xref: /freebsd/sys/dev/stge/if_stge.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #ifdef HAVE_KERNEL_OPTION_HEADERS
41 #include "opt_device_polling.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/endian.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/kernel.h>
50 #include <sys/module.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #include <machine/bus.h>
66 #include <machine/resource.h>
67 #include <sys/bus.h>
68 #include <sys/rman.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/mii_bitbang.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 
77 #include <dev/stge/if_stgereg.h>
78 
79 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(stge, pci, 1, 1, 1);
82 MODULE_DEPEND(stge, ether, 1, 1, 1);
83 MODULE_DEPEND(stge, miibus, 1, 1, 1);
84 
85 /* "device miibus" required.  See GENERIC if you get errors here. */
86 #include "miibus_if.h"
87 
88 /*
89  * Devices supported by this driver.
90  */
91 static const struct stge_product {
92 	uint16_t	stge_vendorid;
93 	uint16_t	stge_deviceid;
94 	const char	*stge_name;
95 } stge_products[] = {
96 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
97 	  "Sundance ST-1023 Gigabit Ethernet" },
98 
99 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
100 	  "Sundance ST-2021 Gigabit Ethernet" },
101 
102 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
103 	  "Tamarack TC9021 Gigabit Ethernet" },
104 
105 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
106 	  "Tamarack TC9021 Gigabit Ethernet" },
107 
108 	/*
109 	 * The Sundance sample boards use the Sundance vendor ID,
110 	 * but the Tamarack product ID.
111 	 */
112 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
113 	  "Sundance TC9021 Gigabit Ethernet" },
114 
115 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
116 	  "Sundance TC9021 Gigabit Ethernet" },
117 
118 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
119 	  "D-Link DL-4000 Gigabit Ethernet" },
120 
121 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
122 	  "Antares Gigabit Ethernet" }
123 };
124 
125 static int	stge_probe(device_t);
126 static int	stge_attach(device_t);
127 static int	stge_detach(device_t);
128 static int	stge_shutdown(device_t);
129 static int	stge_suspend(device_t);
130 static int	stge_resume(device_t);
131 
132 static int	stge_encap(struct stge_softc *, struct mbuf **);
133 static void	stge_start(struct ifnet *);
134 static void	stge_start_locked(struct ifnet *);
135 static void	stge_watchdog(struct stge_softc *);
136 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void	stge_init(void *);
138 static void	stge_init_locked(struct stge_softc *);
139 static void	stge_vlan_setup(struct stge_softc *);
140 static void	stge_stop(struct stge_softc *);
141 static void	stge_start_tx(struct stge_softc *);
142 static void	stge_start_rx(struct stge_softc *);
143 static void	stge_stop_tx(struct stge_softc *);
144 static void	stge_stop_rx(struct stge_softc *);
145 
146 static void	stge_reset(struct stge_softc *, uint32_t);
147 static int	stge_eeprom_wait(struct stge_softc *);
148 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
149 static void	stge_tick(void *);
150 static void	stge_stats_update(struct stge_softc *);
151 static void	stge_set_filter(struct stge_softc *);
152 static void	stge_set_multi(struct stge_softc *);
153 
154 static void	stge_link_task(void *, int);
155 static void	stge_intr(void *);
156 static __inline int stge_tx_error(struct stge_softc *);
157 static void	stge_txeof(struct stge_softc *);
158 static int	stge_rxeof(struct stge_softc *);
159 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
160 static int	stge_newbuf(struct stge_softc *, int);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
163 #endif
164 
165 static int	stge_miibus_readreg(device_t, int, int);
166 static int	stge_miibus_writereg(device_t, int, int, int);
167 static void	stge_miibus_statchg(device_t);
168 static int	stge_mediachange(struct ifnet *);
169 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
170 
171 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
172 static int	stge_dma_alloc(struct stge_softc *);
173 static void	stge_dma_free(struct stge_softc *);
174 static void	stge_dma_wait(struct stge_softc *);
175 static void	stge_init_tx_ring(struct stge_softc *);
176 static int	stge_init_rx_ring(struct stge_softc *);
177 #ifdef DEVICE_POLLING
178 static int	stge_poll(struct ifnet *, enum poll_cmd, int);
179 #endif
180 
181 static void	stge_setwol(struct stge_softc *);
182 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
183 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
184 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
185 
186 /*
187  * MII bit-bang glue
188  */
189 static uint32_t stge_mii_bitbang_read(device_t);
190 static void	stge_mii_bitbang_write(device_t, uint32_t);
191 
192 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
193 	stge_mii_bitbang_read,
194 	stge_mii_bitbang_write,
195 	{
196 		PC_MgmtData,		/* MII_BIT_MDO */
197 		PC_MgmtData,		/* MII_BIT_MDI */
198 		PC_MgmtClk,		/* MII_BIT_MDC */
199 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
200 		0,			/* MII_BIT_DIR_PHY_HOST */
201 	}
202 };
203 
204 static device_method_t stge_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		stge_probe),
207 	DEVMETHOD(device_attach,	stge_attach),
208 	DEVMETHOD(device_detach,	stge_detach),
209 	DEVMETHOD(device_shutdown,	stge_shutdown),
210 	DEVMETHOD(device_suspend,	stge_suspend),
211 	DEVMETHOD(device_resume,	stge_resume),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
217 
218 	DEVMETHOD_END
219 };
220 
221 static driver_t stge_driver = {
222 	"stge",
223 	stge_methods,
224 	sizeof(struct stge_softc)
225 };
226 
227 static devclass_t stge_devclass;
228 
229 DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
231 
232 static struct resource_spec stge_res_spec_io[] = {
233 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
234 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
235 	{ -1,			0,		0 }
236 };
237 
238 static struct resource_spec stge_res_spec_mem[] = {
239 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
240 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
241 	{ -1,			0,		0 }
242 };
243 
244 /*
245  * stge_mii_bitbang_read: [mii bit-bang interface function]
246  *
247  *	Read the MII serial port for the MII bit-bang module.
248  */
249 static uint32_t
250 stge_mii_bitbang_read(device_t dev)
251 {
252 	struct stge_softc *sc;
253 	uint32_t val;
254 
255 	sc = device_get_softc(dev);
256 
257 	val = CSR_READ_1(sc, STGE_PhyCtrl);
258 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
259 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
260 	return (val);
261 }
262 
263 /*
264  * stge_mii_bitbang_write: [mii big-bang interface function]
265  *
266  *	Write the MII serial port for the MII bit-bang module.
267  */
268 static void
269 stge_mii_bitbang_write(device_t dev, uint32_t val)
270 {
271 	struct stge_softc *sc;
272 
273 	sc = device_get_softc(dev);
274 
275 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
276 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
277 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
278 }
279 
280 /*
281  * sc_miibus_readreg:	[mii interface function]
282  *
283  *	Read a PHY register on the MII of the TC9021.
284  */
285 static int
286 stge_miibus_readreg(device_t dev, int phy, int reg)
287 {
288 	struct stge_softc *sc;
289 	int error, val;
290 
291 	sc = device_get_softc(dev);
292 
293 	if (reg == STGE_PhyCtrl) {
294 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
295 		STGE_MII_LOCK(sc);
296 		error = CSR_READ_1(sc, STGE_PhyCtrl);
297 		STGE_MII_UNLOCK(sc);
298 		return (error);
299 	}
300 
301 	STGE_MII_LOCK(sc);
302 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
303 	STGE_MII_UNLOCK(sc);
304 	return (val);
305 }
306 
307 /*
308  * stge_miibus_writereg:	[mii interface function]
309  *
310  *	Write a PHY register on the MII of the TC9021.
311  */
312 static int
313 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
314 {
315 	struct stge_softc *sc;
316 
317 	sc = device_get_softc(dev);
318 
319 	STGE_MII_LOCK(sc);
320 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
321 	STGE_MII_UNLOCK(sc);
322 	return (0);
323 }
324 
325 /*
326  * stge_miibus_statchg:	[mii interface function]
327  *
328  *	Callback from MII layer when media changes.
329  */
330 static void
331 stge_miibus_statchg(device_t dev)
332 {
333 	struct stge_softc *sc;
334 
335 	sc = device_get_softc(dev);
336 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
337 }
338 
339 /*
340  * stge_mediastatus:	[ifmedia interface function]
341  *
342  *	Get the current interface media status.
343  */
344 static void
345 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
346 {
347 	struct stge_softc *sc;
348 	struct mii_data *mii;
349 
350 	sc = ifp->if_softc;
351 	mii = device_get_softc(sc->sc_miibus);
352 
353 	mii_pollstat(mii);
354 	ifmr->ifm_status = mii->mii_media_status;
355 	ifmr->ifm_active = mii->mii_media_active;
356 }
357 
358 /*
359  * stge_mediachange:	[ifmedia interface function]
360  *
361  *	Set hardware to newly-selected media.
362  */
363 static int
364 stge_mediachange(struct ifnet *ifp)
365 {
366 	struct stge_softc *sc;
367 	struct mii_data *mii;
368 
369 	sc = ifp->if_softc;
370 	mii = device_get_softc(sc->sc_miibus);
371 	mii_mediachg(mii);
372 
373 	return (0);
374 }
375 
376 static int
377 stge_eeprom_wait(struct stge_softc *sc)
378 {
379 	int i;
380 
381 	for (i = 0; i < STGE_TIMEOUT; i++) {
382 		DELAY(1000);
383 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
384 			return (0);
385 	}
386 	return (1);
387 }
388 
389 /*
390  * stge_read_eeprom:
391  *
392  *	Read data from the serial EEPROM.
393  */
394 static void
395 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
396 {
397 
398 	if (stge_eeprom_wait(sc))
399 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
400 
401 	CSR_WRITE_2(sc, STGE_EepromCtrl,
402 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
403 	if (stge_eeprom_wait(sc))
404 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
405 	*data = CSR_READ_2(sc, STGE_EepromData);
406 }
407 
408 
409 static int
410 stge_probe(device_t dev)
411 {
412 	const struct stge_product *sp;
413 	int i;
414 	uint16_t vendor, devid;
415 
416 	vendor = pci_get_vendor(dev);
417 	devid = pci_get_device(dev);
418 	sp = stge_products;
419 	for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
420 	    i++, sp++) {
421 		if (vendor == sp->stge_vendorid &&
422 		    devid == sp->stge_deviceid) {
423 			device_set_desc(dev, sp->stge_name);
424 			return (BUS_PROBE_DEFAULT);
425 		}
426 	}
427 
428 	return (ENXIO);
429 }
430 
431 static int
432 stge_attach(device_t dev)
433 {
434 	struct stge_softc *sc;
435 	struct ifnet *ifp;
436 	uint8_t enaddr[ETHER_ADDR_LEN];
437 	int error, flags, i;
438 	uint16_t cmd;
439 	uint32_t val;
440 
441 	error = 0;
442 	sc = device_get_softc(dev);
443 	sc->sc_dev = dev;
444 
445 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
446 	    MTX_DEF);
447 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
448 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
449 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
450 
451 	/*
452 	 * Map the device.
453 	 */
454 	pci_enable_busmaster(dev);
455 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
456 	val = pci_read_config(dev, PCIR_BAR(1), 4);
457 	if (PCI_BAR_IO(val))
458 		sc->sc_spec = stge_res_spec_mem;
459 	else {
460 		val = pci_read_config(dev, PCIR_BAR(0), 4);
461 		if (!PCI_BAR_IO(val)) {
462 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
463 			error = ENXIO;
464 			goto fail;
465 		}
466 		sc->sc_spec = stge_res_spec_io;
467 	}
468 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
469 	if (error != 0) {
470 		device_printf(dev, "couldn't allocate %s resources\n",
471 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
472 		goto fail;
473 	}
474 	sc->sc_rev = pci_get_revid(dev);
475 
476 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
477 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
478 	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
479 	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
480 
481 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
482 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
483 	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
484 	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
485 
486 	/* Pull in device tunables. */
487 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
488 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
489 	    "rxint_nframe", &sc->sc_rxint_nframe);
490 	if (error == 0) {
491 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
492 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
493 			device_printf(dev, "rxint_nframe value out of range; "
494 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
495 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
496 		}
497 	}
498 
499 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
500 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
501 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
502 	if (error == 0) {
503 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
504 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
505 			device_printf(dev, "rxint_dmawait value out of range; "
506 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
507 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
508 		}
509 	}
510 
511 	if ((error = stge_dma_alloc(sc)) != 0)
512 		goto fail;
513 
514 	/*
515 	 * Determine if we're copper or fiber.  It affects how we
516 	 * reset the card.
517 	 */
518 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
519 		sc->sc_usefiber = 1;
520 	else
521 		sc->sc_usefiber = 0;
522 
523 	/* Load LED configuration from EEPROM. */
524 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
525 
526 	/*
527 	 * Reset the chip to a known state.
528 	 */
529 	STGE_LOCK(sc);
530 	stge_reset(sc, STGE_RESET_FULL);
531 	STGE_UNLOCK(sc);
532 
533 	/*
534 	 * Reading the station address from the EEPROM doesn't seem
535 	 * to work, at least on my sample boards.  Instead, since
536 	 * the reset sequence does AutoInit, read it from the station
537 	 * address registers. For Sundance 1023 you can only read it
538 	 * from EEPROM.
539 	 */
540 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
541 		uint16_t v;
542 
543 		v = CSR_READ_2(sc, STGE_StationAddress0);
544 		enaddr[0] = v & 0xff;
545 		enaddr[1] = v >> 8;
546 		v = CSR_READ_2(sc, STGE_StationAddress1);
547 		enaddr[2] = v & 0xff;
548 		enaddr[3] = v >> 8;
549 		v = CSR_READ_2(sc, STGE_StationAddress2);
550 		enaddr[4] = v & 0xff;
551 		enaddr[5] = v >> 8;
552 		sc->sc_stge1023 = 0;
553 	} else {
554 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
555 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
556 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
557 			    &myaddr[i]);
558 			myaddr[i] = le16toh(myaddr[i]);
559 		}
560 		bcopy(myaddr, enaddr, sizeof(enaddr));
561 		sc->sc_stge1023 = 1;
562 	}
563 
564 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
565 	if (ifp == NULL) {
566 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
567 		error = ENXIO;
568 		goto fail;
569 	}
570 
571 	ifp->if_softc = sc;
572 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
573 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
574 	ifp->if_ioctl = stge_ioctl;
575 	ifp->if_start = stge_start;
576 	ifp->if_init = stge_init;
577 	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
578 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
579 	IFQ_SET_READY(&ifp->if_snd);
580 	/* Revision B3 and earlier chips have checksum bug. */
581 	if (sc->sc_rev >= 0x0c) {
582 		ifp->if_hwassist = STGE_CSUM_FEATURES;
583 		ifp->if_capabilities = IFCAP_HWCSUM;
584 	} else {
585 		ifp->if_hwassist = 0;
586 		ifp->if_capabilities = 0;
587 	}
588 	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
589 	ifp->if_capenable = ifp->if_capabilities;
590 
591 	/*
592 	 * Read some important bits from the PhyCtrl register.
593 	 */
594 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
595 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
596 
597 	/* Set up MII bus. */
598 	flags = MIIF_DOPAUSE;
599 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
600 		flags |= MIIF_MACPRIV0;
601 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
602 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
603 	    flags);
604 	if (error != 0) {
605 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
606 		goto fail;
607 	}
608 
609 	ether_ifattach(ifp, enaddr);
610 
611 	/* VLAN capability setup */
612 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
613 	if (sc->sc_rev >= 0x0c)
614 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
615 	ifp->if_capenable = ifp->if_capabilities;
616 #ifdef DEVICE_POLLING
617 	ifp->if_capabilities |= IFCAP_POLLING;
618 #endif
619 	/*
620 	 * Tell the upper layer(s) we support long frames.
621 	 * Must appear after the call to ether_ifattach() because
622 	 * ether_ifattach() sets ifi_hdrlen to the default value.
623 	 */
624 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
625 
626 	/*
627 	 * The manual recommends disabling early transmit, so we
628 	 * do.  It's disabled anyway, if using IP checksumming,
629 	 * since the entire packet must be in the FIFO in order
630 	 * for the chip to perform the checksum.
631 	 */
632 	sc->sc_txthresh = 0x0fff;
633 
634 	/*
635 	 * Disable MWI if the PCI layer tells us to.
636 	 */
637 	sc->sc_DMACtrl = 0;
638 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
639 		sc->sc_DMACtrl |= DMAC_MWIDisable;
640 
641 	/*
642 	 * Hookup IRQ
643 	 */
644 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
645 	    NULL, stge_intr, sc, &sc->sc_ih);
646 	if (error != 0) {
647 		ether_ifdetach(ifp);
648 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
649 		sc->sc_ifp = NULL;
650 		goto fail;
651 	}
652 
653 fail:
654 	if (error != 0)
655 		stge_detach(dev);
656 
657 	return (error);
658 }
659 
660 static int
661 stge_detach(device_t dev)
662 {
663 	struct stge_softc *sc;
664 	struct ifnet *ifp;
665 
666 	sc = device_get_softc(dev);
667 
668 	ifp = sc->sc_ifp;
669 #ifdef DEVICE_POLLING
670 	if (ifp && ifp->if_capenable & IFCAP_POLLING)
671 		ether_poll_deregister(ifp);
672 #endif
673 	if (device_is_attached(dev)) {
674 		STGE_LOCK(sc);
675 		/* XXX */
676 		sc->sc_detach = 1;
677 		stge_stop(sc);
678 		STGE_UNLOCK(sc);
679 		callout_drain(&sc->sc_tick_ch);
680 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
681 		ether_ifdetach(ifp);
682 	}
683 
684 	if (sc->sc_miibus != NULL) {
685 		device_delete_child(dev, sc->sc_miibus);
686 		sc->sc_miibus = NULL;
687 	}
688 	bus_generic_detach(dev);
689 	stge_dma_free(sc);
690 
691 	if (ifp != NULL) {
692 		if_free(ifp);
693 		sc->sc_ifp = NULL;
694 	}
695 
696 	if (sc->sc_ih) {
697 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
698 		sc->sc_ih = NULL;
699 	}
700 	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
701 
702 	mtx_destroy(&sc->sc_mii_mtx);
703 	mtx_destroy(&sc->sc_mtx);
704 
705 	return (0);
706 }
707 
708 struct stge_dmamap_arg {
709 	bus_addr_t	stge_busaddr;
710 };
711 
712 static void
713 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
714 {
715 	struct stge_dmamap_arg *ctx;
716 
717 	if (error != 0)
718 		return;
719 
720 	ctx = (struct stge_dmamap_arg *)arg;
721 	ctx->stge_busaddr = segs[0].ds_addr;
722 }
723 
724 static int
725 stge_dma_alloc(struct stge_softc *sc)
726 {
727 	struct stge_dmamap_arg ctx;
728 	struct stge_txdesc *txd;
729 	struct stge_rxdesc *rxd;
730 	int error, i;
731 
732 	/* create parent tag. */
733 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
734 		    1, 0,			/* algnmnt, boundary */
735 		    STGE_DMA_MAXADDR,		/* lowaddr */
736 		    BUS_SPACE_MAXADDR,		/* highaddr */
737 		    NULL, NULL,			/* filter, filterarg */
738 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
739 		    0,				/* nsegments */
740 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
741 		    0,				/* flags */
742 		    NULL, NULL,			/* lockfunc, lockarg */
743 		    &sc->sc_cdata.stge_parent_tag);
744 	if (error != 0) {
745 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
746 		goto fail;
747 	}
748 	/* create tag for Tx ring. */
749 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
750 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
751 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
752 		    BUS_SPACE_MAXADDR,		/* highaddr */
753 		    NULL, NULL,			/* filter, filterarg */
754 		    STGE_TX_RING_SZ,		/* maxsize */
755 		    1,				/* nsegments */
756 		    STGE_TX_RING_SZ,		/* maxsegsize */
757 		    0,				/* flags */
758 		    NULL, NULL,			/* lockfunc, lockarg */
759 		    &sc->sc_cdata.stge_tx_ring_tag);
760 	if (error != 0) {
761 		device_printf(sc->sc_dev,
762 		    "failed to allocate Tx ring DMA tag\n");
763 		goto fail;
764 	}
765 
766 	/* create tag for Rx ring. */
767 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
768 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
769 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
770 		    BUS_SPACE_MAXADDR,		/* highaddr */
771 		    NULL, NULL,			/* filter, filterarg */
772 		    STGE_RX_RING_SZ,		/* maxsize */
773 		    1,				/* nsegments */
774 		    STGE_RX_RING_SZ,		/* maxsegsize */
775 		    0,				/* flags */
776 		    NULL, NULL,			/* lockfunc, lockarg */
777 		    &sc->sc_cdata.stge_rx_ring_tag);
778 	if (error != 0) {
779 		device_printf(sc->sc_dev,
780 		    "failed to allocate Rx ring DMA tag\n");
781 		goto fail;
782 	}
783 
784 	/* create tag for Tx buffers. */
785 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
786 		    1, 0,			/* algnmnt, boundary */
787 		    BUS_SPACE_MAXADDR,		/* lowaddr */
788 		    BUS_SPACE_MAXADDR,		/* highaddr */
789 		    NULL, NULL,			/* filter, filterarg */
790 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
791 		    STGE_MAXTXSEGS,		/* nsegments */
792 		    MCLBYTES,			/* maxsegsize */
793 		    0,				/* flags */
794 		    NULL, NULL,			/* lockfunc, lockarg */
795 		    &sc->sc_cdata.stge_tx_tag);
796 	if (error != 0) {
797 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
798 		goto fail;
799 	}
800 
801 	/* create tag for Rx buffers. */
802 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
803 		    1, 0,			/* algnmnt, boundary */
804 		    BUS_SPACE_MAXADDR,		/* lowaddr */
805 		    BUS_SPACE_MAXADDR,		/* highaddr */
806 		    NULL, NULL,			/* filter, filterarg */
807 		    MCLBYTES,			/* maxsize */
808 		    1,				/* nsegments */
809 		    MCLBYTES,			/* maxsegsize */
810 		    0,				/* flags */
811 		    NULL, NULL,			/* lockfunc, lockarg */
812 		    &sc->sc_cdata.stge_rx_tag);
813 	if (error != 0) {
814 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
815 		goto fail;
816 	}
817 
818 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
819 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
820 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
821 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
822 	if (error != 0) {
823 		device_printf(sc->sc_dev,
824 		    "failed to allocate DMA'able memory for Tx ring\n");
825 		goto fail;
826 	}
827 
828 	ctx.stge_busaddr = 0;
829 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
830 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
831 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
832 	if (error != 0 || ctx.stge_busaddr == 0) {
833 		device_printf(sc->sc_dev,
834 		    "failed to load DMA'able memory for Tx ring\n");
835 		goto fail;
836 	}
837 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
838 
839 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
840 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
841 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
842 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
843 	if (error != 0) {
844 		device_printf(sc->sc_dev,
845 		    "failed to allocate DMA'able memory for Rx ring\n");
846 		goto fail;
847 	}
848 
849 	ctx.stge_busaddr = 0;
850 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
851 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
852 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
853 	if (error != 0 || ctx.stge_busaddr == 0) {
854 		device_printf(sc->sc_dev,
855 		    "failed to load DMA'able memory for Rx ring\n");
856 		goto fail;
857 	}
858 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
859 
860 	/* create DMA maps for Tx buffers. */
861 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
862 		txd = &sc->sc_cdata.stge_txdesc[i];
863 		txd->tx_m = NULL;
864 		txd->tx_dmamap = 0;
865 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
866 		    &txd->tx_dmamap);
867 		if (error != 0) {
868 			device_printf(sc->sc_dev,
869 			    "failed to create Tx dmamap\n");
870 			goto fail;
871 		}
872 	}
873 	/* create DMA maps for Rx buffers. */
874 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
875 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
876 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
877 		goto fail;
878 	}
879 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
880 		rxd = &sc->sc_cdata.stge_rxdesc[i];
881 		rxd->rx_m = NULL;
882 		rxd->rx_dmamap = 0;
883 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
884 		    &rxd->rx_dmamap);
885 		if (error != 0) {
886 			device_printf(sc->sc_dev,
887 			    "failed to create Rx dmamap\n");
888 			goto fail;
889 		}
890 	}
891 
892 fail:
893 	return (error);
894 }
895 
896 static void
897 stge_dma_free(struct stge_softc *sc)
898 {
899 	struct stge_txdesc *txd;
900 	struct stge_rxdesc *rxd;
901 	int i;
902 
903 	/* Tx ring */
904 	if (sc->sc_cdata.stge_tx_ring_tag) {
905 		if (sc->sc_rdata.stge_tx_ring_paddr)
906 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
907 			    sc->sc_cdata.stge_tx_ring_map);
908 		if (sc->sc_rdata.stge_tx_ring)
909 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
910 			    sc->sc_rdata.stge_tx_ring,
911 			    sc->sc_cdata.stge_tx_ring_map);
912 		sc->sc_rdata.stge_tx_ring = NULL;
913 		sc->sc_rdata.stge_tx_ring_paddr = 0;
914 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
915 		sc->sc_cdata.stge_tx_ring_tag = NULL;
916 	}
917 	/* Rx ring */
918 	if (sc->sc_cdata.stge_rx_ring_tag) {
919 		if (sc->sc_rdata.stge_rx_ring_paddr)
920 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
921 			    sc->sc_cdata.stge_rx_ring_map);
922 		if (sc->sc_rdata.stge_rx_ring)
923 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
924 			    sc->sc_rdata.stge_rx_ring,
925 			    sc->sc_cdata.stge_rx_ring_map);
926 		sc->sc_rdata.stge_rx_ring = NULL;
927 		sc->sc_rdata.stge_rx_ring_paddr = 0;
928 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
929 		sc->sc_cdata.stge_rx_ring_tag = NULL;
930 	}
931 	/* Tx buffers */
932 	if (sc->sc_cdata.stge_tx_tag) {
933 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
934 			txd = &sc->sc_cdata.stge_txdesc[i];
935 			if (txd->tx_dmamap) {
936 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
937 				    txd->tx_dmamap);
938 				txd->tx_dmamap = 0;
939 			}
940 		}
941 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
942 		sc->sc_cdata.stge_tx_tag = NULL;
943 	}
944 	/* Rx buffers */
945 	if (sc->sc_cdata.stge_rx_tag) {
946 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
947 			rxd = &sc->sc_cdata.stge_rxdesc[i];
948 			if (rxd->rx_dmamap) {
949 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
950 				    rxd->rx_dmamap);
951 				rxd->rx_dmamap = 0;
952 			}
953 		}
954 		if (sc->sc_cdata.stge_rx_sparemap) {
955 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
956 			    sc->sc_cdata.stge_rx_sparemap);
957 			sc->sc_cdata.stge_rx_sparemap = 0;
958 		}
959 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
960 		sc->sc_cdata.stge_rx_tag = NULL;
961 	}
962 
963 	if (sc->sc_cdata.stge_parent_tag) {
964 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
965 		sc->sc_cdata.stge_parent_tag = NULL;
966 	}
967 }
968 
969 /*
970  * stge_shutdown:
971  *
972  *	Make sure the interface is stopped at reboot time.
973  */
974 static int
975 stge_shutdown(device_t dev)
976 {
977 
978 	return (stge_suspend(dev));
979 }
980 
981 static void
982 stge_setwol(struct stge_softc *sc)
983 {
984 	struct ifnet *ifp;
985 	uint8_t v;
986 
987 	STGE_LOCK_ASSERT(sc);
988 
989 	ifp = sc->sc_ifp;
990 	v = CSR_READ_1(sc, STGE_WakeEvent);
991 	/* Disable all WOL bits. */
992 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
993 	    WE_WakeOnLanEnable);
994 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
995 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
996 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
997 	/* Reset Tx and prevent transmission. */
998 	CSR_WRITE_4(sc, STGE_AsicCtrl,
999 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1000 	/*
1001 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1002 	 * into sleep so there is no need to try to resetting link speed.
1003 	 */
1004 }
1005 
1006 static int
1007 stge_suspend(device_t dev)
1008 {
1009 	struct stge_softc *sc;
1010 
1011 	sc = device_get_softc(dev);
1012 
1013 	STGE_LOCK(sc);
1014 	stge_stop(sc);
1015 	sc->sc_suspended = 1;
1016 	stge_setwol(sc);
1017 	STGE_UNLOCK(sc);
1018 
1019 	return (0);
1020 }
1021 
1022 static int
1023 stge_resume(device_t dev)
1024 {
1025 	struct stge_softc *sc;
1026 	struct ifnet *ifp;
1027 	uint8_t v;
1028 
1029 	sc = device_get_softc(dev);
1030 
1031 	STGE_LOCK(sc);
1032 	/*
1033 	 * Clear WOL bits, so special frames wouldn't interfere
1034 	 * normal Rx operation anymore.
1035 	 */
1036 	v = CSR_READ_1(sc, STGE_WakeEvent);
1037 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1038 	    WE_WakeOnLanEnable);
1039 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1040 	ifp = sc->sc_ifp;
1041 	if (ifp->if_flags & IFF_UP)
1042 		stge_init_locked(sc);
1043 
1044 	sc->sc_suspended = 0;
1045 	STGE_UNLOCK(sc);
1046 
1047 	return (0);
1048 }
1049 
1050 static void
1051 stge_dma_wait(struct stge_softc *sc)
1052 {
1053 	int i;
1054 
1055 	for (i = 0; i < STGE_TIMEOUT; i++) {
1056 		DELAY(2);
1057 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1058 			break;
1059 	}
1060 
1061 	if (i == STGE_TIMEOUT)
1062 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1063 }
1064 
1065 static int
1066 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1067 {
1068 	struct stge_txdesc *txd;
1069 	struct stge_tfd *tfd;
1070 	struct mbuf *m;
1071 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1072 	int error, i, nsegs, si;
1073 	uint64_t csum_flags, tfc;
1074 
1075 	STGE_LOCK_ASSERT(sc);
1076 
1077 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1078 		return (ENOBUFS);
1079 
1080 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1081 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1082 	if (error == EFBIG) {
1083 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1084 		if (m == NULL) {
1085 			m_freem(*m_head);
1086 			*m_head = NULL;
1087 			return (ENOMEM);
1088 		}
1089 		*m_head = m;
1090 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1091 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1092 		if (error != 0) {
1093 			m_freem(*m_head);
1094 			*m_head = NULL;
1095 			return (error);
1096 		}
1097 	} else if (error != 0)
1098 		return (error);
1099 	if (nsegs == 0) {
1100 		m_freem(*m_head);
1101 		*m_head = NULL;
1102 		return (EIO);
1103 	}
1104 
1105 	m = *m_head;
1106 	csum_flags = 0;
1107 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1108 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1109 			csum_flags |= TFD_IPChecksumEnable;
1110 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1111 			csum_flags |= TFD_TCPChecksumEnable;
1112 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1113 			csum_flags |= TFD_UDPChecksumEnable;
1114 	}
1115 
1116 	si = sc->sc_cdata.stge_tx_prod;
1117 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1118 	for (i = 0; i < nsegs; i++)
1119 		tfd->tfd_frags[i].frag_word0 =
1120 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1121 		    FRAG_LEN(txsegs[i].ds_len));
1122 	sc->sc_cdata.stge_tx_cnt++;
1123 
1124 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1125 	    TFD_FragCount(nsegs) | csum_flags;
1126 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1127 		tfc |= TFD_TxDMAIndicate;
1128 
1129 	/* Update producer index. */
1130 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1131 
1132 	/* Check if we have a VLAN tag to insert. */
1133 	if (m->m_flags & M_VLANTAG)
1134 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1135 	tfd->tfd_control = htole64(tfc);
1136 
1137 	/* Update Tx Queue. */
1138 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1139 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1140 	txd->tx_m = m;
1141 
1142 	/* Sync descriptors. */
1143 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1144 	    BUS_DMASYNC_PREWRITE);
1145 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1146 	    sc->sc_cdata.stge_tx_ring_map,
1147 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1148 
1149 	return (0);
1150 }
1151 
1152 /*
1153  * stge_start:		[ifnet interface function]
1154  *
1155  *	Start packet transmission on the interface.
1156  */
1157 static void
1158 stge_start(struct ifnet *ifp)
1159 {
1160 	struct stge_softc *sc;
1161 
1162 	sc = ifp->if_softc;
1163 	STGE_LOCK(sc);
1164 	stge_start_locked(ifp);
1165 	STGE_UNLOCK(sc);
1166 }
1167 
1168 static void
1169 stge_start_locked(struct ifnet *ifp)
1170 {
1171         struct stge_softc *sc;
1172         struct mbuf *m_head;
1173 	int enq;
1174 
1175 	sc = ifp->if_softc;
1176 
1177 	STGE_LOCK_ASSERT(sc);
1178 
1179 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1180 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1181 		return;
1182 
1183 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1184 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1185 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1186 			break;
1187 		}
1188 
1189 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1190 		if (m_head == NULL)
1191 			break;
1192 		/*
1193 		 * Pack the data into the transmit ring. If we
1194 		 * don't have room, set the OACTIVE flag and wait
1195 		 * for the NIC to drain the ring.
1196 		 */
1197 		if (stge_encap(sc, &m_head)) {
1198 			if (m_head == NULL)
1199 				break;
1200 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1201 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1202 			break;
1203 		}
1204 
1205 		enq++;
1206 		/*
1207 		 * If there's a BPF listener, bounce a copy of this frame
1208 		 * to him.
1209 		 */
1210 		ETHER_BPF_MTAP(ifp, m_head);
1211 	}
1212 
1213 	if (enq > 0) {
1214 		/* Transmit */
1215 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1216 
1217 		/* Set a timeout in case the chip goes out to lunch. */
1218 		sc->sc_watchdog_timer = 5;
1219 	}
1220 }
1221 
1222 /*
1223  * stge_watchdog:
1224  *
1225  *	Watchdog timer handler.
1226  */
1227 static void
1228 stge_watchdog(struct stge_softc *sc)
1229 {
1230 	struct ifnet *ifp;
1231 
1232 	STGE_LOCK_ASSERT(sc);
1233 
1234 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1235 		return;
1236 
1237 	ifp = sc->sc_ifp;
1238 	if_printf(sc->sc_ifp, "device timeout\n");
1239 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1240 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1241 	stge_init_locked(sc);
1242 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1243 		stge_start_locked(ifp);
1244 }
1245 
1246 /*
1247  * stge_ioctl:		[ifnet interface function]
1248  *
1249  *	Handle control requests from the operator.
1250  */
1251 static int
1252 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1253 {
1254 	struct stge_softc *sc;
1255 	struct ifreq *ifr;
1256 	struct mii_data *mii;
1257 	int error, mask;
1258 
1259 	sc = ifp->if_softc;
1260 	ifr = (struct ifreq *)data;
1261 	error = 0;
1262 	switch (cmd) {
1263 	case SIOCSIFMTU:
1264 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1265 			error = EINVAL;
1266 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1267 			ifp->if_mtu = ifr->ifr_mtu;
1268 			STGE_LOCK(sc);
1269 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1270 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1271 				stge_init_locked(sc);
1272 			}
1273 			STGE_UNLOCK(sc);
1274 		}
1275 		break;
1276 	case SIOCSIFFLAGS:
1277 		STGE_LOCK(sc);
1278 		if ((ifp->if_flags & IFF_UP) != 0) {
1279 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1280 				if (((ifp->if_flags ^ sc->sc_if_flags)
1281 				    & IFF_PROMISC) != 0)
1282 					stge_set_filter(sc);
1283 			} else {
1284 				if (sc->sc_detach == 0)
1285 					stge_init_locked(sc);
1286 			}
1287 		} else {
1288 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1289 				stge_stop(sc);
1290 		}
1291 		sc->sc_if_flags = ifp->if_flags;
1292 		STGE_UNLOCK(sc);
1293 		break;
1294 	case SIOCADDMULTI:
1295 	case SIOCDELMULTI:
1296 		STGE_LOCK(sc);
1297 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1298 			stge_set_multi(sc);
1299 		STGE_UNLOCK(sc);
1300 		break;
1301 	case SIOCSIFMEDIA:
1302 	case SIOCGIFMEDIA:
1303 		mii = device_get_softc(sc->sc_miibus);
1304 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1305 		break;
1306 	case SIOCSIFCAP:
1307 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1308 #ifdef DEVICE_POLLING
1309 		if ((mask & IFCAP_POLLING) != 0) {
1310 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1311 				error = ether_poll_register(stge_poll, ifp);
1312 				if (error != 0)
1313 					break;
1314 				STGE_LOCK(sc);
1315 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1316 				ifp->if_capenable |= IFCAP_POLLING;
1317 				STGE_UNLOCK(sc);
1318 			} else {
1319 				error = ether_poll_deregister(ifp);
1320 				if (error != 0)
1321 					break;
1322 				STGE_LOCK(sc);
1323 				CSR_WRITE_2(sc, STGE_IntEnable,
1324 				    sc->sc_IntEnable);
1325 				ifp->if_capenable &= ~IFCAP_POLLING;
1326 				STGE_UNLOCK(sc);
1327 			}
1328 		}
1329 #endif
1330 		if ((mask & IFCAP_HWCSUM) != 0) {
1331 			ifp->if_capenable ^= IFCAP_HWCSUM;
1332 			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1333 			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1334 				ifp->if_hwassist = STGE_CSUM_FEATURES;
1335 			else
1336 				ifp->if_hwassist = 0;
1337 		}
1338 		if ((mask & IFCAP_WOL) != 0 &&
1339 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1340 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1341 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1342 		}
1343 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1344 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1345 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1346 				STGE_LOCK(sc);
1347 				stge_vlan_setup(sc);
1348 				STGE_UNLOCK(sc);
1349 			}
1350 		}
1351 		VLAN_CAPABILITIES(ifp);
1352 		break;
1353 	default:
1354 		error = ether_ioctl(ifp, cmd, data);
1355 		break;
1356 	}
1357 
1358 	return (error);
1359 }
1360 
1361 static void
1362 stge_link_task(void *arg, int pending)
1363 {
1364 	struct stge_softc *sc;
1365 	struct mii_data *mii;
1366 	uint32_t v, ac;
1367 	int i;
1368 
1369 	sc = (struct stge_softc *)arg;
1370 	STGE_LOCK(sc);
1371 
1372 	mii = device_get_softc(sc->sc_miibus);
1373 	if (mii->mii_media_status & IFM_ACTIVE) {
1374 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1375 			sc->sc_link = 1;
1376 	} else
1377 		sc->sc_link = 0;
1378 
1379 	sc->sc_MACCtrl = 0;
1380 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1381 		sc->sc_MACCtrl |= MC_DuplexSelect;
1382 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1383 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1384 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1385 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1386 	/*
1387 	 * Update STGE_MACCtrl register depending on link status.
1388 	 * (duplex, flow control etc)
1389 	 */
1390 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1391 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1392 	v |= sc->sc_MACCtrl;
1393 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1394 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1395 		/* Duplex setting changed, reset Tx/Rx functions. */
1396 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1397 		ac |= AC_TxReset | AC_RxReset;
1398 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1399 		for (i = 0; i < STGE_TIMEOUT; i++) {
1400 			DELAY(100);
1401 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1402 				break;
1403 		}
1404 		if (i == STGE_TIMEOUT)
1405 			device_printf(sc->sc_dev, "reset failed to complete\n");
1406 	}
1407 	STGE_UNLOCK(sc);
1408 }
1409 
1410 static __inline int
1411 stge_tx_error(struct stge_softc *sc)
1412 {
1413 	uint32_t txstat;
1414 	int error;
1415 
1416 	for (error = 0;;) {
1417 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1418 		if ((txstat & TS_TxComplete) == 0)
1419 			break;
1420 		/* Tx underrun */
1421 		if ((txstat & TS_TxUnderrun) != 0) {
1422 			/*
1423 			 * XXX
1424 			 * There should be a more better way to recover
1425 			 * from Tx underrun instead of a full reset.
1426 			 */
1427 			if (sc->sc_nerr++ < STGE_MAXERR)
1428 				device_printf(sc->sc_dev, "Tx underrun, "
1429 				    "resetting...\n");
1430 			if (sc->sc_nerr == STGE_MAXERR)
1431 				device_printf(sc->sc_dev, "too many errors; "
1432 				    "not reporting any more\n");
1433 			error = -1;
1434 			break;
1435 		}
1436 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1437 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1438 			CSR_WRITE_4(sc, STGE_MACCtrl,
1439 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1440 			    MC_TxEnable);
1441 	}
1442 
1443 	return (error);
1444 }
1445 
1446 /*
1447  * stge_intr:
1448  *
1449  *	Interrupt service routine.
1450  */
1451 static void
1452 stge_intr(void *arg)
1453 {
1454 	struct stge_softc *sc;
1455 	struct ifnet *ifp;
1456 	int reinit;
1457 	uint16_t status;
1458 
1459 	sc = (struct stge_softc *)arg;
1460 	ifp = sc->sc_ifp;
1461 
1462 	STGE_LOCK(sc);
1463 
1464 #ifdef DEVICE_POLLING
1465 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1466 		goto done_locked;
1467 #endif
1468 	status = CSR_READ_2(sc, STGE_IntStatus);
1469 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1470 		goto done_locked;
1471 
1472 	/* Disable interrupts. */
1473 	for (reinit = 0;;) {
1474 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1475 		status &= sc->sc_IntEnable;
1476 		if (status == 0)
1477 			break;
1478 		/* Host interface errors. */
1479 		if ((status & IS_HostError) != 0) {
1480 			device_printf(sc->sc_dev,
1481 			    "Host interface error, resetting...\n");
1482 			reinit = 1;
1483 			goto force_init;
1484 		}
1485 
1486 		/* Receive interrupts. */
1487 		if ((status & IS_RxDMAComplete) != 0) {
1488 			stge_rxeof(sc);
1489 			if ((status & IS_RFDListEnd) != 0)
1490 				CSR_WRITE_4(sc, STGE_DMACtrl,
1491 				    DMAC_RxDMAPollNow);
1492 		}
1493 
1494 		/* Transmit interrupts. */
1495 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1496 			stge_txeof(sc);
1497 
1498 		/* Transmission errors.*/
1499 		if ((status & IS_TxComplete) != 0) {
1500 			if ((reinit = stge_tx_error(sc)) != 0)
1501 				break;
1502 		}
1503 	}
1504 
1505 force_init:
1506 	if (reinit != 0) {
1507 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1508 		stge_init_locked(sc);
1509 	}
1510 
1511 	/* Re-enable interrupts. */
1512 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1513 
1514 	/* Try to get more packets going. */
1515 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1516 		stge_start_locked(ifp);
1517 
1518 done_locked:
1519 	STGE_UNLOCK(sc);
1520 }
1521 
1522 /*
1523  * stge_txeof:
1524  *
1525  *	Helper; handle transmit interrupts.
1526  */
1527 static void
1528 stge_txeof(struct stge_softc *sc)
1529 {
1530 	struct ifnet *ifp;
1531 	struct stge_txdesc *txd;
1532 	uint64_t control;
1533 	int cons;
1534 
1535 	STGE_LOCK_ASSERT(sc);
1536 
1537 	ifp = sc->sc_ifp;
1538 
1539 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1540 	if (txd == NULL)
1541 		return;
1542 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1543 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1544 
1545 	/*
1546 	 * Go through our Tx list and free mbufs for those
1547 	 * frames which have been transmitted.
1548 	 */
1549 	for (cons = sc->sc_cdata.stge_tx_cons;;
1550 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1551 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1552 			break;
1553 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1554 		if ((control & TFD_TFDDone) == 0)
1555 			break;
1556 		sc->sc_cdata.stge_tx_cnt--;
1557 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1558 
1559 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1560 		    BUS_DMASYNC_POSTWRITE);
1561 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1562 
1563 		/* Output counter is updated with statistics register */
1564 		m_freem(txd->tx_m);
1565 		txd->tx_m = NULL;
1566 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1567 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1568 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1569 	}
1570 	sc->sc_cdata.stge_tx_cons = cons;
1571 	if (sc->sc_cdata.stge_tx_cnt == 0)
1572 		sc->sc_watchdog_timer = 0;
1573 
1574         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1575 	    sc->sc_cdata.stge_tx_ring_map,
1576 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1577 }
1578 
1579 static __inline void
1580 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1581 {
1582 	struct stge_rfd *rfd;
1583 
1584 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1585 	rfd->rfd_status = 0;
1586 }
1587 
1588 #ifndef __NO_STRICT_ALIGNMENT
1589 /*
1590  * It seems that TC9021's DMA engine has alignment restrictions in
1591  * DMA scatter operations. The first DMA segment has no address
1592  * alignment restrictins but the rest should be aligned on 4(?) bytes
1593  * boundary. Otherwise it would corrupt random memory. Since we don't
1594  * know which one is used for the first segment in advance we simply
1595  * don't align at all.
1596  * To avoid copying over an entire frame to align, we allocate a new
1597  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1598  * prepended into the existing mbuf chain.
1599  */
1600 static __inline struct mbuf *
1601 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1602 {
1603 	struct mbuf *n;
1604 
1605 	n = NULL;
1606 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1607 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1608 		m->m_data += ETHER_HDR_LEN;
1609 		n = m;
1610 	} else {
1611 		MGETHDR(n, M_NOWAIT, MT_DATA);
1612 		if (n != NULL) {
1613 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1614 			m->m_data += ETHER_HDR_LEN;
1615 			m->m_len -= ETHER_HDR_LEN;
1616 			n->m_len = ETHER_HDR_LEN;
1617 			M_MOVE_PKTHDR(n, m);
1618 			n->m_next = m;
1619 		} else
1620 			m_freem(m);
1621 	}
1622 
1623 	return (n);
1624 }
1625 #endif
1626 
1627 /*
1628  * stge_rxeof:
1629  *
1630  *	Helper; handle receive interrupts.
1631  */
1632 static int
1633 stge_rxeof(struct stge_softc *sc)
1634 {
1635 	struct ifnet *ifp;
1636 	struct stge_rxdesc *rxd;
1637 	struct mbuf *mp, *m;
1638 	uint64_t status64;
1639 	uint32_t status;
1640 	int cons, prog, rx_npkts;
1641 
1642 	STGE_LOCK_ASSERT(sc);
1643 
1644 	rx_npkts = 0;
1645 	ifp = sc->sc_ifp;
1646 
1647 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1648 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1649 
1650 	prog = 0;
1651 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1652 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1653 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1654 		status = RFD_RxStatus(status64);
1655 		if ((status & RFD_RFDDone) == 0)
1656 			break;
1657 #ifdef DEVICE_POLLING
1658 		if (ifp->if_capenable & IFCAP_POLLING) {
1659 			if (sc->sc_cdata.stge_rxcycles <= 0)
1660 				break;
1661 			sc->sc_cdata.stge_rxcycles--;
1662 		}
1663 #endif
1664 		prog++;
1665 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1666 		mp = rxd->rx_m;
1667 
1668 		/*
1669 		 * If the packet had an error, drop it.  Note we count
1670 		 * the error later in the periodic stats update.
1671 		 */
1672 		if ((status & RFD_FrameEnd) != 0 && (status &
1673 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1674 		    RFD_RxAlignmentError | RFD_RxFCSError |
1675 		    RFD_RxLengthError)) != 0) {
1676 			stge_discard_rxbuf(sc, cons);
1677 			if (sc->sc_cdata.stge_rxhead != NULL) {
1678 				m_freem(sc->sc_cdata.stge_rxhead);
1679 				STGE_RXCHAIN_RESET(sc);
1680 			}
1681 			continue;
1682 		}
1683 		/*
1684 		 * Add a new receive buffer to the ring.
1685 		 */
1686 		if (stge_newbuf(sc, cons) != 0) {
1687 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1688 			stge_discard_rxbuf(sc, cons);
1689 			if (sc->sc_cdata.stge_rxhead != NULL) {
1690 				m_freem(sc->sc_cdata.stge_rxhead);
1691 				STGE_RXCHAIN_RESET(sc);
1692 			}
1693 			continue;
1694 		}
1695 
1696 		if ((status & RFD_FrameEnd) != 0)
1697 			mp->m_len = RFD_RxDMAFrameLen(status) -
1698 			    sc->sc_cdata.stge_rxlen;
1699 		sc->sc_cdata.stge_rxlen += mp->m_len;
1700 
1701 		/* Chain mbufs. */
1702 		if (sc->sc_cdata.stge_rxhead == NULL) {
1703 			sc->sc_cdata.stge_rxhead = mp;
1704 			sc->sc_cdata.stge_rxtail = mp;
1705 		} else {
1706 			mp->m_flags &= ~M_PKTHDR;
1707 			sc->sc_cdata.stge_rxtail->m_next = mp;
1708 			sc->sc_cdata.stge_rxtail = mp;
1709 		}
1710 
1711 		if ((status & RFD_FrameEnd) != 0) {
1712 			m = sc->sc_cdata.stge_rxhead;
1713 			m->m_pkthdr.rcvif = ifp;
1714 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1715 
1716 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1717 				m_freem(m);
1718 				STGE_RXCHAIN_RESET(sc);
1719 				continue;
1720 			}
1721 			/*
1722 			 * Set the incoming checksum information for
1723 			 * the packet.
1724 			 */
1725 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1726 				if ((status & RFD_IPDetected) != 0) {
1727 					m->m_pkthdr.csum_flags |=
1728 						CSUM_IP_CHECKED;
1729 					if ((status & RFD_IPError) == 0)
1730 						m->m_pkthdr.csum_flags |=
1731 						    CSUM_IP_VALID;
1732 				}
1733 				if (((status & RFD_TCPDetected) != 0 &&
1734 				    (status & RFD_TCPError) == 0) ||
1735 				    ((status & RFD_UDPDetected) != 0 &&
1736 				    (status & RFD_UDPError) == 0)) {
1737 					m->m_pkthdr.csum_flags |=
1738 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1739 					m->m_pkthdr.csum_data = 0xffff;
1740 				}
1741 			}
1742 
1743 #ifndef __NO_STRICT_ALIGNMENT
1744 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1745 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1746 					STGE_RXCHAIN_RESET(sc);
1747 					continue;
1748 				}
1749 			}
1750 #endif
1751 			/* Check for VLAN tagged packets. */
1752 			if ((status & RFD_VLANDetected) != 0 &&
1753 			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1754 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1755 				m->m_flags |= M_VLANTAG;
1756 			}
1757 
1758 			STGE_UNLOCK(sc);
1759 			/* Pass it on. */
1760 			(*ifp->if_input)(ifp, m);
1761 			STGE_LOCK(sc);
1762 			rx_npkts++;
1763 
1764 			STGE_RXCHAIN_RESET(sc);
1765 		}
1766 	}
1767 
1768 	if (prog > 0) {
1769 		/* Update the consumer index. */
1770 		sc->sc_cdata.stge_rx_cons = cons;
1771 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1772 		    sc->sc_cdata.stge_rx_ring_map,
1773 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1774 	}
1775 	return (rx_npkts);
1776 }
1777 
1778 #ifdef DEVICE_POLLING
1779 static int
1780 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1781 {
1782 	struct stge_softc *sc;
1783 	uint16_t status;
1784 	int rx_npkts;
1785 
1786 	rx_npkts = 0;
1787 	sc = ifp->if_softc;
1788 	STGE_LOCK(sc);
1789 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1790 		STGE_UNLOCK(sc);
1791 		return (rx_npkts);
1792 	}
1793 
1794 	sc->sc_cdata.stge_rxcycles = count;
1795 	rx_npkts = stge_rxeof(sc);
1796 	stge_txeof(sc);
1797 
1798 	if (cmd == POLL_AND_CHECK_STATUS) {
1799 		status = CSR_READ_2(sc, STGE_IntStatus);
1800 		status &= sc->sc_IntEnable;
1801 		if (status != 0) {
1802 			if ((status & IS_HostError) != 0) {
1803 				device_printf(sc->sc_dev,
1804 				    "Host interface error, resetting...\n");
1805 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1806 				stge_init_locked(sc);
1807 			}
1808 			if ((status & IS_TxComplete) != 0) {
1809 				if (stge_tx_error(sc) != 0) {
1810 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1811 					stge_init_locked(sc);
1812 				}
1813 			}
1814 		}
1815 
1816 	}
1817 
1818 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1819 		stge_start_locked(ifp);
1820 
1821 	STGE_UNLOCK(sc);
1822 	return (rx_npkts);
1823 }
1824 #endif	/* DEVICE_POLLING */
1825 
1826 /*
1827  * stge_tick:
1828  *
1829  *	One second timer, used to tick the MII.
1830  */
1831 static void
1832 stge_tick(void *arg)
1833 {
1834 	struct stge_softc *sc;
1835 	struct mii_data *mii;
1836 
1837 	sc = (struct stge_softc *)arg;
1838 
1839 	STGE_LOCK_ASSERT(sc);
1840 
1841 	mii = device_get_softc(sc->sc_miibus);
1842 	mii_tick(mii);
1843 
1844 	/* Update statistics counters. */
1845 	stge_stats_update(sc);
1846 
1847 	/*
1848 	 * Relcaim any pending Tx descriptors to release mbufs in a
1849 	 * timely manner as we don't generate Tx completion interrupts
1850 	 * for every frame. This limits the delay to a maximum of one
1851 	 * second.
1852 	 */
1853 	if (sc->sc_cdata.stge_tx_cnt != 0)
1854 		stge_txeof(sc);
1855 
1856 	stge_watchdog(sc);
1857 
1858 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1859 }
1860 
1861 /*
1862  * stge_stats_update:
1863  *
1864  *	Read the TC9021 statistics counters.
1865  */
1866 static void
1867 stge_stats_update(struct stge_softc *sc)
1868 {
1869 	struct ifnet *ifp;
1870 
1871 	STGE_LOCK_ASSERT(sc);
1872 
1873 	ifp = sc->sc_ifp;
1874 
1875 	CSR_READ_4(sc,STGE_OctetRcvOk);
1876 
1877 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1878 
1879 	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1880 
1881 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1882 
1883 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1884 
1885 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1886 	    CSR_READ_4(sc, STGE_LateCollisions) +
1887 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1888 	    CSR_READ_4(sc, STGE_SingleColFrames));
1889 
1890 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1891 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1892 	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1893 }
1894 
1895 /*
1896  * stge_reset:
1897  *
1898  *	Perform a soft reset on the TC9021.
1899  */
1900 static void
1901 stge_reset(struct stge_softc *sc, uint32_t how)
1902 {
1903 	uint32_t ac;
1904 	uint8_t v;
1905 	int i, dv;
1906 
1907 	STGE_LOCK_ASSERT(sc);
1908 
1909 	dv = 5000;
1910 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1911 	switch (how) {
1912 	case STGE_RESET_TX:
1913 		ac |= AC_TxReset | AC_FIFO;
1914 		dv = 100;
1915 		break;
1916 	case STGE_RESET_RX:
1917 		ac |= AC_RxReset | AC_FIFO;
1918 		dv = 100;
1919 		break;
1920 	case STGE_RESET_FULL:
1921 	default:
1922 		/*
1923 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1924 		 * to be present in order for the reset to complete on fiber
1925 		 * cards.
1926 		 */
1927 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1928 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1929 		    (sc->sc_usefiber ? AC_RstOut : 0);
1930 		break;
1931 	}
1932 
1933 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1934 
1935 	/* Account for reset problem at 10Mbps. */
1936 	DELAY(dv);
1937 
1938 	for (i = 0; i < STGE_TIMEOUT; i++) {
1939 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1940 			break;
1941 		DELAY(dv);
1942 	}
1943 
1944 	if (i == STGE_TIMEOUT)
1945 		device_printf(sc->sc_dev, "reset failed to complete\n");
1946 
1947 	/* Set LED, from Linux IPG driver. */
1948 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1949 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1950 	if ((sc->sc_led & 0x01) != 0)
1951 		ac |= AC_LEDMode;
1952 	if ((sc->sc_led & 0x03) != 0)
1953 		ac |= AC_LEDModeBit1;
1954 	if ((sc->sc_led & 0x08) != 0)
1955 		ac |= AC_LEDSpeed;
1956 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1957 
1958 	/* Set PHY, from Linux IPG driver */
1959 	v = CSR_READ_1(sc, STGE_PhySet);
1960 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1961 	v |= ((sc->sc_led & 0x70) >> 4);
1962 	CSR_WRITE_1(sc, STGE_PhySet, v);
1963 }
1964 
1965 /*
1966  * stge_init:		[ ifnet interface function ]
1967  *
1968  *	Initialize the interface.
1969  */
1970 static void
1971 stge_init(void *xsc)
1972 {
1973 	struct stge_softc *sc;
1974 
1975 	sc = (struct stge_softc *)xsc;
1976 	STGE_LOCK(sc);
1977 	stge_init_locked(sc);
1978 	STGE_UNLOCK(sc);
1979 }
1980 
1981 static void
1982 stge_init_locked(struct stge_softc *sc)
1983 {
1984 	struct ifnet *ifp;
1985 	struct mii_data *mii;
1986 	uint16_t eaddr[3];
1987 	uint32_t v;
1988 	int error;
1989 
1990 	STGE_LOCK_ASSERT(sc);
1991 
1992 	ifp = sc->sc_ifp;
1993 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1994 		return;
1995 	mii = device_get_softc(sc->sc_miibus);
1996 
1997 	/*
1998 	 * Cancel any pending I/O.
1999 	 */
2000 	stge_stop(sc);
2001 
2002 	/*
2003 	 * Reset the chip to a known state.
2004 	 */
2005 	stge_reset(sc, STGE_RESET_FULL);
2006 
2007 	/* Init descriptors. */
2008 	error = stge_init_rx_ring(sc);
2009         if (error != 0) {
2010                 device_printf(sc->sc_dev,
2011                     "initialization failed: no memory for rx buffers\n");
2012                 stge_stop(sc);
2013 		goto out;
2014         }
2015 	stge_init_tx_ring(sc);
2016 
2017 	/* Set the station address. */
2018 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2019 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2020 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2021 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2022 
2023 	/*
2024 	 * Set the statistics masks.  Disable all the RMON stats,
2025 	 * and disable selected stats in the non-RMON stats registers.
2026 	 */
2027 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2028 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2029 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2030 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2031 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2032 	    (1U << 21));
2033 
2034 	/* Set up the receive filter. */
2035 	stge_set_filter(sc);
2036 	/* Program multicast filter. */
2037 	stge_set_multi(sc);
2038 
2039 	/*
2040 	 * Give the transmit and receive ring to the chip.
2041 	 */
2042 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2043 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2044 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2045 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2046 
2047 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2048 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2049 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2050 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2051 
2052 	/*
2053 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2054 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2055 	 * transmit engine when there's actually a packet.
2056 	 */
2057 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2058 
2059 	/* ..and the Rx auto-poll period. */
2060 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2061 
2062 	/* Initialize the Tx start threshold. */
2063 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2064 
2065 	/* Rx DMA thresholds, from Linux */
2066 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2067 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2068 
2069 	/* Rx early threhold, from Linux */
2070 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2071 
2072 	/* Tx DMA thresholds, from Linux */
2073 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2074 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2075 
2076 	/*
2077 	 * Initialize the Rx DMA interrupt control register.  We
2078 	 * request an interrupt after every incoming packet, but
2079 	 * defer it for sc_rxint_dmawait us. When the number of
2080 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2081 	 * deferring the interrupt, and signal it immediately.
2082 	 */
2083 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2084 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2085 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2086 
2087 	/*
2088 	 * Initialize the interrupt mask.
2089 	 */
2090 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2091 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2092 #ifdef DEVICE_POLLING
2093 	/* Disable interrupts if we are polling. */
2094 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2095 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2096 	else
2097 #endif
2098 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2099 
2100 	/*
2101 	 * Configure the DMA engine.
2102 	 * XXX Should auto-tune TxBurstLimit.
2103 	 */
2104 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2105 
2106 	/*
2107 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2108 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2109 	 * in the Rx FIFO.
2110 	 */
2111 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2112 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2113 
2114 	/*
2115 	 * Set the maximum frame size.
2116 	 */
2117 	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2118 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2119 
2120 	/*
2121 	 * Initialize MacCtrl -- do it before setting the media,
2122 	 * as setting the media will actually program the register.
2123 	 *
2124 	 * Note: We have to poke the IFS value before poking
2125 	 * anything else.
2126 	 */
2127 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2128 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2129 
2130 	stge_vlan_setup(sc);
2131 
2132 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2133 		/* Multi-frag frame bug work-around. */
2134 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2135 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2136 
2137 		/* Tx Poll Now bug work-around. */
2138 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2139 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2140 		/* Tx Poll Now bug work-around. */
2141 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2142 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2143 	}
2144 
2145 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2146 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2147 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2148 	/*
2149 	 * It seems that transmitting frames without checking the state of
2150 	 * Rx/Tx MAC wedge the hardware.
2151 	 */
2152 	stge_start_tx(sc);
2153 	stge_start_rx(sc);
2154 
2155 	sc->sc_link = 0;
2156 	/*
2157 	 * Set the current media.
2158 	 */
2159 	mii_mediachg(mii);
2160 
2161 	/*
2162 	 * Start the one second MII clock.
2163 	 */
2164 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2165 
2166 	/*
2167 	 * ...all done!
2168 	 */
2169 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2170 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2171 
2172  out:
2173 	if (error != 0)
2174 		device_printf(sc->sc_dev, "interface not running\n");
2175 }
2176 
2177 static void
2178 stge_vlan_setup(struct stge_softc *sc)
2179 {
2180 	struct ifnet *ifp;
2181 	uint32_t v;
2182 
2183 	ifp = sc->sc_ifp;
2184 	/*
2185 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2186 	 * MC_AutoVLANuntagging bit.
2187 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2188 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2189 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2190 	 * use TFC instead of STGE_VLANTag register.
2191 	 */
2192 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2193 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2194 		v |= MC_AutoVLANuntagging;
2195 	else
2196 		v &= ~MC_AutoVLANuntagging;
2197 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2198 }
2199 
2200 /*
2201  *	Stop transmission on the interface.
2202  */
2203 static void
2204 stge_stop(struct stge_softc *sc)
2205 {
2206 	struct ifnet *ifp;
2207 	struct stge_txdesc *txd;
2208 	struct stge_rxdesc *rxd;
2209 	uint32_t v;
2210 	int i;
2211 
2212 	STGE_LOCK_ASSERT(sc);
2213 	/*
2214 	 * Stop the one second clock.
2215 	 */
2216 	callout_stop(&sc->sc_tick_ch);
2217 	sc->sc_watchdog_timer = 0;
2218 
2219 	/*
2220 	 * Disable interrupts.
2221 	 */
2222 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2223 
2224 	/*
2225 	 * Stop receiver, transmitter, and stats update.
2226 	 */
2227 	stge_stop_rx(sc);
2228 	stge_stop_tx(sc);
2229 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2230 	v |= MC_StatisticsDisable;
2231 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2232 
2233 	/*
2234 	 * Stop the transmit and receive DMA.
2235 	 */
2236 	stge_dma_wait(sc);
2237 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2238 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2239 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2240 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2241 
2242 	/*
2243 	 * Free RX and TX mbufs still in the queues.
2244 	 */
2245 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2246 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2247 		if (rxd->rx_m != NULL) {
2248 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2249 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2250 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2251 			    rxd->rx_dmamap);
2252 			m_freem(rxd->rx_m);
2253 			rxd->rx_m = NULL;
2254 		}
2255         }
2256 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2257 		txd = &sc->sc_cdata.stge_txdesc[i];
2258 		if (txd->tx_m != NULL) {
2259 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2260 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2261 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2262 			    txd->tx_dmamap);
2263 			m_freem(txd->tx_m);
2264 			txd->tx_m = NULL;
2265 		}
2266         }
2267 
2268 	/*
2269 	 * Mark the interface down and cancel the watchdog timer.
2270 	 */
2271 	ifp = sc->sc_ifp;
2272 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2273 	sc->sc_link = 0;
2274 }
2275 
2276 static void
2277 stge_start_tx(struct stge_softc *sc)
2278 {
2279 	uint32_t v;
2280 	int i;
2281 
2282 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2283 	if ((v & MC_TxEnabled) != 0)
2284 		return;
2285 	v |= MC_TxEnable;
2286 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2287 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2288 	for (i = STGE_TIMEOUT; i > 0; i--) {
2289 		DELAY(10);
2290 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2291 		if ((v & MC_TxEnabled) != 0)
2292 			break;
2293 	}
2294 	if (i == 0)
2295 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2296 }
2297 
2298 static void
2299 stge_start_rx(struct stge_softc *sc)
2300 {
2301 	uint32_t v;
2302 	int i;
2303 
2304 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2305 	if ((v & MC_RxEnabled) != 0)
2306 		return;
2307 	v |= MC_RxEnable;
2308 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2309 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2310 	for (i = STGE_TIMEOUT; i > 0; i--) {
2311 		DELAY(10);
2312 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2313 		if ((v & MC_RxEnabled) != 0)
2314 			break;
2315 	}
2316 	if (i == 0)
2317 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2318 }
2319 
2320 static void
2321 stge_stop_tx(struct stge_softc *sc)
2322 {
2323 	uint32_t v;
2324 	int i;
2325 
2326 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2327 	if ((v & MC_TxEnabled) == 0)
2328 		return;
2329 	v |= MC_TxDisable;
2330 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2331 	for (i = STGE_TIMEOUT; i > 0; i--) {
2332 		DELAY(10);
2333 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2334 		if ((v & MC_TxEnabled) == 0)
2335 			break;
2336 	}
2337 	if (i == 0)
2338 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2339 }
2340 
2341 static void
2342 stge_stop_rx(struct stge_softc *sc)
2343 {
2344 	uint32_t v;
2345 	int i;
2346 
2347 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2348 	if ((v & MC_RxEnabled) == 0)
2349 		return;
2350 	v |= MC_RxDisable;
2351 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2352 	for (i = STGE_TIMEOUT; i > 0; i--) {
2353 		DELAY(10);
2354 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2355 		if ((v & MC_RxEnabled) == 0)
2356 			break;
2357 	}
2358 	if (i == 0)
2359 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2360 }
2361 
2362 static void
2363 stge_init_tx_ring(struct stge_softc *sc)
2364 {
2365 	struct stge_ring_data *rd;
2366 	struct stge_txdesc *txd;
2367 	bus_addr_t addr;
2368 	int i;
2369 
2370 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2371 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2372 
2373 	sc->sc_cdata.stge_tx_prod = 0;
2374 	sc->sc_cdata.stge_tx_cons = 0;
2375 	sc->sc_cdata.stge_tx_cnt = 0;
2376 
2377 	rd = &sc->sc_rdata;
2378 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2379 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2380 		if (i == (STGE_TX_RING_CNT - 1))
2381 			addr = STGE_TX_RING_ADDR(sc, 0);
2382 		else
2383 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2384 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2385 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2386 		txd = &sc->sc_cdata.stge_txdesc[i];
2387 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2388 	}
2389 
2390 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2391 	    sc->sc_cdata.stge_tx_ring_map,
2392 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2393 
2394 }
2395 
2396 static int
2397 stge_init_rx_ring(struct stge_softc *sc)
2398 {
2399 	struct stge_ring_data *rd;
2400 	bus_addr_t addr;
2401 	int i;
2402 
2403 	sc->sc_cdata.stge_rx_cons = 0;
2404 	STGE_RXCHAIN_RESET(sc);
2405 
2406 	rd = &sc->sc_rdata;
2407 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2408 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2409 		if (stge_newbuf(sc, i) != 0)
2410 			return (ENOBUFS);
2411 		if (i == (STGE_RX_RING_CNT - 1))
2412 			addr = STGE_RX_RING_ADDR(sc, 0);
2413 		else
2414 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2415 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2416 		rd->stge_rx_ring[i].rfd_status = 0;
2417 	}
2418 
2419 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2420 	    sc->sc_cdata.stge_rx_ring_map,
2421 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2422 
2423 	return (0);
2424 }
2425 
2426 /*
2427  * stge_newbuf:
2428  *
2429  *	Add a receive buffer to the indicated descriptor.
2430  */
2431 static int
2432 stge_newbuf(struct stge_softc *sc, int idx)
2433 {
2434 	struct stge_rxdesc *rxd;
2435 	struct stge_rfd *rfd;
2436 	struct mbuf *m;
2437 	bus_dma_segment_t segs[1];
2438 	bus_dmamap_t map;
2439 	int nsegs;
2440 
2441 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2442 	if (m == NULL)
2443 		return (ENOBUFS);
2444 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2445 	/*
2446 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2447 	 * frame is used.
2448 	 */
2449 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2450 		m_adj(m, ETHER_ALIGN);
2451 
2452 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2453 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2454 		m_freem(m);
2455 		return (ENOBUFS);
2456 	}
2457 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2458 
2459 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2460 	if (rxd->rx_m != NULL) {
2461 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2462 		    BUS_DMASYNC_POSTREAD);
2463 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2464 	}
2465 	map = rxd->rx_dmamap;
2466 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2467 	sc->sc_cdata.stge_rx_sparemap = map;
2468 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2469 	    BUS_DMASYNC_PREREAD);
2470 	rxd->rx_m = m;
2471 
2472 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2473 	rfd->rfd_frag.frag_word0 =
2474 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2475 	rfd->rfd_status = 0;
2476 
2477 	return (0);
2478 }
2479 
2480 /*
2481  * stge_set_filter:
2482  *
2483  *	Set up the receive filter.
2484  */
2485 static void
2486 stge_set_filter(struct stge_softc *sc)
2487 {
2488 	struct ifnet *ifp;
2489 	uint16_t mode;
2490 
2491 	STGE_LOCK_ASSERT(sc);
2492 
2493 	ifp = sc->sc_ifp;
2494 
2495 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2496 	mode |= RM_ReceiveUnicast;
2497 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2498 		mode |= RM_ReceiveBroadcast;
2499 	else
2500 		mode &= ~RM_ReceiveBroadcast;
2501 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2502 		mode |= RM_ReceiveAllFrames;
2503 	else
2504 		mode &= ~RM_ReceiveAllFrames;
2505 
2506 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2507 }
2508 
2509 static void
2510 stge_set_multi(struct stge_softc *sc)
2511 {
2512 	struct ifnet *ifp;
2513 	struct ifmultiaddr *ifma;
2514 	uint32_t crc;
2515 	uint32_t mchash[2];
2516 	uint16_t mode;
2517 	int count;
2518 
2519 	STGE_LOCK_ASSERT(sc);
2520 
2521 	ifp = sc->sc_ifp;
2522 
2523 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2524 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2525 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2526 			mode |= RM_ReceiveAllFrames;
2527 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2528 			mode |= RM_ReceiveMulticast;
2529 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2530 		return;
2531 	}
2532 
2533 	/* clear existing filters. */
2534 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2535 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2536 
2537 	/*
2538 	 * Set up the multicast address filter by passing all multicast
2539 	 * addresses through a CRC generator, and then using the low-order
2540 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2541 	 * high order bits select the register, while the rest of the bits
2542 	 * select the bit within the register.
2543 	 */
2544 
2545 	bzero(mchash, sizeof(mchash));
2546 
2547 	count = 0;
2548 	if_maddr_rlock(sc->sc_ifp);
2549 	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2550 		if (ifma->ifma_addr->sa_family != AF_LINK)
2551 			continue;
2552 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2553 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2554 
2555 		/* Just want the 6 least significant bits. */
2556 		crc &= 0x3f;
2557 
2558 		/* Set the corresponding bit in the hash table. */
2559 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2560 		count++;
2561 	}
2562 	if_maddr_runlock(ifp);
2563 
2564 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2565 	if (count > 0)
2566 		mode |= RM_ReceiveMulticastHash;
2567 	else
2568 		mode &= ~RM_ReceiveMulticastHash;
2569 
2570 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2571 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2572 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2573 }
2574 
2575 static int
2576 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2577 {
2578 	int error, value;
2579 
2580 	if (!arg1)
2581 		return (EINVAL);
2582 	value = *(int *)arg1;
2583 	error = sysctl_handle_int(oidp, &value, 0, req);
2584 	if (error || !req->newptr)
2585 		return (error);
2586 	if (value < low || value > high)
2587 		return (EINVAL);
2588         *(int *)arg1 = value;
2589 
2590         return (0);
2591 }
2592 
2593 static int
2594 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2595 {
2596 	return (sysctl_int_range(oidp, arg1, arg2, req,
2597 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2598 }
2599 
2600 static int
2601 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2602 {
2603 	return (sysctl_int_range(oidp, arg1, arg2, req,
2604 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2605 }
2606