xref: /freebsd/sys/dev/stge/if_stge.c (revision 6829dae12bb055451fa467da4589c43bd03b1e64)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
5  *
6  * Copyright (c) 2001 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Jason R. Thorpe.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Device driver for the Sundance Tech. TC9021 10/100/1000
36  * Ethernet controller.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #ifdef HAVE_KERNEL_OPTION_HEADERS
43 #include "opt_device_polling.h"
44 #endif
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/endian.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/taskqueue.h>
57 
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_vlan_var.h>
66 
67 #include <machine/bus.h>
68 #include <machine/resource.h>
69 #include <sys/bus.h>
70 #include <sys/rman.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/mii_bitbang.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 
79 #include <dev/stge/if_stgereg.h>
80 
81 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
82 
83 MODULE_DEPEND(stge, pci, 1, 1, 1);
84 MODULE_DEPEND(stge, ether, 1, 1, 1);
85 MODULE_DEPEND(stge, miibus, 1, 1, 1);
86 
87 /* "device miibus" required.  See GENERIC if you get errors here. */
88 #include "miibus_if.h"
89 
90 /*
91  * Devices supported by this driver.
92  */
93 static const struct stge_product {
94 	uint16_t	stge_vendorid;
95 	uint16_t	stge_deviceid;
96 	const char	*stge_name;
97 } stge_products[] = {
98 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
99 	  "Sundance ST-1023 Gigabit Ethernet" },
100 
101 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
102 	  "Sundance ST-2021 Gigabit Ethernet" },
103 
104 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
105 	  "Tamarack TC9021 Gigabit Ethernet" },
106 
107 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
108 	  "Tamarack TC9021 Gigabit Ethernet" },
109 
110 	/*
111 	 * The Sundance sample boards use the Sundance vendor ID,
112 	 * but the Tamarack product ID.
113 	 */
114 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
115 	  "Sundance TC9021 Gigabit Ethernet" },
116 
117 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
118 	  "Sundance TC9021 Gigabit Ethernet" },
119 
120 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
121 	  "D-Link DL-4000 Gigabit Ethernet" },
122 
123 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
124 	  "Antares Gigabit Ethernet" }
125 };
126 
127 static int	stge_probe(device_t);
128 static int	stge_attach(device_t);
129 static int	stge_detach(device_t);
130 static int	stge_shutdown(device_t);
131 static int	stge_suspend(device_t);
132 static int	stge_resume(device_t);
133 
134 static int	stge_encap(struct stge_softc *, struct mbuf **);
135 static void	stge_start(struct ifnet *);
136 static void	stge_start_locked(struct ifnet *);
137 static void	stge_watchdog(struct stge_softc *);
138 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	stge_init(void *);
140 static void	stge_init_locked(struct stge_softc *);
141 static void	stge_vlan_setup(struct stge_softc *);
142 static void	stge_stop(struct stge_softc *);
143 static void	stge_start_tx(struct stge_softc *);
144 static void	stge_start_rx(struct stge_softc *);
145 static void	stge_stop_tx(struct stge_softc *);
146 static void	stge_stop_rx(struct stge_softc *);
147 
148 static void	stge_reset(struct stge_softc *, uint32_t);
149 static int	stge_eeprom_wait(struct stge_softc *);
150 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
151 static void	stge_tick(void *);
152 static void	stge_stats_update(struct stge_softc *);
153 static void	stge_set_filter(struct stge_softc *);
154 static void	stge_set_multi(struct stge_softc *);
155 
156 static void	stge_link_task(void *, int);
157 static void	stge_intr(void *);
158 static __inline int stge_tx_error(struct stge_softc *);
159 static void	stge_txeof(struct stge_softc *);
160 static int	stge_rxeof(struct stge_softc *);
161 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
162 static int	stge_newbuf(struct stge_softc *, int);
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
165 #endif
166 
167 static int	stge_miibus_readreg(device_t, int, int);
168 static int	stge_miibus_writereg(device_t, int, int, int);
169 static void	stge_miibus_statchg(device_t);
170 static int	stge_mediachange(struct ifnet *);
171 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
172 
173 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
174 static int	stge_dma_alloc(struct stge_softc *);
175 static void	stge_dma_free(struct stge_softc *);
176 static void	stge_dma_wait(struct stge_softc *);
177 static void	stge_init_tx_ring(struct stge_softc *);
178 static int	stge_init_rx_ring(struct stge_softc *);
179 #ifdef DEVICE_POLLING
180 static int	stge_poll(struct ifnet *, enum poll_cmd, int);
181 #endif
182 
183 static void	stge_setwol(struct stge_softc *);
184 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
185 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
186 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
187 
188 /*
189  * MII bit-bang glue
190  */
191 static uint32_t stge_mii_bitbang_read(device_t);
192 static void	stge_mii_bitbang_write(device_t, uint32_t);
193 
194 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
195 	stge_mii_bitbang_read,
196 	stge_mii_bitbang_write,
197 	{
198 		PC_MgmtData,		/* MII_BIT_MDO */
199 		PC_MgmtData,		/* MII_BIT_MDI */
200 		PC_MgmtClk,		/* MII_BIT_MDC */
201 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
202 		0,			/* MII_BIT_DIR_PHY_HOST */
203 	}
204 };
205 
206 static device_method_t stge_methods[] = {
207 	/* Device interface */
208 	DEVMETHOD(device_probe,		stge_probe),
209 	DEVMETHOD(device_attach,	stge_attach),
210 	DEVMETHOD(device_detach,	stge_detach),
211 	DEVMETHOD(device_shutdown,	stge_shutdown),
212 	DEVMETHOD(device_suspend,	stge_suspend),
213 	DEVMETHOD(device_resume,	stge_resume),
214 
215 	/* MII interface */
216 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
217 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
218 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
219 
220 	DEVMETHOD_END
221 };
222 
223 static driver_t stge_driver = {
224 	"stge",
225 	stge_methods,
226 	sizeof(struct stge_softc)
227 };
228 
229 static devclass_t stge_devclass;
230 
231 DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
232 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
233 
234 static struct resource_spec stge_res_spec_io[] = {
235 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
236 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
237 	{ -1,			0,		0 }
238 };
239 
240 static struct resource_spec stge_res_spec_mem[] = {
241 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
242 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
243 	{ -1,			0,		0 }
244 };
245 
246 /*
247  * stge_mii_bitbang_read: [mii bit-bang interface function]
248  *
249  *	Read the MII serial port for the MII bit-bang module.
250  */
251 static uint32_t
252 stge_mii_bitbang_read(device_t dev)
253 {
254 	struct stge_softc *sc;
255 	uint32_t val;
256 
257 	sc = device_get_softc(dev);
258 
259 	val = CSR_READ_1(sc, STGE_PhyCtrl);
260 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
261 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
262 	return (val);
263 }
264 
265 /*
266  * stge_mii_bitbang_write: [mii big-bang interface function]
267  *
268  *	Write the MII serial port for the MII bit-bang module.
269  */
270 static void
271 stge_mii_bitbang_write(device_t dev, uint32_t val)
272 {
273 	struct stge_softc *sc;
274 
275 	sc = device_get_softc(dev);
276 
277 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
278 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
279 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
280 }
281 
282 /*
283  * sc_miibus_readreg:	[mii interface function]
284  *
285  *	Read a PHY register on the MII of the TC9021.
286  */
287 static int
288 stge_miibus_readreg(device_t dev, int phy, int reg)
289 {
290 	struct stge_softc *sc;
291 	int error, val;
292 
293 	sc = device_get_softc(dev);
294 
295 	if (reg == STGE_PhyCtrl) {
296 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
297 		STGE_MII_LOCK(sc);
298 		error = CSR_READ_1(sc, STGE_PhyCtrl);
299 		STGE_MII_UNLOCK(sc);
300 		return (error);
301 	}
302 
303 	STGE_MII_LOCK(sc);
304 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
305 	STGE_MII_UNLOCK(sc);
306 	return (val);
307 }
308 
309 /*
310  * stge_miibus_writereg:	[mii interface function]
311  *
312  *	Write a PHY register on the MII of the TC9021.
313  */
314 static int
315 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
316 {
317 	struct stge_softc *sc;
318 
319 	sc = device_get_softc(dev);
320 
321 	STGE_MII_LOCK(sc);
322 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
323 	STGE_MII_UNLOCK(sc);
324 	return (0);
325 }
326 
327 /*
328  * stge_miibus_statchg:	[mii interface function]
329  *
330  *	Callback from MII layer when media changes.
331  */
332 static void
333 stge_miibus_statchg(device_t dev)
334 {
335 	struct stge_softc *sc;
336 
337 	sc = device_get_softc(dev);
338 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
339 }
340 
341 /*
342  * stge_mediastatus:	[ifmedia interface function]
343  *
344  *	Get the current interface media status.
345  */
346 static void
347 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
348 {
349 	struct stge_softc *sc;
350 	struct mii_data *mii;
351 
352 	sc = ifp->if_softc;
353 	mii = device_get_softc(sc->sc_miibus);
354 
355 	mii_pollstat(mii);
356 	ifmr->ifm_status = mii->mii_media_status;
357 	ifmr->ifm_active = mii->mii_media_active;
358 }
359 
360 /*
361  * stge_mediachange:	[ifmedia interface function]
362  *
363  *	Set hardware to newly-selected media.
364  */
365 static int
366 stge_mediachange(struct ifnet *ifp)
367 {
368 	struct stge_softc *sc;
369 	struct mii_data *mii;
370 
371 	sc = ifp->if_softc;
372 	mii = device_get_softc(sc->sc_miibus);
373 	mii_mediachg(mii);
374 
375 	return (0);
376 }
377 
378 static int
379 stge_eeprom_wait(struct stge_softc *sc)
380 {
381 	int i;
382 
383 	for (i = 0; i < STGE_TIMEOUT; i++) {
384 		DELAY(1000);
385 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
386 			return (0);
387 	}
388 	return (1);
389 }
390 
391 /*
392  * stge_read_eeprom:
393  *
394  *	Read data from the serial EEPROM.
395  */
396 static void
397 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
398 {
399 
400 	if (stge_eeprom_wait(sc))
401 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
402 
403 	CSR_WRITE_2(sc, STGE_EepromCtrl,
404 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
405 	if (stge_eeprom_wait(sc))
406 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
407 	*data = CSR_READ_2(sc, STGE_EepromData);
408 }
409 
410 
411 static int
412 stge_probe(device_t dev)
413 {
414 	const struct stge_product *sp;
415 	int i;
416 	uint16_t vendor, devid;
417 
418 	vendor = pci_get_vendor(dev);
419 	devid = pci_get_device(dev);
420 	sp = stge_products;
421 	for (i = 0; i < nitems(stge_products); i++, sp++) {
422 		if (vendor == sp->stge_vendorid &&
423 		    devid == sp->stge_deviceid) {
424 			device_set_desc(dev, sp->stge_name);
425 			return (BUS_PROBE_DEFAULT);
426 		}
427 	}
428 
429 	return (ENXIO);
430 }
431 
432 static int
433 stge_attach(device_t dev)
434 {
435 	struct stge_softc *sc;
436 	struct ifnet *ifp;
437 	uint8_t enaddr[ETHER_ADDR_LEN];
438 	int error, flags, i;
439 	uint16_t cmd;
440 	uint32_t val;
441 
442 	error = 0;
443 	sc = device_get_softc(dev);
444 	sc->sc_dev = dev;
445 
446 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
447 	    MTX_DEF);
448 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
449 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
450 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
451 
452 	/*
453 	 * Map the device.
454 	 */
455 	pci_enable_busmaster(dev);
456 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
457 	val = pci_read_config(dev, PCIR_BAR(1), 4);
458 	if (PCI_BAR_IO(val))
459 		sc->sc_spec = stge_res_spec_mem;
460 	else {
461 		val = pci_read_config(dev, PCIR_BAR(0), 4);
462 		if (!PCI_BAR_IO(val)) {
463 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
464 			error = ENXIO;
465 			goto fail;
466 		}
467 		sc->sc_spec = stge_res_spec_io;
468 	}
469 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
470 	if (error != 0) {
471 		device_printf(dev, "couldn't allocate %s resources\n",
472 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
473 		goto fail;
474 	}
475 	sc->sc_rev = pci_get_revid(dev);
476 
477 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
478 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
479 	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
480 	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
481 
482 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
483 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
484 	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
485 	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
486 
487 	/* Pull in device tunables. */
488 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
489 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
490 	    "rxint_nframe", &sc->sc_rxint_nframe);
491 	if (error == 0) {
492 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
493 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
494 			device_printf(dev, "rxint_nframe value out of range; "
495 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
496 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
497 		}
498 	}
499 
500 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
501 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
502 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
503 	if (error == 0) {
504 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
505 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
506 			device_printf(dev, "rxint_dmawait value out of range; "
507 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
508 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
509 		}
510 	}
511 
512 	if ((error = stge_dma_alloc(sc)) != 0)
513 		goto fail;
514 
515 	/*
516 	 * Determine if we're copper or fiber.  It affects how we
517 	 * reset the card.
518 	 */
519 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
520 		sc->sc_usefiber = 1;
521 	else
522 		sc->sc_usefiber = 0;
523 
524 	/* Load LED configuration from EEPROM. */
525 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
526 
527 	/*
528 	 * Reset the chip to a known state.
529 	 */
530 	STGE_LOCK(sc);
531 	stge_reset(sc, STGE_RESET_FULL);
532 	STGE_UNLOCK(sc);
533 
534 	/*
535 	 * Reading the station address from the EEPROM doesn't seem
536 	 * to work, at least on my sample boards.  Instead, since
537 	 * the reset sequence does AutoInit, read it from the station
538 	 * address registers. For Sundance 1023 you can only read it
539 	 * from EEPROM.
540 	 */
541 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
542 		uint16_t v;
543 
544 		v = CSR_READ_2(sc, STGE_StationAddress0);
545 		enaddr[0] = v & 0xff;
546 		enaddr[1] = v >> 8;
547 		v = CSR_READ_2(sc, STGE_StationAddress1);
548 		enaddr[2] = v & 0xff;
549 		enaddr[3] = v >> 8;
550 		v = CSR_READ_2(sc, STGE_StationAddress2);
551 		enaddr[4] = v & 0xff;
552 		enaddr[5] = v >> 8;
553 		sc->sc_stge1023 = 0;
554 	} else {
555 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
556 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
557 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
558 			    &myaddr[i]);
559 			myaddr[i] = le16toh(myaddr[i]);
560 		}
561 		bcopy(myaddr, enaddr, sizeof(enaddr));
562 		sc->sc_stge1023 = 1;
563 	}
564 
565 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
566 	if (ifp == NULL) {
567 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
568 		error = ENXIO;
569 		goto fail;
570 	}
571 
572 	ifp->if_softc = sc;
573 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
574 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
575 	ifp->if_ioctl = stge_ioctl;
576 	ifp->if_start = stge_start;
577 	ifp->if_init = stge_init;
578 	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
579 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
580 	IFQ_SET_READY(&ifp->if_snd);
581 	/* Revision B3 and earlier chips have checksum bug. */
582 	if (sc->sc_rev >= 0x0c) {
583 		ifp->if_hwassist = STGE_CSUM_FEATURES;
584 		ifp->if_capabilities = IFCAP_HWCSUM;
585 	} else {
586 		ifp->if_hwassist = 0;
587 		ifp->if_capabilities = 0;
588 	}
589 	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
590 	ifp->if_capenable = ifp->if_capabilities;
591 
592 	/*
593 	 * Read some important bits from the PhyCtrl register.
594 	 */
595 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
596 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
597 
598 	/* Set up MII bus. */
599 	flags = MIIF_DOPAUSE;
600 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
601 		flags |= MIIF_MACPRIV0;
602 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
603 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
604 	    flags);
605 	if (error != 0) {
606 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
607 		goto fail;
608 	}
609 
610 	ether_ifattach(ifp, enaddr);
611 
612 	/* VLAN capability setup */
613 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
614 	if (sc->sc_rev >= 0x0c)
615 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
616 	ifp->if_capenable = ifp->if_capabilities;
617 #ifdef DEVICE_POLLING
618 	ifp->if_capabilities |= IFCAP_POLLING;
619 #endif
620 	/*
621 	 * Tell the upper layer(s) we support long frames.
622 	 * Must appear after the call to ether_ifattach() because
623 	 * ether_ifattach() sets ifi_hdrlen to the default value.
624 	 */
625 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
626 
627 	/*
628 	 * The manual recommends disabling early transmit, so we
629 	 * do.  It's disabled anyway, if using IP checksumming,
630 	 * since the entire packet must be in the FIFO in order
631 	 * for the chip to perform the checksum.
632 	 */
633 	sc->sc_txthresh = 0x0fff;
634 
635 	/*
636 	 * Disable MWI if the PCI layer tells us to.
637 	 */
638 	sc->sc_DMACtrl = 0;
639 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
640 		sc->sc_DMACtrl |= DMAC_MWIDisable;
641 
642 	/*
643 	 * Hookup IRQ
644 	 */
645 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
646 	    NULL, stge_intr, sc, &sc->sc_ih);
647 	if (error != 0) {
648 		ether_ifdetach(ifp);
649 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
650 		sc->sc_ifp = NULL;
651 		goto fail;
652 	}
653 
654 fail:
655 	if (error != 0)
656 		stge_detach(dev);
657 
658 	return (error);
659 }
660 
661 static int
662 stge_detach(device_t dev)
663 {
664 	struct stge_softc *sc;
665 	struct ifnet *ifp;
666 
667 	sc = device_get_softc(dev);
668 
669 	ifp = sc->sc_ifp;
670 #ifdef DEVICE_POLLING
671 	if (ifp && ifp->if_capenable & IFCAP_POLLING)
672 		ether_poll_deregister(ifp);
673 #endif
674 	if (device_is_attached(dev)) {
675 		STGE_LOCK(sc);
676 		/* XXX */
677 		sc->sc_detach = 1;
678 		stge_stop(sc);
679 		STGE_UNLOCK(sc);
680 		callout_drain(&sc->sc_tick_ch);
681 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
682 		ether_ifdetach(ifp);
683 	}
684 
685 	if (sc->sc_miibus != NULL) {
686 		device_delete_child(dev, sc->sc_miibus);
687 		sc->sc_miibus = NULL;
688 	}
689 	bus_generic_detach(dev);
690 	stge_dma_free(sc);
691 
692 	if (ifp != NULL) {
693 		if_free(ifp);
694 		sc->sc_ifp = NULL;
695 	}
696 
697 	if (sc->sc_ih) {
698 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
699 		sc->sc_ih = NULL;
700 	}
701 	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
702 
703 	mtx_destroy(&sc->sc_mii_mtx);
704 	mtx_destroy(&sc->sc_mtx);
705 
706 	return (0);
707 }
708 
709 struct stge_dmamap_arg {
710 	bus_addr_t	stge_busaddr;
711 };
712 
713 static void
714 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
715 {
716 	struct stge_dmamap_arg *ctx;
717 
718 	if (error != 0)
719 		return;
720 
721 	ctx = (struct stge_dmamap_arg *)arg;
722 	ctx->stge_busaddr = segs[0].ds_addr;
723 }
724 
725 static int
726 stge_dma_alloc(struct stge_softc *sc)
727 {
728 	struct stge_dmamap_arg ctx;
729 	struct stge_txdesc *txd;
730 	struct stge_rxdesc *rxd;
731 	int error, i;
732 
733 	/* create parent tag. */
734 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
735 		    1, 0,			/* algnmnt, boundary */
736 		    STGE_DMA_MAXADDR,		/* lowaddr */
737 		    BUS_SPACE_MAXADDR,		/* highaddr */
738 		    NULL, NULL,			/* filter, filterarg */
739 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
740 		    0,				/* nsegments */
741 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
742 		    0,				/* flags */
743 		    NULL, NULL,			/* lockfunc, lockarg */
744 		    &sc->sc_cdata.stge_parent_tag);
745 	if (error != 0) {
746 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
747 		goto fail;
748 	}
749 	/* create tag for Tx ring. */
750 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
751 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
752 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
753 		    BUS_SPACE_MAXADDR,		/* highaddr */
754 		    NULL, NULL,			/* filter, filterarg */
755 		    STGE_TX_RING_SZ,		/* maxsize */
756 		    1,				/* nsegments */
757 		    STGE_TX_RING_SZ,		/* maxsegsize */
758 		    0,				/* flags */
759 		    NULL, NULL,			/* lockfunc, lockarg */
760 		    &sc->sc_cdata.stge_tx_ring_tag);
761 	if (error != 0) {
762 		device_printf(sc->sc_dev,
763 		    "failed to allocate Tx ring DMA tag\n");
764 		goto fail;
765 	}
766 
767 	/* create tag for Rx ring. */
768 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
769 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
770 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
771 		    BUS_SPACE_MAXADDR,		/* highaddr */
772 		    NULL, NULL,			/* filter, filterarg */
773 		    STGE_RX_RING_SZ,		/* maxsize */
774 		    1,				/* nsegments */
775 		    STGE_RX_RING_SZ,		/* maxsegsize */
776 		    0,				/* flags */
777 		    NULL, NULL,			/* lockfunc, lockarg */
778 		    &sc->sc_cdata.stge_rx_ring_tag);
779 	if (error != 0) {
780 		device_printf(sc->sc_dev,
781 		    "failed to allocate Rx ring DMA tag\n");
782 		goto fail;
783 	}
784 
785 	/* create tag for Tx buffers. */
786 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
787 		    1, 0,			/* algnmnt, boundary */
788 		    BUS_SPACE_MAXADDR,		/* lowaddr */
789 		    BUS_SPACE_MAXADDR,		/* highaddr */
790 		    NULL, NULL,			/* filter, filterarg */
791 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
792 		    STGE_MAXTXSEGS,		/* nsegments */
793 		    MCLBYTES,			/* maxsegsize */
794 		    0,				/* flags */
795 		    NULL, NULL,			/* lockfunc, lockarg */
796 		    &sc->sc_cdata.stge_tx_tag);
797 	if (error != 0) {
798 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
799 		goto fail;
800 	}
801 
802 	/* create tag for Rx buffers. */
803 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
804 		    1, 0,			/* algnmnt, boundary */
805 		    BUS_SPACE_MAXADDR,		/* lowaddr */
806 		    BUS_SPACE_MAXADDR,		/* highaddr */
807 		    NULL, NULL,			/* filter, filterarg */
808 		    MCLBYTES,			/* maxsize */
809 		    1,				/* nsegments */
810 		    MCLBYTES,			/* maxsegsize */
811 		    0,				/* flags */
812 		    NULL, NULL,			/* lockfunc, lockarg */
813 		    &sc->sc_cdata.stge_rx_tag);
814 	if (error != 0) {
815 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
816 		goto fail;
817 	}
818 
819 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
820 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
821 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
822 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
823 	if (error != 0) {
824 		device_printf(sc->sc_dev,
825 		    "failed to allocate DMA'able memory for Tx ring\n");
826 		goto fail;
827 	}
828 
829 	ctx.stge_busaddr = 0;
830 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
831 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
832 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
833 	if (error != 0 || ctx.stge_busaddr == 0) {
834 		device_printf(sc->sc_dev,
835 		    "failed to load DMA'able memory for Tx ring\n");
836 		goto fail;
837 	}
838 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
839 
840 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
841 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
842 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
843 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
844 	if (error != 0) {
845 		device_printf(sc->sc_dev,
846 		    "failed to allocate DMA'able memory for Rx ring\n");
847 		goto fail;
848 	}
849 
850 	ctx.stge_busaddr = 0;
851 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
852 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
853 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
854 	if (error != 0 || ctx.stge_busaddr == 0) {
855 		device_printf(sc->sc_dev,
856 		    "failed to load DMA'able memory for Rx ring\n");
857 		goto fail;
858 	}
859 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
860 
861 	/* create DMA maps for Tx buffers. */
862 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
863 		txd = &sc->sc_cdata.stge_txdesc[i];
864 		txd->tx_m = NULL;
865 		txd->tx_dmamap = 0;
866 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
867 		    &txd->tx_dmamap);
868 		if (error != 0) {
869 			device_printf(sc->sc_dev,
870 			    "failed to create Tx dmamap\n");
871 			goto fail;
872 		}
873 	}
874 	/* create DMA maps for Rx buffers. */
875 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
876 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
877 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
878 		goto fail;
879 	}
880 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
881 		rxd = &sc->sc_cdata.stge_rxdesc[i];
882 		rxd->rx_m = NULL;
883 		rxd->rx_dmamap = 0;
884 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
885 		    &rxd->rx_dmamap);
886 		if (error != 0) {
887 			device_printf(sc->sc_dev,
888 			    "failed to create Rx dmamap\n");
889 			goto fail;
890 		}
891 	}
892 
893 fail:
894 	return (error);
895 }
896 
897 static void
898 stge_dma_free(struct stge_softc *sc)
899 {
900 	struct stge_txdesc *txd;
901 	struct stge_rxdesc *rxd;
902 	int i;
903 
904 	/* Tx ring */
905 	if (sc->sc_cdata.stge_tx_ring_tag) {
906 		if (sc->sc_rdata.stge_tx_ring_paddr)
907 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
908 			    sc->sc_cdata.stge_tx_ring_map);
909 		if (sc->sc_rdata.stge_tx_ring)
910 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
911 			    sc->sc_rdata.stge_tx_ring,
912 			    sc->sc_cdata.stge_tx_ring_map);
913 		sc->sc_rdata.stge_tx_ring = NULL;
914 		sc->sc_rdata.stge_tx_ring_paddr = 0;
915 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
916 		sc->sc_cdata.stge_tx_ring_tag = NULL;
917 	}
918 	/* Rx ring */
919 	if (sc->sc_cdata.stge_rx_ring_tag) {
920 		if (sc->sc_rdata.stge_rx_ring_paddr)
921 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
922 			    sc->sc_cdata.stge_rx_ring_map);
923 		if (sc->sc_rdata.stge_rx_ring)
924 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
925 			    sc->sc_rdata.stge_rx_ring,
926 			    sc->sc_cdata.stge_rx_ring_map);
927 		sc->sc_rdata.stge_rx_ring = NULL;
928 		sc->sc_rdata.stge_rx_ring_paddr = 0;
929 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
930 		sc->sc_cdata.stge_rx_ring_tag = NULL;
931 	}
932 	/* Tx buffers */
933 	if (sc->sc_cdata.stge_tx_tag) {
934 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
935 			txd = &sc->sc_cdata.stge_txdesc[i];
936 			if (txd->tx_dmamap) {
937 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
938 				    txd->tx_dmamap);
939 				txd->tx_dmamap = 0;
940 			}
941 		}
942 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
943 		sc->sc_cdata.stge_tx_tag = NULL;
944 	}
945 	/* Rx buffers */
946 	if (sc->sc_cdata.stge_rx_tag) {
947 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
948 			rxd = &sc->sc_cdata.stge_rxdesc[i];
949 			if (rxd->rx_dmamap) {
950 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
951 				    rxd->rx_dmamap);
952 				rxd->rx_dmamap = 0;
953 			}
954 		}
955 		if (sc->sc_cdata.stge_rx_sparemap) {
956 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
957 			    sc->sc_cdata.stge_rx_sparemap);
958 			sc->sc_cdata.stge_rx_sparemap = 0;
959 		}
960 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
961 		sc->sc_cdata.stge_rx_tag = NULL;
962 	}
963 
964 	if (sc->sc_cdata.stge_parent_tag) {
965 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
966 		sc->sc_cdata.stge_parent_tag = NULL;
967 	}
968 }
969 
970 /*
971  * stge_shutdown:
972  *
973  *	Make sure the interface is stopped at reboot time.
974  */
975 static int
976 stge_shutdown(device_t dev)
977 {
978 
979 	return (stge_suspend(dev));
980 }
981 
982 static void
983 stge_setwol(struct stge_softc *sc)
984 {
985 	struct ifnet *ifp;
986 	uint8_t v;
987 
988 	STGE_LOCK_ASSERT(sc);
989 
990 	ifp = sc->sc_ifp;
991 	v = CSR_READ_1(sc, STGE_WakeEvent);
992 	/* Disable all WOL bits. */
993 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
994 	    WE_WakeOnLanEnable);
995 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
996 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
997 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
998 	/* Reset Tx and prevent transmission. */
999 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1000 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1001 	/*
1002 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1003 	 * into sleep so there is no need to try to resetting link speed.
1004 	 */
1005 }
1006 
1007 static int
1008 stge_suspend(device_t dev)
1009 {
1010 	struct stge_softc *sc;
1011 
1012 	sc = device_get_softc(dev);
1013 
1014 	STGE_LOCK(sc);
1015 	stge_stop(sc);
1016 	sc->sc_suspended = 1;
1017 	stge_setwol(sc);
1018 	STGE_UNLOCK(sc);
1019 
1020 	return (0);
1021 }
1022 
1023 static int
1024 stge_resume(device_t dev)
1025 {
1026 	struct stge_softc *sc;
1027 	struct ifnet *ifp;
1028 	uint8_t v;
1029 
1030 	sc = device_get_softc(dev);
1031 
1032 	STGE_LOCK(sc);
1033 	/*
1034 	 * Clear WOL bits, so special frames wouldn't interfere
1035 	 * normal Rx operation anymore.
1036 	 */
1037 	v = CSR_READ_1(sc, STGE_WakeEvent);
1038 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1039 	    WE_WakeOnLanEnable);
1040 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1041 	ifp = sc->sc_ifp;
1042 	if (ifp->if_flags & IFF_UP)
1043 		stge_init_locked(sc);
1044 
1045 	sc->sc_suspended = 0;
1046 	STGE_UNLOCK(sc);
1047 
1048 	return (0);
1049 }
1050 
1051 static void
1052 stge_dma_wait(struct stge_softc *sc)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < STGE_TIMEOUT; i++) {
1057 		DELAY(2);
1058 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1059 			break;
1060 	}
1061 
1062 	if (i == STGE_TIMEOUT)
1063 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1064 }
1065 
1066 static int
1067 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1068 {
1069 	struct stge_txdesc *txd;
1070 	struct stge_tfd *tfd;
1071 	struct mbuf *m;
1072 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1073 	int error, i, nsegs, si;
1074 	uint64_t csum_flags, tfc;
1075 
1076 	STGE_LOCK_ASSERT(sc);
1077 
1078 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1079 		return (ENOBUFS);
1080 
1081 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1082 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1083 	if (error == EFBIG) {
1084 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1085 		if (m == NULL) {
1086 			m_freem(*m_head);
1087 			*m_head = NULL;
1088 			return (ENOMEM);
1089 		}
1090 		*m_head = m;
1091 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1092 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1093 		if (error != 0) {
1094 			m_freem(*m_head);
1095 			*m_head = NULL;
1096 			return (error);
1097 		}
1098 	} else if (error != 0)
1099 		return (error);
1100 	if (nsegs == 0) {
1101 		m_freem(*m_head);
1102 		*m_head = NULL;
1103 		return (EIO);
1104 	}
1105 
1106 	m = *m_head;
1107 	csum_flags = 0;
1108 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1109 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1110 			csum_flags |= TFD_IPChecksumEnable;
1111 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1112 			csum_flags |= TFD_TCPChecksumEnable;
1113 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1114 			csum_flags |= TFD_UDPChecksumEnable;
1115 	}
1116 
1117 	si = sc->sc_cdata.stge_tx_prod;
1118 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1119 	for (i = 0; i < nsegs; i++)
1120 		tfd->tfd_frags[i].frag_word0 =
1121 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1122 		    FRAG_LEN(txsegs[i].ds_len));
1123 	sc->sc_cdata.stge_tx_cnt++;
1124 
1125 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1126 	    TFD_FragCount(nsegs) | csum_flags;
1127 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1128 		tfc |= TFD_TxDMAIndicate;
1129 
1130 	/* Update producer index. */
1131 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1132 
1133 	/* Check if we have a VLAN tag to insert. */
1134 	if (m->m_flags & M_VLANTAG)
1135 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1136 	tfd->tfd_control = htole64(tfc);
1137 
1138 	/* Update Tx Queue. */
1139 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1140 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1141 	txd->tx_m = m;
1142 
1143 	/* Sync descriptors. */
1144 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1145 	    BUS_DMASYNC_PREWRITE);
1146 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1147 	    sc->sc_cdata.stge_tx_ring_map,
1148 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1149 
1150 	return (0);
1151 }
1152 
1153 /*
1154  * stge_start:		[ifnet interface function]
1155  *
1156  *	Start packet transmission on the interface.
1157  */
1158 static void
1159 stge_start(struct ifnet *ifp)
1160 {
1161 	struct stge_softc *sc;
1162 
1163 	sc = ifp->if_softc;
1164 	STGE_LOCK(sc);
1165 	stge_start_locked(ifp);
1166 	STGE_UNLOCK(sc);
1167 }
1168 
1169 static void
1170 stge_start_locked(struct ifnet *ifp)
1171 {
1172         struct stge_softc *sc;
1173         struct mbuf *m_head;
1174 	int enq;
1175 
1176 	sc = ifp->if_softc;
1177 
1178 	STGE_LOCK_ASSERT(sc);
1179 
1180 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1181 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1182 		return;
1183 
1184 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1185 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1186 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1187 			break;
1188 		}
1189 
1190 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1191 		if (m_head == NULL)
1192 			break;
1193 		/*
1194 		 * Pack the data into the transmit ring. If we
1195 		 * don't have room, set the OACTIVE flag and wait
1196 		 * for the NIC to drain the ring.
1197 		 */
1198 		if (stge_encap(sc, &m_head)) {
1199 			if (m_head == NULL)
1200 				break;
1201 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1202 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1203 			break;
1204 		}
1205 
1206 		enq++;
1207 		/*
1208 		 * If there's a BPF listener, bounce a copy of this frame
1209 		 * to him.
1210 		 */
1211 		ETHER_BPF_MTAP(ifp, m_head);
1212 	}
1213 
1214 	if (enq > 0) {
1215 		/* Transmit */
1216 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1217 
1218 		/* Set a timeout in case the chip goes out to lunch. */
1219 		sc->sc_watchdog_timer = 5;
1220 	}
1221 }
1222 
1223 /*
1224  * stge_watchdog:
1225  *
1226  *	Watchdog timer handler.
1227  */
1228 static void
1229 stge_watchdog(struct stge_softc *sc)
1230 {
1231 	struct ifnet *ifp;
1232 
1233 	STGE_LOCK_ASSERT(sc);
1234 
1235 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1236 		return;
1237 
1238 	ifp = sc->sc_ifp;
1239 	if_printf(sc->sc_ifp, "device timeout\n");
1240 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1241 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1242 	stge_init_locked(sc);
1243 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1244 		stge_start_locked(ifp);
1245 }
1246 
1247 /*
1248  * stge_ioctl:		[ifnet interface function]
1249  *
1250  *	Handle control requests from the operator.
1251  */
1252 static int
1253 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1254 {
1255 	struct stge_softc *sc;
1256 	struct ifreq *ifr;
1257 	struct mii_data *mii;
1258 	int error, mask;
1259 
1260 	sc = ifp->if_softc;
1261 	ifr = (struct ifreq *)data;
1262 	error = 0;
1263 	switch (cmd) {
1264 	case SIOCSIFMTU:
1265 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1266 			error = EINVAL;
1267 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1268 			ifp->if_mtu = ifr->ifr_mtu;
1269 			STGE_LOCK(sc);
1270 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1271 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1272 				stge_init_locked(sc);
1273 			}
1274 			STGE_UNLOCK(sc);
1275 		}
1276 		break;
1277 	case SIOCSIFFLAGS:
1278 		STGE_LOCK(sc);
1279 		if ((ifp->if_flags & IFF_UP) != 0) {
1280 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1281 				if (((ifp->if_flags ^ sc->sc_if_flags)
1282 				    & IFF_PROMISC) != 0)
1283 					stge_set_filter(sc);
1284 			} else {
1285 				if (sc->sc_detach == 0)
1286 					stge_init_locked(sc);
1287 			}
1288 		} else {
1289 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1290 				stge_stop(sc);
1291 		}
1292 		sc->sc_if_flags = ifp->if_flags;
1293 		STGE_UNLOCK(sc);
1294 		break;
1295 	case SIOCADDMULTI:
1296 	case SIOCDELMULTI:
1297 		STGE_LOCK(sc);
1298 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1299 			stge_set_multi(sc);
1300 		STGE_UNLOCK(sc);
1301 		break;
1302 	case SIOCSIFMEDIA:
1303 	case SIOCGIFMEDIA:
1304 		mii = device_get_softc(sc->sc_miibus);
1305 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1306 		break;
1307 	case SIOCSIFCAP:
1308 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1309 #ifdef DEVICE_POLLING
1310 		if ((mask & IFCAP_POLLING) != 0) {
1311 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1312 				error = ether_poll_register(stge_poll, ifp);
1313 				if (error != 0)
1314 					break;
1315 				STGE_LOCK(sc);
1316 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1317 				ifp->if_capenable |= IFCAP_POLLING;
1318 				STGE_UNLOCK(sc);
1319 			} else {
1320 				error = ether_poll_deregister(ifp);
1321 				if (error != 0)
1322 					break;
1323 				STGE_LOCK(sc);
1324 				CSR_WRITE_2(sc, STGE_IntEnable,
1325 				    sc->sc_IntEnable);
1326 				ifp->if_capenable &= ~IFCAP_POLLING;
1327 				STGE_UNLOCK(sc);
1328 			}
1329 		}
1330 #endif
1331 		if ((mask & IFCAP_HWCSUM) != 0) {
1332 			ifp->if_capenable ^= IFCAP_HWCSUM;
1333 			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1334 			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1335 				ifp->if_hwassist = STGE_CSUM_FEATURES;
1336 			else
1337 				ifp->if_hwassist = 0;
1338 		}
1339 		if ((mask & IFCAP_WOL) != 0 &&
1340 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1341 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1342 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1343 		}
1344 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1345 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1346 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1347 				STGE_LOCK(sc);
1348 				stge_vlan_setup(sc);
1349 				STGE_UNLOCK(sc);
1350 			}
1351 		}
1352 		VLAN_CAPABILITIES(ifp);
1353 		break;
1354 	default:
1355 		error = ether_ioctl(ifp, cmd, data);
1356 		break;
1357 	}
1358 
1359 	return (error);
1360 }
1361 
1362 static void
1363 stge_link_task(void *arg, int pending)
1364 {
1365 	struct stge_softc *sc;
1366 	struct mii_data *mii;
1367 	uint32_t v, ac;
1368 	int i;
1369 
1370 	sc = (struct stge_softc *)arg;
1371 	STGE_LOCK(sc);
1372 
1373 	mii = device_get_softc(sc->sc_miibus);
1374 	if (mii->mii_media_status & IFM_ACTIVE) {
1375 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1376 			sc->sc_link = 1;
1377 	} else
1378 		sc->sc_link = 0;
1379 
1380 	sc->sc_MACCtrl = 0;
1381 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1382 		sc->sc_MACCtrl |= MC_DuplexSelect;
1383 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1384 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1385 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1386 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1387 	/*
1388 	 * Update STGE_MACCtrl register depending on link status.
1389 	 * (duplex, flow control etc)
1390 	 */
1391 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1392 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1393 	v |= sc->sc_MACCtrl;
1394 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1395 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1396 		/* Duplex setting changed, reset Tx/Rx functions. */
1397 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1398 		ac |= AC_TxReset | AC_RxReset;
1399 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1400 		for (i = 0; i < STGE_TIMEOUT; i++) {
1401 			DELAY(100);
1402 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1403 				break;
1404 		}
1405 		if (i == STGE_TIMEOUT)
1406 			device_printf(sc->sc_dev, "reset failed to complete\n");
1407 	}
1408 	STGE_UNLOCK(sc);
1409 }
1410 
1411 static __inline int
1412 stge_tx_error(struct stge_softc *sc)
1413 {
1414 	uint32_t txstat;
1415 	int error;
1416 
1417 	for (error = 0;;) {
1418 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1419 		if ((txstat & TS_TxComplete) == 0)
1420 			break;
1421 		/* Tx underrun */
1422 		if ((txstat & TS_TxUnderrun) != 0) {
1423 			/*
1424 			 * XXX
1425 			 * There should be a more better way to recover
1426 			 * from Tx underrun instead of a full reset.
1427 			 */
1428 			if (sc->sc_nerr++ < STGE_MAXERR)
1429 				device_printf(sc->sc_dev, "Tx underrun, "
1430 				    "resetting...\n");
1431 			if (sc->sc_nerr == STGE_MAXERR)
1432 				device_printf(sc->sc_dev, "too many errors; "
1433 				    "not reporting any more\n");
1434 			error = -1;
1435 			break;
1436 		}
1437 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1438 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1439 			CSR_WRITE_4(sc, STGE_MACCtrl,
1440 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1441 			    MC_TxEnable);
1442 	}
1443 
1444 	return (error);
1445 }
1446 
1447 /*
1448  * stge_intr:
1449  *
1450  *	Interrupt service routine.
1451  */
1452 static void
1453 stge_intr(void *arg)
1454 {
1455 	struct stge_softc *sc;
1456 	struct ifnet *ifp;
1457 	int reinit;
1458 	uint16_t status;
1459 
1460 	sc = (struct stge_softc *)arg;
1461 	ifp = sc->sc_ifp;
1462 
1463 	STGE_LOCK(sc);
1464 
1465 #ifdef DEVICE_POLLING
1466 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1467 		goto done_locked;
1468 #endif
1469 	status = CSR_READ_2(sc, STGE_IntStatus);
1470 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1471 		goto done_locked;
1472 
1473 	/* Disable interrupts. */
1474 	for (reinit = 0;;) {
1475 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1476 		status &= sc->sc_IntEnable;
1477 		if (status == 0)
1478 			break;
1479 		/* Host interface errors. */
1480 		if ((status & IS_HostError) != 0) {
1481 			device_printf(sc->sc_dev,
1482 			    "Host interface error, resetting...\n");
1483 			reinit = 1;
1484 			goto force_init;
1485 		}
1486 
1487 		/* Receive interrupts. */
1488 		if ((status & IS_RxDMAComplete) != 0) {
1489 			stge_rxeof(sc);
1490 			if ((status & IS_RFDListEnd) != 0)
1491 				CSR_WRITE_4(sc, STGE_DMACtrl,
1492 				    DMAC_RxDMAPollNow);
1493 		}
1494 
1495 		/* Transmit interrupts. */
1496 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1497 			stge_txeof(sc);
1498 
1499 		/* Transmission errors.*/
1500 		if ((status & IS_TxComplete) != 0) {
1501 			if ((reinit = stge_tx_error(sc)) != 0)
1502 				break;
1503 		}
1504 	}
1505 
1506 force_init:
1507 	if (reinit != 0) {
1508 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1509 		stge_init_locked(sc);
1510 	}
1511 
1512 	/* Re-enable interrupts. */
1513 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1514 
1515 	/* Try to get more packets going. */
1516 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1517 		stge_start_locked(ifp);
1518 
1519 done_locked:
1520 	STGE_UNLOCK(sc);
1521 }
1522 
1523 /*
1524  * stge_txeof:
1525  *
1526  *	Helper; handle transmit interrupts.
1527  */
1528 static void
1529 stge_txeof(struct stge_softc *sc)
1530 {
1531 	struct ifnet *ifp;
1532 	struct stge_txdesc *txd;
1533 	uint64_t control;
1534 	int cons;
1535 
1536 	STGE_LOCK_ASSERT(sc);
1537 
1538 	ifp = sc->sc_ifp;
1539 
1540 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1541 	if (txd == NULL)
1542 		return;
1543 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1544 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1545 
1546 	/*
1547 	 * Go through our Tx list and free mbufs for those
1548 	 * frames which have been transmitted.
1549 	 */
1550 	for (cons = sc->sc_cdata.stge_tx_cons;;
1551 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1552 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1553 			break;
1554 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1555 		if ((control & TFD_TFDDone) == 0)
1556 			break;
1557 		sc->sc_cdata.stge_tx_cnt--;
1558 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1559 
1560 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1561 		    BUS_DMASYNC_POSTWRITE);
1562 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1563 
1564 		/* Output counter is updated with statistics register */
1565 		m_freem(txd->tx_m);
1566 		txd->tx_m = NULL;
1567 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1568 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1569 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1570 	}
1571 	sc->sc_cdata.stge_tx_cons = cons;
1572 	if (sc->sc_cdata.stge_tx_cnt == 0)
1573 		sc->sc_watchdog_timer = 0;
1574 
1575         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1576 	    sc->sc_cdata.stge_tx_ring_map,
1577 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1578 }
1579 
1580 static __inline void
1581 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1582 {
1583 	struct stge_rfd *rfd;
1584 
1585 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1586 	rfd->rfd_status = 0;
1587 }
1588 
1589 #ifndef __NO_STRICT_ALIGNMENT
1590 /*
1591  * It seems that TC9021's DMA engine has alignment restrictions in
1592  * DMA scatter operations. The first DMA segment has no address
1593  * alignment restrictins but the rest should be aligned on 4(?) bytes
1594  * boundary. Otherwise it would corrupt random memory. Since we don't
1595  * know which one is used for the first segment in advance we simply
1596  * don't align at all.
1597  * To avoid copying over an entire frame to align, we allocate a new
1598  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1599  * prepended into the existing mbuf chain.
1600  */
1601 static __inline struct mbuf *
1602 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1603 {
1604 	struct mbuf *n;
1605 
1606 	n = NULL;
1607 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1608 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1609 		m->m_data += ETHER_HDR_LEN;
1610 		n = m;
1611 	} else {
1612 		MGETHDR(n, M_NOWAIT, MT_DATA);
1613 		if (n != NULL) {
1614 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1615 			m->m_data += ETHER_HDR_LEN;
1616 			m->m_len -= ETHER_HDR_LEN;
1617 			n->m_len = ETHER_HDR_LEN;
1618 			M_MOVE_PKTHDR(n, m);
1619 			n->m_next = m;
1620 		} else
1621 			m_freem(m);
1622 	}
1623 
1624 	return (n);
1625 }
1626 #endif
1627 
1628 /*
1629  * stge_rxeof:
1630  *
1631  *	Helper; handle receive interrupts.
1632  */
1633 static int
1634 stge_rxeof(struct stge_softc *sc)
1635 {
1636 	struct ifnet *ifp;
1637 	struct stge_rxdesc *rxd;
1638 	struct mbuf *mp, *m;
1639 	uint64_t status64;
1640 	uint32_t status;
1641 	int cons, prog, rx_npkts;
1642 
1643 	STGE_LOCK_ASSERT(sc);
1644 
1645 	rx_npkts = 0;
1646 	ifp = sc->sc_ifp;
1647 
1648 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1649 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1650 
1651 	prog = 0;
1652 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1653 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1654 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1655 		status = RFD_RxStatus(status64);
1656 		if ((status & RFD_RFDDone) == 0)
1657 			break;
1658 #ifdef DEVICE_POLLING
1659 		if (ifp->if_capenable & IFCAP_POLLING) {
1660 			if (sc->sc_cdata.stge_rxcycles <= 0)
1661 				break;
1662 			sc->sc_cdata.stge_rxcycles--;
1663 		}
1664 #endif
1665 		prog++;
1666 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1667 		mp = rxd->rx_m;
1668 
1669 		/*
1670 		 * If the packet had an error, drop it.  Note we count
1671 		 * the error later in the periodic stats update.
1672 		 */
1673 		if ((status & RFD_FrameEnd) != 0 && (status &
1674 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1675 		    RFD_RxAlignmentError | RFD_RxFCSError |
1676 		    RFD_RxLengthError)) != 0) {
1677 			stge_discard_rxbuf(sc, cons);
1678 			if (sc->sc_cdata.stge_rxhead != NULL) {
1679 				m_freem(sc->sc_cdata.stge_rxhead);
1680 				STGE_RXCHAIN_RESET(sc);
1681 			}
1682 			continue;
1683 		}
1684 		/*
1685 		 * Add a new receive buffer to the ring.
1686 		 */
1687 		if (stge_newbuf(sc, cons) != 0) {
1688 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1689 			stge_discard_rxbuf(sc, cons);
1690 			if (sc->sc_cdata.stge_rxhead != NULL) {
1691 				m_freem(sc->sc_cdata.stge_rxhead);
1692 				STGE_RXCHAIN_RESET(sc);
1693 			}
1694 			continue;
1695 		}
1696 
1697 		if ((status & RFD_FrameEnd) != 0)
1698 			mp->m_len = RFD_RxDMAFrameLen(status) -
1699 			    sc->sc_cdata.stge_rxlen;
1700 		sc->sc_cdata.stge_rxlen += mp->m_len;
1701 
1702 		/* Chain mbufs. */
1703 		if (sc->sc_cdata.stge_rxhead == NULL) {
1704 			sc->sc_cdata.stge_rxhead = mp;
1705 			sc->sc_cdata.stge_rxtail = mp;
1706 		} else {
1707 			mp->m_flags &= ~M_PKTHDR;
1708 			sc->sc_cdata.stge_rxtail->m_next = mp;
1709 			sc->sc_cdata.stge_rxtail = mp;
1710 		}
1711 
1712 		if ((status & RFD_FrameEnd) != 0) {
1713 			m = sc->sc_cdata.stge_rxhead;
1714 			m->m_pkthdr.rcvif = ifp;
1715 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1716 
1717 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1718 				m_freem(m);
1719 				STGE_RXCHAIN_RESET(sc);
1720 				continue;
1721 			}
1722 			/*
1723 			 * Set the incoming checksum information for
1724 			 * the packet.
1725 			 */
1726 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1727 				if ((status & RFD_IPDetected) != 0) {
1728 					m->m_pkthdr.csum_flags |=
1729 						CSUM_IP_CHECKED;
1730 					if ((status & RFD_IPError) == 0)
1731 						m->m_pkthdr.csum_flags |=
1732 						    CSUM_IP_VALID;
1733 				}
1734 				if (((status & RFD_TCPDetected) != 0 &&
1735 				    (status & RFD_TCPError) == 0) ||
1736 				    ((status & RFD_UDPDetected) != 0 &&
1737 				    (status & RFD_UDPError) == 0)) {
1738 					m->m_pkthdr.csum_flags |=
1739 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1740 					m->m_pkthdr.csum_data = 0xffff;
1741 				}
1742 			}
1743 
1744 #ifndef __NO_STRICT_ALIGNMENT
1745 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1746 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1747 					STGE_RXCHAIN_RESET(sc);
1748 					continue;
1749 				}
1750 			}
1751 #endif
1752 			/* Check for VLAN tagged packets. */
1753 			if ((status & RFD_VLANDetected) != 0 &&
1754 			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1755 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1756 				m->m_flags |= M_VLANTAG;
1757 			}
1758 
1759 			STGE_UNLOCK(sc);
1760 			/* Pass it on. */
1761 			(*ifp->if_input)(ifp, m);
1762 			STGE_LOCK(sc);
1763 			rx_npkts++;
1764 
1765 			STGE_RXCHAIN_RESET(sc);
1766 		}
1767 	}
1768 
1769 	if (prog > 0) {
1770 		/* Update the consumer index. */
1771 		sc->sc_cdata.stge_rx_cons = cons;
1772 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1773 		    sc->sc_cdata.stge_rx_ring_map,
1774 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1775 	}
1776 	return (rx_npkts);
1777 }
1778 
1779 #ifdef DEVICE_POLLING
1780 static int
1781 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1782 {
1783 	struct stge_softc *sc;
1784 	uint16_t status;
1785 	int rx_npkts;
1786 
1787 	rx_npkts = 0;
1788 	sc = ifp->if_softc;
1789 	STGE_LOCK(sc);
1790 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1791 		STGE_UNLOCK(sc);
1792 		return (rx_npkts);
1793 	}
1794 
1795 	sc->sc_cdata.stge_rxcycles = count;
1796 	rx_npkts = stge_rxeof(sc);
1797 	stge_txeof(sc);
1798 
1799 	if (cmd == POLL_AND_CHECK_STATUS) {
1800 		status = CSR_READ_2(sc, STGE_IntStatus);
1801 		status &= sc->sc_IntEnable;
1802 		if (status != 0) {
1803 			if ((status & IS_HostError) != 0) {
1804 				device_printf(sc->sc_dev,
1805 				    "Host interface error, resetting...\n");
1806 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1807 				stge_init_locked(sc);
1808 			}
1809 			if ((status & IS_TxComplete) != 0) {
1810 				if (stge_tx_error(sc) != 0) {
1811 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1812 					stge_init_locked(sc);
1813 				}
1814 			}
1815 		}
1816 
1817 	}
1818 
1819 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1820 		stge_start_locked(ifp);
1821 
1822 	STGE_UNLOCK(sc);
1823 	return (rx_npkts);
1824 }
1825 #endif	/* DEVICE_POLLING */
1826 
1827 /*
1828  * stge_tick:
1829  *
1830  *	One second timer, used to tick the MII.
1831  */
1832 static void
1833 stge_tick(void *arg)
1834 {
1835 	struct stge_softc *sc;
1836 	struct mii_data *mii;
1837 
1838 	sc = (struct stge_softc *)arg;
1839 
1840 	STGE_LOCK_ASSERT(sc);
1841 
1842 	mii = device_get_softc(sc->sc_miibus);
1843 	mii_tick(mii);
1844 
1845 	/* Update statistics counters. */
1846 	stge_stats_update(sc);
1847 
1848 	/*
1849 	 * Relcaim any pending Tx descriptors to release mbufs in a
1850 	 * timely manner as we don't generate Tx completion interrupts
1851 	 * for every frame. This limits the delay to a maximum of one
1852 	 * second.
1853 	 */
1854 	if (sc->sc_cdata.stge_tx_cnt != 0)
1855 		stge_txeof(sc);
1856 
1857 	stge_watchdog(sc);
1858 
1859 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1860 }
1861 
1862 /*
1863  * stge_stats_update:
1864  *
1865  *	Read the TC9021 statistics counters.
1866  */
1867 static void
1868 stge_stats_update(struct stge_softc *sc)
1869 {
1870 	struct ifnet *ifp;
1871 
1872 	STGE_LOCK_ASSERT(sc);
1873 
1874 	ifp = sc->sc_ifp;
1875 
1876 	CSR_READ_4(sc,STGE_OctetRcvOk);
1877 
1878 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1879 
1880 	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1881 
1882 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1883 
1884 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1885 
1886 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1887 	    CSR_READ_4(sc, STGE_LateCollisions) +
1888 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1889 	    CSR_READ_4(sc, STGE_SingleColFrames));
1890 
1891 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1892 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1893 	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1894 }
1895 
1896 /*
1897  * stge_reset:
1898  *
1899  *	Perform a soft reset on the TC9021.
1900  */
1901 static void
1902 stge_reset(struct stge_softc *sc, uint32_t how)
1903 {
1904 	uint32_t ac;
1905 	uint8_t v;
1906 	int i, dv;
1907 
1908 	STGE_LOCK_ASSERT(sc);
1909 
1910 	dv = 5000;
1911 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1912 	switch (how) {
1913 	case STGE_RESET_TX:
1914 		ac |= AC_TxReset | AC_FIFO;
1915 		dv = 100;
1916 		break;
1917 	case STGE_RESET_RX:
1918 		ac |= AC_RxReset | AC_FIFO;
1919 		dv = 100;
1920 		break;
1921 	case STGE_RESET_FULL:
1922 	default:
1923 		/*
1924 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1925 		 * to be present in order for the reset to complete on fiber
1926 		 * cards.
1927 		 */
1928 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1929 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1930 		    (sc->sc_usefiber ? AC_RstOut : 0);
1931 		break;
1932 	}
1933 
1934 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1935 
1936 	/* Account for reset problem at 10Mbps. */
1937 	DELAY(dv);
1938 
1939 	for (i = 0; i < STGE_TIMEOUT; i++) {
1940 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1941 			break;
1942 		DELAY(dv);
1943 	}
1944 
1945 	if (i == STGE_TIMEOUT)
1946 		device_printf(sc->sc_dev, "reset failed to complete\n");
1947 
1948 	/* Set LED, from Linux IPG driver. */
1949 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1950 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1951 	if ((sc->sc_led & 0x01) != 0)
1952 		ac |= AC_LEDMode;
1953 	if ((sc->sc_led & 0x03) != 0)
1954 		ac |= AC_LEDModeBit1;
1955 	if ((sc->sc_led & 0x08) != 0)
1956 		ac |= AC_LEDSpeed;
1957 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1958 
1959 	/* Set PHY, from Linux IPG driver */
1960 	v = CSR_READ_1(sc, STGE_PhySet);
1961 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1962 	v |= ((sc->sc_led & 0x70) >> 4);
1963 	CSR_WRITE_1(sc, STGE_PhySet, v);
1964 }
1965 
1966 /*
1967  * stge_init:		[ ifnet interface function ]
1968  *
1969  *	Initialize the interface.
1970  */
1971 static void
1972 stge_init(void *xsc)
1973 {
1974 	struct stge_softc *sc;
1975 
1976 	sc = (struct stge_softc *)xsc;
1977 	STGE_LOCK(sc);
1978 	stge_init_locked(sc);
1979 	STGE_UNLOCK(sc);
1980 }
1981 
1982 static void
1983 stge_init_locked(struct stge_softc *sc)
1984 {
1985 	struct ifnet *ifp;
1986 	struct mii_data *mii;
1987 	uint16_t eaddr[3];
1988 	uint32_t v;
1989 	int error;
1990 
1991 	STGE_LOCK_ASSERT(sc);
1992 
1993 	ifp = sc->sc_ifp;
1994 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1995 		return;
1996 	mii = device_get_softc(sc->sc_miibus);
1997 
1998 	/*
1999 	 * Cancel any pending I/O.
2000 	 */
2001 	stge_stop(sc);
2002 
2003 	/*
2004 	 * Reset the chip to a known state.
2005 	 */
2006 	stge_reset(sc, STGE_RESET_FULL);
2007 
2008 	/* Init descriptors. */
2009 	error = stge_init_rx_ring(sc);
2010         if (error != 0) {
2011                 device_printf(sc->sc_dev,
2012                     "initialization failed: no memory for rx buffers\n");
2013                 stge_stop(sc);
2014 		goto out;
2015         }
2016 	stge_init_tx_ring(sc);
2017 
2018 	/* Set the station address. */
2019 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2020 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2021 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2022 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2023 
2024 	/*
2025 	 * Set the statistics masks.  Disable all the RMON stats,
2026 	 * and disable selected stats in the non-RMON stats registers.
2027 	 */
2028 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2029 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2030 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2031 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2032 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2033 	    (1U << 21));
2034 
2035 	/* Set up the receive filter. */
2036 	stge_set_filter(sc);
2037 	/* Program multicast filter. */
2038 	stge_set_multi(sc);
2039 
2040 	/*
2041 	 * Give the transmit and receive ring to the chip.
2042 	 */
2043 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2044 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2045 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2046 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2047 
2048 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2049 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2050 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2051 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2052 
2053 	/*
2054 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2055 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2056 	 * transmit engine when there's actually a packet.
2057 	 */
2058 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2059 
2060 	/* ..and the Rx auto-poll period. */
2061 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2062 
2063 	/* Initialize the Tx start threshold. */
2064 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2065 
2066 	/* Rx DMA thresholds, from Linux */
2067 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2068 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2069 
2070 	/* Rx early threhold, from Linux */
2071 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2072 
2073 	/* Tx DMA thresholds, from Linux */
2074 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2075 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2076 
2077 	/*
2078 	 * Initialize the Rx DMA interrupt control register.  We
2079 	 * request an interrupt after every incoming packet, but
2080 	 * defer it for sc_rxint_dmawait us. When the number of
2081 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2082 	 * deferring the interrupt, and signal it immediately.
2083 	 */
2084 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2085 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2086 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2087 
2088 	/*
2089 	 * Initialize the interrupt mask.
2090 	 */
2091 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2092 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2093 #ifdef DEVICE_POLLING
2094 	/* Disable interrupts if we are polling. */
2095 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2096 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2097 	else
2098 #endif
2099 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2100 
2101 	/*
2102 	 * Configure the DMA engine.
2103 	 * XXX Should auto-tune TxBurstLimit.
2104 	 */
2105 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2106 
2107 	/*
2108 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2109 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2110 	 * in the Rx FIFO.
2111 	 */
2112 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2113 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2114 
2115 	/*
2116 	 * Set the maximum frame size.
2117 	 */
2118 	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2119 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2120 
2121 	/*
2122 	 * Initialize MacCtrl -- do it before setting the media,
2123 	 * as setting the media will actually program the register.
2124 	 *
2125 	 * Note: We have to poke the IFS value before poking
2126 	 * anything else.
2127 	 */
2128 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2129 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2130 
2131 	stge_vlan_setup(sc);
2132 
2133 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2134 		/* Multi-frag frame bug work-around. */
2135 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2136 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2137 
2138 		/* Tx Poll Now bug work-around. */
2139 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2140 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2141 		/* Tx Poll Now bug work-around. */
2142 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2143 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2144 	}
2145 
2146 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2147 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2148 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2149 	/*
2150 	 * It seems that transmitting frames without checking the state of
2151 	 * Rx/Tx MAC wedge the hardware.
2152 	 */
2153 	stge_start_tx(sc);
2154 	stge_start_rx(sc);
2155 
2156 	sc->sc_link = 0;
2157 	/*
2158 	 * Set the current media.
2159 	 */
2160 	mii_mediachg(mii);
2161 
2162 	/*
2163 	 * Start the one second MII clock.
2164 	 */
2165 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2166 
2167 	/*
2168 	 * ...all done!
2169 	 */
2170 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2171 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2172 
2173  out:
2174 	if (error != 0)
2175 		device_printf(sc->sc_dev, "interface not running\n");
2176 }
2177 
2178 static void
2179 stge_vlan_setup(struct stge_softc *sc)
2180 {
2181 	struct ifnet *ifp;
2182 	uint32_t v;
2183 
2184 	ifp = sc->sc_ifp;
2185 	/*
2186 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2187 	 * MC_AutoVLANuntagging bit.
2188 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2189 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2190 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2191 	 * use TFC instead of STGE_VLANTag register.
2192 	 */
2193 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2194 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2195 		v |= MC_AutoVLANuntagging;
2196 	else
2197 		v &= ~MC_AutoVLANuntagging;
2198 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2199 }
2200 
2201 /*
2202  *	Stop transmission on the interface.
2203  */
2204 static void
2205 stge_stop(struct stge_softc *sc)
2206 {
2207 	struct ifnet *ifp;
2208 	struct stge_txdesc *txd;
2209 	struct stge_rxdesc *rxd;
2210 	uint32_t v;
2211 	int i;
2212 
2213 	STGE_LOCK_ASSERT(sc);
2214 	/*
2215 	 * Stop the one second clock.
2216 	 */
2217 	callout_stop(&sc->sc_tick_ch);
2218 	sc->sc_watchdog_timer = 0;
2219 
2220 	/*
2221 	 * Disable interrupts.
2222 	 */
2223 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2224 
2225 	/*
2226 	 * Stop receiver, transmitter, and stats update.
2227 	 */
2228 	stge_stop_rx(sc);
2229 	stge_stop_tx(sc);
2230 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2231 	v |= MC_StatisticsDisable;
2232 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2233 
2234 	/*
2235 	 * Stop the transmit and receive DMA.
2236 	 */
2237 	stge_dma_wait(sc);
2238 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2239 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2240 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2241 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2242 
2243 	/*
2244 	 * Free RX and TX mbufs still in the queues.
2245 	 */
2246 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2247 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2248 		if (rxd->rx_m != NULL) {
2249 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2250 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2251 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2252 			    rxd->rx_dmamap);
2253 			m_freem(rxd->rx_m);
2254 			rxd->rx_m = NULL;
2255 		}
2256         }
2257 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2258 		txd = &sc->sc_cdata.stge_txdesc[i];
2259 		if (txd->tx_m != NULL) {
2260 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2261 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2262 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2263 			    txd->tx_dmamap);
2264 			m_freem(txd->tx_m);
2265 			txd->tx_m = NULL;
2266 		}
2267         }
2268 
2269 	/*
2270 	 * Mark the interface down and cancel the watchdog timer.
2271 	 */
2272 	ifp = sc->sc_ifp;
2273 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2274 	sc->sc_link = 0;
2275 }
2276 
2277 static void
2278 stge_start_tx(struct stge_softc *sc)
2279 {
2280 	uint32_t v;
2281 	int i;
2282 
2283 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2284 	if ((v & MC_TxEnabled) != 0)
2285 		return;
2286 	v |= MC_TxEnable;
2287 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2288 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2289 	for (i = STGE_TIMEOUT; i > 0; i--) {
2290 		DELAY(10);
2291 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2292 		if ((v & MC_TxEnabled) != 0)
2293 			break;
2294 	}
2295 	if (i == 0)
2296 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2297 }
2298 
2299 static void
2300 stge_start_rx(struct stge_softc *sc)
2301 {
2302 	uint32_t v;
2303 	int i;
2304 
2305 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2306 	if ((v & MC_RxEnabled) != 0)
2307 		return;
2308 	v |= MC_RxEnable;
2309 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2310 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2311 	for (i = STGE_TIMEOUT; i > 0; i--) {
2312 		DELAY(10);
2313 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2314 		if ((v & MC_RxEnabled) != 0)
2315 			break;
2316 	}
2317 	if (i == 0)
2318 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2319 }
2320 
2321 static void
2322 stge_stop_tx(struct stge_softc *sc)
2323 {
2324 	uint32_t v;
2325 	int i;
2326 
2327 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2328 	if ((v & MC_TxEnabled) == 0)
2329 		return;
2330 	v |= MC_TxDisable;
2331 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2332 	for (i = STGE_TIMEOUT; i > 0; i--) {
2333 		DELAY(10);
2334 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2335 		if ((v & MC_TxEnabled) == 0)
2336 			break;
2337 	}
2338 	if (i == 0)
2339 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2340 }
2341 
2342 static void
2343 stge_stop_rx(struct stge_softc *sc)
2344 {
2345 	uint32_t v;
2346 	int i;
2347 
2348 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2349 	if ((v & MC_RxEnabled) == 0)
2350 		return;
2351 	v |= MC_RxDisable;
2352 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2353 	for (i = STGE_TIMEOUT; i > 0; i--) {
2354 		DELAY(10);
2355 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2356 		if ((v & MC_RxEnabled) == 0)
2357 			break;
2358 	}
2359 	if (i == 0)
2360 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2361 }
2362 
2363 static void
2364 stge_init_tx_ring(struct stge_softc *sc)
2365 {
2366 	struct stge_ring_data *rd;
2367 	struct stge_txdesc *txd;
2368 	bus_addr_t addr;
2369 	int i;
2370 
2371 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2372 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2373 
2374 	sc->sc_cdata.stge_tx_prod = 0;
2375 	sc->sc_cdata.stge_tx_cons = 0;
2376 	sc->sc_cdata.stge_tx_cnt = 0;
2377 
2378 	rd = &sc->sc_rdata;
2379 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2380 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2381 		if (i == (STGE_TX_RING_CNT - 1))
2382 			addr = STGE_TX_RING_ADDR(sc, 0);
2383 		else
2384 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2385 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2386 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2387 		txd = &sc->sc_cdata.stge_txdesc[i];
2388 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2389 	}
2390 
2391 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2392 	    sc->sc_cdata.stge_tx_ring_map,
2393 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2394 
2395 }
2396 
2397 static int
2398 stge_init_rx_ring(struct stge_softc *sc)
2399 {
2400 	struct stge_ring_data *rd;
2401 	bus_addr_t addr;
2402 	int i;
2403 
2404 	sc->sc_cdata.stge_rx_cons = 0;
2405 	STGE_RXCHAIN_RESET(sc);
2406 
2407 	rd = &sc->sc_rdata;
2408 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2409 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2410 		if (stge_newbuf(sc, i) != 0)
2411 			return (ENOBUFS);
2412 		if (i == (STGE_RX_RING_CNT - 1))
2413 			addr = STGE_RX_RING_ADDR(sc, 0);
2414 		else
2415 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2416 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2417 		rd->stge_rx_ring[i].rfd_status = 0;
2418 	}
2419 
2420 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2421 	    sc->sc_cdata.stge_rx_ring_map,
2422 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2423 
2424 	return (0);
2425 }
2426 
2427 /*
2428  * stge_newbuf:
2429  *
2430  *	Add a receive buffer to the indicated descriptor.
2431  */
2432 static int
2433 stge_newbuf(struct stge_softc *sc, int idx)
2434 {
2435 	struct stge_rxdesc *rxd;
2436 	struct stge_rfd *rfd;
2437 	struct mbuf *m;
2438 	bus_dma_segment_t segs[1];
2439 	bus_dmamap_t map;
2440 	int nsegs;
2441 
2442 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2443 	if (m == NULL)
2444 		return (ENOBUFS);
2445 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2446 	/*
2447 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2448 	 * frame is used.
2449 	 */
2450 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2451 		m_adj(m, ETHER_ALIGN);
2452 
2453 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2454 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2455 		m_freem(m);
2456 		return (ENOBUFS);
2457 	}
2458 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2459 
2460 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2461 	if (rxd->rx_m != NULL) {
2462 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2463 		    BUS_DMASYNC_POSTREAD);
2464 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2465 	}
2466 	map = rxd->rx_dmamap;
2467 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2468 	sc->sc_cdata.stge_rx_sparemap = map;
2469 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2470 	    BUS_DMASYNC_PREREAD);
2471 	rxd->rx_m = m;
2472 
2473 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2474 	rfd->rfd_frag.frag_word0 =
2475 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2476 	rfd->rfd_status = 0;
2477 
2478 	return (0);
2479 }
2480 
2481 /*
2482  * stge_set_filter:
2483  *
2484  *	Set up the receive filter.
2485  */
2486 static void
2487 stge_set_filter(struct stge_softc *sc)
2488 {
2489 	struct ifnet *ifp;
2490 	uint16_t mode;
2491 
2492 	STGE_LOCK_ASSERT(sc);
2493 
2494 	ifp = sc->sc_ifp;
2495 
2496 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2497 	mode |= RM_ReceiveUnicast;
2498 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2499 		mode |= RM_ReceiveBroadcast;
2500 	else
2501 		mode &= ~RM_ReceiveBroadcast;
2502 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2503 		mode |= RM_ReceiveAllFrames;
2504 	else
2505 		mode &= ~RM_ReceiveAllFrames;
2506 
2507 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2508 }
2509 
2510 static void
2511 stge_set_multi(struct stge_softc *sc)
2512 {
2513 	struct ifnet *ifp;
2514 	struct ifmultiaddr *ifma;
2515 	uint32_t crc;
2516 	uint32_t mchash[2];
2517 	uint16_t mode;
2518 	int count;
2519 
2520 	STGE_LOCK_ASSERT(sc);
2521 
2522 	ifp = sc->sc_ifp;
2523 
2524 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2525 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2526 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2527 			mode |= RM_ReceiveAllFrames;
2528 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2529 			mode |= RM_ReceiveMulticast;
2530 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2531 		return;
2532 	}
2533 
2534 	/* clear existing filters. */
2535 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2536 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2537 
2538 	/*
2539 	 * Set up the multicast address filter by passing all multicast
2540 	 * addresses through a CRC generator, and then using the low-order
2541 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2542 	 * high order bits select the register, while the rest of the bits
2543 	 * select the bit within the register.
2544 	 */
2545 
2546 	bzero(mchash, sizeof(mchash));
2547 
2548 	count = 0;
2549 	if_maddr_rlock(sc->sc_ifp);
2550 	CK_STAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2551 		if (ifma->ifma_addr->sa_family != AF_LINK)
2552 			continue;
2553 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2554 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2555 
2556 		/* Just want the 6 least significant bits. */
2557 		crc &= 0x3f;
2558 
2559 		/* Set the corresponding bit in the hash table. */
2560 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2561 		count++;
2562 	}
2563 	if_maddr_runlock(ifp);
2564 
2565 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2566 	if (count > 0)
2567 		mode |= RM_ReceiveMulticastHash;
2568 	else
2569 		mode &= ~RM_ReceiveMulticastHash;
2570 
2571 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2572 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2573 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2574 }
2575 
2576 static int
2577 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2578 {
2579 	int error, value;
2580 
2581 	if (!arg1)
2582 		return (EINVAL);
2583 	value = *(int *)arg1;
2584 	error = sysctl_handle_int(oidp, &value, 0, req);
2585 	if (error || !req->newptr)
2586 		return (error);
2587 	if (value < low || value > high)
2588 		return (EINVAL);
2589         *(int *)arg1 = value;
2590 
2591         return (0);
2592 }
2593 
2594 static int
2595 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2596 {
2597 	return (sysctl_int_range(oidp, arg1, arg2, req,
2598 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2599 }
2600 
2601 static int
2602 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2603 {
2604 	return (sysctl_int_range(oidp, arg1, arg2, req,
2605 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2606 }
2607