sc)
527 {
528 	int i;
529 
530 	for (i = 0; i < STGE_TIMEOUT; i++) {
531 		DELAY(1000);
532 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
533 			return (0);
534 	}
535 	return (1);
536 }
537 
538 /*
539  * stge_read_eeprom:
540  *
541  *	Read data from the serial EEPROM.
542  */
543 static void
544 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
545 {
546 
547 	if (stge_eeprom_wait(sc))
548 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
549 
550 	CSR_WRITE_2(sc, STGE_EepromCtrl,
551 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
552 	if (stge_eeprom_wait(sc))
553 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
554 	*data = CSR_READ_2(sc, STGE_EepromData);
555 }
556 
557 
558 static int
559 stge_probe(device_t dev)
560 {
561 	struct stge_product *sp;
562 	int i;
563 	uint16_t vendor, devid;
564 
565 	vendor = pci_get_vendor(dev);
566 	devid = pci_get_device(dev);
567 	sp = stge_products;
568 	for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
569 	    i++, sp++) {
570 		if (vendor == sp->stge_vendorid &&
571 		    devid == sp->stge_deviceid) {
572 			device_set_desc(dev, sp->stge_name);
573 			return (BUS_PROBE_DEFAULT);
574 		}
575 	}
576 
577 	return (ENXIO);
578 }
579 
580 static int
581 stge_attach(device_t dev)
582 {
583 	struct stge_softc *sc;
584 	struct ifnet *ifp;
585 	uint8_t enaddr[ETHER_ADDR_LEN];
586 	int error, i;
587 	uint16_t cmd;
588 	uint32_t val;
589 
590 	error = 0;
591 	sc = device_get_softc(dev);
592 	sc->sc_dev = dev;
593 
594 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
595 	    MTX_DEF);
596 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
597 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
598 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
599 
600 	/*
601 	 * Map the device.
602 	 */
603 	pci_enable_busmaster(dev);
604 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
605 	val = pci_read_config(dev, PCIR_BAR(1), 4);
606 	if ((val & 0x01) != 0)
607 		sc->sc_spec = stge_res_spec_mem;
608 	else {
609 		val = pci_read_config(dev, PCIR_BAR(0), 4);
610 		if ((val & 0x01) == 0) {
611 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
612 			error = ENXIO;
613 			goto fail;
614 		}
615 		sc->sc_spec = stge_res_spec_io;
616 	}
617 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
618 	if (error != 0) {
619 		device_printf(dev, "couldn't allocate %s resources\n",
620 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
621 		goto fail;
622 	}
623 	sc->sc_rev = pci_get_revid(dev);
624 
625 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
626 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
627 	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
628 	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
629 
630 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
631 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
632 	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
633 	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
634 
635 	/* Pull in device tunables. */
636 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
637 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
638 	    "rxint_nframe", &sc->sc_rxint_nframe);
639 	if (error == 0) {
640 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
641 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
642 			device_printf(dev, "rxint_nframe value out of range; "
643 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
644 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
645 		}
646 	}
647 
648 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
649 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
650 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
651 	if (error == 0) {
652 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
653 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
654 			device_printf(dev, "rxint_dmawait value out of range; "
655 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
656 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
657 		}
658 	}
659 
660 	if ((error = stge_dma_alloc(sc) != 0))
661 		goto fail;
662 
663 	/*
664 	 * Determine if we're copper or fiber.  It affects how we
665 	 * reset the card.
666 	 */
667 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
668 		sc->sc_usefiber = 1;
669 	else
670 		sc->sc_usefiber = 0;
671 
672 	/* Load LED configuration from EEPROM. */
673 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
674 
675 	/*
676 	 * Reset the chip to a known state.
677 	 */
678 	STGE_LOCK(sc);
679 	stge_reset(sc, STGE_RESET_FULL);
680 	STGE_UNLOCK(sc);
681 
682 	/*
683 	 * Reading the station address from the EEPROM doesn't seem
684 	 * to work, at least on my sample boards.  Instead, since
685 	 * the reset sequence does AutoInit, read it from the station
686 	 * address registers. For Sundance 1023 you can only read it
687 	 * from EEPROM.
688 	 */
689 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
690 		uint16_t v;
691 
692 		v = CSR_READ_2(sc, STGE_StationAddress0);
693 		enaddr[0] = v & 0xff;
694 		enaddr[1] = v >> 8;
695 		v = CSR_READ_2(sc, STGE_StationAddress1);
696 		enaddr[2] = v & 0xff;
697 		enaddr[3] = v >> 8;
698 		v = CSR_READ_2(sc, STGE_StationAddress2);
699 		enaddr[4] = v & 0xff;
700 		enaddr[5] = v >> 8;
701 		sc->sc_stge1023 = 0;
702 	} else {
703 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
704 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
705 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
706 			    &myaddr[i]);
707 			myaddr[i] = le16toh(myaddr[i]);
708 		}
709 		bcopy(myaddr, enaddr, sizeof(enaddr));
710 		sc->sc_stge1023 = 1;
711 	}
712 
713 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
714 	if (ifp == NULL) {
715 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
716 		error = ENXIO;
717 		goto fail;
718 	}
719 
720 	ifp->if_softc = sc;
721 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
722 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
723 	ifp->if_ioctl = stge_ioctl;
724 	ifp->if_start = stge_start;
725 	ifp->if_init = stge_init;
726 	ifp->if_mtu = ETHERMTU;
727 	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
728 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
729 	IFQ_SET_READY(&ifp->if_snd);
730 	/* Revision B3 and earlier chips have checksum bug. */
731 	if (sc->sc_rev >= 0x0c) {
732 		ifp->if_hwassist = STGE_CSUM_FEATURES;
733 		ifp->if_capabilities = IFCAP_HWCSUM;
734 	} else {
735 		ifp->if_hwassist = 0;
736 		ifp->if_capabilities = 0;
737 	}
738 	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
739 	ifp->if_capenable = ifp->if_capabilities;
740 
741 	/*
742 	 * Read some important bits from the PhyCtrl register.
743 	 */
744 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
745 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
746 
747 	/* Set up MII bus. */
748 	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, stge_mediachange,
749 	    stge_mediastatus)) != 0) {
750 		device_printf(sc->sc_dev, "no PHY found!\n");
751 		goto fail;
752 	}
753 
754 	ether_ifattach(ifp, enaddr);
755 
756 	/* VLAN capability setup */
757 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
758 	if (sc->sc_rev >= 0x0c)
759 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
760 	ifp->if_capenable = ifp->if_capabilities;
761 #ifdef DEVICE_POLLING
762 	ifp->if_capabilities |= IFCAP_POLLING;
763 #endif
764 	/*
765 	 * Tell the upper layer(s) we support long frames.
766 	 * Must appear after the call to ether_ifattach() because
767 	 * ether_ifattach() sets ifi_hdrlen to the default value.
768 	 */
769 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
770 
771 	/*
772 	 * The manual recommends disabling early transmit, so we
773 	 * do.  It's disabled anyway, if using IP checksumming,
774 	 * since the entire packet must be in the FIFO in order
775 	 * for the chip to perform the checksum.
776 	 */
777 	sc->sc_txthresh = 0x0fff;
778 
779 	/*
780 	 * Disable MWI if the PCI layer tells us to.
781 	 */
782 	sc->sc_DMACtrl = 0;
783 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
784 		sc->sc_DMACtrl |= DMAC_MWIDisable;
785 
786 	/*
787 	 * Hookup IRQ
788 	 */
789 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
790 	    NULL, stge_intr, sc, &sc->sc_ih);
791 	if (error != 0) {
792 		ether_ifdetach(ifp);
793 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
794 		sc->sc_ifp = NULL;
795 		goto fail;
796 	}
797 
798 fail:
799 	if (error != 0)
800 		stge_detach(dev);
801 
802 	return (error);
803 }
804 
805 static int
806 stge_detach(device_t dev)
807 {
808 	struct stge_softc *sc;
809 	struct ifnet *ifp;
810 
811 	sc = device_get_softc(dev);
812 
813 	ifp = sc->sc_ifp;
814 #ifdef DEVICE_POLLING
815 	if (ifp && ifp->if_capenable & IFCAP_POLLING)
816 		ether_poll_deregister(ifp);
817 #endif
818 	if (device_is_attached(dev)) {
819 		STGE_LOCK(sc);
820 		/* XXX */
821 		sc->sc_detach = 1;
822 		stge_stop(sc);
823 		STGE_UNLOCK(sc);
824 		callout_drain(&sc->sc_tick_ch);
825 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
826 		ether_ifdetach(ifp);
827 	}
828 
829 	if (sc->sc_miibus != NULL) {
830 		device_delete_child(dev, sc->sc_miibus);
831 		sc->sc_miibus = NULL;
832 	}
833 	bus_generic_detach(dev);
834 	stge_dma_free(sc);
835 
836 	if (ifp != NULL) {
837 		if_free(ifp);
838 		sc->sc_ifp = NULL;
839 	}
840 
841 	if (sc->sc_ih) {
842 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
843 		sc->sc_ih = NULL;
844 	}
845 	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
846 
847 	mtx_destroy(&sc->sc_mii_mtx);
848 	mtx_destroy(&sc->sc_mtx);
849 
850 	return (0);
851 }
852 
853 struct stge_dmamap_arg {
854 	bus_addr_t	stge_busaddr;
855 };
856 
857 static void
858 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
859 {
860 	struct stge_dmamap_arg *ctx;
861 
862 	if (error != 0)
863 		return;
864 
865 	ctx = (struct stge_dmamap_arg *)arg;
866 	ctx->stge_busaddr = segs[0].ds_addr;
867 }
868 
869 static int
870 stge_dma_alloc(struct stge_softc *sc)
871 {
872 	struct stge_dmamap_arg ctx;
873 	struct stge_txdesc *txd;
874 	struct stge_rxdesc *rxd;
875 	int error, i;
876 
877 	/* create parent tag. */
878 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
879 		    1, 0,			/* algnmnt, boundary */
880 		    STGE_DMA_MAXADDR,		/* lowaddr */
881 		    BUS_SPACE_MAXADDR,		/* highaddr */
882 		    NULL, NULL,			/* filter, filterarg */
883 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
884 		    0,				/* nsegments */
885 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
886 		    0,				/* flags */
887 		    NULL, NULL,			/* lockfunc, lockarg */
888 		    &sc->sc_cdata.stge_parent_tag);
889 	if (error != 0) {
890 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
891 		goto fail;
892 	}
893 	/* create tag for Tx ring. */
894 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
895 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
896 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
897 		    BUS_SPACE_MAXADDR,		/* highaddr */
898 		    NULL, NULL,			/* filter, filterarg */
899 		    STGE_TX_RING_SZ,		/* maxsize */
900 		    1,				/* nsegments */
901 		    STGE_TX_RING_SZ,		/* maxsegsize */
902 		    0,				/* flags */
903 		    NULL, NULL,			/* lockfunc, lockarg */
904 		    &sc->sc_cdata.stge_tx_ring_tag);
905 	if (error != 0) {
906 		device_printf(sc->sc_dev,
907 		    "failed to allocate Tx ring DMA tag\n");
908 		goto fail;
909 	}
910 
911 	/* create tag for Rx ring. */
912 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
913 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
914 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
915 		    BUS_SPACE_MAXADDR,		/* highaddr */
916 		    NULL, NULL,			/* filter, filterarg */
917 		    STGE_RX_RING_SZ,		/* maxsize */
918 		    1,				/* nsegments */
919 		    STGE_RX_RING_SZ,		/* maxsegsize */
920 		    0,				/* flags */
921 		    NULL, NULL,			/* lockfunc, lockarg */
922 		    &sc->sc_cdata.stge_rx_ring_tag);
923 	if (error != 0) {
924 		device_printf(sc->sc_dev,
925 		    "failed to allocate Rx ring DMA tag\n");
926 		goto fail;
927 	}
928 
929 	/* create tag for Tx buffers. */
930 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
931 		    1, 0,			/* algnmnt, boundary */
932 		    BUS_SPACE_MAXADDR,		/* lowaddr */
933 		    BUS_SPACE_MAXADDR,		/* highaddr */
934 		    NULL, NULL,			/* filter, filterarg */
935 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
936 		    STGE_MAXTXSEGS,		/* nsegments */
937 		    MCLBYTES,			/* maxsegsize */
938 		    0,				/* flags */
939 		    NULL, NULL,			/* lockfunc, lockarg */
940 		    &sc->sc_cdata.stge_tx_tag);
941 	if (error != 0) {
942 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
943 		goto fail;
944 	}
945 
946 	/* create tag for Rx buffers. */
947 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
948 		    1, 0,			/* algnmnt, boundary */
949 		    BUS_SPACE_MAXADDR,		/* lowaddr */
950 		    BUS_SPACE_MAXADDR,		/* highaddr */
951 		    NULL, NULL,			/* filter, filterarg */
952 		    MCLBYTES,			/* maxsize */
953 		    1,				/* nsegments */
954 		    MCLBYTES,			/* maxsegsize */
955 		    0,				/* flags */
956 		    NULL, NULL,			/* lockfunc, lockarg */
957 		    &sc->sc_cdata.stge_rx_tag);
958 	if (error != 0) {
959 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
960 		goto fail;
961 	}
962 
963 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
964 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
965 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
966 	    &sc->sc_cdata.stge_tx_ring_map);
967 	if (error != 0) {
968 		device_printf(sc->sc_dev,
969 		    "failed to allocate DMA'able memory for Tx ring\n");
970 		goto fail;
971 	}
972 
973 	ctx.stge_busaddr = 0;
974 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
975 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
976 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
977 	if (error != 0 || ctx.stge_busaddr == 0) {
978 		device_printf(sc->sc_dev,
979 		    "failed to load DMA'able memory for Tx ring\n");
980 		goto fail;
981 	}
982 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
983 
984 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
985 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
986 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
987 	    &sc->sc_cdata.stge_rx_ring_map);
988 	if (error != 0) {
989 		device_printf(sc->sc_dev,
990 		    "failed to allocate DMA'able memory for Rx ring\n");
991 		goto fail;
992 	}
993 
994 	ctx.stge_busaddr = 0;
995 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
996 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
997 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
998 	if (error != 0 || ctx.stge_busaddr == 0) {
999 		device_printf(sc->sc_dev,
1000 		    "failed to load DMA'able memory for Rx ring\n");
1001 		goto fail;
1002 	}
1003 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
1004 
1005 	/* create DMA maps for Tx buffers. */
1006 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
1007 		txd = &sc->sc_cdata.stge_txdesc[i];
1008 		txd->tx_m = NULL;
1009 		txd->tx_dmamap = 0;
1010 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
1011 		    &txd->tx_dmamap);
1012 		if (error != 0) {
1013 			device_printf(sc->sc_dev,
1014 			    "failed to create Tx dmamap\n");
1015 			goto fail;
1016 		}
1017 	}
1018 	/* create DMA maps for Rx buffers. */
1019 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1020 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
1021 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
1022 		goto fail;
1023 	}
1024 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
1025 		rxd = &sc->sc_cdata.stge_rxdesc[i];
1026 		rxd->rx_m = NULL;
1027 		rxd->rx_dmamap = 0;
1028 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1029 		    &rxd->rx_dmamap);
1030 		if (error != 0) {
1031 			device_printf(sc->sc_dev,
1032 			    "failed to create Rx dmamap\n");
1033 			goto fail;
1034 		}
1035 	}
1036 
1037 fail:
1038 	return (error);
1039 }
1040 
1041 static void
1042 stge_dma_free(struct stge_softc *sc)
1043 {
1044 	struct stge_txdesc *txd;
1045 	struct stge_rxdesc *rxd;
1046 	int i;
1047 
1048 	/* Tx ring */
1049 	if (sc->sc_cdata.stge_tx_ring_tag) {
1050 		if (sc->sc_cdata.stge_tx_ring_map)
1051 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
1052 			    sc->sc_cdata.stge_tx_ring_map);
1053 		if (sc->sc_cdata.stge_tx_ring_map &&
1054 		    sc->sc_rdata.stge_tx_ring)
1055 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
1056 			    sc->sc_rdata.stge_tx_ring,
1057 			    sc->sc_cdata.stge_tx_ring_map);
1058 		sc->sc_rdata.stge_tx_ring = NULL;
1059 		sc->sc_cdata.stge_tx_ring_map = 0;
1060 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
1061 		sc->sc_cdata.stge_tx_ring_tag = NULL;
1062 	}
1063 	/* Rx ring */
1064 	if (sc->sc_cdata.stge_rx_ring_tag) {
1065 		if (sc->sc_cdata.stge_rx_ring_map)
1066 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
1067 			    sc->sc_cdata.stge_rx_ring_map);
1068 		if (sc->sc_cdata.stge_rx_ring_map &&
1069 		    sc->sc_rdata.stge_rx_ring)
1070 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
1071 			    sc->sc_rdata.stge_rx_ring,
1072 			    sc->sc_cdata.stge_rx_ring_map);
1073 		sc->sc_rdata.stge_rx_ring = NULL;
1074 		sc->sc_cdata.stge_rx_ring_map = 0;
1075 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
1076 		sc->sc_cdata.stge_rx_ring_tag = NULL;
1077 	}
1078 	/* Tx buffers */
1079 	if (sc->sc_cdata.stge_tx_tag) {
1080 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
1081 			txd = &sc->sc_cdata.stge_txdesc[i];
1082 			if (txd->tx_dmamap) {
1083 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
1084 				    txd->tx_dmamap);
1085 				txd->tx_dmamap = 0;
1086 			}
1087 		}
1088 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
1089 		sc->sc_cdata.stge_tx_tag = NULL;
1090 	}
1091 	/* Rx buffers */
1092 	if (sc->sc_cdata.stge_rx_tag) {
1093 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
1094 			rxd = &sc->sc_cdata.stge_rxdesc[i];
1095 			if (rxd->rx_dmamap) {
1096 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1097 				    rxd->rx_dmamap);
1098 				rxd->rx_dmamap = 0;
1099 			}
1100 		}
1101 		if (sc->sc_cdata.stge_rx_sparemap) {
1102 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1103 			    sc->sc_cdata.stge_rx_sparemap);
1104 			sc->sc_cdata.stge_rx_sparemap = 0;
1105 		}
1106 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
1107 		sc->sc_cdata.stge_rx_tag = NULL;
1108 	}
1109 
1110 	if (sc->sc_cdata.stge_parent_tag) {
1111 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
1112 		sc->sc_cdata.stge_parent_tag = NULL;
1113 	}
1114 }
1115 
1116 /*
1117  * stge_shutdown:
1118  *
1119  *	Make sure the interface is stopped at reboot time.
1120  */
1121 static int
1122 stge_shutdown(device_t dev)
1123 {
1124 
1125 	return (stge_suspend(dev));
1126 }
1127 
1128 static void
1129 stge_setwol(struct stge_softc *sc)
1130 {
1131 	struct ifnet *ifp;
1132 	uint8_t v;
1133 
1134 	STGE_LOCK_ASSERT(sc);
1135 
1136 	ifp = sc->sc_ifp;
1137 	v = CSR_READ_1(sc, STGE_WakeEvent);
1138 	/* Disable all WOL bits. */
1139 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1140 	    WE_WakeOnLanEnable);
1141 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1142 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
1143 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1144 	/* Reset Tx and prevent transmission. */
1145 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1146 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1147 	/*
1148 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1149 	 * into sleep so there is no need to try to resetting link speed.
1150 	 */
1151 }
1152 
1153 static int
1154 stge_suspend(device_t dev)
1155 {
1156 	struct stge_softc *sc;
1157 
1158 	sc = device_get_softc(dev);
1159 
1160 	STGE_LOCK(sc);
1161 	stge_stop(sc);
1162 	sc->sc_suspended = 1;
1163 	stge_setwol(sc);
1164 	STGE_UNLOCK(sc);
1165 
1166 	return (0);
1167 }
1168 
1169 static int
1170 stge_resume(device_t dev)
1171 {
1172 	struct stge_softc *sc;
1173 	struct ifnet *ifp;
1174 	uint8_t v;
1175 
1176 	sc = device_get_softc(dev);
1177 
1178 	STGE_LOCK(sc);
1179 	/*
1180 	 * Clear WOL bits, so special frames wouldn't interfere
1181 	 * normal Rx operation anymore.
1182 	 */
1183 	v = CSR_READ_1(sc, STGE_WakeEvent);
1184 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1185 	    WE_WakeOnLanEnable);
1186 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1187 	ifp = sc->sc_ifp;
1188 	if (ifp->if_flags & IFF_UP)
1189 		stge_init_locked(sc);
1190 
1191 	sc->sc_suspended = 0;
1192 	STGE_UNLOCK(sc);
1193 
1194 	return (0);
1195 }
1196 
1197 static void
1198 stge_dma_wait(struct stge_softc *sc)
1199 {
1200 	int i;
1201 
1202 	for (i = 0; i < STGE_TIMEOUT; i++) {
1203 		DELAY(2);
1204 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1205 			break;
1206 	}
1207 
1208 	if (i == STGE_TIMEOUT)
1209 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1210 }
1211 
1212 static int
1213 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1214 {
1215 	struct stge_txdesc *txd;
1216 	struct stge_tfd *tfd;
1217 	struct mbuf *m;
1218 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1219 	int error, i, nsegs, si;
1220 	uint64_t csum_flags, tfc;
1221 
1222 	STGE_LOCK_ASSERT(sc);
1223 
1224 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1225 		return (ENOBUFS);
1226 
1227 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1228 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1229 	if (error == EFBIG) {
1230 		m = m_collapse(*m_head, M_DONTWAIT, STGE_MAXTXSEGS);
1231 		if (m == NULL) {
1232 			m_freem(*m_head);
1233 			*m_head = NULL;
1234 			return (ENOMEM);
1235 		}
1236 		*m_head = m;
1237 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1238 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1239 		if (error != 0) {
1240 			m_freem(*m_head);
1241 			*m_head = NULL;
1242 			return (error);
1243 		}
1244 	} else if (error != 0)
1245 		return (error);
1246 	if (nsegs == 0) {
1247 		m_freem(*m_head);
1248 		*m_head = NULL;
1249 		return (EIO);
1250 	}
1251 
1252 	m = *m_head;
1253 	csum_flags = 0;
1254 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1255 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1256 			csum_flags |= TFD_IPChecksumEnable;
1257 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1258 			csum_flags |= TFD_TCPChecksumEnable;
1259 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1260 			csum_flags |= TFD_UDPChecksumEnable;
1261 	}
1262 
1263 	si = sc->sc_cdata.stge_tx_prod;
1264 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1265 	for (i = 0; i < nsegs; i++)
1266 		tfd->tfd_frags[i].frag_word0 =
1267 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1268 		    FRAG_LEN(txsegs[i].ds_len));
1269 	sc->sc_cdata.stge_tx_cnt++;
1270 
1271 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1272 	    TFD_FragCount(nsegs) | csum_flags;
1273 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1274 		tfc |= TFD_TxDMAIndicate;
1275 
1276 	/* Update producer index. */
1277 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1278 
1279 	/* Check if we have a VLAN tag to insert. */
1280 	if (m->m_flags & M_VLANTAG)
1281 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1282 	tfd->tfd_control = htole64(tfc);
1283 
1284 	/* Update Tx Queue. */
1285 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1286 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1287 	txd->tx_m = m;
1288 
1289 	/* Sync descriptors. */
1290 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1291 	    BUS_DMASYNC_PREWRITE);
1292 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1293 	    sc->sc_cdata.stge_tx_ring_map,
1294 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1295 
1296 	return (0);
1297 }
1298 
1299 /*
1300  * stge_start:		[ifnet interface function]
1301  *
1302  *	Start packet transmission on the interface.
1303  */
1304 static void
1305 stge_start(struct ifnet *ifp)
1306 {
1307 	struct stge_softc *sc;
1308 
1309 	sc = ifp->if_softc;
1310 	STGE_LOCK(sc);
1311 	stge_start_locked(ifp);
1312 	STGE_UNLOCK(sc);
1313 }
1314 
1315 static void
1316 stge_start_locked(struct ifnet *ifp)
1317 {
1318         struct stge_softc *sc;
1319         struct mbuf *m_head;
1320 	int enq;
1321 
1322 	sc = ifp->if_softc;
1323 
1324 	STGE_LOCK_ASSERT(sc);
1325 
1326 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1327 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1328 		return;
1329 
1330 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1331 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1332 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1333 			break;
1334 		}
1335 
1336 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1337 		if (m_head == NULL)
1338 			break;
1339 		/*
1340 		 * Pack the data into the transmit ring. If we
1341 		 * don't have room, set the OACTIVE flag and wait
1342 		 * for the NIC to drain the ring.
1343 		 */
1344 		if (stge_encap(sc, &m_head)) {
1345 			if (m_head == NULL)
1346 				break;
1347 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1348 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1349 			break;
1350 		}
1351 
1352 		enq++;
1353 		/*
1354 		 * If there's a BPF listener, bounce a copy of this frame
1355 		 * to him.
1356 		 */
1357 		ETHER_BPF_MTAP(ifp, m_head);
1358 	}
1359 
1360 	if (enq > 0) {
1361 		/* Transmit */
1362 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1363 
1364 		/* Set a timeout in case the chip goes out to lunch. */
1365 		sc->sc_watchdog_timer = 5;
1366 	}
1367 }
1368 
1369 /*
1370  * stge_watchdog:
1371  *
1372  *	Watchdog timer handler.
1373  */
1374 static void
1375 stge_watchdog(struct stge_softc *sc)
1376 {
1377 	struct ifnet *ifp;
1378 
1379 	STGE_LOCK_ASSERT(sc);
1380 
1381 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1382 		return;
1383 
1384 	ifp = sc->sc_ifp;
1385 	if_printf(sc->sc_ifp, "device timeout\n");
1386 	ifp->if_oerrors++;
1387 	stge_init_locked(sc);
1388 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1389 		stge_start_locked(ifp);
1390 }
1391 
1392 /*
1393  * stge_ioctl:		[ifnet interface function]
1394  *
1395  *	Handle control requests from the operator.
1396  */
1397 static int
1398 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1399 {
1400 	struct stge_softc *sc;
1401 	struct ifreq *ifr;
1402 	struct mii_data *mii;
1403 	int error, mask;
1404 
1405 	sc = ifp->if_softc;
1406 	ifr = (struct ifreq *)data;
1407 	error = 0;
1408 	switch (cmd) {
1409 	case SIOCSIFMTU:
1410 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1411 			error = EINVAL;
1412 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1413 			ifp->if_mtu = ifr->ifr_mtu;
1414 			STGE_LOCK(sc);
1415 			stge_init_locked(sc);
1416 			STGE_UNLOCK(sc);
1417 		}
1418 		break;
1419 	case SIOCSIFFLAGS:
1420 		STGE_LOCK(sc);
1421 		if ((ifp->if_flags & IFF_UP) != 0) {
1422 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1423 				if (((ifp->if_flags ^ sc->sc_if_flags)
1424 				    & IFF_PROMISC) != 0)
1425 					stge_set_filter(sc);
1426 			} else {
1427 				if (sc->sc_detach == 0)
1428 					stge_init_locked(sc);
1429 			}
1430 		} else {
1431 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1432 				stge_stop(sc);
1433 		}
1434 		sc->sc_if_flags = ifp->if_flags;
1435 		STGE_UNLOCK(sc);
1436 		break;
1437 	case SIOCADDMULTI:
1438 	case SIOCDELMULTI:
1439 		STGE_LOCK(sc);
1440 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1441 			stge_set_multi(sc);
1442 		STGE_UNLOCK(sc);
1443 		break;
1444 	case SIOCSIFMEDIA:
1445 	case SIOCGIFMEDIA:
1446 		mii = device_get_softc(sc->sc_miibus);
1447 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1448 		break;
1449 	case SIOCSIFCAP:
1450 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1451 #ifdef DEVICE_POLLING
1452 		if ((mask & IFCAP_POLLING) != 0) {
1453 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1454 				error = ether_poll_register(stge_poll, ifp);
1455 				if (error != 0)
1456 					break;
1457 				STGE_LOCK(sc);
1458 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1459 				ifp->if_capenable |= IFCAP_POLLING;
1460 				STGE_UNLOCK(sc);
1461 			} else {
1462 				error = ether_poll_deregister(ifp);
1463 				if (error != 0)
1464 					break;
1465 				STGE_LOCK(sc);
1466 				CSR_WRITE_2(sc, STGE_IntEnable,
1467 				    sc->sc_IntEnable);
1468 				ifp->if_capenable &= ~IFCAP_POLLING;
1469 				STGE_UNLOCK(sc);
1470 			}
1471 		}
1472 #endif
1473 		if ((mask & IFCAP_HWCSUM) != 0) {
1474 			ifp->if_capenable ^= IFCAP_HWCSUM;
1475 			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1476 			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1477 				ifp->if_hwassist = STGE_CSUM_FEATURES;
1478 			else
1479 				ifp->if_hwassist = 0;
1480 		}
1481 		if ((mask & IFCAP_WOL) != 0 &&
1482 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1483 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1484 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1485 		}
1486 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1487 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1488 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1489 				STGE_LOCK(sc);
1490 				stge_vlan_setup(sc);
1491 				STGE_UNLOCK(sc);
1492 			}
1493 		}
1494 		VLAN_CAPABILITIES(ifp);
1495 		break;
1496 	default:
1497 		error = ether_ioctl(ifp, cmd, data);
1498 		break;
1499 	}
1500 
1501 	return (error);
1502 }
1503 
1504 static void
1505 stge_link_task(void *arg, int pending)
1506 {
1507 	struct stge_softc *sc;
1508 	struct mii_data *mii;
1509 	uint32_t v, ac;
1510 	int i;
1511 
1512 	sc = (struct stge_softc *)arg;
1513 	STGE_LOCK(sc);
1514 
1515 	mii = device_get_softc(sc->sc_miibus);
1516 	if (mii->mii_media_status & IFM_ACTIVE) {
1517 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1518 			sc->sc_link = 1;
1519 	} else
1520 		sc->sc_link = 0;
1521 
1522 	sc->sc_MACCtrl = 0;
1523 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1524 		sc->sc_MACCtrl |= MC_DuplexSelect;
1525 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
1526 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1527 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
1528 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1529 	/*
1530 	 * Update STGE_MACCtrl register depending on link status.
1531 	 * (duplex, flow control etc)
1532 	 */
1533 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1534 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1535 	v |= sc->sc_MACCtrl;
1536 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1537 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1538 		/* Duplex setting changed, reset Tx/Rx functions. */
1539 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1540 		ac |= AC_TxReset | AC_RxReset;
1541 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1542 		for (i = 0; i < STGE_TIMEOUT; i++) {
1543 			DELAY(100);
1544 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1545 				break;
1546 		}
1547 		if (i == STGE_TIMEOUT)
1548 			device_printf(sc->sc_dev, "reset failed to complete\n");
1549 	}
1550 	STGE_UNLOCK(sc);
1551 }
1552 
1553 static __inline int
1554 stge_tx_error(struct stge_softc *sc)
1555 {
1556 	uint32_t txstat;
1557 	int error;
1558 
1559 	for (error = 0;;) {
1560 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1561 		if ((txstat & TS_TxComplete) == 0)
1562 			break;
1563 		/* Tx underrun */
1564 		if ((txstat & TS_TxUnderrun) != 0) {
1565 			/*
1566 			 * XXX
1567 			 * There should be a more better way to recover
1568 			 * from Tx underrun instead of a full reset.
1569 			 */
1570 			if (sc->sc_nerr++ < STGE_MAXERR)
1571 				device_printf(sc->sc_dev, "Tx underrun, "
1572 				    "resetting...\n");
1573 			if (sc->sc_nerr == STGE_MAXERR)
1574 				device_printf(sc->sc_dev, "too many errors; "
1575 				    "not reporting any more\n");
1576 			error = -1;
1577 			break;
1578 		}
1579 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1580 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1581 			CSR_WRITE_4(sc, STGE_MACCtrl,
1582 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1583 			    MC_TxEnable);
1584 	}
1585 
1586 	return (error);
1587 }
1588 
1589 /*
1590  * stge_intr:
1591  *
1592  *	Interrupt service routine.
1593  */
1594 static void
1595 stge_intr(void *arg)
1596 {
1597 	struct stge_softc *sc;
1598 	struct ifnet *ifp;
1599 	int reinit;
1600 	uint16_t status;
1601 
1602 	sc = (struct stge_softc *)arg;
1603 	ifp = sc->sc_ifp;
1604 
1605 	STGE_LOCK(sc);
1606 
1607 #ifdef DEVICE_POLLING
1608 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1609 		goto done_locked;
1610 #endif
1611 	status = CSR_READ_2(sc, STGE_IntStatus);
1612 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1613 		goto done_locked;
1614 
1615 	/* Disable interrupts. */
1616 	for (reinit = 0;;) {
1617 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1618 		status &= sc->sc_IntEnable;
1619 		if (status == 0)
1620 			break;
1621 		/* Host interface errors. */
1622 		if ((status & IS_HostError) != 0) {
1623 			device_printf(sc->sc_dev,
1624 			    "Host interface error, resetting...\n");
1625 			reinit = 1;
1626 			goto force_init;
1627 		}
1628 
1629 		/* Receive interrupts. */
1630 		if ((status & IS_RxDMAComplete) != 0) {
1631 			stge_rxeof(sc);
1632 			if ((status & IS_RFDListEnd) != 0)
1633 				CSR_WRITE_4(sc, STGE_DMACtrl,
1634 				    DMAC_RxDMAPollNow);
1635 		}
1636 
1637 		/* Transmit interrupts. */
1638 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1639 			stge_txeof(sc);
1640 
1641 		/* Transmission errors.*/
1642 		if ((status & IS_TxComplete) != 0) {
1643 			if ((reinit = stge_tx_error(sc)) != 0)
1644 				break;
1645 		}
1646 	}
1647 
1648 force_init:
1649 	if (reinit != 0)
1650 		stge_init_locked(sc);
1651 
1652 	/* Re-enable interrupts. */
1653 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1654 
1655 	/* Try to get more packets going. */
1656 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1657 		stge_start_locked(ifp);
1658 
1659 done_locked:
1660 	STGE_UNLOCK(sc);
1661 }
1662 
1663 /*
1664  * stge_txeof:
1665  *
1666  *	Helper; handle transmit interrupts.
1667  */
1668 static void
1669 stge_txeof(struct stge_softc *sc)
1670 {
1671 	struct ifnet *ifp;
1672 	struct stge_txdesc *txd;
1673 	uint64_t control;
1674 	int cons;
1675 
1676 	STGE_LOCK_ASSERT(sc);
1677 
1678 	ifp = sc->sc_ifp;
1679 
1680 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1681 	if (txd == NULL)
1682 		return;
1683 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1684 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1685 
1686 	/*
1687 	 * Go through our Tx list and free mbufs for those
1688 	 * frames which have been transmitted.
1689 	 */
1690 	for (cons = sc->sc_cdata.stge_tx_cons;;
1691 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1692 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1693 			break;
1694 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1695 		if ((control & TFD_TFDDone) == 0)
1696 			break;
1697 		sc->sc_cdata.stge_tx_cnt--;
1698 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1699 
1700 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1701 		    BUS_DMASYNC_POSTWRITE);
1702 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1703 
1704 		/* Output counter is updated with statistics register */
1705 		m_freem(txd->tx_m);
1706 		txd->tx_m = NULL;
1707 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1708 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1709 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1710 	}
1711 	sc->sc_cdata.stge_tx_cons = cons;
1712 	if (sc->sc_cdata.stge_tx_cnt == 0)
1713 		sc->sc_watchdog_timer = 0;
1714 
1715         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1716 	    sc->sc_cdata.stge_tx_ring_map,
1717 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1718 }
1719 
1720 static __inline void
1721 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1722 {
1723 	struct stge_rfd *rfd;
1724 
1725 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1726 	rfd->rfd_status = 0;
1727 }
1728 
1729 #ifndef __NO_STRICT_ALIGNMENT
1730 /*
1731  * It seems that TC9021's DMA engine has alignment restrictions in
1732  * DMA scatter operations. The first DMA segment has no address
1733  * alignment restrictins but the rest should be aligned on 4(?) bytes
1734  * boundary. Otherwise it would corrupt random memory. Since we don't
1735  * know which one is used for the first segment in advance we simply
1736  * don't align at all.
1737  * To avoid copying over an entire frame to align, we allocate a new
1738  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1739  * prepended into the existing mbuf chain.
1740  */
1741 static __inline struct mbuf *
1742 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1743 {
1744 	struct mbuf *n;
1745 
1746 	n = NULL;
1747 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1748 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1749 		m->m_data += ETHER_HDR_LEN;
1750 		n = m;
1751 	} else {
1752 		MGETHDR(n, M_DONTWAIT, MT_DATA);
1753 		if (n != NULL) {
1754 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1755 			m->m_data += ETHER_HDR_LEN;
1756 			m->m_len -= ETHER_HDR_LEN;
1757 			n->m_len = ETHER_HDR_LEN;
1758 			M_MOVE_PKTHDR(n, m);
1759 			n->m_next = m;
1760 		} else
1761 			m_freem(m);
1762 	}
1763 
1764 	return (n);
1765 }
1766 #endif
1767 
1768 /*
1769  * stge_rxeof:
1770  *
1771  *	Helper; handle receive interrupts.
1772  */
1773 static int
1774 stge_rxeof(struct stge_softc *sc)
1775 {
1776 	struct ifnet *ifp;
1777 	struct stge_rxdesc *rxd;
1778 	struct mbuf *mp, *m;
1779 	uint64_t status64;
1780 	uint32_t status;
1781 	int cons, prog, rx_npkts;
1782 
1783 	STGE_LOCK_ASSERT(sc);
1784 
1785 	rx_npkts = 0;
1786 	ifp = sc->sc_ifp;
1787 
1788 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1789 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1790 
1791 	prog = 0;
1792 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1793 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1794 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1795 		status = RFD_RxStatus(status64);
1796 		if ((status & RFD_RFDDone) == 0)
1797 			break;
1798 #ifdef DEVICE_POLLING
1799 		if (ifp->if_capenable & IFCAP_POLLING) {
1800 			if (sc->sc_cdata.stge_rxcycles <= 0)
1801 				break;
1802 			sc->sc_cdata.stge_rxcycles--;
1803 		}
1804 #endif
1805 		prog++;
1806 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1807 		mp = rxd->rx_m;
1808 
1809 		/*
1810 		 * If the packet had an error, drop it.  Note we count
1811 		 * the error later in the periodic stats update.
1812 		 */
1813 		if ((status & RFD_FrameEnd) != 0 && (status &
1814 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1815 		    RFD_RxAlignmentError | RFD_RxFCSError |
1816 		    RFD_RxLengthError)) != 0) {
1817 			stge_discard_rxbuf(sc, cons);
1818 			if (sc->sc_cdata.stge_rxhead != NULL) {
1819 				m_freem(sc->sc_cdata.stge_rxhead);
1820 				STGE_RXCHAIN_RESET(sc);
1821 			}
1822 			continue;
1823 		}
1824 		/*
1825 		 * Add a new receive buffer to the ring.
1826 		 */
1827 		if (stge_newbuf(sc, cons) != 0) {
1828 			ifp->if_iqdrops++;
1829 			stge_discard_rxbuf(sc, cons);
1830 			if (sc->sc_cdata.stge_rxhead != NULL) {
1831 				m_freem(sc->sc_cdata.stge_rxhead);
1832 				STGE_RXCHAIN_RESET(sc);
1833 			}
1834 			continue;
1835 		}
1836 
1837 		if ((status & RFD_FrameEnd) != 0)
1838 			mp->m_len = RFD_RxDMAFrameLen(status) -
1839 			    sc->sc_cdata.stge_rxlen;
1840 		sc->sc_cdata.stge_rxlen += mp->m_len;
1841 
1842 		/* Chain mbufs. */
1843 		if (sc->sc_cdata.stge_rxhead == NULL) {
1844 			sc->sc_cdata.stge_rxhead = mp;
1845 			sc->sc_cdata.stge_rxtail = mp;
1846 		} else {
1847 			mp->m_flags &= ~M_PKTHDR;
1848 			sc->sc_cdata.stge_rxtail->m_next = mp;
1849 			sc->sc_cdata.stge_rxtail = mp;
1850 		}
1851 
1852 		if ((status & RFD_FrameEnd) != 0) {
1853 			m = sc->sc_cdata.stge_rxhead;
1854 			m->m_pkthdr.rcvif = ifp;
1855 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1856 
1857 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1858 				m_freem(m);
1859 				STGE_RXCHAIN_RESET(sc);
1860 				continue;
1861 			}
1862 			/*
1863 			 * Set the incoming checksum information for
1864 			 * the packet.
1865 			 */
1866 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1867 				if ((status & RFD_IPDetected) != 0) {
1868 					m->m_pkthdr.csum_flags |=
1869 						CSUM_IP_CHECKED;
1870 					if ((status & RFD_IPError) == 0)
1871 						m->m_pkthdr.csum_flags |=
1872 						    CSUM_IP_VALID;
1873 				}
1874 				if (((status & RFD_TCPDetected) != 0 &&
1875 				    (status & RFD_TCPError) == 0) ||
1876 				    ((status & RFD_UDPDetected) != 0 &&
1877 				    (status & RFD_UDPError) == 0)) {
1878 					m->m_pkthdr.csum_flags |=
1879 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1880 					m->m_pkthdr.csum_data = 0xffff;
1881 				}
1882 			}
1883 
1884 #ifndef __NO_STRICT_ALIGNMENT
1885 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1886 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1887 					STGE_RXCHAIN_RESET(sc);
1888 					continue;
1889 				}
1890 			}
1891 #endif
1892 			/* Check for VLAN tagged packets. */
1893 			if ((status & RFD_VLANDetected) != 0 &&
1894 			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1895 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1896 				m->m_flags |= M_VLANTAG;
1897 			}
1898 
1899 			STGE_UNLOCK(sc);
1900 			/* Pass it on. */
1901 			(*ifp->if_input)(ifp, m);
1902 			STGE_LOCK(sc);
1903 			rx_npkts++;
1904 
1905 			STGE_RXCHAIN_RESET(sc);
1906 		}
1907 	}
1908 
1909 	if (prog > 0) {
1910 		/* Update the consumer index. */
1911 		sc->sc_cdata.stge_rx_cons = cons;
1912 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1913 		    sc->sc_cdata.stge_rx_ring_map,
1914 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1915 	}
1916 	return (rx_npkts);
1917 }
1918 
1919 #ifdef DEVICE_POLLING
1920 static int
1921 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1922 {
1923 	struct stge_softc *sc;
1924 	uint16_t status;
1925 	int rx_npkts;
1926 
1927 	rx_npkts = 0;
1928 	sc = ifp->if_softc;
1929 	STGE_LOCK(sc);
1930 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1931 		STGE_UNLOCK(sc);
1932 		return (rx_npkts);
1933 	}
1934 
1935 	sc->sc_cdata.stge_rxcycles = count;
1936 	rx_npkts = stge_rxeof(sc);
1937 	stge_txeof(sc);
1938 
1939 	if (cmd == POLL_AND_CHECK_STATUS) {
1940 		status = CSR_READ_2(sc, STGE_IntStatus);
1941 		status &= sc->sc_IntEnable;
1942 		if (status != 0) {
1943 			if ((status & IS_HostError) != 0) {
1944 				device_printf(sc->sc_dev,
1945 				    "Host interface error, resetting...\n");
1946 				stge_init_locked(sc);
1947 			}
1948 			if ((status & IS_TxComplete) != 0) {
1949 				if (stge_tx_error(sc) != 0)
1950 					stge_init_locked(sc);
1951 			}
1952 		}
1953 
1954 	}
1955 
1956 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1957 		stge_start_locked(ifp);
1958 
1959 	STGE_UNLOCK(sc);
1960 	return (rx_npkts);
1961 }
1962 #endif	/* DEVICE_POLLING */
1963 
1964 /*
1965  * stge_tick:
1966  *
1967  *	One second timer, used to tick the MII.
1968  */
1969 static void
1970 stge_tick(void *arg)
1971 {
1972 	struct stge_softc *sc;
1973 	struct mii_data *mii;
1974 
1975 	sc = (struct stge_softc *)arg;
1976 
1977 	STGE_LOCK_ASSERT(sc);
1978 
1979 	mii = device_get_softc(sc->sc_miibus);
1980 	mii_tick(mii);
1981 
1982 	/* Update statistics counters. */
1983 	stge_stats_update(sc);
1984 
1985 	/*
1986 	 * Relcaim any pending Tx descriptors to release mbufs in a
1987 	 * timely manner as we don't generate Tx completion interrupts
1988 	 * for every frame. This limits the delay to a maximum of one
1989 	 * second.
1990 	 */
1991 	if (sc->sc_cdata.stge_tx_cnt != 0)
1992 		stge_txeof(sc);
1993 
1994 	stge_watchdog(sc);
1995 
1996 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1997 }
1998 
1999 /*
2000  * stge_stats_update:
2001  *
2002  *	Read the TC9021 statistics counters.
2003  */
2004 static void
2005 stge_stats_update(struct stge_softc *sc)
2006 {
2007 	struct ifnet *ifp;
2008 
2009 	STGE_LOCK_ASSERT(sc);
2010 
2011 	ifp = sc->sc_ifp;
2012 
2013 	CSR_READ_4(sc,STGE_OctetRcvOk);
2014 
2015 	ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
2016 
2017 	ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
2018 
2019 	CSR_READ_4(sc, STGE_OctetXmtdOk);
2020 
2021 	ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
2022 
2023 	ifp->if_collisions +=
2024 	    CSR_READ_4(sc, STGE_LateCollisions) +
2025 	    CSR_READ_4(sc, STGE_MultiColFrames) +
2026 	    CSR_READ_4(sc, STGE_SingleColFrames);
2027 
2028 	ifp->if_oerrors +=
2029 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
2030 	    CSR_READ_2(sc, STGE_FramesWEXDeferal);
2031 }
2032 
2033 /*
2034  * stge_reset:
2035  *
2036  *	Perform a soft reset on the TC9021.
2037  */
2038 static void
2039 stge_reset(struct stge_softc *sc, uint32_t how)
2040 {
2041 	uint32_t ac;
2042 	uint8_t v;
2043 	int i, dv;
2044 
2045 	STGE_LOCK_ASSERT(sc);
2046 
2047 	dv = 5000;
2048 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2049 	switch (how) {
2050 	case STGE_RESET_TX:
2051 		ac |= AC_TxReset | AC_FIFO;
2052 		dv = 100;
2053 		break;
2054 	case STGE_RESET_RX:
2055 		ac |= AC_RxReset | AC_FIFO;
2056 		dv = 100;
2057 		break;
2058 	case STGE_RESET_FULL:
2059 	default:
2060 		/*
2061 		 * Only assert RstOut if we're fiber.  We need GMII clocks
2062 		 * to be present in order for the reset to complete on fiber
2063 		 * cards.
2064 		 */
2065 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
2066 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
2067 		    (sc->sc_usefiber ? AC_RstOut : 0);
2068 		break;
2069 	}
2070 
2071 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2072 
2073 	/* Account for reset problem at 10Mbps. */
2074 	DELAY(dv);
2075 
2076 	for (i = 0; i < STGE_TIMEOUT; i++) {
2077 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
2078 			break;
2079 		DELAY(dv);
2080 	}
2081 
2082 	if (i == STGE_TIMEOUT)
2083 		device_printf(sc->sc_dev, "reset failed to complete\n");
2084 
2085 	/* Set LED, from Linux IPG driver. */
2086 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2087 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
2088 	if ((sc->sc_led & 0x01) != 0)
2089 		ac |= AC_LEDMode;
2090 	if ((sc->sc_led & 0x03) != 0)
2091 		ac |= AC_LEDModeBit1;
2092 	if ((sc->sc_led & 0x08) != 0)
2093 		ac |= AC_LEDSpeed;
2094 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2095 
2096 	/* Set PHY, from Linux IPG driver */
2097 	v = CSR_READ_1(sc, STGE_PhySet);
2098 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
2099 	v |= ((sc->sc_led & 0x70) >> 4);
2100 	CSR_WRITE_1(sc, STGE_PhySet, v);
2101 }
2102 
2103 /*
2104  * stge_init:		[ ifnet interface function ]
2105  *
2106  *	Initialize the interface.
2107  */
2108 static void
2109 stge_init(void *xsc)
2110 {
2111 	struct stge_softc *sc;
2112 
2113 	sc = (struct stge_softc *)xsc;
2114 	STGE_LOCK(sc);
2115 	stge_init_locked(sc);
2116 	STGE_UNLOCK(sc);
2117 }
2118 
2119 static void
2120 stge_init_locked(struct stge_softc *sc)
2121 {
2122 	struct ifnet *ifp;
2123 	struct mii_data *mii;
2124 	uint16_t eaddr[3];
2125 	uint32_t v;
2126 	int error;
2127 
2128 	STGE_LOCK_ASSERT(sc);
2129 
2130 	ifp = sc->sc_ifp;
2131 	mii = device_get_softc(sc->sc_miibus);
2132 
2133 	/*
2134 	 * Cancel any pending I/O.
2135 	 */
2136 	stge_stop(sc);
2137 
2138 	/*
2139 	 * Reset the chip to a known state.
2140 	 */
2141 	stge_reset(sc, STGE_RESET_FULL);
2142 
2143 	/* Init descriptors. */
2144 	error = stge_init_rx_ring(sc);
2145         if (error != 0) {
2146                 device_printf(sc->sc_dev,
2147                     "initialization failed: no memory for rx buffers\n");
2148                 stge_stop(sc);
2149 		goto out;
2150         }
2151 	stge_init_tx_ring(sc);
2152 
2153 	/* Set the station address. */
2154 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2155 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2156 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2157 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2158 
2159 	/*
2160 	 * Set the statistics masks.  Disable all the RMON stats,
2161 	 * and disable selected stats in the non-RMON stats registers.
2162 	 */
2163 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2164 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2165 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2166 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2167 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2168 	    (1U << 21));
2169 
2170 	/* Set up the receive filter. */
2171 	stge_set_filter(sc);
2172 	/* Program multicast filter. */
2173 	stge_set_multi(sc);
2174 
2175 	/*
2176 	 * Give the transmit and receive ring to the chip.
2177 	 */
2178 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2179 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2180 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2181 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2182 
2183 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2184 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2185 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2186 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2187 
2188 	/*
2189 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2190 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2191 	 * transmit engine when there's actually a packet.
2192 	 */
2193 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2194 
2195 	/* ..and the Rx auto-poll period. */
2196 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2197 
2198 	/* Initialize the Tx start threshold. */
2199 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2200 
2201 	/* Rx DMA thresholds, from Linux */
2202 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2203 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2204 
2205 	/* Rx early threhold, from Linux */
2206 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2207 
2208 	/* Tx DMA thresholds, from Linux */
2209 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2210 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2211 
2212 	/*
2213 	 * Initialize the Rx DMA interrupt control register.  We
2214 	 * request an interrupt after every incoming packet, but
2215 	 * defer it for sc_rxint_dmawait us. When the number of
2216 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2217 	 * deferring the interrupt, and signal it immediately.
2218 	 */
2219 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2220 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2221 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2222 
2223 	/*
2224 	 * Initialize the interrupt mask.
2225 	 */
2226 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2227 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2228 #ifdef DEVICE_POLLING
2229 	/* Disable interrupts if we are polling. */
2230 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2231 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2232 	else
2233 #endif
2234 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2235 
2236 	/*
2237 	 * Configure the DMA engine.
2238 	 * XXX Should auto-tune TxBurstLimit.
2239 	 */
2240 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2241 
2242 	/*
2243 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2244 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2245 	 * in the Rx FIFO.
2246 	 */
2247 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2248 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2249 
2250 	/*
2251 	 * Set the maximum frame size.
2252 	 */
2253 	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2254 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2255 
2256 	/*
2257 	 * Initialize MacCtrl -- do it before setting the media,
2258 	 * as setting the media will actually program the register.
2259 	 *
2260 	 * Note: We have to poke the IFS value before poking
2261 	 * anything else.
2262 	 */
2263 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2264 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2265 
2266 	stge_vlan_setup(sc);
2267 
2268 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2269 		/* Multi-frag frame bug work-around. */
2270 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2271 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2272 
2273 		/* Tx Poll Now bug work-around. */
2274 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2275 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2276 		/* Tx Poll Now bug work-around. */
2277 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2278 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2279 	}
2280 
2281 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2282 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2283 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2284 	/*
2285 	 * It seems that transmitting frames without checking the state of
2286 	 * Rx/Tx MAC wedge the hardware.
2287 	 */
2288 	stge_start_tx(sc);
2289 	stge_start_rx(sc);
2290 
2291 	sc->sc_link = 0;
2292 	/*
2293 	 * Set the current media.
2294 	 */
2295 	mii_mediachg(mii);
2296 
2297 	/*
2298 	 * Start the one second MII clock.
2299 	 */
2300 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2301 
2302 	/*
2303 	 * ...all done!
2304 	 */
2305 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2306 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2307 
2308  out:
2309 	if (error != 0)
2310 		device_printf(sc->sc_dev, "interface not running\n");
2311 }
2312 
2313 static void
2314 stge_vlan_setup(struct stge_softc *sc)
2315 {
2316 	struct ifnet *ifp;
2317 	uint32_t v;
2318 
2319 	ifp = sc->sc_ifp;
2320 	/*
2321 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2322 	 * MC_AutoVLANuntagging bit.
2323 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2324 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2325 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2326 	 * use TFC instead of STGE_VLANTag register.
2327 	 */
2328 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2329 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2330 		v |= MC_AutoVLANuntagging;
2331 	else
2332 		v &= ~MC_AutoVLANuntagging;
2333 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2334 }
2335 
2336 /*
2337  *	Stop transmission on the interface.
2338  */
2339 static void
2340 stge_stop(struct stge_softc *sc)
2341 {
2342 	struct ifnet *ifp;
2343 	struct stge_txdesc *txd;
2344 	struct stge_rxdesc *rxd;
2345 	uint32_t v;
2346 	int i;
2347 
2348 	STGE_LOCK_ASSERT(sc);
2349 	/*
2350 	 * Stop the one second clock.
2351 	 */
2352 	callout_stop(&sc->sc_tick_ch);
2353 	sc->sc_watchdog_timer = 0;
2354 
2355 	/*
2356 	 * Disable interrupts.
2357 	 */
2358 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2359 
2360 	/*
2361 	 * Stop receiver, transmitter, and stats update.
2362 	 */
2363 	stge_stop_rx(sc);
2364 	stge_stop_tx(sc);
2365 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2366 	v |= MC_StatisticsDisable;
2367 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2368 
2369 	/*
2370 	 * Stop the transmit and receive DMA.
2371 	 */
2372 	stge_dma_wait(sc);
2373 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2374 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2375 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2376 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2377 
2378 	/*
2379 	 * Free RX and TX mbufs still in the queues.
2380 	 */
2381 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2382 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2383 		if (rxd->rx_m != NULL) {
2384 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2385 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2386 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2387 			    rxd->rx_dmamap);
2388 			m_freem(rxd->rx_m);
2389 			rxd->rx_m = NULL;
2390 		}
2391         }
2392 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2393 		txd = &sc->sc_cdata.stge_txdesc[i];
2394 		if (txd->tx_m != NULL) {
2395 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2396 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2397 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2398 			    txd->tx_dmamap);
2399 			m_freem(txd->tx_m);
2400 			txd->tx_m = NULL;
2401 		}
2402         }
2403 
2404 	/*
2405 	 * Mark the interface down and cancel the watchdog timer.
2406 	 */
2407 	ifp = sc->sc_ifp;
2408 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2409 	sc->sc_link = 0;
2410 }
2411 
2412 static void
2413 stge_start_tx(struct stge_softc *sc)
2414 {
2415 	uint32_t v;
2416 	int i;
2417 
2418 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2419 	if ((v & MC_TxEnabled) != 0)
2420 		return;
2421 	v |= MC_TxEnable;
2422 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2423 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2424 	for (i = STGE_TIMEOUT; i > 0; i--) {
2425 		DELAY(10);
2426 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2427 		if ((v & MC_TxEnabled) != 0)
2428 			break;
2429 	}
2430 	if (i == 0)
2431 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2432 }
2433 
2434 static void
2435 stge_start_rx(struct stge_softc *sc)
2436 {
2437 	uint32_t v;
2438 	int i;
2439 
2440 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2441 	if ((v & MC_RxEnabled) != 0)
2442 		return;
2443 	v |= MC_RxEnable;
2444 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2445 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2446 	for (i = STGE_TIMEOUT; i > 0; i--) {
2447 		DELAY(10);
2448 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2449 		if ((v & MC_RxEnabled) != 0)
2450 			break;
2451 	}
2452 	if (i == 0)
2453 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2454 }
2455 
2456 static void
2457 stge_stop_tx(struct stge_softc *sc)
2458 {
2459 	uint32_t v;
2460 	int i;
2461 
2462 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2463 	if ((v & MC_TxEnabled) == 0)
2464 		return;
2465 	v |= MC_TxDisable;
2466 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2467 	for (i = STGE_TIMEOUT; i > 0; i--) {
2468 		DELAY(10);
2469 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2470 		if ((v & MC_TxEnabled) == 0)
2471 			break;
2472 	}
2473 	if (i == 0)
2474 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2475 }
2476 
2477 static void
2478 stge_stop_rx(struct stge_softc *sc)
2479 {
2480 	uint32_t v;
2481 	int i;
2482 
2483 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2484 	if ((v & MC_RxEnabled) == 0)
2485 		return;
2486 	v |= MC_RxDisable;
2487 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2488 	for (i = STGE_TIMEOUT; i > 0; i--) {
2489 		DELAY(10);
2490 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2491 		if ((v & MC_RxEnabled) == 0)
2492 			break;
2493 	}
2494 	if (i == 0)
2495 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2496 }
2497 
2498 static void
2499 stge_init_tx_ring(struct stge_softc *sc)
2500 {
2501 	struct stge_ring_data *rd;
2502 	struct stge_txdesc *txd;
2503 	bus_addr_t addr;
2504 	int i;
2505 
2506 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2507 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2508 
2509 	sc->sc_cdata.stge_tx_prod = 0;
2510 	sc->sc_cdata.stge_tx_cons = 0;
2511 	sc->sc_cdata.stge_tx_cnt = 0;
2512 
2513 	rd = &sc->sc_rdata;
2514 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2515 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2516 		if (i == (STGE_TX_RING_CNT - 1))
2517 			addr = STGE_TX_RING_ADDR(sc, 0);
2518 		else
2519 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2520 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2521 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2522 		txd = &sc->sc_cdata.stge_txdesc[i];
2523 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2524 	}
2525 
2526 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2527 	    sc->sc_cdata.stge_tx_ring_map,
2528 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2529 
2530 }
2531 
2532 static int
2533 stge_init_rx_ring(struct stge_softc *sc)
2534 {
2535 	struct stge_ring_data *rd;
2536 	bus_addr_t addr;
2537 	int i;
2538 
2539 	sc->sc_cdata.stge_rx_cons = 0;
2540 	STGE_RXCHAIN_RESET(sc);
2541 
2542 	rd = &sc->sc_rdata;
2543 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2544 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2545 		if (stge_newbuf(sc, i) != 0)
2546 			return (ENOBUFS);
2547 		if (i == (STGE_RX_RING_CNT - 1))
2548 			addr = STGE_RX_RING_ADDR(sc, 0);
2549 		else
2550 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2551 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2552 		rd->stge_rx_ring[i].rfd_status = 0;
2553 	}
2554 
2555 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2556 	    sc->sc_cdata.stge_rx_ring_map,
2557 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2558 
2559 	return (0);
2560 }
2561 
2562 /*
2563  * stge_newbuf:
2564  *
2565  *	Add a receive buffer to the indicated descriptor.
2566  */
2567 static int
2568 stge_newbuf(struct stge_softc *sc, int idx)
2569 {
2570 	struct stge_rxdesc *rxd;
2571 	struct stge_rfd *rfd;
2572 	struct mbuf *m;
2573 	bus_dma_segment_t segs[1];
2574 	bus_dmamap_t map;
2575 	int nsegs;
2576 
2577 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2578 	if (m == NULL)
2579 		return (ENOBUFS);
2580 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2581 	/*
2582 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2583 	 * frame is used.
2584 	 */
2585 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2586 		m_adj(m, ETHER_ALIGN);
2587 
2588 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2589 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2590 		m_freem(m);
2591 		return (ENOBUFS);
2592 	}
2593 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2594 
2595 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2596 	if (rxd->rx_m != NULL) {
2597 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2598 		    BUS_DMASYNC_POSTREAD);
2599 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2600 	}
2601 	map = rxd->rx_dmamap;
2602 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2603 	sc->sc_cdata.stge_rx_sparemap = map;
2604 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2605 	    BUS_DMASYNC_PREREAD);
2606 	rxd->rx_m = m;
2607 
2608 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2609 	rfd->rfd_frag.frag_word0 =
2610 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2611 	rfd->rfd_status = 0;
2612 
2613 	return (0);
2614 }
2615 
2616 /*
2617  * stge_set_filter:
2618  *
2619  *	Set up the receive filter.
2620  */
2621 static void
2622 stge_set_filter(struct stge_softc *sc)
2623 {
2624 	struct ifnet *ifp;
2625 	uint16_t mode;
2626 
2627 	STGE_LOCK_ASSERT(sc);
2628 
2629 	ifp = sc->sc_ifp;
2630 
2631 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2632 	mode |= RM_ReceiveUnicast;
2633 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2634 		mode |= RM_ReceiveBroadcast;
2635 	else
2636 		mode &= ~RM_ReceiveBroadcast;
2637 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2638 		mode |= RM_ReceiveAllFrames;
2639 	else
2640 		mode &= ~RM_ReceiveAllFrames;
2641 
2642 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2643 }
2644 
2645 static void
2646 stge_set_multi(struct stge_softc *sc)
2647 {
2648 	struct ifnet *ifp;
2649 	struct ifmultiaddr *ifma;
2650 	uint32_t crc;
2651 	uint32_t mchash[2];
2652 	uint16_t mode;
2653 	int count;
2654 
2655 	STGE_LOCK_ASSERT(sc);
2656 
2657 	ifp = sc->sc_ifp;
2658 
2659 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2660 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2661 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2662 			mode |= RM_ReceiveAllFrames;
2663 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2664 			mode |= RM_ReceiveMulticast;
2665 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2666 		return;
2667 	}
2668 
2669 	/* clear existing filters. */
2670 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2671 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2672 
2673 	/*
2674 	 * Set up the multicast address filter by passing all multicast
2675 	 * addresses through a CRC generator, and then using the low-order
2676 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2677 	 * high order bits select the register, while the rest of the bits
2678 	 * select the bit within the register.
2679 	 */
2680 
2681 	bzero(mchash, sizeof(mchash));
2682 
2683 	count = 0;
2684 	if_maddr_rlock(sc->sc_ifp);
2685 	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2686 		if (ifma->ifma_addr->sa_family != AF_LINK)
2687 			continue;
2688 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2689 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2690 
2691 		/* Just want the 6 least significant bits. */
2692 		crc &= 0x3f;
2693 
2694 		/* Set the corresponding bit in the hash table. */
2695 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2696 		count++;
2697 	}
2698 	if_maddr_runlock(ifp);
2699 
2700 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2701 	if (count > 0)
2702 		mode |= RM_ReceiveMulticastHash;
2703 	else
2704 		mode &= ~RM_ReceiveMulticastHash;
2705 
2706 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2707 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2708 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2709 }
2710 
2711 static int
2712 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2713 {
2714 	int error, value;
2715 
2716 	if (!arg1)
2717 		return (EINVAL);
2718 	value = *(int *)arg1;
2719 	error = sysctl_handle_int(oidp, &value, 0, req);
2720 	if (error || !req->newptr)
2721 		return (error);
2722 	if (value < low || value > high)
2723 		return (EINVAL);
2724         *(int *)arg1 = value;
2725 
2726         return (0);
2727 }
2728 
2729 static int
2730 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2731 {
2732 	return (sysctl_int_range(oidp, arg1, arg2, req,
2733 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2734 }
2735 
2736 static int
2737 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2738 {
2739 	return (sysctl_int_range(oidp, arg1, arg2, req,
2740 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2741 }
2742