1 /* $NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-2-Clause-NetBSD 5 * 6 * Copyright (c) 2001 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Jason R. Thorpe. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Device driver for the Sundance Tech. TC9021 10/100/1000 36 * Ethernet controller. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #ifdef HAVE_KERNEL_OPTION_HEADERS 43 #include "opt_device_polling.h" 44 #endif 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/endian.h> 49 #include <sys/mbuf.h> 50 #include <sys/malloc.h> 51 #include <sys/kernel.h> 52 #include <sys/module.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/sysctl.h> 56 #include <sys/taskqueue.h> 57 58 #include <net/bpf.h> 59 #include <net/ethernet.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_media.h> 64 #include <net/if_types.h> 65 #include <net/if_vlan_var.h> 66 67 #include <machine/bus.h> 68 #include <machine/resource.h> 69 #include <sys/bus.h> 70 #include <sys/rman.h> 71 72 #include <dev/mii/mii.h> 73 #include <dev/mii/mii_bitbang.h> 74 #include <dev/mii/miivar.h> 75 76 #include <dev/pci/pcireg.h> 77 #include <dev/pci/pcivar.h> 78 79 #include <dev/stge/if_stgereg.h> 80 81 #define STGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 82 83 MODULE_DEPEND(stge, pci, 1, 1, 1); 84 MODULE_DEPEND(stge, ether, 1, 1, 1); 85 MODULE_DEPEND(stge, miibus, 1, 1, 1); 86 87 /* "device miibus" required. See GENERIC if you get errors here. */ 88 #include "miibus_if.h" 89 90 /* 91 * Devices supported by this driver. 92 */ 93 static const struct stge_product { 94 uint16_t stge_vendorid; 95 uint16_t stge_deviceid; 96 const char *stge_name; 97 } stge_products[] = { 98 { VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST1023, 99 "Sundance ST-1023 Gigabit Ethernet" }, 100 101 { VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST2021, 102 "Sundance ST-2021 Gigabit Ethernet" }, 103 104 { VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021, 105 "Tamarack TC9021 Gigabit Ethernet" }, 106 107 { VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021_ALT, 108 "Tamarack TC9021 Gigabit Ethernet" }, 109 110 /* 111 * The Sundance sample boards use the Sundance vendor ID, 112 * but the Tamarack product ID. 113 */ 114 { VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021, 115 "Sundance TC9021 Gigabit Ethernet" }, 116 117 { VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021_ALT, 118 "Sundance TC9021 Gigabit Ethernet" }, 119 120 { VENDOR_DLINK, DEVICEID_DLINK_DL4000, 121 "D-Link DL-4000 Gigabit Ethernet" }, 122 123 { VENDOR_ANTARES, DEVICEID_ANTARES_TC9021, 124 "Antares Gigabit Ethernet" } 125 }; 126 127 static int stge_probe(device_t); 128 static int stge_attach(device_t); 129 static int stge_detach(device_t); 130 static int stge_shutdown(device_t); 131 static int stge_suspend(device_t); 132 static int stge_resume(device_t); 133 134 static int stge_encap(struct stge_softc *, struct mbuf **); 135 static void stge_start(struct ifnet *); 136 static void stge_start_locked(struct ifnet *); 137 static void stge_watchdog(struct stge_softc *); 138 static int stge_ioctl(struct ifnet *, u_long, caddr_t); 139 static void stge_init(void *); 140 static void stge_init_locked(struct stge_softc *); 141 static void stge_vlan_setup(struct stge_softc *); 142 static void stge_stop(struct stge_softc *); 143 static void stge_start_tx(struct stge_softc *); 144 static void stge_start_rx(struct stge_softc *); 145 static void stge_stop_tx(struct stge_softc *); 146 static void stge_stop_rx(struct stge_softc *); 147 148 static void stge_reset(struct stge_softc *, uint32_t); 149 static int stge_eeprom_wait(struct stge_softc *); 150 static void stge_read_eeprom(struct stge_softc *, int, uint16_t *); 151 static void stge_tick(void *); 152 static void stge_stats_update(struct stge_softc *); 153 static void stge_set_filter(struct stge_softc *); 154 static void stge_set_multi(struct stge_softc *); 155 156 static void stge_link_task(void *, int); 157 static void stge_intr(void *); 158 static __inline int stge_tx_error(struct stge_softc *); 159 static void stge_txeof(struct stge_softc *); 160 static int stge_rxeof(struct stge_softc *); 161 static __inline void stge_discard_rxbuf(struct stge_softc *, int); 162 static int stge_newbuf(struct stge_softc *, int); 163 #ifndef __NO_STRICT_ALIGNMENT 164 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *); 165 #endif 166 167 static int stge_miibus_readreg(device_t, int, int); 168 static int stge_miibus_writereg(device_t, int, int, int); 169 static void stge_miibus_statchg(device_t); 170 static int stge_mediachange(struct ifnet *); 171 static void stge_mediastatus(struct ifnet *, struct ifmediareq *); 172 173 static void stge_dmamap_cb(void *, bus_dma_segment_t *, int, int); 174 static int stge_dma_alloc(struct stge_softc *); 175 static void stge_dma_free(struct stge_softc *); 176 static void stge_dma_wait(struct stge_softc *); 177 static void stge_init_tx_ring(struct stge_softc *); 178 static int stge_init_rx_ring(struct stge_softc *); 179 #ifdef DEVICE_POLLING 180 static int stge_poll(struct ifnet *, enum poll_cmd, int); 181 #endif 182 183 static void stge_setwol(struct stge_softc *); 184 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 185 static int sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS); 186 static int sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS); 187 188 /* 189 * MII bit-bang glue 190 */ 191 static uint32_t stge_mii_bitbang_read(device_t); 192 static void stge_mii_bitbang_write(device_t, uint32_t); 193 194 static const struct mii_bitbang_ops stge_mii_bitbang_ops = { 195 stge_mii_bitbang_read, 196 stge_mii_bitbang_write, 197 { 198 PC_MgmtData, /* MII_BIT_MDO */ 199 PC_MgmtData, /* MII_BIT_MDI */ 200 PC_MgmtClk, /* MII_BIT_MDC */ 201 PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */ 202 0, /* MII_BIT_DIR_PHY_HOST */ 203 } 204 }; 205 206 static device_method_t stge_methods[] = { 207 /* Device interface */ 208 DEVMETHOD(device_probe, stge_probe), 209 DEVMETHOD(device_attach, stge_attach), 210 DEVMETHOD(device_detach, stge_detach), 211 DEVMETHOD(device_shutdown, stge_shutdown), 212 DEVMETHOD(device_suspend, stge_suspend), 213 DEVMETHOD(device_resume, stge_resume), 214 215 /* MII interface */ 216 DEVMETHOD(miibus_readreg, stge_miibus_readreg), 217 DEVMETHOD(miibus_writereg, stge_miibus_writereg), 218 DEVMETHOD(miibus_statchg, stge_miibus_statchg), 219 220 DEVMETHOD_END 221 }; 222 223 static driver_t stge_driver = { 224 "stge", 225 stge_methods, 226 sizeof(struct stge_softc) 227 }; 228 229 DRIVER_MODULE(stge, pci, stge_driver, 0, 0); 230 DRIVER_MODULE(miibus, stge, miibus_driver, 0, 0); 231 232 static struct resource_spec stge_res_spec_io[] = { 233 { SYS_RES_IOPORT, PCIR_BAR(0), RF_ACTIVE }, 234 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 235 { -1, 0, 0 } 236 }; 237 238 static struct resource_spec stge_res_spec_mem[] = { 239 { SYS_RES_MEMORY, PCIR_BAR(1), RF_ACTIVE }, 240 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 241 { -1, 0, 0 } 242 }; 243 244 /* 245 * stge_mii_bitbang_read: [mii bit-bang interface function] 246 * 247 * Read the MII serial port for the MII bit-bang module. 248 */ 249 static uint32_t 250 stge_mii_bitbang_read(device_t dev) 251 { 252 struct stge_softc *sc; 253 uint32_t val; 254 255 sc = device_get_softc(dev); 256 257 val = CSR_READ_1(sc, STGE_PhyCtrl); 258 CSR_BARRIER(sc, STGE_PhyCtrl, 1, 259 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 260 return (val); 261 } 262 263 /* 264 * stge_mii_bitbang_write: [mii big-bang interface function] 265 * 266 * Write the MII serial port for the MII bit-bang module. 267 */ 268 static void 269 stge_mii_bitbang_write(device_t dev, uint32_t val) 270 { 271 struct stge_softc *sc; 272 273 sc = device_get_softc(dev); 274 275 CSR_WRITE_1(sc, STGE_PhyCtrl, val); 276 CSR_BARRIER(sc, STGE_PhyCtrl, 1, 277 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 278 } 279 280 /* 281 * sc_miibus_readreg: [mii interface function] 282 * 283 * Read a PHY register on the MII of the TC9021. 284 */ 285 static int 286 stge_miibus_readreg(device_t dev, int phy, int reg) 287 { 288 struct stge_softc *sc; 289 int error, val; 290 291 sc = device_get_softc(dev); 292 293 if (reg == STGE_PhyCtrl) { 294 /* XXX allow ip1000phy read STGE_PhyCtrl register. */ 295 STGE_MII_LOCK(sc); 296 error = CSR_READ_1(sc, STGE_PhyCtrl); 297 STGE_MII_UNLOCK(sc); 298 return (error); 299 } 300 301 STGE_MII_LOCK(sc); 302 val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg); 303 STGE_MII_UNLOCK(sc); 304 return (val); 305 } 306 307 /* 308 * stge_miibus_writereg: [mii interface function] 309 * 310 * Write a PHY register on the MII of the TC9021. 311 */ 312 static int 313 stge_miibus_writereg(device_t dev, int phy, int reg, int val) 314 { 315 struct stge_softc *sc; 316 317 sc = device_get_softc(dev); 318 319 STGE_MII_LOCK(sc); 320 mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val); 321 STGE_MII_UNLOCK(sc); 322 return (0); 323 } 324 325 /* 326 * stge_miibus_statchg: [mii interface function] 327 * 328 * Callback from MII layer when media changes. 329 */ 330 static void 331 stge_miibus_statchg(device_t dev) 332 { 333 struct stge_softc *sc; 334 335 sc = device_get_softc(dev); 336 taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task); 337 } 338 339 /* 340 * stge_mediastatus: [ifmedia interface function] 341 * 342 * Get the current interface media status. 343 */ 344 static void 345 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 346 { 347 struct stge_softc *sc; 348 struct mii_data *mii; 349 350 sc = ifp->if_softc; 351 mii = device_get_softc(sc->sc_miibus); 352 353 mii_pollstat(mii); 354 ifmr->ifm_status = mii->mii_media_status; 355 ifmr->ifm_active = mii->mii_media_active; 356 } 357 358 /* 359 * stge_mediachange: [ifmedia interface function] 360 * 361 * Set hardware to newly-selected media. 362 */ 363 static int 364 stge_mediachange(struct ifnet *ifp) 365 { 366 struct stge_softc *sc; 367 struct mii_data *mii; 368 369 sc = ifp->if_softc; 370 mii = device_get_softc(sc->sc_miibus); 371 mii_mediachg(mii); 372 373 return (0); 374 } 375 376 static int 377 stge_eeprom_wait(struct stge_softc *sc) 378 { 379 int i; 380 381 for (i = 0; i < STGE_TIMEOUT; i++) { 382 DELAY(1000); 383 if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0) 384 return (0); 385 } 386 return (1); 387 } 388 389 /* 390 * stge_read_eeprom: 391 * 392 * Read data from the serial EEPROM. 393 */ 394 static void 395 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data) 396 { 397 398 if (stge_eeprom_wait(sc)) 399 device_printf(sc->sc_dev, "EEPROM failed to come ready\n"); 400 401 CSR_WRITE_2(sc, STGE_EepromCtrl, 402 EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR)); 403 if (stge_eeprom_wait(sc)) 404 device_printf(sc->sc_dev, "EEPROM read timed out\n"); 405 *data = CSR_READ_2(sc, STGE_EepromData); 406 } 407 408 static int 409 stge_probe(device_t dev) 410 { 411 const struct stge_product *sp; 412 int i; 413 uint16_t vendor, devid; 414 415 vendor = pci_get_vendor(dev); 416 devid = pci_get_device(dev); 417 sp = stge_products; 418 for (i = 0; i < nitems(stge_products); i++, sp++) { 419 if (vendor == sp->stge_vendorid && 420 devid == sp->stge_deviceid) { 421 device_set_desc(dev, sp->stge_name); 422 return (BUS_PROBE_DEFAULT); 423 } 424 } 425 426 return (ENXIO); 427 } 428 429 static int 430 stge_attach(device_t dev) 431 { 432 struct stge_softc *sc; 433 struct ifnet *ifp; 434 uint8_t enaddr[ETHER_ADDR_LEN]; 435 int error, flags, i; 436 uint16_t cmd; 437 uint32_t val; 438 439 error = 0; 440 sc = device_get_softc(dev); 441 sc->sc_dev = dev; 442 443 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 444 MTX_DEF); 445 mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF); 446 callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0); 447 TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc); 448 449 /* 450 * Map the device. 451 */ 452 pci_enable_busmaster(dev); 453 cmd = pci_read_config(dev, PCIR_COMMAND, 2); 454 val = pci_read_config(dev, PCIR_BAR(1), 4); 455 if (PCI_BAR_IO(val)) 456 sc->sc_spec = stge_res_spec_mem; 457 else { 458 val = pci_read_config(dev, PCIR_BAR(0), 4); 459 if (!PCI_BAR_IO(val)) { 460 device_printf(sc->sc_dev, "couldn't locate IO BAR\n"); 461 error = ENXIO; 462 goto fail; 463 } 464 sc->sc_spec = stge_res_spec_io; 465 } 466 error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res); 467 if (error != 0) { 468 device_printf(dev, "couldn't allocate %s resources\n", 469 sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O"); 470 goto fail; 471 } 472 sc->sc_rev = pci_get_revid(dev); 473 474 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 475 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 476 "rxint_nframe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 477 &sc->sc_rxint_nframe, 0, sysctl_hw_stge_rxint_nframe, "I", 478 "stge rx interrupt nframe"); 479 480 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), 481 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 482 "rxint_dmawait", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 483 &sc->sc_rxint_dmawait, 0, sysctl_hw_stge_rxint_dmawait, "I", 484 "stge rx interrupt dmawait"); 485 486 /* Pull in device tunables. */ 487 sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT; 488 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 489 "rxint_nframe", &sc->sc_rxint_nframe); 490 if (error == 0) { 491 if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN || 492 sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) { 493 device_printf(dev, "rxint_nframe value out of range; " 494 "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT); 495 sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT; 496 } 497 } 498 499 sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT; 500 error = resource_int_value(device_get_name(dev), device_get_unit(dev), 501 "rxint_dmawait", &sc->sc_rxint_dmawait); 502 if (error == 0) { 503 if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN || 504 sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) { 505 device_printf(dev, "rxint_dmawait value out of range; " 506 "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT); 507 sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT; 508 } 509 } 510 511 if ((error = stge_dma_alloc(sc)) != 0) 512 goto fail; 513 514 /* 515 * Determine if we're copper or fiber. It affects how we 516 * reset the card. 517 */ 518 if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia) 519 sc->sc_usefiber = 1; 520 else 521 sc->sc_usefiber = 0; 522 523 /* Load LED configuration from EEPROM. */ 524 stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led); 525 526 /* 527 * Reset the chip to a known state. 528 */ 529 STGE_LOCK(sc); 530 stge_reset(sc, STGE_RESET_FULL); 531 STGE_UNLOCK(sc); 532 533 /* 534 * Reading the station address from the EEPROM doesn't seem 535 * to work, at least on my sample boards. Instead, since 536 * the reset sequence does AutoInit, read it from the station 537 * address registers. For Sundance 1023 you can only read it 538 * from EEPROM. 539 */ 540 if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) { 541 uint16_t v; 542 543 v = CSR_READ_2(sc, STGE_StationAddress0); 544 enaddr[0] = v & 0xff; 545 enaddr[1] = v >> 8; 546 v = CSR_READ_2(sc, STGE_StationAddress1); 547 enaddr[2] = v & 0xff; 548 enaddr[3] = v >> 8; 549 v = CSR_READ_2(sc, STGE_StationAddress2); 550 enaddr[4] = v & 0xff; 551 enaddr[5] = v >> 8; 552 sc->sc_stge1023 = 0; 553 } else { 554 uint16_t myaddr[ETHER_ADDR_LEN / 2]; 555 for (i = 0; i <ETHER_ADDR_LEN / 2; i++) { 556 stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i, 557 &myaddr[i]); 558 myaddr[i] = le16toh(myaddr[i]); 559 } 560 bcopy(myaddr, enaddr, sizeof(enaddr)); 561 sc->sc_stge1023 = 1; 562 } 563 564 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 565 if (ifp == NULL) { 566 device_printf(sc->sc_dev, "failed to if_alloc()\n"); 567 error = ENXIO; 568 goto fail; 569 } 570 571 ifp->if_softc = sc; 572 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 573 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 574 ifp->if_ioctl = stge_ioctl; 575 ifp->if_start = stge_start; 576 ifp->if_init = stge_init; 577 ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1; 578 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 579 IFQ_SET_READY(&ifp->if_snd); 580 /* Revision B3 and earlier chips have checksum bug. */ 581 if (sc->sc_rev >= 0x0c) { 582 ifp->if_hwassist = STGE_CSUM_FEATURES; 583 ifp->if_capabilities = IFCAP_HWCSUM; 584 } else { 585 ifp->if_hwassist = 0; 586 ifp->if_capabilities = 0; 587 } 588 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 589 ifp->if_capenable = ifp->if_capabilities; 590 591 /* 592 * Read some important bits from the PhyCtrl register. 593 */ 594 sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) & 595 (PC_PhyDuplexPolarity | PC_PhyLnkPolarity); 596 597 /* Set up MII bus. */ 598 flags = MIIF_DOPAUSE; 599 if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e) 600 flags |= MIIF_MACPRIV0; 601 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange, 602 stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 603 flags); 604 if (error != 0) { 605 device_printf(sc->sc_dev, "attaching PHYs failed\n"); 606 goto fail; 607 } 608 609 ether_ifattach(ifp, enaddr); 610 611 /* VLAN capability setup */ 612 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 613 if (sc->sc_rev >= 0x0c) 614 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 615 ifp->if_capenable = ifp->if_capabilities; 616 #ifdef DEVICE_POLLING 617 ifp->if_capabilities |= IFCAP_POLLING; 618 #endif 619 /* 620 * Tell the upper layer(s) we support long frames. 621 * Must appear after the call to ether_ifattach() because 622 * ether_ifattach() sets ifi_hdrlen to the default value. 623 */ 624 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 625 626 /* 627 * The manual recommends disabling early transmit, so we 628 * do. It's disabled anyway, if using IP checksumming, 629 * since the entire packet must be in the FIFO in order 630 * for the chip to perform the checksum. 631 */ 632 sc->sc_txthresh = 0x0fff; 633 634 /* 635 * Disable MWI if the PCI layer tells us to. 636 */ 637 sc->sc_DMACtrl = 0; 638 if ((cmd & PCIM_CMD_MWRICEN) == 0) 639 sc->sc_DMACtrl |= DMAC_MWIDisable; 640 641 /* 642 * Hookup IRQ 643 */ 644 error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE, 645 NULL, stge_intr, sc, &sc->sc_ih); 646 if (error != 0) { 647 ether_ifdetach(ifp); 648 device_printf(sc->sc_dev, "couldn't set up IRQ\n"); 649 sc->sc_ifp = NULL; 650 goto fail; 651 } 652 653 fail: 654 if (error != 0) 655 stge_detach(dev); 656 657 return (error); 658 } 659 660 static int 661 stge_detach(device_t dev) 662 { 663 struct stge_softc *sc; 664 struct ifnet *ifp; 665 666 sc = device_get_softc(dev); 667 668 ifp = sc->sc_ifp; 669 #ifdef DEVICE_POLLING 670 if (ifp && ifp->if_capenable & IFCAP_POLLING) 671 ether_poll_deregister(ifp); 672 #endif 673 if (device_is_attached(dev)) { 674 STGE_LOCK(sc); 675 /* XXX */ 676 sc->sc_detach = 1; 677 stge_stop(sc); 678 STGE_UNLOCK(sc); 679 callout_drain(&sc->sc_tick_ch); 680 taskqueue_drain(taskqueue_swi, &sc->sc_link_task); 681 ether_ifdetach(ifp); 682 } 683 684 if (sc->sc_miibus != NULL) { 685 device_delete_child(dev, sc->sc_miibus); 686 sc->sc_miibus = NULL; 687 } 688 bus_generic_detach(dev); 689 stge_dma_free(sc); 690 691 if (ifp != NULL) { 692 if_free(ifp); 693 sc->sc_ifp = NULL; 694 } 695 696 if (sc->sc_ih) { 697 bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih); 698 sc->sc_ih = NULL; 699 } 700 701 if (sc->sc_spec) 702 bus_release_resources(dev, sc->sc_spec, sc->sc_res); 703 704 mtx_destroy(&sc->sc_mii_mtx); 705 mtx_destroy(&sc->sc_mtx); 706 707 return (0); 708 } 709 710 struct stge_dmamap_arg { 711 bus_addr_t stge_busaddr; 712 }; 713 714 static void 715 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 716 { 717 struct stge_dmamap_arg *ctx; 718 719 if (error != 0) 720 return; 721 722 ctx = (struct stge_dmamap_arg *)arg; 723 ctx->stge_busaddr = segs[0].ds_addr; 724 } 725 726 static int 727 stge_dma_alloc(struct stge_softc *sc) 728 { 729 struct stge_dmamap_arg ctx; 730 struct stge_txdesc *txd; 731 struct stge_rxdesc *rxd; 732 int error, i; 733 734 /* create parent tag. */ 735 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */ 736 1, 0, /* algnmnt, boundary */ 737 STGE_DMA_MAXADDR, /* lowaddr */ 738 BUS_SPACE_MAXADDR, /* highaddr */ 739 NULL, NULL, /* filter, filterarg */ 740 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 741 0, /* nsegments */ 742 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 743 0, /* flags */ 744 NULL, NULL, /* lockfunc, lockarg */ 745 &sc->sc_cdata.stge_parent_tag); 746 if (error != 0) { 747 device_printf(sc->sc_dev, "failed to create parent DMA tag\n"); 748 goto fail; 749 } 750 /* create tag for Tx ring. */ 751 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */ 752 STGE_RING_ALIGN, 0, /* algnmnt, boundary */ 753 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 754 BUS_SPACE_MAXADDR, /* highaddr */ 755 NULL, NULL, /* filter, filterarg */ 756 STGE_TX_RING_SZ, /* maxsize */ 757 1, /* nsegments */ 758 STGE_TX_RING_SZ, /* maxsegsize */ 759 0, /* flags */ 760 NULL, NULL, /* lockfunc, lockarg */ 761 &sc->sc_cdata.stge_tx_ring_tag); 762 if (error != 0) { 763 device_printf(sc->sc_dev, 764 "failed to allocate Tx ring DMA tag\n"); 765 goto fail; 766 } 767 768 /* create tag for Rx ring. */ 769 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */ 770 STGE_RING_ALIGN, 0, /* algnmnt, boundary */ 771 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 772 BUS_SPACE_MAXADDR, /* highaddr */ 773 NULL, NULL, /* filter, filterarg */ 774 STGE_RX_RING_SZ, /* maxsize */ 775 1, /* nsegments */ 776 STGE_RX_RING_SZ, /* maxsegsize */ 777 0, /* flags */ 778 NULL, NULL, /* lockfunc, lockarg */ 779 &sc->sc_cdata.stge_rx_ring_tag); 780 if (error != 0) { 781 device_printf(sc->sc_dev, 782 "failed to allocate Rx ring DMA tag\n"); 783 goto fail; 784 } 785 786 /* create tag for Tx buffers. */ 787 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */ 788 1, 0, /* algnmnt, boundary */ 789 BUS_SPACE_MAXADDR, /* lowaddr */ 790 BUS_SPACE_MAXADDR, /* highaddr */ 791 NULL, NULL, /* filter, filterarg */ 792 MCLBYTES * STGE_MAXTXSEGS, /* maxsize */ 793 STGE_MAXTXSEGS, /* nsegments */ 794 MCLBYTES, /* maxsegsize */ 795 0, /* flags */ 796 NULL, NULL, /* lockfunc, lockarg */ 797 &sc->sc_cdata.stge_tx_tag); 798 if (error != 0) { 799 device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n"); 800 goto fail; 801 } 802 803 /* create tag for Rx buffers. */ 804 error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */ 805 1, 0, /* algnmnt, boundary */ 806 BUS_SPACE_MAXADDR, /* lowaddr */ 807 BUS_SPACE_MAXADDR, /* highaddr */ 808 NULL, NULL, /* filter, filterarg */ 809 MCLBYTES, /* maxsize */ 810 1, /* nsegments */ 811 MCLBYTES, /* maxsegsize */ 812 0, /* flags */ 813 NULL, NULL, /* lockfunc, lockarg */ 814 &sc->sc_cdata.stge_rx_tag); 815 if (error != 0) { 816 device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n"); 817 goto fail; 818 } 819 820 /* allocate DMA'able memory and load the DMA map for Tx ring. */ 821 error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag, 822 (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | 823 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map); 824 if (error != 0) { 825 device_printf(sc->sc_dev, 826 "failed to allocate DMA'able memory for Tx ring\n"); 827 goto fail; 828 } 829 830 ctx.stge_busaddr = 0; 831 error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag, 832 sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring, 833 STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 834 if (error != 0 || ctx.stge_busaddr == 0) { 835 device_printf(sc->sc_dev, 836 "failed to load DMA'able memory for Tx ring\n"); 837 goto fail; 838 } 839 sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr; 840 841 /* allocate DMA'able memory and load the DMA map for Rx ring. */ 842 error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag, 843 (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | 844 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map); 845 if (error != 0) { 846 device_printf(sc->sc_dev, 847 "failed to allocate DMA'able memory for Rx ring\n"); 848 goto fail; 849 } 850 851 ctx.stge_busaddr = 0; 852 error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag, 853 sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring, 854 STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 855 if (error != 0 || ctx.stge_busaddr == 0) { 856 device_printf(sc->sc_dev, 857 "failed to load DMA'able memory for Rx ring\n"); 858 goto fail; 859 } 860 sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr; 861 862 /* create DMA maps for Tx buffers. */ 863 for (i = 0; i < STGE_TX_RING_CNT; i++) { 864 txd = &sc->sc_cdata.stge_txdesc[i]; 865 txd->tx_m = NULL; 866 txd->tx_dmamap = 0; 867 error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0, 868 &txd->tx_dmamap); 869 if (error != 0) { 870 device_printf(sc->sc_dev, 871 "failed to create Tx dmamap\n"); 872 goto fail; 873 } 874 } 875 /* create DMA maps for Rx buffers. */ 876 if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0, 877 &sc->sc_cdata.stge_rx_sparemap)) != 0) { 878 device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n"); 879 goto fail; 880 } 881 for (i = 0; i < STGE_RX_RING_CNT; i++) { 882 rxd = &sc->sc_cdata.stge_rxdesc[i]; 883 rxd->rx_m = NULL; 884 rxd->rx_dmamap = 0; 885 error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0, 886 &rxd->rx_dmamap); 887 if (error != 0) { 888 device_printf(sc->sc_dev, 889 "failed to create Rx dmamap\n"); 890 goto fail; 891 } 892 } 893 894 fail: 895 return (error); 896 } 897 898 static void 899 stge_dma_free(struct stge_softc *sc) 900 { 901 struct stge_txdesc *txd; 902 struct stge_rxdesc *rxd; 903 int i; 904 905 /* Tx ring */ 906 if (sc->sc_cdata.stge_tx_ring_tag) { 907 if (sc->sc_rdata.stge_tx_ring_paddr) 908 bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag, 909 sc->sc_cdata.stge_tx_ring_map); 910 if (sc->sc_rdata.stge_tx_ring) 911 bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag, 912 sc->sc_rdata.stge_tx_ring, 913 sc->sc_cdata.stge_tx_ring_map); 914 sc->sc_rdata.stge_tx_ring = NULL; 915 sc->sc_rdata.stge_tx_ring_paddr = 0; 916 bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag); 917 sc->sc_cdata.stge_tx_ring_tag = NULL; 918 } 919 /* Rx ring */ 920 if (sc->sc_cdata.stge_rx_ring_tag) { 921 if (sc->sc_rdata.stge_rx_ring_paddr) 922 bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag, 923 sc->sc_cdata.stge_rx_ring_map); 924 if (sc->sc_rdata.stge_rx_ring) 925 bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag, 926 sc->sc_rdata.stge_rx_ring, 927 sc->sc_cdata.stge_rx_ring_map); 928 sc->sc_rdata.stge_rx_ring = NULL; 929 sc->sc_rdata.stge_rx_ring_paddr = 0; 930 bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag); 931 sc->sc_cdata.stge_rx_ring_tag = NULL; 932 } 933 /* Tx buffers */ 934 if (sc->sc_cdata.stge_tx_tag) { 935 for (i = 0; i < STGE_TX_RING_CNT; i++) { 936 txd = &sc->sc_cdata.stge_txdesc[i]; 937 if (txd->tx_dmamap) { 938 bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag, 939 txd->tx_dmamap); 940 txd->tx_dmamap = 0; 941 } 942 } 943 bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag); 944 sc->sc_cdata.stge_tx_tag = NULL; 945 } 946 /* Rx buffers */ 947 if (sc->sc_cdata.stge_rx_tag) { 948 for (i = 0; i < STGE_RX_RING_CNT; i++) { 949 rxd = &sc->sc_cdata.stge_rxdesc[i]; 950 if (rxd->rx_dmamap) { 951 bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag, 952 rxd->rx_dmamap); 953 rxd->rx_dmamap = 0; 954 } 955 } 956 if (sc->sc_cdata.stge_rx_sparemap) { 957 bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag, 958 sc->sc_cdata.stge_rx_sparemap); 959 sc->sc_cdata.stge_rx_sparemap = 0; 960 } 961 bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag); 962 sc->sc_cdata.stge_rx_tag = NULL; 963 } 964 965 if (sc->sc_cdata.stge_parent_tag) { 966 bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag); 967 sc->sc_cdata.stge_parent_tag = NULL; 968 } 969 } 970 971 /* 972 * stge_shutdown: 973 * 974 * Make sure the interface is stopped at reboot time. 975 */ 976 static int 977 stge_shutdown(device_t dev) 978 { 979 980 return (stge_suspend(dev)); 981 } 982 983 static void 984 stge_setwol(struct stge_softc *sc) 985 { 986 struct ifnet *ifp; 987 uint8_t v; 988 989 STGE_LOCK_ASSERT(sc); 990 991 ifp = sc->sc_ifp; 992 v = CSR_READ_1(sc, STGE_WakeEvent); 993 /* Disable all WOL bits. */ 994 v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable | 995 WE_WakeOnLanEnable); 996 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 997 v |= WE_MagicPktEnable | WE_WakeOnLanEnable; 998 CSR_WRITE_1(sc, STGE_WakeEvent, v); 999 /* Reset Tx and prevent transmission. */ 1000 CSR_WRITE_4(sc, STGE_AsicCtrl, 1001 CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset); 1002 /* 1003 * TC9021 automatically reset link speed to 100Mbps when it's put 1004 * into sleep so there is no need to try to resetting link speed. 1005 */ 1006 } 1007 1008 static int 1009 stge_suspend(device_t dev) 1010 { 1011 struct stge_softc *sc; 1012 1013 sc = device_get_softc(dev); 1014 1015 STGE_LOCK(sc); 1016 stge_stop(sc); 1017 sc->sc_suspended = 1; 1018 stge_setwol(sc); 1019 STGE_UNLOCK(sc); 1020 1021 return (0); 1022 } 1023 1024 static int 1025 stge_resume(device_t dev) 1026 { 1027 struct stge_softc *sc; 1028 struct ifnet *ifp; 1029 uint8_t v; 1030 1031 sc = device_get_softc(dev); 1032 1033 STGE_LOCK(sc); 1034 /* 1035 * Clear WOL bits, so special frames wouldn't interfere 1036 * normal Rx operation anymore. 1037 */ 1038 v = CSR_READ_1(sc, STGE_WakeEvent); 1039 v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable | 1040 WE_WakeOnLanEnable); 1041 CSR_WRITE_1(sc, STGE_WakeEvent, v); 1042 ifp = sc->sc_ifp; 1043 if (ifp->if_flags & IFF_UP) 1044 stge_init_locked(sc); 1045 1046 sc->sc_suspended = 0; 1047 STGE_UNLOCK(sc); 1048 1049 return (0); 1050 } 1051 1052 static void 1053 stge_dma_wait(struct stge_softc *sc) 1054 { 1055 int i; 1056 1057 for (i = 0; i < STGE_TIMEOUT; i++) { 1058 DELAY(2); 1059 if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0) 1060 break; 1061 } 1062 1063 if (i == STGE_TIMEOUT) 1064 device_printf(sc->sc_dev, "DMA wait timed out\n"); 1065 } 1066 1067 static int 1068 stge_encap(struct stge_softc *sc, struct mbuf **m_head) 1069 { 1070 struct stge_txdesc *txd; 1071 struct stge_tfd *tfd; 1072 struct mbuf *m; 1073 bus_dma_segment_t txsegs[STGE_MAXTXSEGS]; 1074 int error, i, nsegs, si; 1075 uint64_t csum_flags, tfc; 1076 1077 STGE_LOCK_ASSERT(sc); 1078 1079 if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL) 1080 return (ENOBUFS); 1081 1082 error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag, 1083 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1084 if (error == EFBIG) { 1085 m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS); 1086 if (m == NULL) { 1087 m_freem(*m_head); 1088 *m_head = NULL; 1089 return (ENOMEM); 1090 } 1091 *m_head = m; 1092 error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag, 1093 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1094 if (error != 0) { 1095 m_freem(*m_head); 1096 *m_head = NULL; 1097 return (error); 1098 } 1099 } else if (error != 0) 1100 return (error); 1101 if (nsegs == 0) { 1102 m_freem(*m_head); 1103 *m_head = NULL; 1104 return (EIO); 1105 } 1106 1107 m = *m_head; 1108 csum_flags = 0; 1109 if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) { 1110 if (m->m_pkthdr.csum_flags & CSUM_IP) 1111 csum_flags |= TFD_IPChecksumEnable; 1112 if (m->m_pkthdr.csum_flags & CSUM_TCP) 1113 csum_flags |= TFD_TCPChecksumEnable; 1114 else if (m->m_pkthdr.csum_flags & CSUM_UDP) 1115 csum_flags |= TFD_UDPChecksumEnable; 1116 } 1117 1118 si = sc->sc_cdata.stge_tx_prod; 1119 tfd = &sc->sc_rdata.stge_tx_ring[si]; 1120 for (i = 0; i < nsegs; i++) 1121 tfd->tfd_frags[i].frag_word0 = 1122 htole64(FRAG_ADDR(txsegs[i].ds_addr) | 1123 FRAG_LEN(txsegs[i].ds_len)); 1124 sc->sc_cdata.stge_tx_cnt++; 1125 1126 tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) | 1127 TFD_FragCount(nsegs) | csum_flags; 1128 if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) 1129 tfc |= TFD_TxDMAIndicate; 1130 1131 /* Update producer index. */ 1132 sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT; 1133 1134 /* Check if we have a VLAN tag to insert. */ 1135 if (m->m_flags & M_VLANTAG) 1136 tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag)); 1137 tfd->tfd_control = htole64(tfc); 1138 1139 /* Update Tx Queue. */ 1140 STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q); 1141 STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q); 1142 txd->tx_m = m; 1143 1144 /* Sync descriptors. */ 1145 bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap, 1146 BUS_DMASYNC_PREWRITE); 1147 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag, 1148 sc->sc_cdata.stge_tx_ring_map, 1149 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1150 1151 return (0); 1152 } 1153 1154 /* 1155 * stge_start: [ifnet interface function] 1156 * 1157 * Start packet transmission on the interface. 1158 */ 1159 static void 1160 stge_start(struct ifnet *ifp) 1161 { 1162 struct stge_softc *sc; 1163 1164 sc = ifp->if_softc; 1165 STGE_LOCK(sc); 1166 stge_start_locked(ifp); 1167 STGE_UNLOCK(sc); 1168 } 1169 1170 static void 1171 stge_start_locked(struct ifnet *ifp) 1172 { 1173 struct stge_softc *sc; 1174 struct mbuf *m_head; 1175 int enq; 1176 1177 sc = ifp->if_softc; 1178 1179 STGE_LOCK_ASSERT(sc); 1180 1181 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != 1182 IFF_DRV_RUNNING || sc->sc_link == 0) 1183 return; 1184 1185 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1186 if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) { 1187 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1188 break; 1189 } 1190 1191 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1192 if (m_head == NULL) 1193 break; 1194 /* 1195 * Pack the data into the transmit ring. If we 1196 * don't have room, set the OACTIVE flag and wait 1197 * for the NIC to drain the ring. 1198 */ 1199 if (stge_encap(sc, &m_head)) { 1200 if (m_head == NULL) 1201 break; 1202 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1203 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1204 break; 1205 } 1206 1207 enq++; 1208 /* 1209 * If there's a BPF listener, bounce a copy of this frame 1210 * to him. 1211 */ 1212 ETHER_BPF_MTAP(ifp, m_head); 1213 } 1214 1215 if (enq > 0) { 1216 /* Transmit */ 1217 CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow); 1218 1219 /* Set a timeout in case the chip goes out to lunch. */ 1220 sc->sc_watchdog_timer = 5; 1221 } 1222 } 1223 1224 /* 1225 * stge_watchdog: 1226 * 1227 * Watchdog timer handler. 1228 */ 1229 static void 1230 stge_watchdog(struct stge_softc *sc) 1231 { 1232 struct ifnet *ifp; 1233 1234 STGE_LOCK_ASSERT(sc); 1235 1236 if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer) 1237 return; 1238 1239 ifp = sc->sc_ifp; 1240 if_printf(sc->sc_ifp, "device timeout\n"); 1241 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1242 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1243 stge_init_locked(sc); 1244 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1245 stge_start_locked(ifp); 1246 } 1247 1248 /* 1249 * stge_ioctl: [ifnet interface function] 1250 * 1251 * Handle control requests from the operator. 1252 */ 1253 static int 1254 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1255 { 1256 struct stge_softc *sc; 1257 struct ifreq *ifr; 1258 struct mii_data *mii; 1259 int error, mask; 1260 1261 sc = ifp->if_softc; 1262 ifr = (struct ifreq *)data; 1263 error = 0; 1264 switch (cmd) { 1265 case SIOCSIFMTU: 1266 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU) 1267 error = EINVAL; 1268 else if (ifp->if_mtu != ifr->ifr_mtu) { 1269 ifp->if_mtu = ifr->ifr_mtu; 1270 STGE_LOCK(sc); 1271 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1272 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1273 stge_init_locked(sc); 1274 } 1275 STGE_UNLOCK(sc); 1276 } 1277 break; 1278 case SIOCSIFFLAGS: 1279 STGE_LOCK(sc); 1280 if ((ifp->if_flags & IFF_UP) != 0) { 1281 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1282 if (((ifp->if_flags ^ sc->sc_if_flags) 1283 & IFF_PROMISC) != 0) 1284 stge_set_filter(sc); 1285 } else { 1286 if (sc->sc_detach == 0) 1287 stge_init_locked(sc); 1288 } 1289 } else { 1290 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1291 stge_stop(sc); 1292 } 1293 sc->sc_if_flags = ifp->if_flags; 1294 STGE_UNLOCK(sc); 1295 break; 1296 case SIOCADDMULTI: 1297 case SIOCDELMULTI: 1298 STGE_LOCK(sc); 1299 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1300 stge_set_multi(sc); 1301 STGE_UNLOCK(sc); 1302 break; 1303 case SIOCSIFMEDIA: 1304 case SIOCGIFMEDIA: 1305 mii = device_get_softc(sc->sc_miibus); 1306 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1307 break; 1308 case SIOCSIFCAP: 1309 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1310 #ifdef DEVICE_POLLING 1311 if ((mask & IFCAP_POLLING) != 0) { 1312 if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) { 1313 error = ether_poll_register(stge_poll, ifp); 1314 if (error != 0) 1315 break; 1316 STGE_LOCK(sc); 1317 CSR_WRITE_2(sc, STGE_IntEnable, 0); 1318 ifp->if_capenable |= IFCAP_POLLING; 1319 STGE_UNLOCK(sc); 1320 } else { 1321 error = ether_poll_deregister(ifp); 1322 if (error != 0) 1323 break; 1324 STGE_LOCK(sc); 1325 CSR_WRITE_2(sc, STGE_IntEnable, 1326 sc->sc_IntEnable); 1327 ifp->if_capenable &= ~IFCAP_POLLING; 1328 STGE_UNLOCK(sc); 1329 } 1330 } 1331 #endif 1332 if ((mask & IFCAP_HWCSUM) != 0) { 1333 ifp->if_capenable ^= IFCAP_HWCSUM; 1334 if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 && 1335 (IFCAP_HWCSUM & ifp->if_capabilities) != 0) 1336 ifp->if_hwassist = STGE_CSUM_FEATURES; 1337 else 1338 ifp->if_hwassist = 0; 1339 } 1340 if ((mask & IFCAP_WOL) != 0 && 1341 (ifp->if_capabilities & IFCAP_WOL) != 0) { 1342 if ((mask & IFCAP_WOL_MAGIC) != 0) 1343 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1344 } 1345 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) { 1346 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1347 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1348 STGE_LOCK(sc); 1349 stge_vlan_setup(sc); 1350 STGE_UNLOCK(sc); 1351 } 1352 } 1353 VLAN_CAPABILITIES(ifp); 1354 break; 1355 default: 1356 error = ether_ioctl(ifp, cmd, data); 1357 break; 1358 } 1359 1360 return (error); 1361 } 1362 1363 static void 1364 stge_link_task(void *arg, int pending) 1365 { 1366 struct stge_softc *sc; 1367 struct mii_data *mii; 1368 uint32_t v, ac; 1369 int i; 1370 1371 sc = (struct stge_softc *)arg; 1372 STGE_LOCK(sc); 1373 1374 mii = device_get_softc(sc->sc_miibus); 1375 if (mii->mii_media_status & IFM_ACTIVE) { 1376 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 1377 sc->sc_link = 1; 1378 } else 1379 sc->sc_link = 0; 1380 1381 sc->sc_MACCtrl = 0; 1382 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0) 1383 sc->sc_MACCtrl |= MC_DuplexSelect; 1384 if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0) 1385 sc->sc_MACCtrl |= MC_RxFlowControlEnable; 1386 if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0) 1387 sc->sc_MACCtrl |= MC_TxFlowControlEnable; 1388 /* 1389 * Update STGE_MACCtrl register depending on link status. 1390 * (duplex, flow control etc) 1391 */ 1392 v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 1393 v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable); 1394 v |= sc->sc_MACCtrl; 1395 CSR_WRITE_4(sc, STGE_MACCtrl, v); 1396 if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) { 1397 /* Duplex setting changed, reset Tx/Rx functions. */ 1398 ac = CSR_READ_4(sc, STGE_AsicCtrl); 1399 ac |= AC_TxReset | AC_RxReset; 1400 CSR_WRITE_4(sc, STGE_AsicCtrl, ac); 1401 for (i = 0; i < STGE_TIMEOUT; i++) { 1402 DELAY(100); 1403 if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0) 1404 break; 1405 } 1406 if (i == STGE_TIMEOUT) 1407 device_printf(sc->sc_dev, "reset failed to complete\n"); 1408 } 1409 STGE_UNLOCK(sc); 1410 } 1411 1412 static __inline int 1413 stge_tx_error(struct stge_softc *sc) 1414 { 1415 uint32_t txstat; 1416 int error; 1417 1418 for (error = 0;;) { 1419 txstat = CSR_READ_4(sc, STGE_TxStatus); 1420 if ((txstat & TS_TxComplete) == 0) 1421 break; 1422 /* Tx underrun */ 1423 if ((txstat & TS_TxUnderrun) != 0) { 1424 /* 1425 * XXX 1426 * There should be a more better way to recover 1427 * from Tx underrun instead of a full reset. 1428 */ 1429 if (sc->sc_nerr++ < STGE_MAXERR) 1430 device_printf(sc->sc_dev, "Tx underrun, " 1431 "resetting...\n"); 1432 if (sc->sc_nerr == STGE_MAXERR) 1433 device_printf(sc->sc_dev, "too many errors; " 1434 "not reporting any more\n"); 1435 error = -1; 1436 break; 1437 } 1438 /* Maximum/Late collisions, Re-enable Tx MAC. */ 1439 if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0) 1440 CSR_WRITE_4(sc, STGE_MACCtrl, 1441 (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) | 1442 MC_TxEnable); 1443 } 1444 1445 return (error); 1446 } 1447 1448 /* 1449 * stge_intr: 1450 * 1451 * Interrupt service routine. 1452 */ 1453 static void 1454 stge_intr(void *arg) 1455 { 1456 struct stge_softc *sc; 1457 struct ifnet *ifp; 1458 int reinit; 1459 uint16_t status; 1460 1461 sc = (struct stge_softc *)arg; 1462 ifp = sc->sc_ifp; 1463 1464 STGE_LOCK(sc); 1465 1466 #ifdef DEVICE_POLLING 1467 if ((ifp->if_capenable & IFCAP_POLLING) != 0) 1468 goto done_locked; 1469 #endif 1470 status = CSR_READ_2(sc, STGE_IntStatus); 1471 if (sc->sc_suspended || (status & IS_InterruptStatus) == 0) 1472 goto done_locked; 1473 1474 /* Disable interrupts. */ 1475 for (reinit = 0;;) { 1476 status = CSR_READ_2(sc, STGE_IntStatusAck); 1477 status &= sc->sc_IntEnable; 1478 if (status == 0) 1479 break; 1480 /* Host interface errors. */ 1481 if ((status & IS_HostError) != 0) { 1482 device_printf(sc->sc_dev, 1483 "Host interface error, resetting...\n"); 1484 reinit = 1; 1485 goto force_init; 1486 } 1487 1488 /* Receive interrupts. */ 1489 if ((status & IS_RxDMAComplete) != 0) { 1490 stge_rxeof(sc); 1491 if ((status & IS_RFDListEnd) != 0) 1492 CSR_WRITE_4(sc, STGE_DMACtrl, 1493 DMAC_RxDMAPollNow); 1494 } 1495 1496 /* Transmit interrupts. */ 1497 if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0) 1498 stge_txeof(sc); 1499 1500 /* Transmission errors.*/ 1501 if ((status & IS_TxComplete) != 0) { 1502 if ((reinit = stge_tx_error(sc)) != 0) 1503 break; 1504 } 1505 } 1506 1507 force_init: 1508 if (reinit != 0) { 1509 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1510 stge_init_locked(sc); 1511 } 1512 1513 /* Re-enable interrupts. */ 1514 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable); 1515 1516 /* Try to get more packets going. */ 1517 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1518 stge_start_locked(ifp); 1519 1520 done_locked: 1521 STGE_UNLOCK(sc); 1522 } 1523 1524 /* 1525 * stge_txeof: 1526 * 1527 * Helper; handle transmit interrupts. 1528 */ 1529 static void 1530 stge_txeof(struct stge_softc *sc) 1531 { 1532 struct ifnet *ifp; 1533 struct stge_txdesc *txd; 1534 uint64_t control; 1535 int cons; 1536 1537 STGE_LOCK_ASSERT(sc); 1538 1539 ifp = sc->sc_ifp; 1540 1541 txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq); 1542 if (txd == NULL) 1543 return; 1544 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag, 1545 sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD); 1546 1547 /* 1548 * Go through our Tx list and free mbufs for those 1549 * frames which have been transmitted. 1550 */ 1551 for (cons = sc->sc_cdata.stge_tx_cons;; 1552 cons = (cons + 1) % STGE_TX_RING_CNT) { 1553 if (sc->sc_cdata.stge_tx_cnt <= 0) 1554 break; 1555 control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control); 1556 if ((control & TFD_TFDDone) == 0) 1557 break; 1558 sc->sc_cdata.stge_tx_cnt--; 1559 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1560 1561 bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap, 1562 BUS_DMASYNC_POSTWRITE); 1563 bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap); 1564 1565 /* Output counter is updated with statistics register */ 1566 m_freem(txd->tx_m); 1567 txd->tx_m = NULL; 1568 STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q); 1569 STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q); 1570 txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq); 1571 } 1572 sc->sc_cdata.stge_tx_cons = cons; 1573 if (sc->sc_cdata.stge_tx_cnt == 0) 1574 sc->sc_watchdog_timer = 0; 1575 1576 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag, 1577 sc->sc_cdata.stge_tx_ring_map, 1578 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1579 } 1580 1581 static __inline void 1582 stge_discard_rxbuf(struct stge_softc *sc, int idx) 1583 { 1584 struct stge_rfd *rfd; 1585 1586 rfd = &sc->sc_rdata.stge_rx_ring[idx]; 1587 rfd->rfd_status = 0; 1588 } 1589 1590 #ifndef __NO_STRICT_ALIGNMENT 1591 /* 1592 * It seems that TC9021's DMA engine has alignment restrictions in 1593 * DMA scatter operations. The first DMA segment has no address 1594 * alignment restrictins but the rest should be aligned on 4(?) bytes 1595 * boundary. Otherwise it would corrupt random memory. Since we don't 1596 * know which one is used for the first segment in advance we simply 1597 * don't align at all. 1598 * To avoid copying over an entire frame to align, we allocate a new 1599 * mbuf and copy ethernet header to the new mbuf. The new mbuf is 1600 * prepended into the existing mbuf chain. 1601 */ 1602 static __inline struct mbuf * 1603 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m) 1604 { 1605 struct mbuf *n; 1606 1607 n = NULL; 1608 if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { 1609 bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); 1610 m->m_data += ETHER_HDR_LEN; 1611 n = m; 1612 } else { 1613 MGETHDR(n, M_NOWAIT, MT_DATA); 1614 if (n != NULL) { 1615 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); 1616 m->m_data += ETHER_HDR_LEN; 1617 m->m_len -= ETHER_HDR_LEN; 1618 n->m_len = ETHER_HDR_LEN; 1619 M_MOVE_PKTHDR(n, m); 1620 n->m_next = m; 1621 } else 1622 m_freem(m); 1623 } 1624 1625 return (n); 1626 } 1627 #endif 1628 1629 /* 1630 * stge_rxeof: 1631 * 1632 * Helper; handle receive interrupts. 1633 */ 1634 static int 1635 stge_rxeof(struct stge_softc *sc) 1636 { 1637 struct ifnet *ifp; 1638 struct stge_rxdesc *rxd; 1639 struct mbuf *mp, *m; 1640 uint64_t status64; 1641 uint32_t status; 1642 int cons, prog, rx_npkts; 1643 1644 STGE_LOCK_ASSERT(sc); 1645 1646 rx_npkts = 0; 1647 ifp = sc->sc_ifp; 1648 1649 bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag, 1650 sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD); 1651 1652 prog = 0; 1653 for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT; 1654 prog++, cons = (cons + 1) % STGE_RX_RING_CNT) { 1655 status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status); 1656 status = RFD_RxStatus(status64); 1657 if ((status & RFD_RFDDone) == 0) 1658 break; 1659 #ifdef DEVICE_POLLING 1660 if (ifp->if_capenable & IFCAP_POLLING) { 1661 if (sc->sc_cdata.stge_rxcycles <= 0) 1662 break; 1663 sc->sc_cdata.stge_rxcycles--; 1664 } 1665 #endif 1666 prog++; 1667 rxd = &sc->sc_cdata.stge_rxdesc[cons]; 1668 mp = rxd->rx_m; 1669 1670 /* 1671 * If the packet had an error, drop it. Note we count 1672 * the error later in the periodic stats update. 1673 */ 1674 if ((status & RFD_FrameEnd) != 0 && (status & 1675 (RFD_RxFIFOOverrun | RFD_RxRuntFrame | 1676 RFD_RxAlignmentError | RFD_RxFCSError | 1677 RFD_RxLengthError)) != 0) { 1678 stge_discard_rxbuf(sc, cons); 1679 if (sc->sc_cdata.stge_rxhead != NULL) { 1680 m_freem(sc->sc_cdata.stge_rxhead); 1681 STGE_RXCHAIN_RESET(sc); 1682 } 1683 continue; 1684 } 1685 /* 1686 * Add a new receive buffer to the ring. 1687 */ 1688 if (stge_newbuf(sc, cons) != 0) { 1689 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1690 stge_discard_rxbuf(sc, cons); 1691 if (sc->sc_cdata.stge_rxhead != NULL) { 1692 m_freem(sc->sc_cdata.stge_rxhead); 1693 STGE_RXCHAIN_RESET(sc); 1694 } 1695 continue; 1696 } 1697 1698 if ((status & RFD_FrameEnd) != 0) 1699 mp->m_len = RFD_RxDMAFrameLen(status) - 1700 sc->sc_cdata.stge_rxlen; 1701 sc->sc_cdata.stge_rxlen += mp->m_len; 1702 1703 /* Chain mbufs. */ 1704 if (sc->sc_cdata.stge_rxhead == NULL) { 1705 sc->sc_cdata.stge_rxhead = mp; 1706 sc->sc_cdata.stge_rxtail = mp; 1707 } else { 1708 mp->m_flags &= ~M_PKTHDR; 1709 sc->sc_cdata.stge_rxtail->m_next = mp; 1710 sc->sc_cdata.stge_rxtail = mp; 1711 } 1712 1713 if ((status & RFD_FrameEnd) != 0) { 1714 m = sc->sc_cdata.stge_rxhead; 1715 m->m_pkthdr.rcvif = ifp; 1716 m->m_pkthdr.len = sc->sc_cdata.stge_rxlen; 1717 1718 if (m->m_pkthdr.len > sc->sc_if_framesize) { 1719 m_freem(m); 1720 STGE_RXCHAIN_RESET(sc); 1721 continue; 1722 } 1723 /* 1724 * Set the incoming checksum information for 1725 * the packet. 1726 */ 1727 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) { 1728 if ((status & RFD_IPDetected) != 0) { 1729 m->m_pkthdr.csum_flags |= 1730 CSUM_IP_CHECKED; 1731 if ((status & RFD_IPError) == 0) 1732 m->m_pkthdr.csum_flags |= 1733 CSUM_IP_VALID; 1734 } 1735 if (((status & RFD_TCPDetected) != 0 && 1736 (status & RFD_TCPError) == 0) || 1737 ((status & RFD_UDPDetected) != 0 && 1738 (status & RFD_UDPError) == 0)) { 1739 m->m_pkthdr.csum_flags |= 1740 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 1741 m->m_pkthdr.csum_data = 0xffff; 1742 } 1743 } 1744 1745 #ifndef __NO_STRICT_ALIGNMENT 1746 if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) { 1747 if ((m = stge_fixup_rx(sc, m)) == NULL) { 1748 STGE_RXCHAIN_RESET(sc); 1749 continue; 1750 } 1751 } 1752 #endif 1753 /* Check for VLAN tagged packets. */ 1754 if ((status & RFD_VLANDetected) != 0 && 1755 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { 1756 m->m_pkthdr.ether_vtag = RFD_TCI(status64); 1757 m->m_flags |= M_VLANTAG; 1758 } 1759 1760 STGE_UNLOCK(sc); 1761 /* Pass it on. */ 1762 (*ifp->if_input)(ifp, m); 1763 STGE_LOCK(sc); 1764 rx_npkts++; 1765 1766 STGE_RXCHAIN_RESET(sc); 1767 } 1768 } 1769 1770 if (prog > 0) { 1771 /* Update the consumer index. */ 1772 sc->sc_cdata.stge_rx_cons = cons; 1773 bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag, 1774 sc->sc_cdata.stge_rx_ring_map, 1775 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1776 } 1777 return (rx_npkts); 1778 } 1779 1780 #ifdef DEVICE_POLLING 1781 static int 1782 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1783 { 1784 struct stge_softc *sc; 1785 uint16_t status; 1786 int rx_npkts; 1787 1788 rx_npkts = 0; 1789 sc = ifp->if_softc; 1790 STGE_LOCK(sc); 1791 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1792 STGE_UNLOCK(sc); 1793 return (rx_npkts); 1794 } 1795 1796 sc->sc_cdata.stge_rxcycles = count; 1797 rx_npkts = stge_rxeof(sc); 1798 stge_txeof(sc); 1799 1800 if (cmd == POLL_AND_CHECK_STATUS) { 1801 status = CSR_READ_2(sc, STGE_IntStatus); 1802 status &= sc->sc_IntEnable; 1803 if (status != 0) { 1804 if ((status & IS_HostError) != 0) { 1805 device_printf(sc->sc_dev, 1806 "Host interface error, resetting...\n"); 1807 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1808 stge_init_locked(sc); 1809 } 1810 if ((status & IS_TxComplete) != 0) { 1811 if (stge_tx_error(sc) != 0) { 1812 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1813 stge_init_locked(sc); 1814 } 1815 } 1816 } 1817 } 1818 1819 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1820 stge_start_locked(ifp); 1821 1822 STGE_UNLOCK(sc); 1823 return (rx_npkts); 1824 } 1825 #endif /* DEVICE_POLLING */ 1826 1827 /* 1828 * stge_tick: 1829 * 1830 * One second timer, used to tick the MII. 1831 */ 1832 static void 1833 stge_tick(void *arg) 1834 { 1835 struct stge_softc *sc; 1836 struct mii_data *mii; 1837 1838 sc = (struct stge_softc *)arg; 1839 1840 STGE_LOCK_ASSERT(sc); 1841 1842 mii = device_get_softc(sc->sc_miibus); 1843 mii_tick(mii); 1844 1845 /* Update statistics counters. */ 1846 stge_stats_update(sc); 1847 1848 /* 1849 * Relcaim any pending Tx descriptors to release mbufs in a 1850 * timely manner as we don't generate Tx completion interrupts 1851 * for every frame. This limits the delay to a maximum of one 1852 * second. 1853 */ 1854 if (sc->sc_cdata.stge_tx_cnt != 0) 1855 stge_txeof(sc); 1856 1857 stge_watchdog(sc); 1858 1859 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc); 1860 } 1861 1862 /* 1863 * stge_stats_update: 1864 * 1865 * Read the TC9021 statistics counters. 1866 */ 1867 static void 1868 stge_stats_update(struct stge_softc *sc) 1869 { 1870 struct ifnet *ifp; 1871 1872 STGE_LOCK_ASSERT(sc); 1873 1874 ifp = sc->sc_ifp; 1875 1876 CSR_READ_4(sc,STGE_OctetRcvOk); 1877 1878 if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk)); 1879 1880 if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors)); 1881 1882 CSR_READ_4(sc, STGE_OctetXmtdOk); 1883 1884 if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk)); 1885 1886 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1887 CSR_READ_4(sc, STGE_LateCollisions) + 1888 CSR_READ_4(sc, STGE_MultiColFrames) + 1889 CSR_READ_4(sc, STGE_SingleColFrames)); 1890 1891 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1892 CSR_READ_2(sc, STGE_FramesAbortXSColls) + 1893 CSR_READ_2(sc, STGE_FramesWEXDeferal)); 1894 } 1895 1896 /* 1897 * stge_reset: 1898 * 1899 * Perform a soft reset on the TC9021. 1900 */ 1901 static void 1902 stge_reset(struct stge_softc *sc, uint32_t how) 1903 { 1904 uint32_t ac; 1905 uint8_t v; 1906 int i, dv; 1907 1908 STGE_LOCK_ASSERT(sc); 1909 1910 dv = 5000; 1911 ac = CSR_READ_4(sc, STGE_AsicCtrl); 1912 switch (how) { 1913 case STGE_RESET_TX: 1914 ac |= AC_TxReset | AC_FIFO; 1915 dv = 100; 1916 break; 1917 case STGE_RESET_RX: 1918 ac |= AC_RxReset | AC_FIFO; 1919 dv = 100; 1920 break; 1921 case STGE_RESET_FULL: 1922 default: 1923 /* 1924 * Only assert RstOut if we're fiber. We need GMII clocks 1925 * to be present in order for the reset to complete on fiber 1926 * cards. 1927 */ 1928 ac |= AC_GlobalReset | AC_RxReset | AC_TxReset | 1929 AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit | 1930 (sc->sc_usefiber ? AC_RstOut : 0); 1931 break; 1932 } 1933 1934 CSR_WRITE_4(sc, STGE_AsicCtrl, ac); 1935 1936 /* Account for reset problem at 10Mbps. */ 1937 DELAY(dv); 1938 1939 for (i = 0; i < STGE_TIMEOUT; i++) { 1940 if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0) 1941 break; 1942 DELAY(dv); 1943 } 1944 1945 if (i == STGE_TIMEOUT) 1946 device_printf(sc->sc_dev, "reset failed to complete\n"); 1947 1948 /* Set LED, from Linux IPG driver. */ 1949 ac = CSR_READ_4(sc, STGE_AsicCtrl); 1950 ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1); 1951 if ((sc->sc_led & 0x01) != 0) 1952 ac |= AC_LEDMode; 1953 if ((sc->sc_led & 0x03) != 0) 1954 ac |= AC_LEDModeBit1; 1955 if ((sc->sc_led & 0x08) != 0) 1956 ac |= AC_LEDSpeed; 1957 CSR_WRITE_4(sc, STGE_AsicCtrl, ac); 1958 1959 /* Set PHY, from Linux IPG driver */ 1960 v = CSR_READ_1(sc, STGE_PhySet); 1961 v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet); 1962 v |= ((sc->sc_led & 0x70) >> 4); 1963 CSR_WRITE_1(sc, STGE_PhySet, v); 1964 } 1965 1966 /* 1967 * stge_init: [ ifnet interface function ] 1968 * 1969 * Initialize the interface. 1970 */ 1971 static void 1972 stge_init(void *xsc) 1973 { 1974 struct stge_softc *sc; 1975 1976 sc = (struct stge_softc *)xsc; 1977 STGE_LOCK(sc); 1978 stge_init_locked(sc); 1979 STGE_UNLOCK(sc); 1980 } 1981 1982 static void 1983 stge_init_locked(struct stge_softc *sc) 1984 { 1985 struct ifnet *ifp; 1986 struct mii_data *mii; 1987 uint16_t eaddr[3]; 1988 uint32_t v; 1989 int error; 1990 1991 STGE_LOCK_ASSERT(sc); 1992 1993 ifp = sc->sc_ifp; 1994 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1995 return; 1996 mii = device_get_softc(sc->sc_miibus); 1997 1998 /* 1999 * Cancel any pending I/O. 2000 */ 2001 stge_stop(sc); 2002 2003 /* 2004 * Reset the chip to a known state. 2005 */ 2006 stge_reset(sc, STGE_RESET_FULL); 2007 2008 /* Init descriptors. */ 2009 error = stge_init_rx_ring(sc); 2010 if (error != 0) { 2011 device_printf(sc->sc_dev, 2012 "initialization failed: no memory for rx buffers\n"); 2013 stge_stop(sc); 2014 goto out; 2015 } 2016 stge_init_tx_ring(sc); 2017 2018 /* Set the station address. */ 2019 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2020 CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0])); 2021 CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1])); 2022 CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2])); 2023 2024 /* 2025 * Set the statistics masks. Disable all the RMON stats, 2026 * and disable selected stats in the non-RMON stats registers. 2027 */ 2028 CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff); 2029 CSR_WRITE_4(sc, STGE_StatisticsMask, 2030 (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) | 2031 (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) | 2032 (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) | 2033 (1U << 21)); 2034 2035 /* Set up the receive filter. */ 2036 stge_set_filter(sc); 2037 /* Program multicast filter. */ 2038 stge_set_multi(sc); 2039 2040 /* 2041 * Give the transmit and receive ring to the chip. 2042 */ 2043 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 2044 STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0))); 2045 CSR_WRITE_4(sc, STGE_TFDListPtrLo, 2046 STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0))); 2047 2048 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 2049 STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0))); 2050 CSR_WRITE_4(sc, STGE_RFDListPtrLo, 2051 STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0))); 2052 2053 /* 2054 * Initialize the Tx auto-poll period. It's OK to make this number 2055 * large (255 is the max, but we use 127) -- we explicitly kick the 2056 * transmit engine when there's actually a packet. 2057 */ 2058 CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127); 2059 2060 /* ..and the Rx auto-poll period. */ 2061 CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1); 2062 2063 /* Initialize the Tx start threshold. */ 2064 CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh); 2065 2066 /* Rx DMA thresholds, from Linux */ 2067 CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30); 2068 CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30); 2069 2070 /* Rx early threhold, from Linux */ 2071 CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff); 2072 2073 /* Tx DMA thresholds, from Linux */ 2074 CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30); 2075 CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04); 2076 2077 /* 2078 * Initialize the Rx DMA interrupt control register. We 2079 * request an interrupt after every incoming packet, but 2080 * defer it for sc_rxint_dmawait us. When the number of 2081 * interrupts pending reaches STGE_RXINT_NFRAME, we stop 2082 * deferring the interrupt, and signal it immediately. 2083 */ 2084 CSR_WRITE_4(sc, STGE_RxDMAIntCtrl, 2085 RDIC_RxFrameCount(sc->sc_rxint_nframe) | 2086 RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait))); 2087 2088 /* 2089 * Initialize the interrupt mask. 2090 */ 2091 sc->sc_IntEnable = IS_HostError | IS_TxComplete | 2092 IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd; 2093 #ifdef DEVICE_POLLING 2094 /* Disable interrupts if we are polling. */ 2095 if ((ifp->if_capenable & IFCAP_POLLING) != 0) 2096 CSR_WRITE_2(sc, STGE_IntEnable, 0); 2097 else 2098 #endif 2099 CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable); 2100 2101 /* 2102 * Configure the DMA engine. 2103 * XXX Should auto-tune TxBurstLimit. 2104 */ 2105 CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3)); 2106 2107 /* 2108 * Send a PAUSE frame when we reach 29,696 bytes in the Rx 2109 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes 2110 * in the Rx FIFO. 2111 */ 2112 CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16); 2113 CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16); 2114 2115 /* 2116 * Set the maximum frame size. 2117 */ 2118 sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; 2119 CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize); 2120 2121 /* 2122 * Initialize MacCtrl -- do it before setting the media, 2123 * as setting the media will actually program the register. 2124 * 2125 * Note: We have to poke the IFS value before poking 2126 * anything else. 2127 */ 2128 /* Tx/Rx MAC should be disabled before programming IFS.*/ 2129 CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit)); 2130 2131 stge_vlan_setup(sc); 2132 2133 if (sc->sc_rev >= 6) { /* >= B.2 */ 2134 /* Multi-frag frame bug work-around. */ 2135 CSR_WRITE_2(sc, STGE_DebugCtrl, 2136 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200); 2137 2138 /* Tx Poll Now bug work-around. */ 2139 CSR_WRITE_2(sc, STGE_DebugCtrl, 2140 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010); 2141 /* Tx Poll Now bug work-around. */ 2142 CSR_WRITE_2(sc, STGE_DebugCtrl, 2143 CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020); 2144 } 2145 2146 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2147 v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable; 2148 CSR_WRITE_4(sc, STGE_MACCtrl, v); 2149 /* 2150 * It seems that transmitting frames without checking the state of 2151 * Rx/Tx MAC wedge the hardware. 2152 */ 2153 stge_start_tx(sc); 2154 stge_start_rx(sc); 2155 2156 sc->sc_link = 0; 2157 /* 2158 * Set the current media. 2159 */ 2160 mii_mediachg(mii); 2161 2162 /* 2163 * Start the one second MII clock. 2164 */ 2165 callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc); 2166 2167 /* 2168 * ...all done! 2169 */ 2170 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2171 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2172 2173 out: 2174 if (error != 0) 2175 device_printf(sc->sc_dev, "interface not running\n"); 2176 } 2177 2178 static void 2179 stge_vlan_setup(struct stge_softc *sc) 2180 { 2181 struct ifnet *ifp; 2182 uint32_t v; 2183 2184 ifp = sc->sc_ifp; 2185 /* 2186 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl 2187 * MC_AutoVLANuntagging bit. 2188 * MC_AutoVLANtagging bit selects which VLAN source to use 2189 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert 2190 * bit has priority over MC_AutoVLANtagging bit. So we always 2191 * use TFC instead of STGE_VLANTag register. 2192 */ 2193 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2194 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2195 v |= MC_AutoVLANuntagging; 2196 else 2197 v &= ~MC_AutoVLANuntagging; 2198 CSR_WRITE_4(sc, STGE_MACCtrl, v); 2199 } 2200 2201 /* 2202 * Stop transmission on the interface. 2203 */ 2204 static void 2205 stge_stop(struct stge_softc *sc) 2206 { 2207 struct ifnet *ifp; 2208 struct stge_txdesc *txd; 2209 struct stge_rxdesc *rxd; 2210 uint32_t v; 2211 int i; 2212 2213 STGE_LOCK_ASSERT(sc); 2214 /* 2215 * Stop the one second clock. 2216 */ 2217 callout_stop(&sc->sc_tick_ch); 2218 sc->sc_watchdog_timer = 0; 2219 2220 /* 2221 * Disable interrupts. 2222 */ 2223 CSR_WRITE_2(sc, STGE_IntEnable, 0); 2224 2225 /* 2226 * Stop receiver, transmitter, and stats update. 2227 */ 2228 stge_stop_rx(sc); 2229 stge_stop_tx(sc); 2230 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2231 v |= MC_StatisticsDisable; 2232 CSR_WRITE_4(sc, STGE_MACCtrl, v); 2233 2234 /* 2235 * Stop the transmit and receive DMA. 2236 */ 2237 stge_dma_wait(sc); 2238 CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); 2239 CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0); 2240 CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); 2241 CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0); 2242 2243 /* 2244 * Free RX and TX mbufs still in the queues. 2245 */ 2246 for (i = 0; i < STGE_RX_RING_CNT; i++) { 2247 rxd = &sc->sc_cdata.stge_rxdesc[i]; 2248 if (rxd->rx_m != NULL) { 2249 bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, 2250 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2251 bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, 2252 rxd->rx_dmamap); 2253 m_freem(rxd->rx_m); 2254 rxd->rx_m = NULL; 2255 } 2256 } 2257 for (i = 0; i < STGE_TX_RING_CNT; i++) { 2258 txd = &sc->sc_cdata.stge_txdesc[i]; 2259 if (txd->tx_m != NULL) { 2260 bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, 2261 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2262 bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, 2263 txd->tx_dmamap); 2264 m_freem(txd->tx_m); 2265 txd->tx_m = NULL; 2266 } 2267 } 2268 2269 /* 2270 * Mark the interface down and cancel the watchdog timer. 2271 */ 2272 ifp = sc->sc_ifp; 2273 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2274 sc->sc_link = 0; 2275 } 2276 2277 static void 2278 stge_start_tx(struct stge_softc *sc) 2279 { 2280 uint32_t v; 2281 int i; 2282 2283 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2284 if ((v & MC_TxEnabled) != 0) 2285 return; 2286 v |= MC_TxEnable; 2287 CSR_WRITE_4(sc, STGE_MACCtrl, v); 2288 CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127); 2289 for (i = STGE_TIMEOUT; i > 0; i--) { 2290 DELAY(10); 2291 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2292 if ((v & MC_TxEnabled) != 0) 2293 break; 2294 } 2295 if (i == 0) 2296 device_printf(sc->sc_dev, "Starting Tx MAC timed out\n"); 2297 } 2298 2299 static void 2300 stge_start_rx(struct stge_softc *sc) 2301 { 2302 uint32_t v; 2303 int i; 2304 2305 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2306 if ((v & MC_RxEnabled) != 0) 2307 return; 2308 v |= MC_RxEnable; 2309 CSR_WRITE_4(sc, STGE_MACCtrl, v); 2310 CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1); 2311 for (i = STGE_TIMEOUT; i > 0; i--) { 2312 DELAY(10); 2313 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2314 if ((v & MC_RxEnabled) != 0) 2315 break; 2316 } 2317 if (i == 0) 2318 device_printf(sc->sc_dev, "Starting Rx MAC timed out\n"); 2319 } 2320 2321 static void 2322 stge_stop_tx(struct stge_softc *sc) 2323 { 2324 uint32_t v; 2325 int i; 2326 2327 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2328 if ((v & MC_TxEnabled) == 0) 2329 return; 2330 v |= MC_TxDisable; 2331 CSR_WRITE_4(sc, STGE_MACCtrl, v); 2332 for (i = STGE_TIMEOUT; i > 0; i--) { 2333 DELAY(10); 2334 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2335 if ((v & MC_TxEnabled) == 0) 2336 break; 2337 } 2338 if (i == 0) 2339 device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n"); 2340 } 2341 2342 static void 2343 stge_stop_rx(struct stge_softc *sc) 2344 { 2345 uint32_t v; 2346 int i; 2347 2348 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2349 if ((v & MC_RxEnabled) == 0) 2350 return; 2351 v |= MC_RxDisable; 2352 CSR_WRITE_4(sc, STGE_MACCtrl, v); 2353 for (i = STGE_TIMEOUT; i > 0; i--) { 2354 DELAY(10); 2355 v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK; 2356 if ((v & MC_RxEnabled) == 0) 2357 break; 2358 } 2359 if (i == 0) 2360 device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n"); 2361 } 2362 2363 static void 2364 stge_init_tx_ring(struct stge_softc *sc) 2365 { 2366 struct stge_ring_data *rd; 2367 struct stge_txdesc *txd; 2368 bus_addr_t addr; 2369 int i; 2370 2371 STAILQ_INIT(&sc->sc_cdata.stge_txfreeq); 2372 STAILQ_INIT(&sc->sc_cdata.stge_txbusyq); 2373 2374 sc->sc_cdata.stge_tx_prod = 0; 2375 sc->sc_cdata.stge_tx_cons = 0; 2376 sc->sc_cdata.stge_tx_cnt = 0; 2377 2378 rd = &sc->sc_rdata; 2379 bzero(rd->stge_tx_ring, STGE_TX_RING_SZ); 2380 for (i = 0; i < STGE_TX_RING_CNT; i++) { 2381 if (i == (STGE_TX_RING_CNT - 1)) 2382 addr = STGE_TX_RING_ADDR(sc, 0); 2383 else 2384 addr = STGE_TX_RING_ADDR(sc, i + 1); 2385 rd->stge_tx_ring[i].tfd_next = htole64(addr); 2386 rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone); 2387 txd = &sc->sc_cdata.stge_txdesc[i]; 2388 STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q); 2389 } 2390 2391 bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag, 2392 sc->sc_cdata.stge_tx_ring_map, 2393 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2394 2395 } 2396 2397 static int 2398 stge_init_rx_ring(struct stge_softc *sc) 2399 { 2400 struct stge_ring_data *rd; 2401 bus_addr_t addr; 2402 int i; 2403 2404 sc->sc_cdata.stge_rx_cons = 0; 2405 STGE_RXCHAIN_RESET(sc); 2406 2407 rd = &sc->sc_rdata; 2408 bzero(rd->stge_rx_ring, STGE_RX_RING_SZ); 2409 for (i = 0; i < STGE_RX_RING_CNT; i++) { 2410 if (stge_newbuf(sc, i) != 0) 2411 return (ENOBUFS); 2412 if (i == (STGE_RX_RING_CNT - 1)) 2413 addr = STGE_RX_RING_ADDR(sc, 0); 2414 else 2415 addr = STGE_RX_RING_ADDR(sc, i + 1); 2416 rd->stge_rx_ring[i].rfd_next = htole64(addr); 2417 rd->stge_rx_ring[i].rfd_status = 0; 2418 } 2419 2420 bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag, 2421 sc->sc_cdata.stge_rx_ring_map, 2422 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2423 2424 return (0); 2425 } 2426 2427 /* 2428 * stge_newbuf: 2429 * 2430 * Add a receive buffer to the indicated descriptor. 2431 */ 2432 static int 2433 stge_newbuf(struct stge_softc *sc, int idx) 2434 { 2435 struct stge_rxdesc *rxd; 2436 struct stge_rfd *rfd; 2437 struct mbuf *m; 2438 bus_dma_segment_t segs[1]; 2439 bus_dmamap_t map; 2440 int nsegs; 2441 2442 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2443 if (m == NULL) 2444 return (ENOBUFS); 2445 m->m_len = m->m_pkthdr.len = MCLBYTES; 2446 /* 2447 * The hardware requires 4bytes aligned DMA address when JUMBO 2448 * frame is used. 2449 */ 2450 if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN)) 2451 m_adj(m, ETHER_ALIGN); 2452 2453 if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag, 2454 sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) { 2455 m_freem(m); 2456 return (ENOBUFS); 2457 } 2458 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 2459 2460 rxd = &sc->sc_cdata.stge_rxdesc[idx]; 2461 if (rxd->rx_m != NULL) { 2462 bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap, 2463 BUS_DMASYNC_POSTREAD); 2464 bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap); 2465 } 2466 map = rxd->rx_dmamap; 2467 rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap; 2468 sc->sc_cdata.stge_rx_sparemap = map; 2469 bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap, 2470 BUS_DMASYNC_PREREAD); 2471 rxd->rx_m = m; 2472 2473 rfd = &sc->sc_rdata.stge_rx_ring[idx]; 2474 rfd->rfd_frag.frag_word0 = 2475 htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len)); 2476 rfd->rfd_status = 0; 2477 2478 return (0); 2479 } 2480 2481 /* 2482 * stge_set_filter: 2483 * 2484 * Set up the receive filter. 2485 */ 2486 static void 2487 stge_set_filter(struct stge_softc *sc) 2488 { 2489 struct ifnet *ifp; 2490 uint16_t mode; 2491 2492 STGE_LOCK_ASSERT(sc); 2493 2494 ifp = sc->sc_ifp; 2495 2496 mode = CSR_READ_2(sc, STGE_ReceiveMode); 2497 mode |= RM_ReceiveUnicast; 2498 if ((ifp->if_flags & IFF_BROADCAST) != 0) 2499 mode |= RM_ReceiveBroadcast; 2500 else 2501 mode &= ~RM_ReceiveBroadcast; 2502 if ((ifp->if_flags & IFF_PROMISC) != 0) 2503 mode |= RM_ReceiveAllFrames; 2504 else 2505 mode &= ~RM_ReceiveAllFrames; 2506 2507 CSR_WRITE_2(sc, STGE_ReceiveMode, mode); 2508 } 2509 2510 static u_int 2511 stge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 2512 { 2513 uint32_t crc, *mchash = arg; 2514 2515 crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN); 2516 /* Just want the 6 least significant bits. */ 2517 crc &= 0x3f; 2518 /* Set the corresponding bit in the hash table. */ 2519 mchash[crc >> 5] |= 1 << (crc & 0x1f); 2520 2521 return (1); 2522 } 2523 2524 static void 2525 stge_set_multi(struct stge_softc *sc) 2526 { 2527 struct ifnet *ifp; 2528 uint32_t mchash[2]; 2529 uint16_t mode; 2530 int count; 2531 2532 STGE_LOCK_ASSERT(sc); 2533 2534 ifp = sc->sc_ifp; 2535 2536 mode = CSR_READ_2(sc, STGE_ReceiveMode); 2537 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 2538 if ((ifp->if_flags & IFF_PROMISC) != 0) 2539 mode |= RM_ReceiveAllFrames; 2540 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) 2541 mode |= RM_ReceiveMulticast; 2542 CSR_WRITE_2(sc, STGE_ReceiveMode, mode); 2543 return; 2544 } 2545 2546 /* clear existing filters. */ 2547 CSR_WRITE_4(sc, STGE_HashTable0, 0); 2548 CSR_WRITE_4(sc, STGE_HashTable1, 0); 2549 2550 /* 2551 * Set up the multicast address filter by passing all multicast 2552 * addresses through a CRC generator, and then using the low-order 2553 * 6 bits as an index into the 64 bit multicast hash table. The 2554 * high order bits select the register, while the rest of the bits 2555 * select the bit within the register. 2556 */ 2557 bzero(mchash, sizeof(mchash)); 2558 count = if_foreach_llmaddr(ifp, stge_hash_maddr, mchash); 2559 2560 mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames); 2561 if (count > 0) 2562 mode |= RM_ReceiveMulticastHash; 2563 else 2564 mode &= ~RM_ReceiveMulticastHash; 2565 2566 CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]); 2567 CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]); 2568 CSR_WRITE_2(sc, STGE_ReceiveMode, mode); 2569 } 2570 2571 static int 2572 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 2573 { 2574 int error, value; 2575 2576 if (!arg1) 2577 return (EINVAL); 2578 value = *(int *)arg1; 2579 error = sysctl_handle_int(oidp, &value, 0, req); 2580 if (error || !req->newptr) 2581 return (error); 2582 if (value < low || value > high) 2583 return (EINVAL); 2584 *(int *)arg1 = value; 2585 2586 return (0); 2587 } 2588 2589 static int 2590 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS) 2591 { 2592 return (sysctl_int_range(oidp, arg1, arg2, req, 2593 STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX)); 2594 } 2595 2596 static int 2597 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS) 2598 { 2599 return (sysctl_int_range(oidp, arg1, arg2, req, 2600 STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX)); 2601 } 2602