xref: /freebsd/sys/dev/stge/if_stge.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 2001 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Jason R. Thorpe.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Device driver for the Sundance Tech. TC9021 10/100/1000
36  * Ethernet controller.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #ifdef HAVE_KERNEL_OPTION_HEADERS
43 #include "opt_device_polling.h"
44 #endif
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/endian.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/taskqueue.h>
57 
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_vlan_var.h>
66 
67 #include <machine/bus.h>
68 #include <machine/resource.h>
69 #include <sys/bus.h>
70 #include <sys/rman.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/mii_bitbang.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 
79 #include <dev/stge/if_stgereg.h>
80 
81 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
82 
83 MODULE_DEPEND(stge, pci, 1, 1, 1);
84 MODULE_DEPEND(stge, ether, 1, 1, 1);
85 MODULE_DEPEND(stge, miibus, 1, 1, 1);
86 
87 /* "device miibus" required.  See GENERIC if you get errors here. */
88 #include "miibus_if.h"
89 
90 /*
91  * Devices supported by this driver.
92  */
93 static const struct stge_product {
94 	uint16_t	stge_vendorid;
95 	uint16_t	stge_deviceid;
96 	const char	*stge_name;
97 } stge_products[] = {
98 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
99 	  "Sundance ST-1023 Gigabit Ethernet" },
100 
101 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
102 	  "Sundance ST-2021 Gigabit Ethernet" },
103 
104 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
105 	  "Tamarack TC9021 Gigabit Ethernet" },
106 
107 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
108 	  "Tamarack TC9021 Gigabit Ethernet" },
109 
110 	/*
111 	 * The Sundance sample boards use the Sundance vendor ID,
112 	 * but the Tamarack product ID.
113 	 */
114 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
115 	  "Sundance TC9021 Gigabit Ethernet" },
116 
117 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
118 	  "Sundance TC9021 Gigabit Ethernet" },
119 
120 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
121 	  "D-Link DL-4000 Gigabit Ethernet" },
122 
123 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
124 	  "Antares Gigabit Ethernet" }
125 };
126 
127 static int	stge_probe(device_t);
128 static int	stge_attach(device_t);
129 static int	stge_detach(device_t);
130 static int	stge_shutdown(device_t);
131 static int	stge_suspend(device_t);
132 static int	stge_resume(device_t);
133 
134 static int	stge_encap(struct stge_softc *, struct mbuf **);
135 static void	stge_start(if_t);
136 static void	stge_start_locked(if_t);
137 static void	stge_watchdog(struct stge_softc *);
138 static int	stge_ioctl(if_t, u_long, caddr_t);
139 static void	stge_init(void *);
140 static void	stge_init_locked(struct stge_softc *);
141 static void	stge_vlan_setup(struct stge_softc *);
142 static void	stge_stop(struct stge_softc *);
143 static void	stge_start_tx(struct stge_softc *);
144 static void	stge_start_rx(struct stge_softc *);
145 static void	stge_stop_tx(struct stge_softc *);
146 static void	stge_stop_rx(struct stge_softc *);
147 
148 static void	stge_reset(struct stge_softc *, uint32_t);
149 static int	stge_eeprom_wait(struct stge_softc *);
150 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
151 static void	stge_tick(void *);
152 static void	stge_stats_update(struct stge_softc *);
153 static void	stge_set_filter(struct stge_softc *);
154 static void	stge_set_multi(struct stge_softc *);
155 
156 static void	stge_link_task(void *, int);
157 static void	stge_intr(void *);
158 static __inline int stge_tx_error(struct stge_softc *);
159 static void	stge_txeof(struct stge_softc *);
160 static int	stge_rxeof(struct stge_softc *);
161 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
162 static int	stge_newbuf(struct stge_softc *, int);
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
165 #endif
166 
167 static int	stge_miibus_readreg(device_t, int, int);
168 static int	stge_miibus_writereg(device_t, int, int, int);
169 static void	stge_miibus_statchg(device_t);
170 static int	stge_mediachange(if_t);
171 static void	stge_mediastatus(if_t, struct ifmediareq *);
172 
173 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
174 static int	stge_dma_alloc(struct stge_softc *);
175 static void	stge_dma_free(struct stge_softc *);
176 static void	stge_dma_wait(struct stge_softc *);
177 static void	stge_init_tx_ring(struct stge_softc *);
178 static int	stge_init_rx_ring(struct stge_softc *);
179 #ifdef DEVICE_POLLING
180 static int	stge_poll(if_t, enum poll_cmd, int);
181 #endif
182 
183 static void	stge_setwol(struct stge_softc *);
184 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
185 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
186 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
187 
188 /*
189  * MII bit-bang glue
190  */
191 static uint32_t stge_mii_bitbang_read(device_t);
192 static void	stge_mii_bitbang_write(device_t, uint32_t);
193 
194 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
195 	stge_mii_bitbang_read,
196 	stge_mii_bitbang_write,
197 	{
198 		PC_MgmtData,		/* MII_BIT_MDO */
199 		PC_MgmtData,		/* MII_BIT_MDI */
200 		PC_MgmtClk,		/* MII_BIT_MDC */
201 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
202 		0,			/* MII_BIT_DIR_PHY_HOST */
203 	}
204 };
205 
206 static device_method_t stge_methods[] = {
207 	/* Device interface */
208 	DEVMETHOD(device_probe,		stge_probe),
209 	DEVMETHOD(device_attach,	stge_attach),
210 	DEVMETHOD(device_detach,	stge_detach),
211 	DEVMETHOD(device_shutdown,	stge_shutdown),
212 	DEVMETHOD(device_suspend,	stge_suspend),
213 	DEVMETHOD(device_resume,	stge_resume),
214 
215 	/* MII interface */
216 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
217 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
218 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
219 
220 	DEVMETHOD_END
221 };
222 
223 static driver_t stge_driver = {
224 	"stge",
225 	stge_methods,
226 	sizeof(struct stge_softc)
227 };
228 
229 DRIVER_MODULE(stge, pci, stge_driver, 0, 0);
230 DRIVER_MODULE(miibus, stge, miibus_driver, 0, 0);
231 
232 static struct resource_spec stge_res_spec_io[] = {
233 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
234 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
235 	{ -1,			0,		0 }
236 };
237 
238 static struct resource_spec stge_res_spec_mem[] = {
239 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
240 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
241 	{ -1,			0,		0 }
242 };
243 
244 /*
245  * stge_mii_bitbang_read: [mii bit-bang interface function]
246  *
247  *	Read the MII serial port for the MII bit-bang module.
248  */
249 static uint32_t
250 stge_mii_bitbang_read(device_t dev)
251 {
252 	struct stge_softc *sc;
253 	uint32_t val;
254 
255 	sc = device_get_softc(dev);
256 
257 	val = CSR_READ_1(sc, STGE_PhyCtrl);
258 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
259 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
260 	return (val);
261 }
262 
263 /*
264  * stge_mii_bitbang_write: [mii big-bang interface function]
265  *
266  *	Write the MII serial port for the MII bit-bang module.
267  */
268 static void
269 stge_mii_bitbang_write(device_t dev, uint32_t val)
270 {
271 	struct stge_softc *sc;
272 
273 	sc = device_get_softc(dev);
274 
275 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
276 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
277 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
278 }
279 
280 /*
281  * sc_miibus_readreg:	[mii interface function]
282  *
283  *	Read a PHY register on the MII of the TC9021.
284  */
285 static int
286 stge_miibus_readreg(device_t dev, int phy, int reg)
287 {
288 	struct stge_softc *sc;
289 	int error, val;
290 
291 	sc = device_get_softc(dev);
292 
293 	if (reg == STGE_PhyCtrl) {
294 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
295 		STGE_MII_LOCK(sc);
296 		error = CSR_READ_1(sc, STGE_PhyCtrl);
297 		STGE_MII_UNLOCK(sc);
298 		return (error);
299 	}
300 
301 	STGE_MII_LOCK(sc);
302 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
303 	STGE_MII_UNLOCK(sc);
304 	return (val);
305 }
306 
307 /*
308  * stge_miibus_writereg:	[mii interface function]
309  *
310  *	Write a PHY register on the MII of the TC9021.
311  */
312 static int
313 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
314 {
315 	struct stge_softc *sc;
316 
317 	sc = device_get_softc(dev);
318 
319 	STGE_MII_LOCK(sc);
320 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
321 	STGE_MII_UNLOCK(sc);
322 	return (0);
323 }
324 
325 /*
326  * stge_miibus_statchg:	[mii interface function]
327  *
328  *	Callback from MII layer when media changes.
329  */
330 static void
331 stge_miibus_statchg(device_t dev)
332 {
333 	struct stge_softc *sc;
334 
335 	sc = device_get_softc(dev);
336 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
337 }
338 
339 /*
340  * stge_mediastatus:	[ifmedia interface function]
341  *
342  *	Get the current interface media status.
343  */
344 static void
345 stge_mediastatus(if_t ifp, struct ifmediareq *ifmr)
346 {
347 	struct stge_softc *sc;
348 	struct mii_data *mii;
349 
350 	sc = if_getsoftc(ifp);
351 	mii = device_get_softc(sc->sc_miibus);
352 
353 	mii_pollstat(mii);
354 	ifmr->ifm_status = mii->mii_media_status;
355 	ifmr->ifm_active = mii->mii_media_active;
356 }
357 
358 /*
359  * stge_mediachange:	[ifmedia interface function]
360  *
361  *	Set hardware to newly-selected media.
362  */
363 static int
364 stge_mediachange(if_t ifp)
365 {
366 	struct stge_softc *sc;
367 	struct mii_data *mii;
368 
369 	sc = if_getsoftc(ifp);
370 	mii = device_get_softc(sc->sc_miibus);
371 	mii_mediachg(mii);
372 
373 	return (0);
374 }
375 
376 static int
377 stge_eeprom_wait(struct stge_softc *sc)
378 {
379 	int i;
380 
381 	for (i = 0; i < STGE_TIMEOUT; i++) {
382 		DELAY(1000);
383 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
384 			return (0);
385 	}
386 	return (1);
387 }
388 
389 /*
390  * stge_read_eeprom:
391  *
392  *	Read data from the serial EEPROM.
393  */
394 static void
395 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
396 {
397 
398 	if (stge_eeprom_wait(sc))
399 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
400 
401 	CSR_WRITE_2(sc, STGE_EepromCtrl,
402 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
403 	if (stge_eeprom_wait(sc))
404 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
405 	*data = CSR_READ_2(sc, STGE_EepromData);
406 }
407 
408 static int
409 stge_probe(device_t dev)
410 {
411 	const struct stge_product *sp;
412 	int i;
413 	uint16_t vendor, devid;
414 
415 	vendor = pci_get_vendor(dev);
416 	devid = pci_get_device(dev);
417 	sp = stge_products;
418 	for (i = 0; i < nitems(stge_products); i++, sp++) {
419 		if (vendor == sp->stge_vendorid &&
420 		    devid == sp->stge_deviceid) {
421 			device_set_desc(dev, sp->stge_name);
422 			return (BUS_PROBE_DEFAULT);
423 		}
424 	}
425 
426 	return (ENXIO);
427 }
428 
429 static int
430 stge_attach(device_t dev)
431 {
432 	struct stge_softc *sc;
433 	if_t ifp;
434 	uint8_t enaddr[ETHER_ADDR_LEN];
435 	int error, flags, i;
436 	uint16_t cmd;
437 	uint32_t val;
438 
439 	error = 0;
440 	sc = device_get_softc(dev);
441 	sc->sc_dev = dev;
442 
443 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
444 	    MTX_DEF);
445 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
446 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
447 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
448 
449 	/*
450 	 * Map the device.
451 	 */
452 	pci_enable_busmaster(dev);
453 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
454 	val = pci_read_config(dev, PCIR_BAR(1), 4);
455 	if (PCI_BAR_IO(val))
456 		sc->sc_spec = stge_res_spec_mem;
457 	else {
458 		val = pci_read_config(dev, PCIR_BAR(0), 4);
459 		if (!PCI_BAR_IO(val)) {
460 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
461 			error = ENXIO;
462 			goto fail;
463 		}
464 		sc->sc_spec = stge_res_spec_io;
465 	}
466 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
467 	if (error != 0) {
468 		device_printf(dev, "couldn't allocate %s resources\n",
469 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
470 		goto fail;
471 	}
472 	sc->sc_rev = pci_get_revid(dev);
473 
474 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
475 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
476 	    "rxint_nframe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
477 	    &sc->sc_rxint_nframe, 0, sysctl_hw_stge_rxint_nframe, "I",
478 	    "stge rx interrupt nframe");
479 
480 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
481 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
482 	    "rxint_dmawait", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
483 	    &sc->sc_rxint_dmawait, 0, sysctl_hw_stge_rxint_dmawait, "I",
484 	    "stge rx interrupt dmawait");
485 
486 	/* Pull in device tunables. */
487 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
488 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
489 	    "rxint_nframe", &sc->sc_rxint_nframe);
490 	if (error == 0) {
491 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
492 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
493 			device_printf(dev, "rxint_nframe value out of range; "
494 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
495 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
496 		}
497 	}
498 
499 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
500 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
501 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
502 	if (error == 0) {
503 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
504 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
505 			device_printf(dev, "rxint_dmawait value out of range; "
506 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
507 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
508 		}
509 	}
510 
511 	if ((error = stge_dma_alloc(sc)) != 0)
512 		goto fail;
513 
514 	/*
515 	 * Determine if we're copper or fiber.  It affects how we
516 	 * reset the card.
517 	 */
518 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
519 		sc->sc_usefiber = 1;
520 	else
521 		sc->sc_usefiber = 0;
522 
523 	/* Load LED configuration from EEPROM. */
524 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
525 
526 	/*
527 	 * Reset the chip to a known state.
528 	 */
529 	STGE_LOCK(sc);
530 	stge_reset(sc, STGE_RESET_FULL);
531 	STGE_UNLOCK(sc);
532 
533 	/*
534 	 * Reading the station address from the EEPROM doesn't seem
535 	 * to work, at least on my sample boards.  Instead, since
536 	 * the reset sequence does AutoInit, read it from the station
537 	 * address registers. For Sundance 1023 you can only read it
538 	 * from EEPROM.
539 	 */
540 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
541 		uint16_t v;
542 
543 		v = CSR_READ_2(sc, STGE_StationAddress0);
544 		enaddr[0] = v & 0xff;
545 		enaddr[1] = v >> 8;
546 		v = CSR_READ_2(sc, STGE_StationAddress1);
547 		enaddr[2] = v & 0xff;
548 		enaddr[3] = v >> 8;
549 		v = CSR_READ_2(sc, STGE_StationAddress2);
550 		enaddr[4] = v & 0xff;
551 		enaddr[5] = v >> 8;
552 		sc->sc_stge1023 = 0;
553 	} else {
554 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
555 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
556 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
557 			    &myaddr[i]);
558 			myaddr[i] = le16toh(myaddr[i]);
559 		}
560 		bcopy(myaddr, enaddr, sizeof(enaddr));
561 		sc->sc_stge1023 = 1;
562 	}
563 
564 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
565 	if (ifp == NULL) {
566 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
567 		error = ENXIO;
568 		goto fail;
569 	}
570 
571 	if_setsoftc(ifp, sc);
572 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
573 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
574 	if_setioctlfn(ifp, stge_ioctl);
575 	if_setstartfn(ifp, stge_start);
576 	if_setinitfn(ifp, stge_init);
577 	if_setsendqlen(ifp, STGE_TX_RING_CNT - 1);
578 	if_setsendqready(ifp);
579 	/* Revision B3 and earlier chips have checksum bug. */
580 	if (sc->sc_rev >= 0x0c) {
581 		if_sethwassist(ifp, STGE_CSUM_FEATURES);
582 		if_setcapabilities(ifp, IFCAP_HWCSUM);
583 	} else {
584 		if_sethwassist(ifp, 0);
585 		if_setcapabilities(ifp, 0);
586 	}
587 	if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
588 	if_setcapenable(ifp, if_getcapabilities(ifp));
589 
590 	/*
591 	 * Read some important bits from the PhyCtrl register.
592 	 */
593 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
594 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595 
596 	/* Set up MII bus. */
597 	flags = MIIF_DOPAUSE;
598 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
599 		flags |= MIIF_MACPRIV0;
600 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
601 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
602 	    flags);
603 	if (error != 0) {
604 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
605 		goto fail;
606 	}
607 
608 	ether_ifattach(ifp, enaddr);
609 
610 	/* VLAN capability setup */
611 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
612 	if (sc->sc_rev >= 0x0c)
613 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
614 	if_setcapenable(ifp, if_getcapabilities(ifp));
615 #ifdef DEVICE_POLLING
616 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
617 #endif
618 	/*
619 	 * Tell the upper layer(s) we support long frames.
620 	 * Must appear after the call to ether_ifattach() because
621 	 * ether_ifattach() sets ifi_hdrlen to the default value.
622 	 */
623 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
624 
625 	/*
626 	 * The manual recommends disabling early transmit, so we
627 	 * do.  It's disabled anyway, if using IP checksumming,
628 	 * since the entire packet must be in the FIFO in order
629 	 * for the chip to perform the checksum.
630 	 */
631 	sc->sc_txthresh = 0x0fff;
632 
633 	/*
634 	 * Disable MWI if the PCI layer tells us to.
635 	 */
636 	sc->sc_DMACtrl = 0;
637 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
638 		sc->sc_DMACtrl |= DMAC_MWIDisable;
639 
640 	/*
641 	 * Hookup IRQ
642 	 */
643 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
644 	    NULL, stge_intr, sc, &sc->sc_ih);
645 	if (error != 0) {
646 		ether_ifdetach(ifp);
647 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
648 		sc->sc_ifp = NULL;
649 		goto fail;
650 	}
651 
652 fail:
653 	if (error != 0)
654 		stge_detach(dev);
655 
656 	return (error);
657 }
658 
659 static int
660 stge_detach(device_t dev)
661 {
662 	struct stge_softc *sc;
663 	if_t ifp;
664 
665 	sc = device_get_softc(dev);
666 
667 	ifp = sc->sc_ifp;
668 #ifdef DEVICE_POLLING
669 	if (ifp && if_getcapenable(ifp) & IFCAP_POLLING)
670 		ether_poll_deregister(ifp);
671 #endif
672 	if (device_is_attached(dev)) {
673 		STGE_LOCK(sc);
674 		/* XXX */
675 		sc->sc_detach = 1;
676 		stge_stop(sc);
677 		STGE_UNLOCK(sc);
678 		callout_drain(&sc->sc_tick_ch);
679 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
680 		ether_ifdetach(ifp);
681 	}
682 
683 	if (sc->sc_miibus != NULL) {
684 		device_delete_child(dev, sc->sc_miibus);
685 		sc->sc_miibus = NULL;
686 	}
687 	bus_generic_detach(dev);
688 	stge_dma_free(sc);
689 
690 	if (ifp != NULL) {
691 		if_free(ifp);
692 		sc->sc_ifp = NULL;
693 	}
694 
695 	if (sc->sc_ih) {
696 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
697 		sc->sc_ih = NULL;
698 	}
699 
700 	if (sc->sc_spec)
701 		bus_release_resources(dev, sc->sc_spec, sc->sc_res);
702 
703 	mtx_destroy(&sc->sc_mii_mtx);
704 	mtx_destroy(&sc->sc_mtx);
705 
706 	return (0);
707 }
708 
709 struct stge_dmamap_arg {
710 	bus_addr_t	stge_busaddr;
711 };
712 
713 static void
714 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
715 {
716 	struct stge_dmamap_arg *ctx;
717 
718 	if (error != 0)
719 		return;
720 
721 	ctx = (struct stge_dmamap_arg *)arg;
722 	ctx->stge_busaddr = segs[0].ds_addr;
723 }
724 
725 static int
726 stge_dma_alloc(struct stge_softc *sc)
727 {
728 	struct stge_dmamap_arg ctx;
729 	struct stge_txdesc *txd;
730 	struct stge_rxdesc *rxd;
731 	int error, i;
732 
733 	/* create parent tag. */
734 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
735 		    1, 0,			/* algnmnt, boundary */
736 		    STGE_DMA_MAXADDR,		/* lowaddr */
737 		    BUS_SPACE_MAXADDR,		/* highaddr */
738 		    NULL, NULL,			/* filter, filterarg */
739 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
740 		    0,				/* nsegments */
741 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
742 		    0,				/* flags */
743 		    NULL, NULL,			/* lockfunc, lockarg */
744 		    &sc->sc_cdata.stge_parent_tag);
745 	if (error != 0) {
746 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
747 		goto fail;
748 	}
749 	/* create tag for Tx ring. */
750 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
751 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
752 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
753 		    BUS_SPACE_MAXADDR,		/* highaddr */
754 		    NULL, NULL,			/* filter, filterarg */
755 		    STGE_TX_RING_SZ,		/* maxsize */
756 		    1,				/* nsegments */
757 		    STGE_TX_RING_SZ,		/* maxsegsize */
758 		    0,				/* flags */
759 		    NULL, NULL,			/* lockfunc, lockarg */
760 		    &sc->sc_cdata.stge_tx_ring_tag);
761 	if (error != 0) {
762 		device_printf(sc->sc_dev,
763 		    "failed to allocate Tx ring DMA tag\n");
764 		goto fail;
765 	}
766 
767 	/* create tag for Rx ring. */
768 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
769 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
770 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
771 		    BUS_SPACE_MAXADDR,		/* highaddr */
772 		    NULL, NULL,			/* filter, filterarg */
773 		    STGE_RX_RING_SZ,		/* maxsize */
774 		    1,				/* nsegments */
775 		    STGE_RX_RING_SZ,		/* maxsegsize */
776 		    0,				/* flags */
777 		    NULL, NULL,			/* lockfunc, lockarg */
778 		    &sc->sc_cdata.stge_rx_ring_tag);
779 	if (error != 0) {
780 		device_printf(sc->sc_dev,
781 		    "failed to allocate Rx ring DMA tag\n");
782 		goto fail;
783 	}
784 
785 	/* create tag for Tx buffers. */
786 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
787 		    1, 0,			/* algnmnt, boundary */
788 		    BUS_SPACE_MAXADDR,		/* lowaddr */
789 		    BUS_SPACE_MAXADDR,		/* highaddr */
790 		    NULL, NULL,			/* filter, filterarg */
791 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
792 		    STGE_MAXTXSEGS,		/* nsegments */
793 		    MCLBYTES,			/* maxsegsize */
794 		    0,				/* flags */
795 		    NULL, NULL,			/* lockfunc, lockarg */
796 		    &sc->sc_cdata.stge_tx_tag);
797 	if (error != 0) {
798 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
799 		goto fail;
800 	}
801 
802 	/* create tag for Rx buffers. */
803 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
804 		    1, 0,			/* algnmnt, boundary */
805 		    BUS_SPACE_MAXADDR,		/* lowaddr */
806 		    BUS_SPACE_MAXADDR,		/* highaddr */
807 		    NULL, NULL,			/* filter, filterarg */
808 		    MCLBYTES,			/* maxsize */
809 		    1,				/* nsegments */
810 		    MCLBYTES,			/* maxsegsize */
811 		    0,				/* flags */
812 		    NULL, NULL,			/* lockfunc, lockarg */
813 		    &sc->sc_cdata.stge_rx_tag);
814 	if (error != 0) {
815 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
816 		goto fail;
817 	}
818 
819 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
820 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
821 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
822 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
823 	if (error != 0) {
824 		device_printf(sc->sc_dev,
825 		    "failed to allocate DMA'able memory for Tx ring\n");
826 		goto fail;
827 	}
828 
829 	ctx.stge_busaddr = 0;
830 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
831 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
832 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
833 	if (error != 0 || ctx.stge_busaddr == 0) {
834 		device_printf(sc->sc_dev,
835 		    "failed to load DMA'able memory for Tx ring\n");
836 		goto fail;
837 	}
838 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
839 
840 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
841 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
842 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
843 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
844 	if (error != 0) {
845 		device_printf(sc->sc_dev,
846 		    "failed to allocate DMA'able memory for Rx ring\n");
847 		goto fail;
848 	}
849 
850 	ctx.stge_busaddr = 0;
851 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
852 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
853 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
854 	if (error != 0 || ctx.stge_busaddr == 0) {
855 		device_printf(sc->sc_dev,
856 		    "failed to load DMA'able memory for Rx ring\n");
857 		goto fail;
858 	}
859 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
860 
861 	/* create DMA maps for Tx buffers. */
862 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
863 		txd = &sc->sc_cdata.stge_txdesc[i];
864 		txd->tx_m = NULL;
865 		txd->tx_dmamap = 0;
866 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
867 		    &txd->tx_dmamap);
868 		if (error != 0) {
869 			device_printf(sc->sc_dev,
870 			    "failed to create Tx dmamap\n");
871 			goto fail;
872 		}
873 	}
874 	/* create DMA maps for Rx buffers. */
875 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
876 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
877 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
878 		goto fail;
879 	}
880 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
881 		rxd = &sc->sc_cdata.stge_rxdesc[i];
882 		rxd->rx_m = NULL;
883 		rxd->rx_dmamap = 0;
884 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
885 		    &rxd->rx_dmamap);
886 		if (error != 0) {
887 			device_printf(sc->sc_dev,
888 			    "failed to create Rx dmamap\n");
889 			goto fail;
890 		}
891 	}
892 
893 fail:
894 	return (error);
895 }
896 
897 static void
898 stge_dma_free(struct stge_softc *sc)
899 {
900 	struct stge_txdesc *txd;
901 	struct stge_rxdesc *rxd;
902 	int i;
903 
904 	/* Tx ring */
905 	if (sc->sc_cdata.stge_tx_ring_tag) {
906 		if (sc->sc_rdata.stge_tx_ring_paddr)
907 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
908 			    sc->sc_cdata.stge_tx_ring_map);
909 		if (sc->sc_rdata.stge_tx_ring)
910 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
911 			    sc->sc_rdata.stge_tx_ring,
912 			    sc->sc_cdata.stge_tx_ring_map);
913 		sc->sc_rdata.stge_tx_ring = NULL;
914 		sc->sc_rdata.stge_tx_ring_paddr = 0;
915 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
916 		sc->sc_cdata.stge_tx_ring_tag = NULL;
917 	}
918 	/* Rx ring */
919 	if (sc->sc_cdata.stge_rx_ring_tag) {
920 		if (sc->sc_rdata.stge_rx_ring_paddr)
921 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
922 			    sc->sc_cdata.stge_rx_ring_map);
923 		if (sc->sc_rdata.stge_rx_ring)
924 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
925 			    sc->sc_rdata.stge_rx_ring,
926 			    sc->sc_cdata.stge_rx_ring_map);
927 		sc->sc_rdata.stge_rx_ring = NULL;
928 		sc->sc_rdata.stge_rx_ring_paddr = 0;
929 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
930 		sc->sc_cdata.stge_rx_ring_tag = NULL;
931 	}
932 	/* Tx buffers */
933 	if (sc->sc_cdata.stge_tx_tag) {
934 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
935 			txd = &sc->sc_cdata.stge_txdesc[i];
936 			if (txd->tx_dmamap) {
937 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
938 				    txd->tx_dmamap);
939 				txd->tx_dmamap = 0;
940 			}
941 		}
942 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
943 		sc->sc_cdata.stge_tx_tag = NULL;
944 	}
945 	/* Rx buffers */
946 	if (sc->sc_cdata.stge_rx_tag) {
947 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
948 			rxd = &sc->sc_cdata.stge_rxdesc[i];
949 			if (rxd->rx_dmamap) {
950 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
951 				    rxd->rx_dmamap);
952 				rxd->rx_dmamap = 0;
953 			}
954 		}
955 		if (sc->sc_cdata.stge_rx_sparemap) {
956 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
957 			    sc->sc_cdata.stge_rx_sparemap);
958 			sc->sc_cdata.stge_rx_sparemap = 0;
959 		}
960 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
961 		sc->sc_cdata.stge_rx_tag = NULL;
962 	}
963 
964 	if (sc->sc_cdata.stge_parent_tag) {
965 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
966 		sc->sc_cdata.stge_parent_tag = NULL;
967 	}
968 }
969 
970 /*
971  * stge_shutdown:
972  *
973  *	Make sure the interface is stopped at reboot time.
974  */
975 static int
976 stge_shutdown(device_t dev)
977 {
978 
979 	return (stge_suspend(dev));
980 }
981 
982 static void
983 stge_setwol(struct stge_softc *sc)
984 {
985 	if_t ifp;
986 	uint8_t v;
987 
988 	STGE_LOCK_ASSERT(sc);
989 
990 	ifp = sc->sc_ifp;
991 	v = CSR_READ_1(sc, STGE_WakeEvent);
992 	/* Disable all WOL bits. */
993 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
994 	    WE_WakeOnLanEnable);
995 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
996 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
997 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
998 	/* Reset Tx and prevent transmission. */
999 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1000 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1001 	/*
1002 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1003 	 * into sleep so there is no need to try to resetting link speed.
1004 	 */
1005 }
1006 
1007 static int
1008 stge_suspend(device_t dev)
1009 {
1010 	struct stge_softc *sc;
1011 
1012 	sc = device_get_softc(dev);
1013 
1014 	STGE_LOCK(sc);
1015 	stge_stop(sc);
1016 	sc->sc_suspended = 1;
1017 	stge_setwol(sc);
1018 	STGE_UNLOCK(sc);
1019 
1020 	return (0);
1021 }
1022 
1023 static int
1024 stge_resume(device_t dev)
1025 {
1026 	struct stge_softc *sc;
1027 	if_t ifp;
1028 	uint8_t v;
1029 
1030 	sc = device_get_softc(dev);
1031 
1032 	STGE_LOCK(sc);
1033 	/*
1034 	 * Clear WOL bits, so special frames wouldn't interfere
1035 	 * normal Rx operation anymore.
1036 	 */
1037 	v = CSR_READ_1(sc, STGE_WakeEvent);
1038 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1039 	    WE_WakeOnLanEnable);
1040 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1041 	ifp = sc->sc_ifp;
1042 	if (if_getflags(ifp) & IFF_UP)
1043 		stge_init_locked(sc);
1044 
1045 	sc->sc_suspended = 0;
1046 	STGE_UNLOCK(sc);
1047 
1048 	return (0);
1049 }
1050 
1051 static void
1052 stge_dma_wait(struct stge_softc *sc)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < STGE_TIMEOUT; i++) {
1057 		DELAY(2);
1058 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1059 			break;
1060 	}
1061 
1062 	if (i == STGE_TIMEOUT)
1063 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1064 }
1065 
1066 static int
1067 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1068 {
1069 	struct stge_txdesc *txd;
1070 	struct stge_tfd *tfd;
1071 	struct mbuf *m;
1072 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1073 	int error, i, nsegs, si;
1074 	uint64_t csum_flags, tfc;
1075 
1076 	STGE_LOCK_ASSERT(sc);
1077 
1078 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1079 		return (ENOBUFS);
1080 
1081 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1082 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1083 	if (error == EFBIG) {
1084 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1085 		if (m == NULL) {
1086 			m_freem(*m_head);
1087 			*m_head = NULL;
1088 			return (ENOMEM);
1089 		}
1090 		*m_head = m;
1091 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1092 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1093 		if (error != 0) {
1094 			m_freem(*m_head);
1095 			*m_head = NULL;
1096 			return (error);
1097 		}
1098 	} else if (error != 0)
1099 		return (error);
1100 	if (nsegs == 0) {
1101 		m_freem(*m_head);
1102 		*m_head = NULL;
1103 		return (EIO);
1104 	}
1105 
1106 	m = *m_head;
1107 	csum_flags = 0;
1108 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1109 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1110 			csum_flags |= TFD_IPChecksumEnable;
1111 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1112 			csum_flags |= TFD_TCPChecksumEnable;
1113 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1114 			csum_flags |= TFD_UDPChecksumEnable;
1115 	}
1116 
1117 	si = sc->sc_cdata.stge_tx_prod;
1118 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1119 	for (i = 0; i < nsegs; i++)
1120 		tfd->tfd_frags[i].frag_word0 =
1121 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1122 		    FRAG_LEN(txsegs[i].ds_len));
1123 	sc->sc_cdata.stge_tx_cnt++;
1124 
1125 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1126 	    TFD_FragCount(nsegs) | csum_flags;
1127 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1128 		tfc |= TFD_TxDMAIndicate;
1129 
1130 	/* Update producer index. */
1131 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1132 
1133 	/* Check if we have a VLAN tag to insert. */
1134 	if (m->m_flags & M_VLANTAG)
1135 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1136 	tfd->tfd_control = htole64(tfc);
1137 
1138 	/* Update Tx Queue. */
1139 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1140 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1141 	txd->tx_m = m;
1142 
1143 	/* Sync descriptors. */
1144 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1145 	    BUS_DMASYNC_PREWRITE);
1146 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1147 	    sc->sc_cdata.stge_tx_ring_map,
1148 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1149 
1150 	return (0);
1151 }
1152 
1153 /*
1154  * stge_start:		[ifnet interface function]
1155  *
1156  *	Start packet transmission on the interface.
1157  */
1158 static void
1159 stge_start(if_t ifp)
1160 {
1161 	struct stge_softc *sc;
1162 
1163 	sc = if_getsoftc(ifp);
1164 	STGE_LOCK(sc);
1165 	stge_start_locked(ifp);
1166 	STGE_UNLOCK(sc);
1167 }
1168 
1169 static void
1170 stge_start_locked(if_t ifp)
1171 {
1172         struct stge_softc *sc;
1173         struct mbuf *m_head;
1174 	int enq;
1175 
1176 	sc = if_getsoftc(ifp);
1177 
1178 	STGE_LOCK_ASSERT(sc);
1179 
1180 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1181 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1182 		return;
1183 
1184 	for (enq = 0; !if_sendq_empty(ifp); ) {
1185 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1186 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1187 			break;
1188 		}
1189 
1190 		m_head = if_dequeue(ifp);
1191 		if (m_head == NULL)
1192 			break;
1193 		/*
1194 		 * Pack the data into the transmit ring. If we
1195 		 * don't have room, set the OACTIVE flag and wait
1196 		 * for the NIC to drain the ring.
1197 		 */
1198 		if (stge_encap(sc, &m_head)) {
1199 			if (m_head == NULL)
1200 				break;
1201 			if_sendq_prepend(ifp, m_head);
1202 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1203 			break;
1204 		}
1205 
1206 		enq++;
1207 		/*
1208 		 * If there's a BPF listener, bounce a copy of this frame
1209 		 * to him.
1210 		 */
1211 		ETHER_BPF_MTAP(ifp, m_head);
1212 	}
1213 
1214 	if (enq > 0) {
1215 		/* Transmit */
1216 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1217 
1218 		/* Set a timeout in case the chip goes out to lunch. */
1219 		sc->sc_watchdog_timer = 5;
1220 	}
1221 }
1222 
1223 /*
1224  * stge_watchdog:
1225  *
1226  *	Watchdog timer handler.
1227  */
1228 static void
1229 stge_watchdog(struct stge_softc *sc)
1230 {
1231 	if_t ifp;
1232 
1233 	STGE_LOCK_ASSERT(sc);
1234 
1235 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1236 		return;
1237 
1238 	ifp = sc->sc_ifp;
1239 	if_printf(sc->sc_ifp, "device timeout\n");
1240 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1241 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1242 	stge_init_locked(sc);
1243 	if (!if_sendq_empty(ifp))
1244 		stge_start_locked(ifp);
1245 }
1246 
1247 /*
1248  * stge_ioctl:		[ifnet interface function]
1249  *
1250  *	Handle control requests from the operator.
1251  */
1252 static int
1253 stge_ioctl(if_t ifp, u_long cmd, caddr_t data)
1254 {
1255 	struct stge_softc *sc;
1256 	struct ifreq *ifr;
1257 	struct mii_data *mii;
1258 	int error, mask;
1259 
1260 	sc = if_getsoftc(ifp);
1261 	ifr = (struct ifreq *)data;
1262 	error = 0;
1263 	switch (cmd) {
1264 	case SIOCSIFMTU:
1265 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1266 			error = EINVAL;
1267 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1268 			if_setmtu(ifp, ifr->ifr_mtu);
1269 			STGE_LOCK(sc);
1270 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1271 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1272 				stge_init_locked(sc);
1273 			}
1274 			STGE_UNLOCK(sc);
1275 		}
1276 		break;
1277 	case SIOCSIFFLAGS:
1278 		STGE_LOCK(sc);
1279 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1280 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1281 				if (((if_getflags(ifp) ^ sc->sc_if_flags)
1282 				    & IFF_PROMISC) != 0)
1283 					stge_set_filter(sc);
1284 			} else {
1285 				if (sc->sc_detach == 0)
1286 					stge_init_locked(sc);
1287 			}
1288 		} else {
1289 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1290 				stge_stop(sc);
1291 		}
1292 		sc->sc_if_flags = if_getflags(ifp);
1293 		STGE_UNLOCK(sc);
1294 		break;
1295 	case SIOCADDMULTI:
1296 	case SIOCDELMULTI:
1297 		STGE_LOCK(sc);
1298 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1299 			stge_set_multi(sc);
1300 		STGE_UNLOCK(sc);
1301 		break;
1302 	case SIOCSIFMEDIA:
1303 	case SIOCGIFMEDIA:
1304 		mii = device_get_softc(sc->sc_miibus);
1305 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1306 		break;
1307 	case SIOCSIFCAP:
1308 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1309 #ifdef DEVICE_POLLING
1310 		if ((mask & IFCAP_POLLING) != 0) {
1311 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1312 				error = ether_poll_register(stge_poll, ifp);
1313 				if (error != 0)
1314 					break;
1315 				STGE_LOCK(sc);
1316 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1317 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1318 				STGE_UNLOCK(sc);
1319 			} else {
1320 				error = ether_poll_deregister(ifp);
1321 				if (error != 0)
1322 					break;
1323 				STGE_LOCK(sc);
1324 				CSR_WRITE_2(sc, STGE_IntEnable,
1325 				    sc->sc_IntEnable);
1326 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1327 				STGE_UNLOCK(sc);
1328 			}
1329 		}
1330 #endif
1331 		if ((mask & IFCAP_HWCSUM) != 0) {
1332 			if_togglecapenable(ifp, IFCAP_HWCSUM);
1333 			if ((IFCAP_HWCSUM & if_getcapenable(ifp)) != 0 &&
1334 			    (IFCAP_HWCSUM & if_getcapabilities(ifp)) != 0)
1335 				if_sethwassist(ifp, STGE_CSUM_FEATURES);
1336 			else
1337 				if_sethwassist(ifp, 0);
1338 		}
1339 		if ((mask & IFCAP_WOL) != 0 &&
1340 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
1341 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1342 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1343 		}
1344 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1345 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1346 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1347 				STGE_LOCK(sc);
1348 				stge_vlan_setup(sc);
1349 				STGE_UNLOCK(sc);
1350 			}
1351 		}
1352 		VLAN_CAPABILITIES(ifp);
1353 		break;
1354 	default:
1355 		error = ether_ioctl(ifp, cmd, data);
1356 		break;
1357 	}
1358 
1359 	return (error);
1360 }
1361 
1362 static void
1363 stge_link_task(void *arg, int pending)
1364 {
1365 	struct stge_softc *sc;
1366 	struct mii_data *mii;
1367 	uint32_t v, ac;
1368 	int i;
1369 
1370 	sc = (struct stge_softc *)arg;
1371 	STGE_LOCK(sc);
1372 
1373 	mii = device_get_softc(sc->sc_miibus);
1374 	if (mii->mii_media_status & IFM_ACTIVE) {
1375 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1376 			sc->sc_link = 1;
1377 	} else
1378 		sc->sc_link = 0;
1379 
1380 	sc->sc_MACCtrl = 0;
1381 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1382 		sc->sc_MACCtrl |= MC_DuplexSelect;
1383 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1384 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1385 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1386 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1387 	/*
1388 	 * Update STGE_MACCtrl register depending on link status.
1389 	 * (duplex, flow control etc)
1390 	 */
1391 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1392 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1393 	v |= sc->sc_MACCtrl;
1394 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1395 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1396 		/* Duplex setting changed, reset Tx/Rx functions. */
1397 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1398 		ac |= AC_TxReset | AC_RxReset;
1399 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1400 		for (i = 0; i < STGE_TIMEOUT; i++) {
1401 			DELAY(100);
1402 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1403 				break;
1404 		}
1405 		if (i == STGE_TIMEOUT)
1406 			device_printf(sc->sc_dev, "reset failed to complete\n");
1407 	}
1408 	STGE_UNLOCK(sc);
1409 }
1410 
1411 static __inline int
1412 stge_tx_error(struct stge_softc *sc)
1413 {
1414 	uint32_t txstat;
1415 	int error;
1416 
1417 	for (error = 0;;) {
1418 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1419 		if ((txstat & TS_TxComplete) == 0)
1420 			break;
1421 		/* Tx underrun */
1422 		if ((txstat & TS_TxUnderrun) != 0) {
1423 			/*
1424 			 * XXX
1425 			 * There should be a more better way to recover
1426 			 * from Tx underrun instead of a full reset.
1427 			 */
1428 			if (sc->sc_nerr++ < STGE_MAXERR)
1429 				device_printf(sc->sc_dev, "Tx underrun, "
1430 				    "resetting...\n");
1431 			if (sc->sc_nerr == STGE_MAXERR)
1432 				device_printf(sc->sc_dev, "too many errors; "
1433 				    "not reporting any more\n");
1434 			error = -1;
1435 			break;
1436 		}
1437 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1438 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1439 			CSR_WRITE_4(sc, STGE_MACCtrl,
1440 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1441 			    MC_TxEnable);
1442 	}
1443 
1444 	return (error);
1445 }
1446 
1447 /*
1448  * stge_intr:
1449  *
1450  *	Interrupt service routine.
1451  */
1452 static void
1453 stge_intr(void *arg)
1454 {
1455 	struct stge_softc *sc;
1456 	if_t ifp;
1457 	int reinit;
1458 	uint16_t status;
1459 
1460 	sc = (struct stge_softc *)arg;
1461 	ifp = sc->sc_ifp;
1462 
1463 	STGE_LOCK(sc);
1464 
1465 #ifdef DEVICE_POLLING
1466 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1467 		goto done_locked;
1468 #endif
1469 	status = CSR_READ_2(sc, STGE_IntStatus);
1470 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1471 		goto done_locked;
1472 
1473 	/* Disable interrupts. */
1474 	for (reinit = 0;;) {
1475 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1476 		status &= sc->sc_IntEnable;
1477 		if (status == 0)
1478 			break;
1479 		/* Host interface errors. */
1480 		if ((status & IS_HostError) != 0) {
1481 			device_printf(sc->sc_dev,
1482 			    "Host interface error, resetting...\n");
1483 			reinit = 1;
1484 			goto force_init;
1485 		}
1486 
1487 		/* Receive interrupts. */
1488 		if ((status & IS_RxDMAComplete) != 0) {
1489 			stge_rxeof(sc);
1490 			if ((status & IS_RFDListEnd) != 0)
1491 				CSR_WRITE_4(sc, STGE_DMACtrl,
1492 				    DMAC_RxDMAPollNow);
1493 		}
1494 
1495 		/* Transmit interrupts. */
1496 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1497 			stge_txeof(sc);
1498 
1499 		/* Transmission errors.*/
1500 		if ((status & IS_TxComplete) != 0) {
1501 			if ((reinit = stge_tx_error(sc)) != 0)
1502 				break;
1503 		}
1504 	}
1505 
1506 force_init:
1507 	if (reinit != 0) {
1508 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1509 		stge_init_locked(sc);
1510 	}
1511 
1512 	/* Re-enable interrupts. */
1513 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1514 
1515 	/* Try to get more packets going. */
1516 	if (!if_sendq_empty(ifp))
1517 		stge_start_locked(ifp);
1518 
1519 done_locked:
1520 	STGE_UNLOCK(sc);
1521 }
1522 
1523 /*
1524  * stge_txeof:
1525  *
1526  *	Helper; handle transmit interrupts.
1527  */
1528 static void
1529 stge_txeof(struct stge_softc *sc)
1530 {
1531 	if_t ifp;
1532 	struct stge_txdesc *txd;
1533 	uint64_t control;
1534 	int cons;
1535 
1536 	STGE_LOCK_ASSERT(sc);
1537 
1538 	ifp = sc->sc_ifp;
1539 
1540 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1541 	if (txd == NULL)
1542 		return;
1543 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1544 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1545 
1546 	/*
1547 	 * Go through our Tx list and free mbufs for those
1548 	 * frames which have been transmitted.
1549 	 */
1550 	for (cons = sc->sc_cdata.stge_tx_cons;;
1551 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1552 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1553 			break;
1554 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1555 		if ((control & TFD_TFDDone) == 0)
1556 			break;
1557 		sc->sc_cdata.stge_tx_cnt--;
1558 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1559 
1560 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1561 		    BUS_DMASYNC_POSTWRITE);
1562 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1563 
1564 		/* Output counter is updated with statistics register */
1565 		m_freem(txd->tx_m);
1566 		txd->tx_m = NULL;
1567 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1568 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1569 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1570 	}
1571 	sc->sc_cdata.stge_tx_cons = cons;
1572 	if (sc->sc_cdata.stge_tx_cnt == 0)
1573 		sc->sc_watchdog_timer = 0;
1574 
1575         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1576 	    sc->sc_cdata.stge_tx_ring_map,
1577 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1578 }
1579 
1580 static __inline void
1581 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1582 {
1583 	struct stge_rfd *rfd;
1584 
1585 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1586 	rfd->rfd_status = 0;
1587 }
1588 
1589 #ifndef __NO_STRICT_ALIGNMENT
1590 /*
1591  * It seems that TC9021's DMA engine has alignment restrictions in
1592  * DMA scatter operations. The first DMA segment has no address
1593  * alignment restrictins but the rest should be aligned on 4(?) bytes
1594  * boundary. Otherwise it would corrupt random memory. Since we don't
1595  * know which one is used for the first segment in advance we simply
1596  * don't align at all.
1597  * To avoid copying over an entire frame to align, we allocate a new
1598  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1599  * prepended into the existing mbuf chain.
1600  */
1601 static __inline struct mbuf *
1602 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1603 {
1604 	struct mbuf *n;
1605 
1606 	n = NULL;
1607 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1608 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1609 		m->m_data += ETHER_HDR_LEN;
1610 		n = m;
1611 	} else {
1612 		MGETHDR(n, M_NOWAIT, MT_DATA);
1613 		if (n != NULL) {
1614 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1615 			m->m_data += ETHER_HDR_LEN;
1616 			m->m_len -= ETHER_HDR_LEN;
1617 			n->m_len = ETHER_HDR_LEN;
1618 			M_MOVE_PKTHDR(n, m);
1619 			n->m_next = m;
1620 		} else
1621 			m_freem(m);
1622 	}
1623 
1624 	return (n);
1625 }
1626 #endif
1627 
1628 /*
1629  * stge_rxeof:
1630  *
1631  *	Helper; handle receive interrupts.
1632  */
1633 static int
1634 stge_rxeof(struct stge_softc *sc)
1635 {
1636 	if_t ifp;
1637 	struct stge_rxdesc *rxd;
1638 	struct mbuf *mp, *m;
1639 	uint64_t status64;
1640 	uint32_t status;
1641 	int cons, prog, rx_npkts;
1642 
1643 	STGE_LOCK_ASSERT(sc);
1644 
1645 	rx_npkts = 0;
1646 	ifp = sc->sc_ifp;
1647 
1648 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1649 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1650 
1651 	prog = 0;
1652 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1653 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1654 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1655 		status = RFD_RxStatus(status64);
1656 		if ((status & RFD_RFDDone) == 0)
1657 			break;
1658 #ifdef DEVICE_POLLING
1659 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1660 			if (sc->sc_cdata.stge_rxcycles <= 0)
1661 				break;
1662 			sc->sc_cdata.stge_rxcycles--;
1663 		}
1664 #endif
1665 		prog++;
1666 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1667 		mp = rxd->rx_m;
1668 
1669 		/*
1670 		 * If the packet had an error, drop it.  Note we count
1671 		 * the error later in the periodic stats update.
1672 		 */
1673 		if ((status & RFD_FrameEnd) != 0 && (status &
1674 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1675 		    RFD_RxAlignmentError | RFD_RxFCSError |
1676 		    RFD_RxLengthError)) != 0) {
1677 			stge_discard_rxbuf(sc, cons);
1678 			if (sc->sc_cdata.stge_rxhead != NULL) {
1679 				m_freem(sc->sc_cdata.stge_rxhead);
1680 				STGE_RXCHAIN_RESET(sc);
1681 			}
1682 			continue;
1683 		}
1684 		/*
1685 		 * Add a new receive buffer to the ring.
1686 		 */
1687 		if (stge_newbuf(sc, cons) != 0) {
1688 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1689 			stge_discard_rxbuf(sc, cons);
1690 			if (sc->sc_cdata.stge_rxhead != NULL) {
1691 				m_freem(sc->sc_cdata.stge_rxhead);
1692 				STGE_RXCHAIN_RESET(sc);
1693 			}
1694 			continue;
1695 		}
1696 
1697 		if ((status & RFD_FrameEnd) != 0)
1698 			mp->m_len = RFD_RxDMAFrameLen(status) -
1699 			    sc->sc_cdata.stge_rxlen;
1700 		sc->sc_cdata.stge_rxlen += mp->m_len;
1701 
1702 		/* Chain mbufs. */
1703 		if (sc->sc_cdata.stge_rxhead == NULL) {
1704 			sc->sc_cdata.stge_rxhead = mp;
1705 			sc->sc_cdata.stge_rxtail = mp;
1706 		} else {
1707 			mp->m_flags &= ~M_PKTHDR;
1708 			sc->sc_cdata.stge_rxtail->m_next = mp;
1709 			sc->sc_cdata.stge_rxtail = mp;
1710 		}
1711 
1712 		if ((status & RFD_FrameEnd) != 0) {
1713 			m = sc->sc_cdata.stge_rxhead;
1714 			m->m_pkthdr.rcvif = ifp;
1715 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1716 
1717 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1718 				m_freem(m);
1719 				STGE_RXCHAIN_RESET(sc);
1720 				continue;
1721 			}
1722 			/*
1723 			 * Set the incoming checksum information for
1724 			 * the packet.
1725 			 */
1726 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1727 				if ((status & RFD_IPDetected) != 0) {
1728 					m->m_pkthdr.csum_flags |=
1729 						CSUM_IP_CHECKED;
1730 					if ((status & RFD_IPError) == 0)
1731 						m->m_pkthdr.csum_flags |=
1732 						    CSUM_IP_VALID;
1733 				}
1734 				if (((status & RFD_TCPDetected) != 0 &&
1735 				    (status & RFD_TCPError) == 0) ||
1736 				    ((status & RFD_UDPDetected) != 0 &&
1737 				    (status & RFD_UDPError) == 0)) {
1738 					m->m_pkthdr.csum_flags |=
1739 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1740 					m->m_pkthdr.csum_data = 0xffff;
1741 				}
1742 			}
1743 
1744 #ifndef __NO_STRICT_ALIGNMENT
1745 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1746 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1747 					STGE_RXCHAIN_RESET(sc);
1748 					continue;
1749 				}
1750 			}
1751 #endif
1752 			/* Check for VLAN tagged packets. */
1753 			if ((status & RFD_VLANDetected) != 0 &&
1754 			    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1755 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1756 				m->m_flags |= M_VLANTAG;
1757 			}
1758 
1759 			STGE_UNLOCK(sc);
1760 			/* Pass it on. */
1761 			if_input(ifp, m);
1762 			STGE_LOCK(sc);
1763 			rx_npkts++;
1764 
1765 			STGE_RXCHAIN_RESET(sc);
1766 		}
1767 	}
1768 
1769 	if (prog > 0) {
1770 		/* Update the consumer index. */
1771 		sc->sc_cdata.stge_rx_cons = cons;
1772 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1773 		    sc->sc_cdata.stge_rx_ring_map,
1774 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1775 	}
1776 	return (rx_npkts);
1777 }
1778 
1779 #ifdef DEVICE_POLLING
1780 static int
1781 stge_poll(if_t ifp, enum poll_cmd cmd, int count)
1782 {
1783 	struct stge_softc *sc;
1784 	uint16_t status;
1785 	int rx_npkts;
1786 
1787 	rx_npkts = 0;
1788 	sc = if_getsoftc(ifp);
1789 	STGE_LOCK(sc);
1790 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1791 		STGE_UNLOCK(sc);
1792 		return (rx_npkts);
1793 	}
1794 
1795 	sc->sc_cdata.stge_rxcycles = count;
1796 	rx_npkts = stge_rxeof(sc);
1797 	stge_txeof(sc);
1798 
1799 	if (cmd == POLL_AND_CHECK_STATUS) {
1800 		status = CSR_READ_2(sc, STGE_IntStatus);
1801 		status &= sc->sc_IntEnable;
1802 		if (status != 0) {
1803 			if ((status & IS_HostError) != 0) {
1804 				device_printf(sc->sc_dev,
1805 				    "Host interface error, resetting...\n");
1806 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1807 				stge_init_locked(sc);
1808 			}
1809 			if ((status & IS_TxComplete) != 0) {
1810 				if (stge_tx_error(sc) != 0) {
1811 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1812 					stge_init_locked(sc);
1813 				}
1814 			}
1815 		}
1816 	}
1817 
1818 	if (!if_sendq_empty(ifp))
1819 		stge_start_locked(ifp);
1820 
1821 	STGE_UNLOCK(sc);
1822 	return (rx_npkts);
1823 }
1824 #endif	/* DEVICE_POLLING */
1825 
1826 /*
1827  * stge_tick:
1828  *
1829  *	One second timer, used to tick the MII.
1830  */
1831 static void
1832 stge_tick(void *arg)
1833 {
1834 	struct stge_softc *sc;
1835 	struct mii_data *mii;
1836 
1837 	sc = (struct stge_softc *)arg;
1838 
1839 	STGE_LOCK_ASSERT(sc);
1840 
1841 	mii = device_get_softc(sc->sc_miibus);
1842 	mii_tick(mii);
1843 
1844 	/* Update statistics counters. */
1845 	stge_stats_update(sc);
1846 
1847 	/*
1848 	 * Relcaim any pending Tx descriptors to release mbufs in a
1849 	 * timely manner as we don't generate Tx completion interrupts
1850 	 * for every frame. This limits the delay to a maximum of one
1851 	 * second.
1852 	 */
1853 	if (sc->sc_cdata.stge_tx_cnt != 0)
1854 		stge_txeof(sc);
1855 
1856 	stge_watchdog(sc);
1857 
1858 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1859 }
1860 
1861 /*
1862  * stge_stats_update:
1863  *
1864  *	Read the TC9021 statistics counters.
1865  */
1866 static void
1867 stge_stats_update(struct stge_softc *sc)
1868 {
1869 	if_t ifp;
1870 
1871 	STGE_LOCK_ASSERT(sc);
1872 
1873 	ifp = sc->sc_ifp;
1874 
1875 	CSR_READ_4(sc,STGE_OctetRcvOk);
1876 
1877 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1878 
1879 	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1880 
1881 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1882 
1883 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1884 
1885 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1886 	    CSR_READ_4(sc, STGE_LateCollisions) +
1887 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1888 	    CSR_READ_4(sc, STGE_SingleColFrames));
1889 
1890 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1891 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1892 	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1893 }
1894 
1895 /*
1896  * stge_reset:
1897  *
1898  *	Perform a soft reset on the TC9021.
1899  */
1900 static void
1901 stge_reset(struct stge_softc *sc, uint32_t how)
1902 {
1903 	uint32_t ac;
1904 	uint8_t v;
1905 	int i, dv;
1906 
1907 	STGE_LOCK_ASSERT(sc);
1908 
1909 	dv = 5000;
1910 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1911 	switch (how) {
1912 	case STGE_RESET_TX:
1913 		ac |= AC_TxReset | AC_FIFO;
1914 		dv = 100;
1915 		break;
1916 	case STGE_RESET_RX:
1917 		ac |= AC_RxReset | AC_FIFO;
1918 		dv = 100;
1919 		break;
1920 	case STGE_RESET_FULL:
1921 	default:
1922 		/*
1923 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1924 		 * to be present in order for the reset to complete on fiber
1925 		 * cards.
1926 		 */
1927 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1928 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1929 		    (sc->sc_usefiber ? AC_RstOut : 0);
1930 		break;
1931 	}
1932 
1933 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1934 
1935 	/* Account for reset problem at 10Mbps. */
1936 	DELAY(dv);
1937 
1938 	for (i = 0; i < STGE_TIMEOUT; i++) {
1939 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1940 			break;
1941 		DELAY(dv);
1942 	}
1943 
1944 	if (i == STGE_TIMEOUT)
1945 		device_printf(sc->sc_dev, "reset failed to complete\n");
1946 
1947 	/* Set LED, from Linux IPG driver. */
1948 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1949 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1950 	if ((sc->sc_led & 0x01) != 0)
1951 		ac |= AC_LEDMode;
1952 	if ((sc->sc_led & 0x03) != 0)
1953 		ac |= AC_LEDModeBit1;
1954 	if ((sc->sc_led & 0x08) != 0)
1955 		ac |= AC_LEDSpeed;
1956 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1957 
1958 	/* Set PHY, from Linux IPG driver */
1959 	v = CSR_READ_1(sc, STGE_PhySet);
1960 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1961 	v |= ((sc->sc_led & 0x70) >> 4);
1962 	CSR_WRITE_1(sc, STGE_PhySet, v);
1963 }
1964 
1965 /*
1966  * stge_init:		[ ifnet interface function ]
1967  *
1968  *	Initialize the interface.
1969  */
1970 static void
1971 stge_init(void *xsc)
1972 {
1973 	struct stge_softc *sc;
1974 
1975 	sc = (struct stge_softc *)xsc;
1976 	STGE_LOCK(sc);
1977 	stge_init_locked(sc);
1978 	STGE_UNLOCK(sc);
1979 }
1980 
1981 static void
1982 stge_init_locked(struct stge_softc *sc)
1983 {
1984 	if_t ifp;
1985 	struct mii_data *mii;
1986 	uint16_t eaddr[3];
1987 	uint32_t v;
1988 	int error;
1989 
1990 	STGE_LOCK_ASSERT(sc);
1991 
1992 	ifp = sc->sc_ifp;
1993 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1994 		return;
1995 	mii = device_get_softc(sc->sc_miibus);
1996 
1997 	/*
1998 	 * Cancel any pending I/O.
1999 	 */
2000 	stge_stop(sc);
2001 
2002 	/*
2003 	 * Reset the chip to a known state.
2004 	 */
2005 	stge_reset(sc, STGE_RESET_FULL);
2006 
2007 	/* Init descriptors. */
2008 	error = stge_init_rx_ring(sc);
2009         if (error != 0) {
2010                 device_printf(sc->sc_dev,
2011                     "initialization failed: no memory for rx buffers\n");
2012                 stge_stop(sc);
2013 		goto out;
2014         }
2015 	stge_init_tx_ring(sc);
2016 
2017 	/* Set the station address. */
2018 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2019 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2020 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2021 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2022 
2023 	/*
2024 	 * Set the statistics masks.  Disable all the RMON stats,
2025 	 * and disable selected stats in the non-RMON stats registers.
2026 	 */
2027 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2028 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2029 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2030 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2031 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2032 	    (1U << 21));
2033 
2034 	/* Set up the receive filter. */
2035 	stge_set_filter(sc);
2036 	/* Program multicast filter. */
2037 	stge_set_multi(sc);
2038 
2039 	/*
2040 	 * Give the transmit and receive ring to the chip.
2041 	 */
2042 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2043 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2044 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2045 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2046 
2047 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2048 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2049 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2050 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2051 
2052 	/*
2053 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2054 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2055 	 * transmit engine when there's actually a packet.
2056 	 */
2057 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2058 
2059 	/* ..and the Rx auto-poll period. */
2060 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2061 
2062 	/* Initialize the Tx start threshold. */
2063 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2064 
2065 	/* Rx DMA thresholds, from Linux */
2066 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2067 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2068 
2069 	/* Rx early threhold, from Linux */
2070 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2071 
2072 	/* Tx DMA thresholds, from Linux */
2073 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2074 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2075 
2076 	/*
2077 	 * Initialize the Rx DMA interrupt control register.  We
2078 	 * request an interrupt after every incoming packet, but
2079 	 * defer it for sc_rxint_dmawait us. When the number of
2080 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2081 	 * deferring the interrupt, and signal it immediately.
2082 	 */
2083 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2084 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2085 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2086 
2087 	/*
2088 	 * Initialize the interrupt mask.
2089 	 */
2090 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2091 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2092 #ifdef DEVICE_POLLING
2093 	/* Disable interrupts if we are polling. */
2094 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
2095 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2096 	else
2097 #endif
2098 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2099 
2100 	/*
2101 	 * Configure the DMA engine.
2102 	 * XXX Should auto-tune TxBurstLimit.
2103 	 */
2104 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2105 
2106 	/*
2107 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2108 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2109 	 * in the Rx FIFO.
2110 	 */
2111 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2112 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2113 
2114 	/*
2115 	 * Set the maximum frame size.
2116 	 */
2117 	sc->sc_if_framesize = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN;
2118 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2119 
2120 	/*
2121 	 * Initialize MacCtrl -- do it before setting the media,
2122 	 * as setting the media will actually program the register.
2123 	 *
2124 	 * Note: We have to poke the IFS value before poking
2125 	 * anything else.
2126 	 */
2127 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2128 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2129 
2130 	stge_vlan_setup(sc);
2131 
2132 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2133 		/* Multi-frag frame bug work-around. */
2134 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2135 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2136 
2137 		/* Tx Poll Now bug work-around. */
2138 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2139 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2140 		/* Tx Poll Now bug work-around. */
2141 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2142 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2143 	}
2144 
2145 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2146 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2147 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2148 	/*
2149 	 * It seems that transmitting frames without checking the state of
2150 	 * Rx/Tx MAC wedge the hardware.
2151 	 */
2152 	stge_start_tx(sc);
2153 	stge_start_rx(sc);
2154 
2155 	sc->sc_link = 0;
2156 	/*
2157 	 * Set the current media.
2158 	 */
2159 	mii_mediachg(mii);
2160 
2161 	/*
2162 	 * Start the one second MII clock.
2163 	 */
2164 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2165 
2166 	/*
2167 	 * ...all done!
2168 	 */
2169 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2170 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2171 
2172  out:
2173 	if (error != 0)
2174 		device_printf(sc->sc_dev, "interface not running\n");
2175 }
2176 
2177 static void
2178 stge_vlan_setup(struct stge_softc *sc)
2179 {
2180 	if_t ifp;
2181 	uint32_t v;
2182 
2183 	ifp = sc->sc_ifp;
2184 	/*
2185 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2186 	 * MC_AutoVLANuntagging bit.
2187 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2188 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2189 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2190 	 * use TFC instead of STGE_VLANTag register.
2191 	 */
2192 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2193 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2194 		v |= MC_AutoVLANuntagging;
2195 	else
2196 		v &= ~MC_AutoVLANuntagging;
2197 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2198 }
2199 
2200 /*
2201  *	Stop transmission on the interface.
2202  */
2203 static void
2204 stge_stop(struct stge_softc *sc)
2205 {
2206 	if_t ifp;
2207 	struct stge_txdesc *txd;
2208 	struct stge_rxdesc *rxd;
2209 	uint32_t v;
2210 	int i;
2211 
2212 	STGE_LOCK_ASSERT(sc);
2213 	/*
2214 	 * Stop the one second clock.
2215 	 */
2216 	callout_stop(&sc->sc_tick_ch);
2217 	sc->sc_watchdog_timer = 0;
2218 
2219 	/*
2220 	 * Disable interrupts.
2221 	 */
2222 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2223 
2224 	/*
2225 	 * Stop receiver, transmitter, and stats update.
2226 	 */
2227 	stge_stop_rx(sc);
2228 	stge_stop_tx(sc);
2229 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2230 	v |= MC_StatisticsDisable;
2231 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2232 
2233 	/*
2234 	 * Stop the transmit and receive DMA.
2235 	 */
2236 	stge_dma_wait(sc);
2237 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2238 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2239 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2240 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2241 
2242 	/*
2243 	 * Free RX and TX mbufs still in the queues.
2244 	 */
2245 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2246 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2247 		if (rxd->rx_m != NULL) {
2248 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2249 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2250 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2251 			    rxd->rx_dmamap);
2252 			m_freem(rxd->rx_m);
2253 			rxd->rx_m = NULL;
2254 		}
2255         }
2256 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2257 		txd = &sc->sc_cdata.stge_txdesc[i];
2258 		if (txd->tx_m != NULL) {
2259 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2260 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2261 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2262 			    txd->tx_dmamap);
2263 			m_freem(txd->tx_m);
2264 			txd->tx_m = NULL;
2265 		}
2266         }
2267 
2268 	/*
2269 	 * Mark the interface down and cancel the watchdog timer.
2270 	 */
2271 	ifp = sc->sc_ifp;
2272 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2273 	sc->sc_link = 0;
2274 }
2275 
2276 static void
2277 stge_start_tx(struct stge_softc *sc)
2278 {
2279 	uint32_t v;
2280 	int i;
2281 
2282 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2283 	if ((v & MC_TxEnabled) != 0)
2284 		return;
2285 	v |= MC_TxEnable;
2286 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2287 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2288 	for (i = STGE_TIMEOUT; i > 0; i--) {
2289 		DELAY(10);
2290 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2291 		if ((v & MC_TxEnabled) != 0)
2292 			break;
2293 	}
2294 	if (i == 0)
2295 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2296 }
2297 
2298 static void
2299 stge_start_rx(struct stge_softc *sc)
2300 {
2301 	uint32_t v;
2302 	int i;
2303 
2304 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2305 	if ((v & MC_RxEnabled) != 0)
2306 		return;
2307 	v |= MC_RxEnable;
2308 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2309 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2310 	for (i = STGE_TIMEOUT; i > 0; i--) {
2311 		DELAY(10);
2312 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2313 		if ((v & MC_RxEnabled) != 0)
2314 			break;
2315 	}
2316 	if (i == 0)
2317 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2318 }
2319 
2320 static void
2321 stge_stop_tx(struct stge_softc *sc)
2322 {
2323 	uint32_t v;
2324 	int i;
2325 
2326 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2327 	if ((v & MC_TxEnabled) == 0)
2328 		return;
2329 	v |= MC_TxDisable;
2330 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2331 	for (i = STGE_TIMEOUT; i > 0; i--) {
2332 		DELAY(10);
2333 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2334 		if ((v & MC_TxEnabled) == 0)
2335 			break;
2336 	}
2337 	if (i == 0)
2338 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2339 }
2340 
2341 static void
2342 stge_stop_rx(struct stge_softc *sc)
2343 {
2344 	uint32_t v;
2345 	int i;
2346 
2347 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2348 	if ((v & MC_RxEnabled) == 0)
2349 		return;
2350 	v |= MC_RxDisable;
2351 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2352 	for (i = STGE_TIMEOUT; i > 0; i--) {
2353 		DELAY(10);
2354 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2355 		if ((v & MC_RxEnabled) == 0)
2356 			break;
2357 	}
2358 	if (i == 0)
2359 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2360 }
2361 
2362 static void
2363 stge_init_tx_ring(struct stge_softc *sc)
2364 {
2365 	struct stge_ring_data *rd;
2366 	struct stge_txdesc *txd;
2367 	bus_addr_t addr;
2368 	int i;
2369 
2370 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2371 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2372 
2373 	sc->sc_cdata.stge_tx_prod = 0;
2374 	sc->sc_cdata.stge_tx_cons = 0;
2375 	sc->sc_cdata.stge_tx_cnt = 0;
2376 
2377 	rd = &sc->sc_rdata;
2378 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2379 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2380 		if (i == (STGE_TX_RING_CNT - 1))
2381 			addr = STGE_TX_RING_ADDR(sc, 0);
2382 		else
2383 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2384 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2385 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2386 		txd = &sc->sc_cdata.stge_txdesc[i];
2387 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2388 	}
2389 
2390 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2391 	    sc->sc_cdata.stge_tx_ring_map,
2392 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2393 
2394 }
2395 
2396 static int
2397 stge_init_rx_ring(struct stge_softc *sc)
2398 {
2399 	struct stge_ring_data *rd;
2400 	bus_addr_t addr;
2401 	int i;
2402 
2403 	sc->sc_cdata.stge_rx_cons = 0;
2404 	STGE_RXCHAIN_RESET(sc);
2405 
2406 	rd = &sc->sc_rdata;
2407 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2408 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2409 		if (stge_newbuf(sc, i) != 0)
2410 			return (ENOBUFS);
2411 		if (i == (STGE_RX_RING_CNT - 1))
2412 			addr = STGE_RX_RING_ADDR(sc, 0);
2413 		else
2414 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2415 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2416 		rd->stge_rx_ring[i].rfd_status = 0;
2417 	}
2418 
2419 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2420 	    sc->sc_cdata.stge_rx_ring_map,
2421 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2422 
2423 	return (0);
2424 }
2425 
2426 /*
2427  * stge_newbuf:
2428  *
2429  *	Add a receive buffer to the indicated descriptor.
2430  */
2431 static int
2432 stge_newbuf(struct stge_softc *sc, int idx)
2433 {
2434 	struct stge_rxdesc *rxd;
2435 	struct stge_rfd *rfd;
2436 	struct mbuf *m;
2437 	bus_dma_segment_t segs[1];
2438 	bus_dmamap_t map;
2439 	int nsegs;
2440 
2441 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2442 	if (m == NULL)
2443 		return (ENOBUFS);
2444 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2445 	/*
2446 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2447 	 * frame is used.
2448 	 */
2449 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2450 		m_adj(m, ETHER_ALIGN);
2451 
2452 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2453 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2454 		m_freem(m);
2455 		return (ENOBUFS);
2456 	}
2457 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2458 
2459 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2460 	if (rxd->rx_m != NULL) {
2461 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2462 		    BUS_DMASYNC_POSTREAD);
2463 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2464 	}
2465 	map = rxd->rx_dmamap;
2466 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2467 	sc->sc_cdata.stge_rx_sparemap = map;
2468 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2469 	    BUS_DMASYNC_PREREAD);
2470 	rxd->rx_m = m;
2471 
2472 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2473 	rfd->rfd_frag.frag_word0 =
2474 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2475 	rfd->rfd_status = 0;
2476 
2477 	return (0);
2478 }
2479 
2480 /*
2481  * stge_set_filter:
2482  *
2483  *	Set up the receive filter.
2484  */
2485 static void
2486 stge_set_filter(struct stge_softc *sc)
2487 {
2488 	if_t ifp;
2489 	uint16_t mode;
2490 
2491 	STGE_LOCK_ASSERT(sc);
2492 
2493 	ifp = sc->sc_ifp;
2494 
2495 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2496 	mode |= RM_ReceiveUnicast;
2497 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2498 		mode |= RM_ReceiveBroadcast;
2499 	else
2500 		mode &= ~RM_ReceiveBroadcast;
2501 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2502 		mode |= RM_ReceiveAllFrames;
2503 	else
2504 		mode &= ~RM_ReceiveAllFrames;
2505 
2506 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2507 }
2508 
2509 static u_int
2510 stge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2511 {
2512 	uint32_t crc, *mchash = arg;
2513 
2514 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2515 	/* Just want the 6 least significant bits. */
2516 	crc &= 0x3f;
2517 	/* Set the corresponding bit in the hash table. */
2518 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
2519 
2520 	return (1);
2521 }
2522 
2523 static void
2524 stge_set_multi(struct stge_softc *sc)
2525 {
2526 	if_t ifp;
2527 	uint32_t mchash[2];
2528 	uint16_t mode;
2529 	int count;
2530 
2531 	STGE_LOCK_ASSERT(sc);
2532 
2533 	ifp = sc->sc_ifp;
2534 
2535 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2536 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2537 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2538 			mode |= RM_ReceiveAllFrames;
2539 		else if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2540 			mode |= RM_ReceiveMulticast;
2541 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2542 		return;
2543 	}
2544 
2545 	/* clear existing filters. */
2546 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2547 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2548 
2549 	/*
2550 	 * Set up the multicast address filter by passing all multicast
2551 	 * addresses through a CRC generator, and then using the low-order
2552 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2553 	 * high order bits select the register, while the rest of the bits
2554 	 * select the bit within the register.
2555 	 */
2556 	bzero(mchash, sizeof(mchash));
2557 	count = if_foreach_llmaddr(ifp, stge_hash_maddr, mchash);
2558 
2559 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2560 	if (count > 0)
2561 		mode |= RM_ReceiveMulticastHash;
2562 	else
2563 		mode &= ~RM_ReceiveMulticastHash;
2564 
2565 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2566 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2567 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2568 }
2569 
2570 static int
2571 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2572 {
2573 	int error, value;
2574 
2575 	if (!arg1)
2576 		return (EINVAL);
2577 	value = *(int *)arg1;
2578 	error = sysctl_handle_int(oidp, &value, 0, req);
2579 	if (error || !req->newptr)
2580 		return (error);
2581 	if (value < low || value > high)
2582 		return (EINVAL);
2583         *(int *)arg1 = value;
2584 
2585         return (0);
2586 }
2587 
2588 static int
2589 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2590 {
2591 	return (sysctl_int_range(oidp, arg1, arg2, req,
2592 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2593 }
2594 
2595 static int
2596 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2597 {
2598 	return (sysctl_int_range(oidp, arg1, arg2, req,
2599 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2600 }
2601