xref: /freebsd/sys/dev/stge/if_stge.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 2001 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Jason R. Thorpe.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Device driver for the Sundance Tech. TC9021 10/100/1000
36  * Ethernet controller.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef HAVE_KERNEL_OPTION_HEADERS
41 #include "opt_device_polling.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/endian.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/kernel.h>
50 #include <sys/module.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #include <machine/bus.h>
66 #include <machine/resource.h>
67 #include <sys/bus.h>
68 #include <sys/rman.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/mii_bitbang.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 
77 #include <dev/stge/if_stgereg.h>
78 
79 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(stge, pci, 1, 1, 1);
82 MODULE_DEPEND(stge, ether, 1, 1, 1);
83 MODULE_DEPEND(stge, miibus, 1, 1, 1);
84 
85 /* "device miibus" required.  See GENERIC if you get errors here. */
86 #include "miibus_if.h"
87 
88 /*
89  * Devices supported by this driver.
90  */
91 static const struct stge_product {
92 	uint16_t	stge_vendorid;
93 	uint16_t	stge_deviceid;
94 	const char	*stge_name;
95 } stge_products[] = {
96 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
97 	  "Sundance ST-1023 Gigabit Ethernet" },
98 
99 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
100 	  "Sundance ST-2021 Gigabit Ethernet" },
101 
102 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
103 	  "Tamarack TC9021 Gigabit Ethernet" },
104 
105 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
106 	  "Tamarack TC9021 Gigabit Ethernet" },
107 
108 	/*
109 	 * The Sundance sample boards use the Sundance vendor ID,
110 	 * but the Tamarack product ID.
111 	 */
112 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
113 	  "Sundance TC9021 Gigabit Ethernet" },
114 
115 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
116 	  "Sundance TC9021 Gigabit Ethernet" },
117 
118 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
119 	  "D-Link DL-4000 Gigabit Ethernet" },
120 
121 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
122 	  "Antares Gigabit Ethernet" }
123 };
124 
125 static int	stge_probe(device_t);
126 static int	stge_attach(device_t);
127 static int	stge_detach(device_t);
128 static int	stge_shutdown(device_t);
129 static int	stge_suspend(device_t);
130 static int	stge_resume(device_t);
131 
132 static int	stge_encap(struct stge_softc *, struct mbuf **);
133 static void	stge_start(if_t);
134 static void	stge_start_locked(if_t);
135 static void	stge_watchdog(struct stge_softc *);
136 static int	stge_ioctl(if_t, u_long, caddr_t);
137 static void	stge_init(void *);
138 static void	stge_init_locked(struct stge_softc *);
139 static void	stge_vlan_setup(struct stge_softc *);
140 static void	stge_stop(struct stge_softc *);
141 static void	stge_start_tx(struct stge_softc *);
142 static void	stge_start_rx(struct stge_softc *);
143 static void	stge_stop_tx(struct stge_softc *);
144 static void	stge_stop_rx(struct stge_softc *);
145 
146 static void	stge_reset(struct stge_softc *, uint32_t);
147 static int	stge_eeprom_wait(struct stge_softc *);
148 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
149 static void	stge_tick(void *);
150 static void	stge_stats_update(struct stge_softc *);
151 static void	stge_set_filter(struct stge_softc *);
152 static void	stge_set_multi(struct stge_softc *);
153 
154 static void	stge_link_task(void *, int);
155 static void	stge_intr(void *);
156 static __inline int stge_tx_error(struct stge_softc *);
157 static void	stge_txeof(struct stge_softc *);
158 static int	stge_rxeof(struct stge_softc *);
159 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
160 static int	stge_newbuf(struct stge_softc *, int);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
163 #endif
164 
165 static int	stge_miibus_readreg(device_t, int, int);
166 static int	stge_miibus_writereg(device_t, int, int, int);
167 static void	stge_miibus_statchg(device_t);
168 static int	stge_mediachange(if_t);
169 static void	stge_mediastatus(if_t, struct ifmediareq *);
170 
171 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
172 static int	stge_dma_alloc(struct stge_softc *);
173 static void	stge_dma_free(struct stge_softc *);
174 static void	stge_dma_wait(struct stge_softc *);
175 static void	stge_init_tx_ring(struct stge_softc *);
176 static int	stge_init_rx_ring(struct stge_softc *);
177 #ifdef DEVICE_POLLING
178 static int	stge_poll(if_t, enum poll_cmd, int);
179 #endif
180 
181 static void	stge_setwol(struct stge_softc *);
182 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
183 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
184 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
185 
186 /*
187  * MII bit-bang glue
188  */
189 static uint32_t stge_mii_bitbang_read(device_t);
190 static void	stge_mii_bitbang_write(device_t, uint32_t);
191 
192 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
193 	stge_mii_bitbang_read,
194 	stge_mii_bitbang_write,
195 	{
196 		PC_MgmtData,		/* MII_BIT_MDO */
197 		PC_MgmtData,		/* MII_BIT_MDI */
198 		PC_MgmtClk,		/* MII_BIT_MDC */
199 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
200 		0,			/* MII_BIT_DIR_PHY_HOST */
201 	}
202 };
203 
204 static device_method_t stge_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		stge_probe),
207 	DEVMETHOD(device_attach,	stge_attach),
208 	DEVMETHOD(device_detach,	stge_detach),
209 	DEVMETHOD(device_shutdown,	stge_shutdown),
210 	DEVMETHOD(device_suspend,	stge_suspend),
211 	DEVMETHOD(device_resume,	stge_resume),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
217 
218 	DEVMETHOD_END
219 };
220 
221 static driver_t stge_driver = {
222 	"stge",
223 	stge_methods,
224 	sizeof(struct stge_softc)
225 };
226 
227 DRIVER_MODULE(stge, pci, stge_driver, 0, 0);
228 DRIVER_MODULE(miibus, stge, miibus_driver, 0, 0);
229 
230 static struct resource_spec stge_res_spec_io[] = {
231 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
232 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
233 	{ -1,			0,		0 }
234 };
235 
236 static struct resource_spec stge_res_spec_mem[] = {
237 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
238 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
239 	{ -1,			0,		0 }
240 };
241 
242 /*
243  * stge_mii_bitbang_read: [mii bit-bang interface function]
244  *
245  *	Read the MII serial port for the MII bit-bang module.
246  */
247 static uint32_t
248 stge_mii_bitbang_read(device_t dev)
249 {
250 	struct stge_softc *sc;
251 	uint32_t val;
252 
253 	sc = device_get_softc(dev);
254 
255 	val = CSR_READ_1(sc, STGE_PhyCtrl);
256 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
257 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
258 	return (val);
259 }
260 
261 /*
262  * stge_mii_bitbang_write: [mii big-bang interface function]
263  *
264  *	Write the MII serial port for the MII bit-bang module.
265  */
266 static void
267 stge_mii_bitbang_write(device_t dev, uint32_t val)
268 {
269 	struct stge_softc *sc;
270 
271 	sc = device_get_softc(dev);
272 
273 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
274 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
275 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
276 }
277 
278 /*
279  * sc_miibus_readreg:	[mii interface function]
280  *
281  *	Read a PHY register on the MII of the TC9021.
282  */
283 static int
284 stge_miibus_readreg(device_t dev, int phy, int reg)
285 {
286 	struct stge_softc *sc;
287 	int error, val;
288 
289 	sc = device_get_softc(dev);
290 
291 	if (reg == STGE_PhyCtrl) {
292 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
293 		STGE_MII_LOCK(sc);
294 		error = CSR_READ_1(sc, STGE_PhyCtrl);
295 		STGE_MII_UNLOCK(sc);
296 		return (error);
297 	}
298 
299 	STGE_MII_LOCK(sc);
300 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
301 	STGE_MII_UNLOCK(sc);
302 	return (val);
303 }
304 
305 /*
306  * stge_miibus_writereg:	[mii interface function]
307  *
308  *	Write a PHY register on the MII of the TC9021.
309  */
310 static int
311 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
312 {
313 	struct stge_softc *sc;
314 
315 	sc = device_get_softc(dev);
316 
317 	STGE_MII_LOCK(sc);
318 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
319 	STGE_MII_UNLOCK(sc);
320 	return (0);
321 }
322 
323 /*
324  * stge_miibus_statchg:	[mii interface function]
325  *
326  *	Callback from MII layer when media changes.
327  */
328 static void
329 stge_miibus_statchg(device_t dev)
330 {
331 	struct stge_softc *sc;
332 
333 	sc = device_get_softc(dev);
334 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
335 }
336 
337 /*
338  * stge_mediastatus:	[ifmedia interface function]
339  *
340  *	Get the current interface media status.
341  */
342 static void
343 stge_mediastatus(if_t ifp, struct ifmediareq *ifmr)
344 {
345 	struct stge_softc *sc;
346 	struct mii_data *mii;
347 
348 	sc = if_getsoftc(ifp);
349 	mii = device_get_softc(sc->sc_miibus);
350 
351 	mii_pollstat(mii);
352 	ifmr->ifm_status = mii->mii_media_status;
353 	ifmr->ifm_active = mii->mii_media_active;
354 }
355 
356 /*
357  * stge_mediachange:	[ifmedia interface function]
358  *
359  *	Set hardware to newly-selected media.
360  */
361 static int
362 stge_mediachange(if_t ifp)
363 {
364 	struct stge_softc *sc;
365 	struct mii_data *mii;
366 
367 	sc = if_getsoftc(ifp);
368 	mii = device_get_softc(sc->sc_miibus);
369 	mii_mediachg(mii);
370 
371 	return (0);
372 }
373 
374 static int
375 stge_eeprom_wait(struct stge_softc *sc)
376 {
377 	int i;
378 
379 	for (i = 0; i < STGE_TIMEOUT; i++) {
380 		DELAY(1000);
381 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
382 			return (0);
383 	}
384 	return (1);
385 }
386 
387 /*
388  * stge_read_eeprom:
389  *
390  *	Read data from the serial EEPROM.
391  */
392 static void
393 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
394 {
395 
396 	if (stge_eeprom_wait(sc))
397 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
398 
399 	CSR_WRITE_2(sc, STGE_EepromCtrl,
400 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
401 	if (stge_eeprom_wait(sc))
402 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
403 	*data = CSR_READ_2(sc, STGE_EepromData);
404 }
405 
406 static int
407 stge_probe(device_t dev)
408 {
409 	const struct stge_product *sp;
410 	int i;
411 	uint16_t vendor, devid;
412 
413 	vendor = pci_get_vendor(dev);
414 	devid = pci_get_device(dev);
415 	sp = stge_products;
416 	for (i = 0; i < nitems(stge_products); i++, sp++) {
417 		if (vendor == sp->stge_vendorid &&
418 		    devid == sp->stge_deviceid) {
419 			device_set_desc(dev, sp->stge_name);
420 			return (BUS_PROBE_DEFAULT);
421 		}
422 	}
423 
424 	return (ENXIO);
425 }
426 
427 static int
428 stge_attach(device_t dev)
429 {
430 	struct stge_softc *sc;
431 	if_t ifp;
432 	uint8_t enaddr[ETHER_ADDR_LEN];
433 	int error, flags, i;
434 	uint16_t cmd;
435 	uint32_t val;
436 
437 	error = 0;
438 	sc = device_get_softc(dev);
439 	sc->sc_dev = dev;
440 
441 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
442 	    MTX_DEF);
443 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
444 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
445 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
446 
447 	/*
448 	 * Map the device.
449 	 */
450 	pci_enable_busmaster(dev);
451 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
452 	val = pci_read_config(dev, PCIR_BAR(1), 4);
453 	if (PCI_BAR_IO(val))
454 		sc->sc_spec = stge_res_spec_mem;
455 	else {
456 		val = pci_read_config(dev, PCIR_BAR(0), 4);
457 		if (!PCI_BAR_IO(val)) {
458 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
459 			error = ENXIO;
460 			goto fail;
461 		}
462 		sc->sc_spec = stge_res_spec_io;
463 	}
464 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
465 	if (error != 0) {
466 		device_printf(dev, "couldn't allocate %s resources\n",
467 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
468 		goto fail;
469 	}
470 	sc->sc_rev = pci_get_revid(dev);
471 
472 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
473 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
474 	    "rxint_nframe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
475 	    &sc->sc_rxint_nframe, 0, sysctl_hw_stge_rxint_nframe, "I",
476 	    "stge rx interrupt nframe");
477 
478 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
480 	    "rxint_dmawait", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
481 	    &sc->sc_rxint_dmawait, 0, sysctl_hw_stge_rxint_dmawait, "I",
482 	    "stge rx interrupt dmawait");
483 
484 	/* Pull in device tunables. */
485 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
486 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
487 	    "rxint_nframe", &sc->sc_rxint_nframe);
488 	if (error == 0) {
489 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
490 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
491 			device_printf(dev, "rxint_nframe value out of range; "
492 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
493 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
494 		}
495 	}
496 
497 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
498 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
499 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
500 	if (error == 0) {
501 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
502 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
503 			device_printf(dev, "rxint_dmawait value out of range; "
504 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
505 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
506 		}
507 	}
508 
509 	if ((error = stge_dma_alloc(sc)) != 0)
510 		goto fail;
511 
512 	/*
513 	 * Determine if we're copper or fiber.  It affects how we
514 	 * reset the card.
515 	 */
516 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
517 		sc->sc_usefiber = 1;
518 	else
519 		sc->sc_usefiber = 0;
520 
521 	/* Load LED configuration from EEPROM. */
522 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
523 
524 	/*
525 	 * Reset the chip to a known state.
526 	 */
527 	STGE_LOCK(sc);
528 	stge_reset(sc, STGE_RESET_FULL);
529 	STGE_UNLOCK(sc);
530 
531 	/*
532 	 * Reading the station address from the EEPROM doesn't seem
533 	 * to work, at least on my sample boards.  Instead, since
534 	 * the reset sequence does AutoInit, read it from the station
535 	 * address registers. For Sundance 1023 you can only read it
536 	 * from EEPROM.
537 	 */
538 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
539 		uint16_t v;
540 
541 		v = CSR_READ_2(sc, STGE_StationAddress0);
542 		enaddr[0] = v & 0xff;
543 		enaddr[1] = v >> 8;
544 		v = CSR_READ_2(sc, STGE_StationAddress1);
545 		enaddr[2] = v & 0xff;
546 		enaddr[3] = v >> 8;
547 		v = CSR_READ_2(sc, STGE_StationAddress2);
548 		enaddr[4] = v & 0xff;
549 		enaddr[5] = v >> 8;
550 		sc->sc_stge1023 = 0;
551 	} else {
552 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
553 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
554 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
555 			    &myaddr[i]);
556 			myaddr[i] = le16toh(myaddr[i]);
557 		}
558 		bcopy(myaddr, enaddr, sizeof(enaddr));
559 		sc->sc_stge1023 = 1;
560 	}
561 
562 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
563 	if_setsoftc(ifp, sc);
564 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
565 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
566 	if_setioctlfn(ifp, stge_ioctl);
567 	if_setstartfn(ifp, stge_start);
568 	if_setinitfn(ifp, stge_init);
569 	if_setsendqlen(ifp, STGE_TX_RING_CNT - 1);
570 	if_setsendqready(ifp);
571 	/* Revision B3 and earlier chips have checksum bug. */
572 	if (sc->sc_rev >= 0x0c) {
573 		if_sethwassist(ifp, STGE_CSUM_FEATURES);
574 		if_setcapabilities(ifp, IFCAP_HWCSUM);
575 	} else {
576 		if_sethwassist(ifp, 0);
577 		if_setcapabilities(ifp, 0);
578 	}
579 	if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
580 	if_setcapenable(ifp, if_getcapabilities(ifp));
581 
582 	/*
583 	 * Read some important bits from the PhyCtrl register.
584 	 */
585 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
586 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
587 
588 	/* Set up MII bus. */
589 	flags = MIIF_DOPAUSE;
590 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
591 		flags |= MIIF_MACPRIV0;
592 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
593 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
594 	    flags);
595 	if (error != 0) {
596 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
597 		goto fail;
598 	}
599 
600 	ether_ifattach(ifp, enaddr);
601 
602 	/* VLAN capability setup */
603 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
604 	if (sc->sc_rev >= 0x0c)
605 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
606 	if_setcapenable(ifp, if_getcapabilities(ifp));
607 #ifdef DEVICE_POLLING
608 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
609 #endif
610 	/*
611 	 * Tell the upper layer(s) we support long frames.
612 	 * Must appear after the call to ether_ifattach() because
613 	 * ether_ifattach() sets ifi_hdrlen to the default value.
614 	 */
615 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
616 
617 	/*
618 	 * The manual recommends disabling early transmit, so we
619 	 * do.  It's disabled anyway, if using IP checksumming,
620 	 * since the entire packet must be in the FIFO in order
621 	 * for the chip to perform the checksum.
622 	 */
623 	sc->sc_txthresh = 0x0fff;
624 
625 	/*
626 	 * Disable MWI if the PCI layer tells us to.
627 	 */
628 	sc->sc_DMACtrl = 0;
629 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
630 		sc->sc_DMACtrl |= DMAC_MWIDisable;
631 
632 	/*
633 	 * Hookup IRQ
634 	 */
635 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
636 	    NULL, stge_intr, sc, &sc->sc_ih);
637 	if (error != 0) {
638 		ether_ifdetach(ifp);
639 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
640 		sc->sc_ifp = NULL;
641 		goto fail;
642 	}
643 
644 fail:
645 	if (error != 0)
646 		stge_detach(dev);
647 
648 	return (error);
649 }
650 
651 static int
652 stge_detach(device_t dev)
653 {
654 	struct stge_softc *sc;
655 	if_t ifp;
656 
657 	sc = device_get_softc(dev);
658 
659 	ifp = sc->sc_ifp;
660 #ifdef DEVICE_POLLING
661 	if (ifp && if_getcapenable(ifp) & IFCAP_POLLING)
662 		ether_poll_deregister(ifp);
663 #endif
664 	if (device_is_attached(dev)) {
665 		STGE_LOCK(sc);
666 		/* XXX */
667 		sc->sc_detach = 1;
668 		stge_stop(sc);
669 		STGE_UNLOCK(sc);
670 		callout_drain(&sc->sc_tick_ch);
671 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
672 		ether_ifdetach(ifp);
673 	}
674 
675 	if (sc->sc_miibus != NULL) {
676 		device_delete_child(dev, sc->sc_miibus);
677 		sc->sc_miibus = NULL;
678 	}
679 	bus_generic_detach(dev);
680 	stge_dma_free(sc);
681 
682 	if (ifp != NULL) {
683 		if_free(ifp);
684 		sc->sc_ifp = NULL;
685 	}
686 
687 	if (sc->sc_ih) {
688 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
689 		sc->sc_ih = NULL;
690 	}
691 
692 	if (sc->sc_spec)
693 		bus_release_resources(dev, sc->sc_spec, sc->sc_res);
694 
695 	mtx_destroy(&sc->sc_mii_mtx);
696 	mtx_destroy(&sc->sc_mtx);
697 
698 	return (0);
699 }
700 
701 struct stge_dmamap_arg {
702 	bus_addr_t	stge_busaddr;
703 };
704 
705 static void
706 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
707 {
708 	struct stge_dmamap_arg *ctx;
709 
710 	if (error != 0)
711 		return;
712 
713 	ctx = (struct stge_dmamap_arg *)arg;
714 	ctx->stge_busaddr = segs[0].ds_addr;
715 }
716 
717 static int
718 stge_dma_alloc(struct stge_softc *sc)
719 {
720 	struct stge_dmamap_arg ctx;
721 	struct stge_txdesc *txd;
722 	struct stge_rxdesc *rxd;
723 	int error, i;
724 
725 	/* create parent tag. */
726 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
727 		    1, 0,			/* algnmnt, boundary */
728 		    STGE_DMA_MAXADDR,		/* lowaddr */
729 		    BUS_SPACE_MAXADDR,		/* highaddr */
730 		    NULL, NULL,			/* filter, filterarg */
731 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
732 		    0,				/* nsegments */
733 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
734 		    0,				/* flags */
735 		    NULL, NULL,			/* lockfunc, lockarg */
736 		    &sc->sc_cdata.stge_parent_tag);
737 	if (error != 0) {
738 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
739 		goto fail;
740 	}
741 	/* create tag for Tx ring. */
742 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
743 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
744 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
745 		    BUS_SPACE_MAXADDR,		/* highaddr */
746 		    NULL, NULL,			/* filter, filterarg */
747 		    STGE_TX_RING_SZ,		/* maxsize */
748 		    1,				/* nsegments */
749 		    STGE_TX_RING_SZ,		/* maxsegsize */
750 		    0,				/* flags */
751 		    NULL, NULL,			/* lockfunc, lockarg */
752 		    &sc->sc_cdata.stge_tx_ring_tag);
753 	if (error != 0) {
754 		device_printf(sc->sc_dev,
755 		    "failed to allocate Tx ring DMA tag\n");
756 		goto fail;
757 	}
758 
759 	/* create tag for Rx ring. */
760 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
761 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
762 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
763 		    BUS_SPACE_MAXADDR,		/* highaddr */
764 		    NULL, NULL,			/* filter, filterarg */
765 		    STGE_RX_RING_SZ,		/* maxsize */
766 		    1,				/* nsegments */
767 		    STGE_RX_RING_SZ,		/* maxsegsize */
768 		    0,				/* flags */
769 		    NULL, NULL,			/* lockfunc, lockarg */
770 		    &sc->sc_cdata.stge_rx_ring_tag);
771 	if (error != 0) {
772 		device_printf(sc->sc_dev,
773 		    "failed to allocate Rx ring DMA tag\n");
774 		goto fail;
775 	}
776 
777 	/* create tag for Tx buffers. */
778 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
779 		    1, 0,			/* algnmnt, boundary */
780 		    BUS_SPACE_MAXADDR,		/* lowaddr */
781 		    BUS_SPACE_MAXADDR,		/* highaddr */
782 		    NULL, NULL,			/* filter, filterarg */
783 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
784 		    STGE_MAXTXSEGS,		/* nsegments */
785 		    MCLBYTES,			/* maxsegsize */
786 		    0,				/* flags */
787 		    NULL, NULL,			/* lockfunc, lockarg */
788 		    &sc->sc_cdata.stge_tx_tag);
789 	if (error != 0) {
790 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
791 		goto fail;
792 	}
793 
794 	/* create tag for Rx buffers. */
795 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
796 		    1, 0,			/* algnmnt, boundary */
797 		    BUS_SPACE_MAXADDR,		/* lowaddr */
798 		    BUS_SPACE_MAXADDR,		/* highaddr */
799 		    NULL, NULL,			/* filter, filterarg */
800 		    MCLBYTES,			/* maxsize */
801 		    1,				/* nsegments */
802 		    MCLBYTES,			/* maxsegsize */
803 		    0,				/* flags */
804 		    NULL, NULL,			/* lockfunc, lockarg */
805 		    &sc->sc_cdata.stge_rx_tag);
806 	if (error != 0) {
807 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
808 		goto fail;
809 	}
810 
811 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
812 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
813 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
814 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
815 	if (error != 0) {
816 		device_printf(sc->sc_dev,
817 		    "failed to allocate DMA'able memory for Tx ring\n");
818 		goto fail;
819 	}
820 
821 	ctx.stge_busaddr = 0;
822 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
823 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
824 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
825 	if (error != 0 || ctx.stge_busaddr == 0) {
826 		device_printf(sc->sc_dev,
827 		    "failed to load DMA'able memory for Tx ring\n");
828 		goto fail;
829 	}
830 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
831 
832 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
833 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
834 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
835 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
836 	if (error != 0) {
837 		device_printf(sc->sc_dev,
838 		    "failed to allocate DMA'able memory for Rx ring\n");
839 		goto fail;
840 	}
841 
842 	ctx.stge_busaddr = 0;
843 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
844 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
845 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
846 	if (error != 0 || ctx.stge_busaddr == 0) {
847 		device_printf(sc->sc_dev,
848 		    "failed to load DMA'able memory for Rx ring\n");
849 		goto fail;
850 	}
851 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
852 
853 	/* create DMA maps for Tx buffers. */
854 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
855 		txd = &sc->sc_cdata.stge_txdesc[i];
856 		txd->tx_m = NULL;
857 		txd->tx_dmamap = 0;
858 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
859 		    &txd->tx_dmamap);
860 		if (error != 0) {
861 			device_printf(sc->sc_dev,
862 			    "failed to create Tx dmamap\n");
863 			goto fail;
864 		}
865 	}
866 	/* create DMA maps for Rx buffers. */
867 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
868 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
869 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
870 		goto fail;
871 	}
872 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
873 		rxd = &sc->sc_cdata.stge_rxdesc[i];
874 		rxd->rx_m = NULL;
875 		rxd->rx_dmamap = 0;
876 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
877 		    &rxd->rx_dmamap);
878 		if (error != 0) {
879 			device_printf(sc->sc_dev,
880 			    "failed to create Rx dmamap\n");
881 			goto fail;
882 		}
883 	}
884 
885 fail:
886 	return (error);
887 }
888 
889 static void
890 stge_dma_free(struct stge_softc *sc)
891 {
892 	struct stge_txdesc *txd;
893 	struct stge_rxdesc *rxd;
894 	int i;
895 
896 	/* Tx ring */
897 	if (sc->sc_cdata.stge_tx_ring_tag) {
898 		if (sc->sc_rdata.stge_tx_ring_paddr)
899 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
900 			    sc->sc_cdata.stge_tx_ring_map);
901 		if (sc->sc_rdata.stge_tx_ring)
902 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
903 			    sc->sc_rdata.stge_tx_ring,
904 			    sc->sc_cdata.stge_tx_ring_map);
905 		sc->sc_rdata.stge_tx_ring = NULL;
906 		sc->sc_rdata.stge_tx_ring_paddr = 0;
907 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
908 		sc->sc_cdata.stge_tx_ring_tag = NULL;
909 	}
910 	/* Rx ring */
911 	if (sc->sc_cdata.stge_rx_ring_tag) {
912 		if (sc->sc_rdata.stge_rx_ring_paddr)
913 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
914 			    sc->sc_cdata.stge_rx_ring_map);
915 		if (sc->sc_rdata.stge_rx_ring)
916 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
917 			    sc->sc_rdata.stge_rx_ring,
918 			    sc->sc_cdata.stge_rx_ring_map);
919 		sc->sc_rdata.stge_rx_ring = NULL;
920 		sc->sc_rdata.stge_rx_ring_paddr = 0;
921 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
922 		sc->sc_cdata.stge_rx_ring_tag = NULL;
923 	}
924 	/* Tx buffers */
925 	if (sc->sc_cdata.stge_tx_tag) {
926 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
927 			txd = &sc->sc_cdata.stge_txdesc[i];
928 			if (txd->tx_dmamap) {
929 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
930 				    txd->tx_dmamap);
931 				txd->tx_dmamap = 0;
932 			}
933 		}
934 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
935 		sc->sc_cdata.stge_tx_tag = NULL;
936 	}
937 	/* Rx buffers */
938 	if (sc->sc_cdata.stge_rx_tag) {
939 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
940 			rxd = &sc->sc_cdata.stge_rxdesc[i];
941 			if (rxd->rx_dmamap) {
942 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
943 				    rxd->rx_dmamap);
944 				rxd->rx_dmamap = 0;
945 			}
946 		}
947 		if (sc->sc_cdata.stge_rx_sparemap) {
948 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
949 			    sc->sc_cdata.stge_rx_sparemap);
950 			sc->sc_cdata.stge_rx_sparemap = 0;
951 		}
952 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
953 		sc->sc_cdata.stge_rx_tag = NULL;
954 	}
955 
956 	if (sc->sc_cdata.stge_parent_tag) {
957 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
958 		sc->sc_cdata.stge_parent_tag = NULL;
959 	}
960 }
961 
962 /*
963  * stge_shutdown:
964  *
965  *	Make sure the interface is stopped at reboot time.
966  */
967 static int
968 stge_shutdown(device_t dev)
969 {
970 
971 	return (stge_suspend(dev));
972 }
973 
974 static void
975 stge_setwol(struct stge_softc *sc)
976 {
977 	if_t ifp;
978 	uint8_t v;
979 
980 	STGE_LOCK_ASSERT(sc);
981 
982 	ifp = sc->sc_ifp;
983 	v = CSR_READ_1(sc, STGE_WakeEvent);
984 	/* Disable all WOL bits. */
985 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
986 	    WE_WakeOnLanEnable);
987 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
988 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
989 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
990 	/* Reset Tx and prevent transmission. */
991 	CSR_WRITE_4(sc, STGE_AsicCtrl,
992 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
993 	/*
994 	 * TC9021 automatically reset link speed to 100Mbps when it's put
995 	 * into sleep so there is no need to try to resetting link speed.
996 	 */
997 }
998 
999 static int
1000 stge_suspend(device_t dev)
1001 {
1002 	struct stge_softc *sc;
1003 
1004 	sc = device_get_softc(dev);
1005 
1006 	STGE_LOCK(sc);
1007 	stge_stop(sc);
1008 	sc->sc_suspended = 1;
1009 	stge_setwol(sc);
1010 	STGE_UNLOCK(sc);
1011 
1012 	return (0);
1013 }
1014 
1015 static int
1016 stge_resume(device_t dev)
1017 {
1018 	struct stge_softc *sc;
1019 	if_t ifp;
1020 	uint8_t v;
1021 
1022 	sc = device_get_softc(dev);
1023 
1024 	STGE_LOCK(sc);
1025 	/*
1026 	 * Clear WOL bits, so special frames wouldn't interfere
1027 	 * normal Rx operation anymore.
1028 	 */
1029 	v = CSR_READ_1(sc, STGE_WakeEvent);
1030 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1031 	    WE_WakeOnLanEnable);
1032 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1033 	ifp = sc->sc_ifp;
1034 	if (if_getflags(ifp) & IFF_UP)
1035 		stge_init_locked(sc);
1036 
1037 	sc->sc_suspended = 0;
1038 	STGE_UNLOCK(sc);
1039 
1040 	return (0);
1041 }
1042 
1043 static void
1044 stge_dma_wait(struct stge_softc *sc)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < STGE_TIMEOUT; i++) {
1049 		DELAY(2);
1050 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1051 			break;
1052 	}
1053 
1054 	if (i == STGE_TIMEOUT)
1055 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1056 }
1057 
1058 static int
1059 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1060 {
1061 	struct stge_txdesc *txd;
1062 	struct stge_tfd *tfd;
1063 	struct mbuf *m;
1064 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1065 	int error, i, nsegs, si;
1066 	uint64_t csum_flags, tfc;
1067 
1068 	STGE_LOCK_ASSERT(sc);
1069 
1070 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1071 		return (ENOBUFS);
1072 
1073 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1074 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1075 	if (error == EFBIG) {
1076 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1077 		if (m == NULL) {
1078 			m_freem(*m_head);
1079 			*m_head = NULL;
1080 			return (ENOMEM);
1081 		}
1082 		*m_head = m;
1083 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1084 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1085 		if (error != 0) {
1086 			m_freem(*m_head);
1087 			*m_head = NULL;
1088 			return (error);
1089 		}
1090 	} else if (error != 0)
1091 		return (error);
1092 	if (nsegs == 0) {
1093 		m_freem(*m_head);
1094 		*m_head = NULL;
1095 		return (EIO);
1096 	}
1097 
1098 	m = *m_head;
1099 	csum_flags = 0;
1100 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1101 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1102 			csum_flags |= TFD_IPChecksumEnable;
1103 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1104 			csum_flags |= TFD_TCPChecksumEnable;
1105 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1106 			csum_flags |= TFD_UDPChecksumEnable;
1107 	}
1108 
1109 	si = sc->sc_cdata.stge_tx_prod;
1110 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1111 	for (i = 0; i < nsegs; i++)
1112 		tfd->tfd_frags[i].frag_word0 =
1113 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1114 		    FRAG_LEN(txsegs[i].ds_len));
1115 	sc->sc_cdata.stge_tx_cnt++;
1116 
1117 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1118 	    TFD_FragCount(nsegs) | csum_flags;
1119 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1120 		tfc |= TFD_TxDMAIndicate;
1121 
1122 	/* Update producer index. */
1123 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1124 
1125 	/* Check if we have a VLAN tag to insert. */
1126 	if (m->m_flags & M_VLANTAG)
1127 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1128 	tfd->tfd_control = htole64(tfc);
1129 
1130 	/* Update Tx Queue. */
1131 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1132 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1133 	txd->tx_m = m;
1134 
1135 	/* Sync descriptors. */
1136 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1137 	    BUS_DMASYNC_PREWRITE);
1138 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1139 	    sc->sc_cdata.stge_tx_ring_map,
1140 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1141 
1142 	return (0);
1143 }
1144 
1145 /*
1146  * stge_start:		[ifnet interface function]
1147  *
1148  *	Start packet transmission on the interface.
1149  */
1150 static void
1151 stge_start(if_t ifp)
1152 {
1153 	struct stge_softc *sc;
1154 
1155 	sc = if_getsoftc(ifp);
1156 	STGE_LOCK(sc);
1157 	stge_start_locked(ifp);
1158 	STGE_UNLOCK(sc);
1159 }
1160 
1161 static void
1162 stge_start_locked(if_t ifp)
1163 {
1164         struct stge_softc *sc;
1165         struct mbuf *m_head;
1166 	int enq;
1167 
1168 	sc = if_getsoftc(ifp);
1169 
1170 	STGE_LOCK_ASSERT(sc);
1171 
1172 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1173 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1174 		return;
1175 
1176 	for (enq = 0; !if_sendq_empty(ifp); ) {
1177 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1178 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1179 			break;
1180 		}
1181 
1182 		m_head = if_dequeue(ifp);
1183 		if (m_head == NULL)
1184 			break;
1185 		/*
1186 		 * Pack the data into the transmit ring. If we
1187 		 * don't have room, set the OACTIVE flag and wait
1188 		 * for the NIC to drain the ring.
1189 		 */
1190 		if (stge_encap(sc, &m_head)) {
1191 			if (m_head == NULL)
1192 				break;
1193 			if_sendq_prepend(ifp, m_head);
1194 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1195 			break;
1196 		}
1197 
1198 		enq++;
1199 		/*
1200 		 * If there's a BPF listener, bounce a copy of this frame
1201 		 * to him.
1202 		 */
1203 		ETHER_BPF_MTAP(ifp, m_head);
1204 	}
1205 
1206 	if (enq > 0) {
1207 		/* Transmit */
1208 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1209 
1210 		/* Set a timeout in case the chip goes out to lunch. */
1211 		sc->sc_watchdog_timer = 5;
1212 	}
1213 }
1214 
1215 /*
1216  * stge_watchdog:
1217  *
1218  *	Watchdog timer handler.
1219  */
1220 static void
1221 stge_watchdog(struct stge_softc *sc)
1222 {
1223 	if_t ifp;
1224 
1225 	STGE_LOCK_ASSERT(sc);
1226 
1227 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1228 		return;
1229 
1230 	ifp = sc->sc_ifp;
1231 	if_printf(sc->sc_ifp, "device timeout\n");
1232 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1233 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1234 	stge_init_locked(sc);
1235 	if (!if_sendq_empty(ifp))
1236 		stge_start_locked(ifp);
1237 }
1238 
1239 /*
1240  * stge_ioctl:		[ifnet interface function]
1241  *
1242  *	Handle control requests from the operator.
1243  */
1244 static int
1245 stge_ioctl(if_t ifp, u_long cmd, caddr_t data)
1246 {
1247 	struct stge_softc *sc;
1248 	struct ifreq *ifr;
1249 	struct mii_data *mii;
1250 	int error, mask;
1251 
1252 	sc = if_getsoftc(ifp);
1253 	ifr = (struct ifreq *)data;
1254 	error = 0;
1255 	switch (cmd) {
1256 	case SIOCSIFMTU:
1257 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1258 			error = EINVAL;
1259 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1260 			if_setmtu(ifp, ifr->ifr_mtu);
1261 			STGE_LOCK(sc);
1262 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1263 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1264 				stge_init_locked(sc);
1265 			}
1266 			STGE_UNLOCK(sc);
1267 		}
1268 		break;
1269 	case SIOCSIFFLAGS:
1270 		STGE_LOCK(sc);
1271 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1272 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1273 				if (((if_getflags(ifp) ^ sc->sc_if_flags)
1274 				    & IFF_PROMISC) != 0)
1275 					stge_set_filter(sc);
1276 			} else {
1277 				if (sc->sc_detach == 0)
1278 					stge_init_locked(sc);
1279 			}
1280 		} else {
1281 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1282 				stge_stop(sc);
1283 		}
1284 		sc->sc_if_flags = if_getflags(ifp);
1285 		STGE_UNLOCK(sc);
1286 		break;
1287 	case SIOCADDMULTI:
1288 	case SIOCDELMULTI:
1289 		STGE_LOCK(sc);
1290 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1291 			stge_set_multi(sc);
1292 		STGE_UNLOCK(sc);
1293 		break;
1294 	case SIOCSIFMEDIA:
1295 	case SIOCGIFMEDIA:
1296 		mii = device_get_softc(sc->sc_miibus);
1297 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1298 		break;
1299 	case SIOCSIFCAP:
1300 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1301 #ifdef DEVICE_POLLING
1302 		if ((mask & IFCAP_POLLING) != 0) {
1303 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1304 				error = ether_poll_register(stge_poll, ifp);
1305 				if (error != 0)
1306 					break;
1307 				STGE_LOCK(sc);
1308 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1309 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1310 				STGE_UNLOCK(sc);
1311 			} else {
1312 				error = ether_poll_deregister(ifp);
1313 				if (error != 0)
1314 					break;
1315 				STGE_LOCK(sc);
1316 				CSR_WRITE_2(sc, STGE_IntEnable,
1317 				    sc->sc_IntEnable);
1318 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1319 				STGE_UNLOCK(sc);
1320 			}
1321 		}
1322 #endif
1323 		if ((mask & IFCAP_HWCSUM) != 0) {
1324 			if_togglecapenable(ifp, IFCAP_HWCSUM);
1325 			if ((IFCAP_HWCSUM & if_getcapenable(ifp)) != 0 &&
1326 			    (IFCAP_HWCSUM & if_getcapabilities(ifp)) != 0)
1327 				if_sethwassist(ifp, STGE_CSUM_FEATURES);
1328 			else
1329 				if_sethwassist(ifp, 0);
1330 		}
1331 		if ((mask & IFCAP_WOL) != 0 &&
1332 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
1333 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1334 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1335 		}
1336 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1337 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1338 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1339 				STGE_LOCK(sc);
1340 				stge_vlan_setup(sc);
1341 				STGE_UNLOCK(sc);
1342 			}
1343 		}
1344 		VLAN_CAPABILITIES(ifp);
1345 		break;
1346 	default:
1347 		error = ether_ioctl(ifp, cmd, data);
1348 		break;
1349 	}
1350 
1351 	return (error);
1352 }
1353 
1354 static void
1355 stge_link_task(void *arg, int pending)
1356 {
1357 	struct stge_softc *sc;
1358 	struct mii_data *mii;
1359 	uint32_t v, ac;
1360 	int i;
1361 
1362 	sc = (struct stge_softc *)arg;
1363 	STGE_LOCK(sc);
1364 
1365 	mii = device_get_softc(sc->sc_miibus);
1366 	if (mii->mii_media_status & IFM_ACTIVE) {
1367 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1368 			sc->sc_link = 1;
1369 	} else
1370 		sc->sc_link = 0;
1371 
1372 	sc->sc_MACCtrl = 0;
1373 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1374 		sc->sc_MACCtrl |= MC_DuplexSelect;
1375 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1376 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1377 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1378 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1379 	/*
1380 	 * Update STGE_MACCtrl register depending on link status.
1381 	 * (duplex, flow control etc)
1382 	 */
1383 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1384 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1385 	v |= sc->sc_MACCtrl;
1386 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1387 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1388 		/* Duplex setting changed, reset Tx/Rx functions. */
1389 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1390 		ac |= AC_TxReset | AC_RxReset;
1391 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1392 		for (i = 0; i < STGE_TIMEOUT; i++) {
1393 			DELAY(100);
1394 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1395 				break;
1396 		}
1397 		if (i == STGE_TIMEOUT)
1398 			device_printf(sc->sc_dev, "reset failed to complete\n");
1399 	}
1400 	STGE_UNLOCK(sc);
1401 }
1402 
1403 static __inline int
1404 stge_tx_error(struct stge_softc *sc)
1405 {
1406 	uint32_t txstat;
1407 	int error;
1408 
1409 	for (error = 0;;) {
1410 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1411 		if ((txstat & TS_TxComplete) == 0)
1412 			break;
1413 		/* Tx underrun */
1414 		if ((txstat & TS_TxUnderrun) != 0) {
1415 			/*
1416 			 * XXX
1417 			 * There should be a more better way to recover
1418 			 * from Tx underrun instead of a full reset.
1419 			 */
1420 			if (sc->sc_nerr++ < STGE_MAXERR)
1421 				device_printf(sc->sc_dev, "Tx underrun, "
1422 				    "resetting...\n");
1423 			if (sc->sc_nerr == STGE_MAXERR)
1424 				device_printf(sc->sc_dev, "too many errors; "
1425 				    "not reporting any more\n");
1426 			error = -1;
1427 			break;
1428 		}
1429 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1430 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1431 			CSR_WRITE_4(sc, STGE_MACCtrl,
1432 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1433 			    MC_TxEnable);
1434 	}
1435 
1436 	return (error);
1437 }
1438 
1439 /*
1440  * stge_intr:
1441  *
1442  *	Interrupt service routine.
1443  */
1444 static void
1445 stge_intr(void *arg)
1446 {
1447 	struct stge_softc *sc;
1448 	if_t ifp;
1449 	int reinit;
1450 	uint16_t status;
1451 
1452 	sc = (struct stge_softc *)arg;
1453 	ifp = sc->sc_ifp;
1454 
1455 	STGE_LOCK(sc);
1456 
1457 #ifdef DEVICE_POLLING
1458 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1459 		goto done_locked;
1460 #endif
1461 	status = CSR_READ_2(sc, STGE_IntStatus);
1462 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1463 		goto done_locked;
1464 
1465 	/* Disable interrupts. */
1466 	for (reinit = 0;;) {
1467 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1468 		status &= sc->sc_IntEnable;
1469 		if (status == 0)
1470 			break;
1471 		/* Host interface errors. */
1472 		if ((status & IS_HostError) != 0) {
1473 			device_printf(sc->sc_dev,
1474 			    "Host interface error, resetting...\n");
1475 			reinit = 1;
1476 			goto force_init;
1477 		}
1478 
1479 		/* Receive interrupts. */
1480 		if ((status & IS_RxDMAComplete) != 0) {
1481 			stge_rxeof(sc);
1482 			if ((status & IS_RFDListEnd) != 0)
1483 				CSR_WRITE_4(sc, STGE_DMACtrl,
1484 				    DMAC_RxDMAPollNow);
1485 		}
1486 
1487 		/* Transmit interrupts. */
1488 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1489 			stge_txeof(sc);
1490 
1491 		/* Transmission errors.*/
1492 		if ((status & IS_TxComplete) != 0) {
1493 			if ((reinit = stge_tx_error(sc)) != 0)
1494 				break;
1495 		}
1496 	}
1497 
1498 force_init:
1499 	if (reinit != 0) {
1500 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1501 		stge_init_locked(sc);
1502 	}
1503 
1504 	/* Re-enable interrupts. */
1505 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1506 
1507 	/* Try to get more packets going. */
1508 	if (!if_sendq_empty(ifp))
1509 		stge_start_locked(ifp);
1510 
1511 done_locked:
1512 	STGE_UNLOCK(sc);
1513 }
1514 
1515 /*
1516  * stge_txeof:
1517  *
1518  *	Helper; handle transmit interrupts.
1519  */
1520 static void
1521 stge_txeof(struct stge_softc *sc)
1522 {
1523 	if_t ifp;
1524 	struct stge_txdesc *txd;
1525 	uint64_t control;
1526 	int cons;
1527 
1528 	STGE_LOCK_ASSERT(sc);
1529 
1530 	ifp = sc->sc_ifp;
1531 
1532 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1533 	if (txd == NULL)
1534 		return;
1535 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1536 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1537 
1538 	/*
1539 	 * Go through our Tx list and free mbufs for those
1540 	 * frames which have been transmitted.
1541 	 */
1542 	for (cons = sc->sc_cdata.stge_tx_cons;;
1543 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1544 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1545 			break;
1546 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1547 		if ((control & TFD_TFDDone) == 0)
1548 			break;
1549 		sc->sc_cdata.stge_tx_cnt--;
1550 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1551 
1552 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1553 		    BUS_DMASYNC_POSTWRITE);
1554 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1555 
1556 		/* Output counter is updated with statistics register */
1557 		m_freem(txd->tx_m);
1558 		txd->tx_m = NULL;
1559 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1560 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1561 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1562 	}
1563 	sc->sc_cdata.stge_tx_cons = cons;
1564 	if (sc->sc_cdata.stge_tx_cnt == 0)
1565 		sc->sc_watchdog_timer = 0;
1566 
1567         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1568 	    sc->sc_cdata.stge_tx_ring_map,
1569 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1570 }
1571 
1572 static __inline void
1573 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1574 {
1575 	struct stge_rfd *rfd;
1576 
1577 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1578 	rfd->rfd_status = 0;
1579 }
1580 
1581 #ifndef __NO_STRICT_ALIGNMENT
1582 /*
1583  * It seems that TC9021's DMA engine has alignment restrictions in
1584  * DMA scatter operations. The first DMA segment has no address
1585  * alignment restrictins but the rest should be aligned on 4(?) bytes
1586  * boundary. Otherwise it would corrupt random memory. Since we don't
1587  * know which one is used for the first segment in advance we simply
1588  * don't align at all.
1589  * To avoid copying over an entire frame to align, we allocate a new
1590  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1591  * prepended into the existing mbuf chain.
1592  */
1593 static __inline struct mbuf *
1594 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1595 {
1596 	struct mbuf *n;
1597 
1598 	n = NULL;
1599 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1600 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1601 		m->m_data += ETHER_HDR_LEN;
1602 		n = m;
1603 	} else {
1604 		MGETHDR(n, M_NOWAIT, MT_DATA);
1605 		if (n != NULL) {
1606 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1607 			m->m_data += ETHER_HDR_LEN;
1608 			m->m_len -= ETHER_HDR_LEN;
1609 			n->m_len = ETHER_HDR_LEN;
1610 			M_MOVE_PKTHDR(n, m);
1611 			n->m_next = m;
1612 		} else
1613 			m_freem(m);
1614 	}
1615 
1616 	return (n);
1617 }
1618 #endif
1619 
1620 /*
1621  * stge_rxeof:
1622  *
1623  *	Helper; handle receive interrupts.
1624  */
1625 static int
1626 stge_rxeof(struct stge_softc *sc)
1627 {
1628 	if_t ifp;
1629 	struct stge_rxdesc *rxd;
1630 	struct mbuf *mp, *m;
1631 	uint64_t status64;
1632 	uint32_t status;
1633 	int cons, prog, rx_npkts;
1634 
1635 	STGE_LOCK_ASSERT(sc);
1636 
1637 	rx_npkts = 0;
1638 	ifp = sc->sc_ifp;
1639 
1640 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1641 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1642 
1643 	prog = 0;
1644 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1645 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1646 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1647 		status = RFD_RxStatus(status64);
1648 		if ((status & RFD_RFDDone) == 0)
1649 			break;
1650 #ifdef DEVICE_POLLING
1651 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1652 			if (sc->sc_cdata.stge_rxcycles <= 0)
1653 				break;
1654 			sc->sc_cdata.stge_rxcycles--;
1655 		}
1656 #endif
1657 		prog++;
1658 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1659 		mp = rxd->rx_m;
1660 
1661 		/*
1662 		 * If the packet had an error, drop it.  Note we count
1663 		 * the error later in the periodic stats update.
1664 		 */
1665 		if ((status & RFD_FrameEnd) != 0 && (status &
1666 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1667 		    RFD_RxAlignmentError | RFD_RxFCSError |
1668 		    RFD_RxLengthError)) != 0) {
1669 			stge_discard_rxbuf(sc, cons);
1670 			if (sc->sc_cdata.stge_rxhead != NULL) {
1671 				m_freem(sc->sc_cdata.stge_rxhead);
1672 				STGE_RXCHAIN_RESET(sc);
1673 			}
1674 			continue;
1675 		}
1676 		/*
1677 		 * Add a new receive buffer to the ring.
1678 		 */
1679 		if (stge_newbuf(sc, cons) != 0) {
1680 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1681 			stge_discard_rxbuf(sc, cons);
1682 			if (sc->sc_cdata.stge_rxhead != NULL) {
1683 				m_freem(sc->sc_cdata.stge_rxhead);
1684 				STGE_RXCHAIN_RESET(sc);
1685 			}
1686 			continue;
1687 		}
1688 
1689 		if ((status & RFD_FrameEnd) != 0)
1690 			mp->m_len = RFD_RxDMAFrameLen(status) -
1691 			    sc->sc_cdata.stge_rxlen;
1692 		sc->sc_cdata.stge_rxlen += mp->m_len;
1693 
1694 		/* Chain mbufs. */
1695 		if (sc->sc_cdata.stge_rxhead == NULL) {
1696 			sc->sc_cdata.stge_rxhead = mp;
1697 			sc->sc_cdata.stge_rxtail = mp;
1698 		} else {
1699 			mp->m_flags &= ~M_PKTHDR;
1700 			sc->sc_cdata.stge_rxtail->m_next = mp;
1701 			sc->sc_cdata.stge_rxtail = mp;
1702 		}
1703 
1704 		if ((status & RFD_FrameEnd) != 0) {
1705 			m = sc->sc_cdata.stge_rxhead;
1706 			m->m_pkthdr.rcvif = ifp;
1707 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1708 
1709 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1710 				m_freem(m);
1711 				STGE_RXCHAIN_RESET(sc);
1712 				continue;
1713 			}
1714 			/*
1715 			 * Set the incoming checksum information for
1716 			 * the packet.
1717 			 */
1718 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1719 				if ((status & RFD_IPDetected) != 0) {
1720 					m->m_pkthdr.csum_flags |=
1721 						CSUM_IP_CHECKED;
1722 					if ((status & RFD_IPError) == 0)
1723 						m->m_pkthdr.csum_flags |=
1724 						    CSUM_IP_VALID;
1725 				}
1726 				if (((status & RFD_TCPDetected) != 0 &&
1727 				    (status & RFD_TCPError) == 0) ||
1728 				    ((status & RFD_UDPDetected) != 0 &&
1729 				    (status & RFD_UDPError) == 0)) {
1730 					m->m_pkthdr.csum_flags |=
1731 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1732 					m->m_pkthdr.csum_data = 0xffff;
1733 				}
1734 			}
1735 
1736 #ifndef __NO_STRICT_ALIGNMENT
1737 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1738 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1739 					STGE_RXCHAIN_RESET(sc);
1740 					continue;
1741 				}
1742 			}
1743 #endif
1744 			/* Check for VLAN tagged packets. */
1745 			if ((status & RFD_VLANDetected) != 0 &&
1746 			    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1747 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1748 				m->m_flags |= M_VLANTAG;
1749 			}
1750 
1751 			STGE_UNLOCK(sc);
1752 			/* Pass it on. */
1753 			if_input(ifp, m);
1754 			STGE_LOCK(sc);
1755 			rx_npkts++;
1756 
1757 			STGE_RXCHAIN_RESET(sc);
1758 		}
1759 	}
1760 
1761 	if (prog > 0) {
1762 		/* Update the consumer index. */
1763 		sc->sc_cdata.stge_rx_cons = cons;
1764 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1765 		    sc->sc_cdata.stge_rx_ring_map,
1766 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1767 	}
1768 	return (rx_npkts);
1769 }
1770 
1771 #ifdef DEVICE_POLLING
1772 static int
1773 stge_poll(if_t ifp, enum poll_cmd cmd, int count)
1774 {
1775 	struct stge_softc *sc;
1776 	uint16_t status;
1777 	int rx_npkts;
1778 
1779 	rx_npkts = 0;
1780 	sc = if_getsoftc(ifp);
1781 	STGE_LOCK(sc);
1782 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1783 		STGE_UNLOCK(sc);
1784 		return (rx_npkts);
1785 	}
1786 
1787 	sc->sc_cdata.stge_rxcycles = count;
1788 	rx_npkts = stge_rxeof(sc);
1789 	stge_txeof(sc);
1790 
1791 	if (cmd == POLL_AND_CHECK_STATUS) {
1792 		status = CSR_READ_2(sc, STGE_IntStatus);
1793 		status &= sc->sc_IntEnable;
1794 		if (status != 0) {
1795 			if ((status & IS_HostError) != 0) {
1796 				device_printf(sc->sc_dev,
1797 				    "Host interface error, resetting...\n");
1798 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1799 				stge_init_locked(sc);
1800 			}
1801 			if ((status & IS_TxComplete) != 0) {
1802 				if (stge_tx_error(sc) != 0) {
1803 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1804 					stge_init_locked(sc);
1805 				}
1806 			}
1807 		}
1808 	}
1809 
1810 	if (!if_sendq_empty(ifp))
1811 		stge_start_locked(ifp);
1812 
1813 	STGE_UNLOCK(sc);
1814 	return (rx_npkts);
1815 }
1816 #endif	/* DEVICE_POLLING */
1817 
1818 /*
1819  * stge_tick:
1820  *
1821  *	One second timer, used to tick the MII.
1822  */
1823 static void
1824 stge_tick(void *arg)
1825 {
1826 	struct stge_softc *sc;
1827 	struct mii_data *mii;
1828 
1829 	sc = (struct stge_softc *)arg;
1830 
1831 	STGE_LOCK_ASSERT(sc);
1832 
1833 	mii = device_get_softc(sc->sc_miibus);
1834 	mii_tick(mii);
1835 
1836 	/* Update statistics counters. */
1837 	stge_stats_update(sc);
1838 
1839 	/*
1840 	 * Relcaim any pending Tx descriptors to release mbufs in a
1841 	 * timely manner as we don't generate Tx completion interrupts
1842 	 * for every frame. This limits the delay to a maximum of one
1843 	 * second.
1844 	 */
1845 	if (sc->sc_cdata.stge_tx_cnt != 0)
1846 		stge_txeof(sc);
1847 
1848 	stge_watchdog(sc);
1849 
1850 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1851 }
1852 
1853 /*
1854  * stge_stats_update:
1855  *
1856  *	Read the TC9021 statistics counters.
1857  */
1858 static void
1859 stge_stats_update(struct stge_softc *sc)
1860 {
1861 	if_t ifp;
1862 
1863 	STGE_LOCK_ASSERT(sc);
1864 
1865 	ifp = sc->sc_ifp;
1866 
1867 	CSR_READ_4(sc,STGE_OctetRcvOk);
1868 
1869 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1870 
1871 	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1872 
1873 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1874 
1875 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1876 
1877 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1878 	    CSR_READ_4(sc, STGE_LateCollisions) +
1879 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1880 	    CSR_READ_4(sc, STGE_SingleColFrames));
1881 
1882 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1883 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1884 	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1885 }
1886 
1887 /*
1888  * stge_reset:
1889  *
1890  *	Perform a soft reset on the TC9021.
1891  */
1892 static void
1893 stge_reset(struct stge_softc *sc, uint32_t how)
1894 {
1895 	uint32_t ac;
1896 	uint8_t v;
1897 	int i, dv;
1898 
1899 	STGE_LOCK_ASSERT(sc);
1900 
1901 	dv = 5000;
1902 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1903 	switch (how) {
1904 	case STGE_RESET_TX:
1905 		ac |= AC_TxReset | AC_FIFO;
1906 		dv = 100;
1907 		break;
1908 	case STGE_RESET_RX:
1909 		ac |= AC_RxReset | AC_FIFO;
1910 		dv = 100;
1911 		break;
1912 	case STGE_RESET_FULL:
1913 	default:
1914 		/*
1915 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1916 		 * to be present in order for the reset to complete on fiber
1917 		 * cards.
1918 		 */
1919 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1920 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1921 		    (sc->sc_usefiber ? AC_RstOut : 0);
1922 		break;
1923 	}
1924 
1925 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1926 
1927 	/* Account for reset problem at 10Mbps. */
1928 	DELAY(dv);
1929 
1930 	for (i = 0; i < STGE_TIMEOUT; i++) {
1931 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1932 			break;
1933 		DELAY(dv);
1934 	}
1935 
1936 	if (i == STGE_TIMEOUT)
1937 		device_printf(sc->sc_dev, "reset failed to complete\n");
1938 
1939 	/* Set LED, from Linux IPG driver. */
1940 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1941 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1942 	if ((sc->sc_led & 0x01) != 0)
1943 		ac |= AC_LEDMode;
1944 	if ((sc->sc_led & 0x03) != 0)
1945 		ac |= AC_LEDModeBit1;
1946 	if ((sc->sc_led & 0x08) != 0)
1947 		ac |= AC_LEDSpeed;
1948 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1949 
1950 	/* Set PHY, from Linux IPG driver */
1951 	v = CSR_READ_1(sc, STGE_PhySet);
1952 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1953 	v |= ((sc->sc_led & 0x70) >> 4);
1954 	CSR_WRITE_1(sc, STGE_PhySet, v);
1955 }
1956 
1957 /*
1958  * stge_init:		[ ifnet interface function ]
1959  *
1960  *	Initialize the interface.
1961  */
1962 static void
1963 stge_init(void *xsc)
1964 {
1965 	struct stge_softc *sc;
1966 
1967 	sc = (struct stge_softc *)xsc;
1968 	STGE_LOCK(sc);
1969 	stge_init_locked(sc);
1970 	STGE_UNLOCK(sc);
1971 }
1972 
1973 static void
1974 stge_init_locked(struct stge_softc *sc)
1975 {
1976 	if_t ifp;
1977 	struct mii_data *mii;
1978 	uint16_t eaddr[3];
1979 	uint32_t v;
1980 	int error;
1981 
1982 	STGE_LOCK_ASSERT(sc);
1983 
1984 	ifp = sc->sc_ifp;
1985 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1986 		return;
1987 	mii = device_get_softc(sc->sc_miibus);
1988 
1989 	/*
1990 	 * Cancel any pending I/O.
1991 	 */
1992 	stge_stop(sc);
1993 
1994 	/*
1995 	 * Reset the chip to a known state.
1996 	 */
1997 	stge_reset(sc, STGE_RESET_FULL);
1998 
1999 	/* Init descriptors. */
2000 	error = stge_init_rx_ring(sc);
2001         if (error != 0) {
2002                 device_printf(sc->sc_dev,
2003                     "initialization failed: no memory for rx buffers\n");
2004                 stge_stop(sc);
2005 		goto out;
2006         }
2007 	stge_init_tx_ring(sc);
2008 
2009 	/* Set the station address. */
2010 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2011 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2012 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2013 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2014 
2015 	/*
2016 	 * Set the statistics masks.  Disable all the RMON stats,
2017 	 * and disable selected stats in the non-RMON stats registers.
2018 	 */
2019 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2020 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2021 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2022 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2023 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2024 	    (1U << 21));
2025 
2026 	/* Set up the receive filter. */
2027 	stge_set_filter(sc);
2028 	/* Program multicast filter. */
2029 	stge_set_multi(sc);
2030 
2031 	/*
2032 	 * Give the transmit and receive ring to the chip.
2033 	 */
2034 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2035 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2036 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2037 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2038 
2039 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2040 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2041 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2042 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2043 
2044 	/*
2045 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2046 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2047 	 * transmit engine when there's actually a packet.
2048 	 */
2049 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2050 
2051 	/* ..and the Rx auto-poll period. */
2052 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2053 
2054 	/* Initialize the Tx start threshold. */
2055 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2056 
2057 	/* Rx DMA thresholds, from Linux */
2058 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2059 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2060 
2061 	/* Rx early threhold, from Linux */
2062 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2063 
2064 	/* Tx DMA thresholds, from Linux */
2065 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2066 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2067 
2068 	/*
2069 	 * Initialize the Rx DMA interrupt control register.  We
2070 	 * request an interrupt after every incoming packet, but
2071 	 * defer it for sc_rxint_dmawait us. When the number of
2072 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2073 	 * deferring the interrupt, and signal it immediately.
2074 	 */
2075 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2076 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2077 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2078 
2079 	/*
2080 	 * Initialize the interrupt mask.
2081 	 */
2082 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2083 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2084 #ifdef DEVICE_POLLING
2085 	/* Disable interrupts if we are polling. */
2086 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
2087 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2088 	else
2089 #endif
2090 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2091 
2092 	/*
2093 	 * Configure the DMA engine.
2094 	 * XXX Should auto-tune TxBurstLimit.
2095 	 */
2096 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2097 
2098 	/*
2099 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2100 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2101 	 * in the Rx FIFO.
2102 	 */
2103 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2104 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2105 
2106 	/*
2107 	 * Set the maximum frame size.
2108 	 */
2109 	sc->sc_if_framesize = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN;
2110 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2111 
2112 	/*
2113 	 * Initialize MacCtrl -- do it before setting the media,
2114 	 * as setting the media will actually program the register.
2115 	 *
2116 	 * Note: We have to poke the IFS value before poking
2117 	 * anything else.
2118 	 */
2119 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2120 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2121 
2122 	stge_vlan_setup(sc);
2123 
2124 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2125 		/* Multi-frag frame bug work-around. */
2126 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2127 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2128 
2129 		/* Tx Poll Now bug work-around. */
2130 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2131 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2132 		/* Tx Poll Now bug work-around. */
2133 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2134 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2135 	}
2136 
2137 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2138 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2139 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2140 	/*
2141 	 * It seems that transmitting frames without checking the state of
2142 	 * Rx/Tx MAC wedge the hardware.
2143 	 */
2144 	stge_start_tx(sc);
2145 	stge_start_rx(sc);
2146 
2147 	sc->sc_link = 0;
2148 	/*
2149 	 * Set the current media.
2150 	 */
2151 	mii_mediachg(mii);
2152 
2153 	/*
2154 	 * Start the one second MII clock.
2155 	 */
2156 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2157 
2158 	/*
2159 	 * ...all done!
2160 	 */
2161 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2162 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2163 
2164  out:
2165 	if (error != 0)
2166 		device_printf(sc->sc_dev, "interface not running\n");
2167 }
2168 
2169 static void
2170 stge_vlan_setup(struct stge_softc *sc)
2171 {
2172 	if_t ifp;
2173 	uint32_t v;
2174 
2175 	ifp = sc->sc_ifp;
2176 	/*
2177 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2178 	 * MC_AutoVLANuntagging bit.
2179 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2180 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2181 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2182 	 * use TFC instead of STGE_VLANTag register.
2183 	 */
2184 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2185 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2186 		v |= MC_AutoVLANuntagging;
2187 	else
2188 		v &= ~MC_AutoVLANuntagging;
2189 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2190 }
2191 
2192 /*
2193  *	Stop transmission on the interface.
2194  */
2195 static void
2196 stge_stop(struct stge_softc *sc)
2197 {
2198 	if_t ifp;
2199 	struct stge_txdesc *txd;
2200 	struct stge_rxdesc *rxd;
2201 	uint32_t v;
2202 	int i;
2203 
2204 	STGE_LOCK_ASSERT(sc);
2205 	/*
2206 	 * Stop the one second clock.
2207 	 */
2208 	callout_stop(&sc->sc_tick_ch);
2209 	sc->sc_watchdog_timer = 0;
2210 
2211 	/*
2212 	 * Disable interrupts.
2213 	 */
2214 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2215 
2216 	/*
2217 	 * Stop receiver, transmitter, and stats update.
2218 	 */
2219 	stge_stop_rx(sc);
2220 	stge_stop_tx(sc);
2221 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2222 	v |= MC_StatisticsDisable;
2223 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2224 
2225 	/*
2226 	 * Stop the transmit and receive DMA.
2227 	 */
2228 	stge_dma_wait(sc);
2229 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2230 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2231 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2232 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2233 
2234 	/*
2235 	 * Free RX and TX mbufs still in the queues.
2236 	 */
2237 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2238 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2239 		if (rxd->rx_m != NULL) {
2240 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2241 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2242 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2243 			    rxd->rx_dmamap);
2244 			m_freem(rxd->rx_m);
2245 			rxd->rx_m = NULL;
2246 		}
2247         }
2248 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2249 		txd = &sc->sc_cdata.stge_txdesc[i];
2250 		if (txd->tx_m != NULL) {
2251 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2252 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2253 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2254 			    txd->tx_dmamap);
2255 			m_freem(txd->tx_m);
2256 			txd->tx_m = NULL;
2257 		}
2258         }
2259 
2260 	/*
2261 	 * Mark the interface down and cancel the watchdog timer.
2262 	 */
2263 	ifp = sc->sc_ifp;
2264 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2265 	sc->sc_link = 0;
2266 }
2267 
2268 static void
2269 stge_start_tx(struct stge_softc *sc)
2270 {
2271 	uint32_t v;
2272 	int i;
2273 
2274 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2275 	if ((v & MC_TxEnabled) != 0)
2276 		return;
2277 	v |= MC_TxEnable;
2278 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2279 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2280 	for (i = STGE_TIMEOUT; i > 0; i--) {
2281 		DELAY(10);
2282 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2283 		if ((v & MC_TxEnabled) != 0)
2284 			break;
2285 	}
2286 	if (i == 0)
2287 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2288 }
2289 
2290 static void
2291 stge_start_rx(struct stge_softc *sc)
2292 {
2293 	uint32_t v;
2294 	int i;
2295 
2296 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2297 	if ((v & MC_RxEnabled) != 0)
2298 		return;
2299 	v |= MC_RxEnable;
2300 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2301 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2302 	for (i = STGE_TIMEOUT; i > 0; i--) {
2303 		DELAY(10);
2304 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2305 		if ((v & MC_RxEnabled) != 0)
2306 			break;
2307 	}
2308 	if (i == 0)
2309 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2310 }
2311 
2312 static void
2313 stge_stop_tx(struct stge_softc *sc)
2314 {
2315 	uint32_t v;
2316 	int i;
2317 
2318 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2319 	if ((v & MC_TxEnabled) == 0)
2320 		return;
2321 	v |= MC_TxDisable;
2322 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2323 	for (i = STGE_TIMEOUT; i > 0; i--) {
2324 		DELAY(10);
2325 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2326 		if ((v & MC_TxEnabled) == 0)
2327 			break;
2328 	}
2329 	if (i == 0)
2330 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2331 }
2332 
2333 static void
2334 stge_stop_rx(struct stge_softc *sc)
2335 {
2336 	uint32_t v;
2337 	int i;
2338 
2339 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2340 	if ((v & MC_RxEnabled) == 0)
2341 		return;
2342 	v |= MC_RxDisable;
2343 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2344 	for (i = STGE_TIMEOUT; i > 0; i--) {
2345 		DELAY(10);
2346 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2347 		if ((v & MC_RxEnabled) == 0)
2348 			break;
2349 	}
2350 	if (i == 0)
2351 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2352 }
2353 
2354 static void
2355 stge_init_tx_ring(struct stge_softc *sc)
2356 {
2357 	struct stge_ring_data *rd;
2358 	struct stge_txdesc *txd;
2359 	bus_addr_t addr;
2360 	int i;
2361 
2362 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2363 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2364 
2365 	sc->sc_cdata.stge_tx_prod = 0;
2366 	sc->sc_cdata.stge_tx_cons = 0;
2367 	sc->sc_cdata.stge_tx_cnt = 0;
2368 
2369 	rd = &sc->sc_rdata;
2370 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2371 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2372 		if (i == (STGE_TX_RING_CNT - 1))
2373 			addr = STGE_TX_RING_ADDR(sc, 0);
2374 		else
2375 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2376 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2377 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2378 		txd = &sc->sc_cdata.stge_txdesc[i];
2379 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2380 	}
2381 
2382 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2383 	    sc->sc_cdata.stge_tx_ring_map,
2384 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2385 
2386 }
2387 
2388 static int
2389 stge_init_rx_ring(struct stge_softc *sc)
2390 {
2391 	struct stge_ring_data *rd;
2392 	bus_addr_t addr;
2393 	int i;
2394 
2395 	sc->sc_cdata.stge_rx_cons = 0;
2396 	STGE_RXCHAIN_RESET(sc);
2397 
2398 	rd = &sc->sc_rdata;
2399 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2400 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2401 		if (stge_newbuf(sc, i) != 0)
2402 			return (ENOBUFS);
2403 		if (i == (STGE_RX_RING_CNT - 1))
2404 			addr = STGE_RX_RING_ADDR(sc, 0);
2405 		else
2406 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2407 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2408 		rd->stge_rx_ring[i].rfd_status = 0;
2409 	}
2410 
2411 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2412 	    sc->sc_cdata.stge_rx_ring_map,
2413 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2414 
2415 	return (0);
2416 }
2417 
2418 /*
2419  * stge_newbuf:
2420  *
2421  *	Add a receive buffer to the indicated descriptor.
2422  */
2423 static int
2424 stge_newbuf(struct stge_softc *sc, int idx)
2425 {
2426 	struct stge_rxdesc *rxd;
2427 	struct stge_rfd *rfd;
2428 	struct mbuf *m;
2429 	bus_dma_segment_t segs[1];
2430 	bus_dmamap_t map;
2431 	int nsegs;
2432 
2433 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2434 	if (m == NULL)
2435 		return (ENOBUFS);
2436 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2437 	/*
2438 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2439 	 * frame is used.
2440 	 */
2441 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2442 		m_adj(m, ETHER_ALIGN);
2443 
2444 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2445 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2446 		m_freem(m);
2447 		return (ENOBUFS);
2448 	}
2449 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2450 
2451 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2452 	if (rxd->rx_m != NULL) {
2453 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2454 		    BUS_DMASYNC_POSTREAD);
2455 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2456 	}
2457 	map = rxd->rx_dmamap;
2458 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2459 	sc->sc_cdata.stge_rx_sparemap = map;
2460 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2461 	    BUS_DMASYNC_PREREAD);
2462 	rxd->rx_m = m;
2463 
2464 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2465 	rfd->rfd_frag.frag_word0 =
2466 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2467 	rfd->rfd_status = 0;
2468 
2469 	return (0);
2470 }
2471 
2472 /*
2473  * stge_set_filter:
2474  *
2475  *	Set up the receive filter.
2476  */
2477 static void
2478 stge_set_filter(struct stge_softc *sc)
2479 {
2480 	if_t ifp;
2481 	uint16_t mode;
2482 
2483 	STGE_LOCK_ASSERT(sc);
2484 
2485 	ifp = sc->sc_ifp;
2486 
2487 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2488 	mode |= RM_ReceiveUnicast;
2489 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2490 		mode |= RM_ReceiveBroadcast;
2491 	else
2492 		mode &= ~RM_ReceiveBroadcast;
2493 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2494 		mode |= RM_ReceiveAllFrames;
2495 	else
2496 		mode &= ~RM_ReceiveAllFrames;
2497 
2498 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2499 }
2500 
2501 static u_int
2502 stge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2503 {
2504 	uint32_t crc, *mchash = arg;
2505 
2506 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2507 	/* Just want the 6 least significant bits. */
2508 	crc &= 0x3f;
2509 	/* Set the corresponding bit in the hash table. */
2510 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
2511 
2512 	return (1);
2513 }
2514 
2515 static void
2516 stge_set_multi(struct stge_softc *sc)
2517 {
2518 	if_t ifp;
2519 	uint32_t mchash[2];
2520 	uint16_t mode;
2521 	int count;
2522 
2523 	STGE_LOCK_ASSERT(sc);
2524 
2525 	ifp = sc->sc_ifp;
2526 
2527 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2528 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2529 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2530 			mode |= RM_ReceiveAllFrames;
2531 		else if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2532 			mode |= RM_ReceiveMulticast;
2533 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2534 		return;
2535 	}
2536 
2537 	/* clear existing filters. */
2538 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2539 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2540 
2541 	/*
2542 	 * Set up the multicast address filter by passing all multicast
2543 	 * addresses through a CRC generator, and then using the low-order
2544 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2545 	 * high order bits select the register, while the rest of the bits
2546 	 * select the bit within the register.
2547 	 */
2548 	bzero(mchash, sizeof(mchash));
2549 	count = if_foreach_llmaddr(ifp, stge_hash_maddr, mchash);
2550 
2551 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2552 	if (count > 0)
2553 		mode |= RM_ReceiveMulticastHash;
2554 	else
2555 		mode &= ~RM_ReceiveMulticastHash;
2556 
2557 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2558 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2559 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2560 }
2561 
2562 static int
2563 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2564 {
2565 	int error, value;
2566 
2567 	if (!arg1)
2568 		return (EINVAL);
2569 	value = *(int *)arg1;
2570 	error = sysctl_handle_int(oidp, &value, 0, req);
2571 	if (error || !req->newptr)
2572 		return (error);
2573 	if (value < low || value > high)
2574 		return (EINVAL);
2575         *(int *)arg1 = value;
2576 
2577         return (0);
2578 }
2579 
2580 static int
2581 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2582 {
2583 	return (sysctl_int_range(oidp, arg1, arg2, req,
2584 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2585 }
2586 
2587 static int
2588 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2589 {
2590 	return (sysctl_int_range(oidp, arg1, arg2, req,
2591 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2592 }
2593