xref: /freebsd/sys/dev/stge/if_stge.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Sundance Tech. TC9021 10/100/1000
34  * Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #ifdef HAVE_KERNEL_OPTION_HEADERS
41 #include "opt_device_polling.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/endian.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/kernel.h>
50 #include <sys/module.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #include <machine/bus.h>
66 #include <machine/resource.h>
67 #include <sys/bus.h>
68 #include <sys/rman.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/mii_bitbang.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 
77 #include <dev/stge/if_stgereg.h>
78 
79 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(stge, pci, 1, 1, 1);
82 MODULE_DEPEND(stge, ether, 1, 1, 1);
83 MODULE_DEPEND(stge, miibus, 1, 1, 1);
84 
85 /* "device miibus" required.  See GENERIC if you get errors here. */
86 #include "miibus_if.h"
87 
88 /*
89  * Devices supported by this driver.
90  */
91 static const struct stge_product {
92 	uint16_t	stge_vendorid;
93 	uint16_t	stge_deviceid;
94 	const char	*stge_name;
95 } stge_products[] = {
96 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
97 	  "Sundance ST-1023 Gigabit Ethernet" },
98 
99 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
100 	  "Sundance ST-2021 Gigabit Ethernet" },
101 
102 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
103 	  "Tamarack TC9021 Gigabit Ethernet" },
104 
105 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
106 	  "Tamarack TC9021 Gigabit Ethernet" },
107 
108 	/*
109 	 * The Sundance sample boards use the Sundance vendor ID,
110 	 * but the Tamarack product ID.
111 	 */
112 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
113 	  "Sundance TC9021 Gigabit Ethernet" },
114 
115 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
116 	  "Sundance TC9021 Gigabit Ethernet" },
117 
118 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
119 	  "D-Link DL-4000 Gigabit Ethernet" },
120 
121 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
122 	  "Antares Gigabit Ethernet" }
123 };
124 
125 static int	stge_probe(device_t);
126 static int	stge_attach(device_t);
127 static int	stge_detach(device_t);
128 static int	stge_shutdown(device_t);
129 static int	stge_suspend(device_t);
130 static int	stge_resume(device_t);
131 
132 static int	stge_encap(struct stge_softc *, struct mbuf **);
133 static void	stge_start(struct ifnet *);
134 static void	stge_start_locked(struct ifnet *);
135 static void	stge_watchdog(struct stge_softc *);
136 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void	stge_init(void *);
138 static void	stge_init_locked(struct stge_softc *);
139 static void	stge_vlan_setup(struct stge_softc *);
140 static void	stge_stop(struct stge_softc *);
141 static void	stge_start_tx(struct stge_softc *);
142 static void	stge_start_rx(struct stge_softc *);
143 static void	stge_stop_tx(struct stge_softc *);
144 static void	stge_stop_rx(struct stge_softc *);
145 
146 static void	stge_reset(struct stge_softc *, uint32_t);
147 static int	stge_eeprom_wait(struct stge_softc *);
148 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
149 static void	stge_tick(void *);
150 static void	stge_stats_update(struct stge_softc *);
151 static void	stge_set_filter(struct stge_softc *);
152 static void	stge_set_multi(struct stge_softc *);
153 
154 static void	stge_link_task(void *, int);
155 static void	stge_intr(void *);
156 static __inline int stge_tx_error(struct stge_softc *);
157 static void	stge_txeof(struct stge_softc *);
158 static int	stge_rxeof(struct stge_softc *);
159 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
160 static int	stge_newbuf(struct stge_softc *, int);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
163 #endif
164 
165 static int	stge_miibus_readreg(device_t, int, int);
166 static int	stge_miibus_writereg(device_t, int, int, int);
167 static void	stge_miibus_statchg(device_t);
168 static int	stge_mediachange(struct ifnet *);
169 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
170 
171 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
172 static int	stge_dma_alloc(struct stge_softc *);
173 static void	stge_dma_free(struct stge_softc *);
174 static void	stge_dma_wait(struct stge_softc *);
175 static void	stge_init_tx_ring(struct stge_softc *);
176 static int	stge_init_rx_ring(struct stge_softc *);
177 #ifdef DEVICE_POLLING
178 static int	stge_poll(struct ifnet *, enum poll_cmd, int);
179 #endif
180 
181 static void	stge_setwol(struct stge_softc *);
182 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
183 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
184 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
185 
186 /*
187  * MII bit-bang glue
188  */
189 static uint32_t stge_mii_bitbang_read(device_t);
190 static void	stge_mii_bitbang_write(device_t, uint32_t);
191 
192 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
193 	stge_mii_bitbang_read,
194 	stge_mii_bitbang_write,
195 	{
196 		PC_MgmtData,		/* MII_BIT_MDO */
197 		PC_MgmtData,		/* MII_BIT_MDI */
198 		PC_MgmtClk,		/* MII_BIT_MDC */
199 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
200 		0,			/* MII_BIT_DIR_PHY_HOST */
201 	}
202 };
203 
204 static device_method_t stge_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		stge_probe),
207 	DEVMETHOD(device_attach,	stge_attach),
208 	DEVMETHOD(device_detach,	stge_detach),
209 	DEVMETHOD(device_shutdown,	stge_shutdown),
210 	DEVMETHOD(device_suspend,	stge_suspend),
211 	DEVMETHOD(device_resume,	stge_resume),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
217 
218 	DEVMETHOD_END
219 };
220 
221 static driver_t stge_driver = {
222 	"stge",
223 	stge_methods,
224 	sizeof(struct stge_softc)
225 };
226 
227 static devclass_t stge_devclass;
228 
229 DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
231 
232 static struct resource_spec stge_res_spec_io[] = {
233 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
234 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
235 	{ -1,			0,		0 }
236 };
237 
238 static struct resource_spec stge_res_spec_mem[] = {
239 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
240 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
241 	{ -1,			0,		0 }
242 };
243 
244 /*
245  * stge_mii_bitbang_read: [mii bit-bang interface function]
246  *
247  *	Read the MII serial port for the MII bit-bang module.
248  */
249 static uint32_t
250 stge_mii_bitbang_read(device_t dev)
251 {
252 	struct stge_softc *sc;
253 	uint32_t val;
254 
255 	sc = device_get_softc(dev);
256 
257 	val = CSR_READ_1(sc, STGE_PhyCtrl);
258 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
259 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
260 	return (val);
261 }
262 
263 /*
264  * stge_mii_bitbang_write: [mii big-bang interface function]
265  *
266  *	Write the MII serial port for the MII bit-bang module.
267  */
268 static void
269 stge_mii_bitbang_write(device_t dev, uint32_t val)
270 {
271 	struct stge_softc *sc;
272 
273 	sc = device_get_softc(dev);
274 
275 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
276 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
277 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
278 }
279 
280 /*
281  * sc_miibus_readreg:	[mii interface function]
282  *
283  *	Read a PHY register on the MII of the TC9021.
284  */
285 static int
286 stge_miibus_readreg(device_t dev, int phy, int reg)
287 {
288 	struct stge_softc *sc;
289 	int error, val;
290 
291 	sc = device_get_softc(dev);
292 
293 	if (reg == STGE_PhyCtrl) {
294 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
295 		STGE_MII_LOCK(sc);
296 		error = CSR_READ_1(sc, STGE_PhyCtrl);
297 		STGE_MII_UNLOCK(sc);
298 		return (error);
299 	}
300 
301 	STGE_MII_LOCK(sc);
302 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
303 	STGE_MII_UNLOCK(sc);
304 	return (val);
305 }
306 
307 /*
308  * stge_miibus_writereg:	[mii interface function]
309  *
310  *	Write a PHY register on the MII of the TC9021.
311  */
312 static int
313 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
314 {
315 	struct stge_softc *sc;
316 
317 	sc = device_get_softc(dev);
318 
319 	STGE_MII_LOCK(sc);
320 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
321 	STGE_MII_UNLOCK(sc);
322 	return (0);
323 }
324 
325 /*
326  * stge_miibus_statchg:	[mii interface function]
327  *
328  *	Callback from MII layer when media changes.
329  */
330 static void
331 stge_miibus_statchg(device_t dev)
332 {
333 	struct stge_softc *sc;
334 
335 	sc = device_get_softc(dev);
336 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
337 }
338 
339 /*
340  * stge_mediastatus:	[ifmedia interface function]
341  *
342  *	Get the current interface media status.
343  */
344 static void
345 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
346 {
347 	struct stge_softc *sc;
348 	struct mii_data *mii;
349 
350 	sc = ifp->if_softc;
351 	mii = device_get_softc(sc->sc_miibus);
352 
353 	mii_pollstat(mii);
354 	ifmr->ifm_status = mii->mii_media_status;
355 	ifmr->ifm_active = mii->mii_media_active;
356 }
357 
358 /*
359  * stge_mediachange:	[ifmedia interface function]
360  *
361  *	Set hardware to newly-selected media.
362  */
363 static int
364 stge_mediachange(struct ifnet *ifp)
365 {
366 	struct stge_softc *sc;
367 	struct mii_data *mii;
368 
369 	sc = ifp->if_softc;
370 	mii = device_get_softc(sc->sc_miibus);
371 	mii_mediachg(mii);
372 
373 	return (0);
374 }
375 
376 static int
377 stge_eeprom_wait(struct stge_softc *sc)
378 {
379 	int i;
380 
381 	for (i = 0; i < STGE_TIMEOUT; i++) {
382 		DELAY(1000);
383 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
384 			return (0);
385 	}
386 	return (1);
387 }
388 
389 /*
390  * stge_read_eeprom:
391  *
392  *	Read data from the serial EEPROM.
393  */
394 static void
395 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
396 {
397 
398 	if (stge_eeprom_wait(sc))
399 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
400 
401 	CSR_WRITE_2(sc, STGE_EepromCtrl,
402 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
403 	if (stge_eeprom_wait(sc))
404 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
405 	*data = CSR_READ_2(sc, STGE_EepromData);
406 }
407 
408 
409 static int
410 stge_probe(device_t dev)
411 {
412 	const struct stge_product *sp;
413 	int i;
414 	uint16_t vendor, devid;
415 
416 	vendor = pci_get_vendor(dev);
417 	devid = pci_get_device(dev);
418 	sp = stge_products;
419 	for (i = 0; i < nitems(stge_products); i++, sp++) {
420 		if (vendor == sp->stge_vendorid &&
421 		    devid == sp->stge_deviceid) {
422 			device_set_desc(dev, sp->stge_name);
423 			return (BUS_PROBE_DEFAULT);
424 		}
425 	}
426 
427 	return (ENXIO);
428 }
429 
430 static int
431 stge_attach(device_t dev)
432 {
433 	struct stge_softc *sc;
434 	struct ifnet *ifp;
435 	uint8_t enaddr[ETHER_ADDR_LEN];
436 	int error, flags, i;
437 	uint16_t cmd;
438 	uint32_t val;
439 
440 	error = 0;
441 	sc = device_get_softc(dev);
442 	sc->sc_dev = dev;
443 
444 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
445 	    MTX_DEF);
446 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
447 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
448 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
449 
450 	/*
451 	 * Map the device.
452 	 */
453 	pci_enable_busmaster(dev);
454 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
455 	val = pci_read_config(dev, PCIR_BAR(1), 4);
456 	if (PCI_BAR_IO(val))
457 		sc->sc_spec = stge_res_spec_mem;
458 	else {
459 		val = pci_read_config(dev, PCIR_BAR(0), 4);
460 		if (!PCI_BAR_IO(val)) {
461 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
462 			error = ENXIO;
463 			goto fail;
464 		}
465 		sc->sc_spec = stge_res_spec_io;
466 	}
467 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
468 	if (error != 0) {
469 		device_printf(dev, "couldn't allocate %s resources\n",
470 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
471 		goto fail;
472 	}
473 	sc->sc_rev = pci_get_revid(dev);
474 
475 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
476 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
477 	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
478 	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
479 
480 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
481 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
482 	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
483 	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
484 
485 	/* Pull in device tunables. */
486 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
487 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
488 	    "rxint_nframe", &sc->sc_rxint_nframe);
489 	if (error == 0) {
490 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
491 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
492 			device_printf(dev, "rxint_nframe value out of range; "
493 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
494 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
495 		}
496 	}
497 
498 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
499 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
500 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
501 	if (error == 0) {
502 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
503 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
504 			device_printf(dev, "rxint_dmawait value out of range; "
505 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
506 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
507 		}
508 	}
509 
510 	if ((error = stge_dma_alloc(sc)) != 0)
511 		goto fail;
512 
513 	/*
514 	 * Determine if we're copper or fiber.  It affects how we
515 	 * reset the card.
516 	 */
517 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
518 		sc->sc_usefiber = 1;
519 	else
520 		sc->sc_usefiber = 0;
521 
522 	/* Load LED configuration from EEPROM. */
523 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
524 
525 	/*
526 	 * Reset the chip to a known state.
527 	 */
528 	STGE_LOCK(sc);
529 	stge_reset(sc, STGE_RESET_FULL);
530 	STGE_UNLOCK(sc);
531 
532 	/*
533 	 * Reading the station address from the EEPROM doesn't seem
534 	 * to work, at least on my sample boards.  Instead, since
535 	 * the reset sequence does AutoInit, read it from the station
536 	 * address registers. For Sundance 1023 you can only read it
537 	 * from EEPROM.
538 	 */
539 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
540 		uint16_t v;
541 
542 		v = CSR_READ_2(sc, STGE_StationAddress0);
543 		enaddr[0] = v & 0xff;
544 		enaddr[1] = v >> 8;
545 		v = CSR_READ_2(sc, STGE_StationAddress1);
546 		enaddr[2] = v & 0xff;
547 		enaddr[3] = v >> 8;
548 		v = CSR_READ_2(sc, STGE_StationAddress2);
549 		enaddr[4] = v & 0xff;
550 		enaddr[5] = v >> 8;
551 		sc->sc_stge1023 = 0;
552 	} else {
553 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
554 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
555 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
556 			    &myaddr[i]);
557 			myaddr[i] = le16toh(myaddr[i]);
558 		}
559 		bcopy(myaddr, enaddr, sizeof(enaddr));
560 		sc->sc_stge1023 = 1;
561 	}
562 
563 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
564 	if (ifp == NULL) {
565 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
566 		error = ENXIO;
567 		goto fail;
568 	}
569 
570 	ifp->if_softc = sc;
571 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
572 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
573 	ifp->if_ioctl = stge_ioctl;
574 	ifp->if_start = stge_start;
575 	ifp->if_init = stge_init;
576 	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
577 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
578 	IFQ_SET_READY(&ifp->if_snd);
579 	/* Revision B3 and earlier chips have checksum bug. */
580 	if (sc->sc_rev >= 0x0c) {
581 		ifp->if_hwassist = STGE_CSUM_FEATURES;
582 		ifp->if_capabilities = IFCAP_HWCSUM;
583 	} else {
584 		ifp->if_hwassist = 0;
585 		ifp->if_capabilities = 0;
586 	}
587 	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
588 	ifp->if_capenable = ifp->if_capabilities;
589 
590 	/*
591 	 * Read some important bits from the PhyCtrl register.
592 	 */
593 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
594 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595 
596 	/* Set up MII bus. */
597 	flags = MIIF_DOPAUSE;
598 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
599 		flags |= MIIF_MACPRIV0;
600 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
601 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
602 	    flags);
603 	if (error != 0) {
604 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
605 		goto fail;
606 	}
607 
608 	ether_ifattach(ifp, enaddr);
609 
610 	/* VLAN capability setup */
611 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
612 	if (sc->sc_rev >= 0x0c)
613 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
614 	ifp->if_capenable = ifp->if_capabilities;
615 #ifdef DEVICE_POLLING
616 	ifp->if_capabilities |= IFCAP_POLLING;
617 #endif
618 	/*
619 	 * Tell the upper layer(s) we support long frames.
620 	 * Must appear after the call to ether_ifattach() because
621 	 * ether_ifattach() sets ifi_hdrlen to the default value.
622 	 */
623 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
624 
625 	/*
626 	 * The manual recommends disabling early transmit, so we
627 	 * do.  It's disabled anyway, if using IP checksumming,
628 	 * since the entire packet must be in the FIFO in order
629 	 * for the chip to perform the checksum.
630 	 */
631 	sc->sc_txthresh = 0x0fff;
632 
633 	/*
634 	 * Disable MWI if the PCI layer tells us to.
635 	 */
636 	sc->sc_DMACtrl = 0;
637 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
638 		sc->sc_DMACtrl |= DMAC_MWIDisable;
639 
640 	/*
641 	 * Hookup IRQ
642 	 */
643 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
644 	    NULL, stge_intr, sc, &sc->sc_ih);
645 	if (error != 0) {
646 		ether_ifdetach(ifp);
647 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
648 		sc->sc_ifp = NULL;
649 		goto fail;
650 	}
651 
652 fail:
653 	if (error != 0)
654 		stge_detach(dev);
655 
656 	return (error);
657 }
658 
659 static int
660 stge_detach(device_t dev)
661 {
662 	struct stge_softc *sc;
663 	struct ifnet *ifp;
664 
665 	sc = device_get_softc(dev);
666 
667 	ifp = sc->sc_ifp;
668 #ifdef DEVICE_POLLING
669 	if (ifp && ifp->if_capenable & IFCAP_POLLING)
670 		ether_poll_deregister(ifp);
671 #endif
672 	if (device_is_attached(dev)) {
673 		STGE_LOCK(sc);
674 		/* XXX */
675 		sc->sc_detach = 1;
676 		stge_stop(sc);
677 		STGE_UNLOCK(sc);
678 		callout_drain(&sc->sc_tick_ch);
679 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
680 		ether_ifdetach(ifp);
681 	}
682 
683 	if (sc->sc_miibus != NULL) {
684 		device_delete_child(dev, sc->sc_miibus);
685 		sc->sc_miibus = NULL;
686 	}
687 	bus_generic_detach(dev);
688 	stge_dma_free(sc);
689 
690 	if (ifp != NULL) {
691 		if_free(ifp);
692 		sc->sc_ifp = NULL;
693 	}
694 
695 	if (sc->sc_ih) {
696 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
697 		sc->sc_ih = NULL;
698 	}
699 	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
700 
701 	mtx_destroy(&sc->sc_mii_mtx);
702 	mtx_destroy(&sc->sc_mtx);
703 
704 	return (0);
705 }
706 
707 struct stge_dmamap_arg {
708 	bus_addr_t	stge_busaddr;
709 };
710 
711 static void
712 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
713 {
714 	struct stge_dmamap_arg *ctx;
715 
716 	if (error != 0)
717 		return;
718 
719 	ctx = (struct stge_dmamap_arg *)arg;
720 	ctx->stge_busaddr = segs[0].ds_addr;
721 }
722 
723 static int
724 stge_dma_alloc(struct stge_softc *sc)
725 {
726 	struct stge_dmamap_arg ctx;
727 	struct stge_txdesc *txd;
728 	struct stge_rxdesc *rxd;
729 	int error, i;
730 
731 	/* create parent tag. */
732 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
733 		    1, 0,			/* algnmnt, boundary */
734 		    STGE_DMA_MAXADDR,		/* lowaddr */
735 		    BUS_SPACE_MAXADDR,		/* highaddr */
736 		    NULL, NULL,			/* filter, filterarg */
737 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
738 		    0,				/* nsegments */
739 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
740 		    0,				/* flags */
741 		    NULL, NULL,			/* lockfunc, lockarg */
742 		    &sc->sc_cdata.stge_parent_tag);
743 	if (error != 0) {
744 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
745 		goto fail;
746 	}
747 	/* create tag for Tx ring. */
748 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
749 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
750 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
751 		    BUS_SPACE_MAXADDR,		/* highaddr */
752 		    NULL, NULL,			/* filter, filterarg */
753 		    STGE_TX_RING_SZ,		/* maxsize */
754 		    1,				/* nsegments */
755 		    STGE_TX_RING_SZ,		/* maxsegsize */
756 		    0,				/* flags */
757 		    NULL, NULL,			/* lockfunc, lockarg */
758 		    &sc->sc_cdata.stge_tx_ring_tag);
759 	if (error != 0) {
760 		device_printf(sc->sc_dev,
761 		    "failed to allocate Tx ring DMA tag\n");
762 		goto fail;
763 	}
764 
765 	/* create tag for Rx ring. */
766 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
767 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
768 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
769 		    BUS_SPACE_MAXADDR,		/* highaddr */
770 		    NULL, NULL,			/* filter, filterarg */
771 		    STGE_RX_RING_SZ,		/* maxsize */
772 		    1,				/* nsegments */
773 		    STGE_RX_RING_SZ,		/* maxsegsize */
774 		    0,				/* flags */
775 		    NULL, NULL,			/* lockfunc, lockarg */
776 		    &sc->sc_cdata.stge_rx_ring_tag);
777 	if (error != 0) {
778 		device_printf(sc->sc_dev,
779 		    "failed to allocate Rx ring DMA tag\n");
780 		goto fail;
781 	}
782 
783 	/* create tag for Tx buffers. */
784 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
785 		    1, 0,			/* algnmnt, boundary */
786 		    BUS_SPACE_MAXADDR,		/* lowaddr */
787 		    BUS_SPACE_MAXADDR,		/* highaddr */
788 		    NULL, NULL,			/* filter, filterarg */
789 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
790 		    STGE_MAXTXSEGS,		/* nsegments */
791 		    MCLBYTES,			/* maxsegsize */
792 		    0,				/* flags */
793 		    NULL, NULL,			/* lockfunc, lockarg */
794 		    &sc->sc_cdata.stge_tx_tag);
795 	if (error != 0) {
796 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
797 		goto fail;
798 	}
799 
800 	/* create tag for Rx buffers. */
801 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
802 		    1, 0,			/* algnmnt, boundary */
803 		    BUS_SPACE_MAXADDR,		/* lowaddr */
804 		    BUS_SPACE_MAXADDR,		/* highaddr */
805 		    NULL, NULL,			/* filter, filterarg */
806 		    MCLBYTES,			/* maxsize */
807 		    1,				/* nsegments */
808 		    MCLBYTES,			/* maxsegsize */
809 		    0,				/* flags */
810 		    NULL, NULL,			/* lockfunc, lockarg */
811 		    &sc->sc_cdata.stge_rx_tag);
812 	if (error != 0) {
813 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
814 		goto fail;
815 	}
816 
817 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
818 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
819 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
820 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
821 	if (error != 0) {
822 		device_printf(sc->sc_dev,
823 		    "failed to allocate DMA'able memory for Tx ring\n");
824 		goto fail;
825 	}
826 
827 	ctx.stge_busaddr = 0;
828 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
829 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
830 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
831 	if (error != 0 || ctx.stge_busaddr == 0) {
832 		device_printf(sc->sc_dev,
833 		    "failed to load DMA'able memory for Tx ring\n");
834 		goto fail;
835 	}
836 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
837 
838 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
839 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
840 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
841 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
842 	if (error != 0) {
843 		device_printf(sc->sc_dev,
844 		    "failed to allocate DMA'able memory for Rx ring\n");
845 		goto fail;
846 	}
847 
848 	ctx.stge_busaddr = 0;
849 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
850 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
851 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
852 	if (error != 0 || ctx.stge_busaddr == 0) {
853 		device_printf(sc->sc_dev,
854 		    "failed to load DMA'able memory for Rx ring\n");
855 		goto fail;
856 	}
857 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
858 
859 	/* create DMA maps for Tx buffers. */
860 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
861 		txd = &sc->sc_cdata.stge_txdesc[i];
862 		txd->tx_m = NULL;
863 		txd->tx_dmamap = 0;
864 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
865 		    &txd->tx_dmamap);
866 		if (error != 0) {
867 			device_printf(sc->sc_dev,
868 			    "failed to create Tx dmamap\n");
869 			goto fail;
870 		}
871 	}
872 	/* create DMA maps for Rx buffers. */
873 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
874 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
875 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
876 		goto fail;
877 	}
878 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
879 		rxd = &sc->sc_cdata.stge_rxdesc[i];
880 		rxd->rx_m = NULL;
881 		rxd->rx_dmamap = 0;
882 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
883 		    &rxd->rx_dmamap);
884 		if (error != 0) {
885 			device_printf(sc->sc_dev,
886 			    "failed to create Rx dmamap\n");
887 			goto fail;
888 		}
889 	}
890 
891 fail:
892 	return (error);
893 }
894 
895 static void
896 stge_dma_free(struct stge_softc *sc)
897 {
898 	struct stge_txdesc *txd;
899 	struct stge_rxdesc *rxd;
900 	int i;
901 
902 	/* Tx ring */
903 	if (sc->sc_cdata.stge_tx_ring_tag) {
904 		if (sc->sc_rdata.stge_tx_ring_paddr)
905 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
906 			    sc->sc_cdata.stge_tx_ring_map);
907 		if (sc->sc_rdata.stge_tx_ring)
908 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
909 			    sc->sc_rdata.stge_tx_ring,
910 			    sc->sc_cdata.stge_tx_ring_map);
911 		sc->sc_rdata.stge_tx_ring = NULL;
912 		sc->sc_rdata.stge_tx_ring_paddr = 0;
913 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
914 		sc->sc_cdata.stge_tx_ring_tag = NULL;
915 	}
916 	/* Rx ring */
917 	if (sc->sc_cdata.stge_rx_ring_tag) {
918 		if (sc->sc_rdata.stge_rx_ring_paddr)
919 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
920 			    sc->sc_cdata.stge_rx_ring_map);
921 		if (sc->sc_rdata.stge_rx_ring)
922 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
923 			    sc->sc_rdata.stge_rx_ring,
924 			    sc->sc_cdata.stge_rx_ring_map);
925 		sc->sc_rdata.stge_rx_ring = NULL;
926 		sc->sc_rdata.stge_rx_ring_paddr = 0;
927 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
928 		sc->sc_cdata.stge_rx_ring_tag = NULL;
929 	}
930 	/* Tx buffers */
931 	if (sc->sc_cdata.stge_tx_tag) {
932 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
933 			txd = &sc->sc_cdata.stge_txdesc[i];
934 			if (txd->tx_dmamap) {
935 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
936 				    txd->tx_dmamap);
937 				txd->tx_dmamap = 0;
938 			}
939 		}
940 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
941 		sc->sc_cdata.stge_tx_tag = NULL;
942 	}
943 	/* Rx buffers */
944 	if (sc->sc_cdata.stge_rx_tag) {
945 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
946 			rxd = &sc->sc_cdata.stge_rxdesc[i];
947 			if (rxd->rx_dmamap) {
948 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
949 				    rxd->rx_dmamap);
950 				rxd->rx_dmamap = 0;
951 			}
952 		}
953 		if (sc->sc_cdata.stge_rx_sparemap) {
954 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
955 			    sc->sc_cdata.stge_rx_sparemap);
956 			sc->sc_cdata.stge_rx_sparemap = 0;
957 		}
958 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
959 		sc->sc_cdata.stge_rx_tag = NULL;
960 	}
961 
962 	if (sc->sc_cdata.stge_parent_tag) {
963 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
964 		sc->sc_cdata.stge_parent_tag = NULL;
965 	}
966 }
967 
968 /*
969  * stge_shutdown:
970  *
971  *	Make sure the interface is stopped at reboot time.
972  */
973 static int
974 stge_shutdown(device_t dev)
975 {
976 
977 	return (stge_suspend(dev));
978 }
979 
980 static void
981 stge_setwol(struct stge_softc *sc)
982 {
983 	struct ifnet *ifp;
984 	uint8_t v;
985 
986 	STGE_LOCK_ASSERT(sc);
987 
988 	ifp = sc->sc_ifp;
989 	v = CSR_READ_1(sc, STGE_WakeEvent);
990 	/* Disable all WOL bits. */
991 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
992 	    WE_WakeOnLanEnable);
993 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
994 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
995 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
996 	/* Reset Tx and prevent transmission. */
997 	CSR_WRITE_4(sc, STGE_AsicCtrl,
998 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
999 	/*
1000 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1001 	 * into sleep so there is no need to try to resetting link speed.
1002 	 */
1003 }
1004 
1005 static int
1006 stge_suspend(device_t dev)
1007 {
1008 	struct stge_softc *sc;
1009 
1010 	sc = device_get_softc(dev);
1011 
1012 	STGE_LOCK(sc);
1013 	stge_stop(sc);
1014 	sc->sc_suspended = 1;
1015 	stge_setwol(sc);
1016 	STGE_UNLOCK(sc);
1017 
1018 	return (0);
1019 }
1020 
1021 static int
1022 stge_resume(device_t dev)
1023 {
1024 	struct stge_softc *sc;
1025 	struct ifnet *ifp;
1026 	uint8_t v;
1027 
1028 	sc = device_get_softc(dev);
1029 
1030 	STGE_LOCK(sc);
1031 	/*
1032 	 * Clear WOL bits, so special frames wouldn't interfere
1033 	 * normal Rx operation anymore.
1034 	 */
1035 	v = CSR_READ_1(sc, STGE_WakeEvent);
1036 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1037 	    WE_WakeOnLanEnable);
1038 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1039 	ifp = sc->sc_ifp;
1040 	if (ifp->if_flags & IFF_UP)
1041 		stge_init_locked(sc);
1042 
1043 	sc->sc_suspended = 0;
1044 	STGE_UNLOCK(sc);
1045 
1046 	return (0);
1047 }
1048 
1049 static void
1050 stge_dma_wait(struct stge_softc *sc)
1051 {
1052 	int i;
1053 
1054 	for (i = 0; i < STGE_TIMEOUT; i++) {
1055 		DELAY(2);
1056 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1057 			break;
1058 	}
1059 
1060 	if (i == STGE_TIMEOUT)
1061 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1062 }
1063 
1064 static int
1065 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1066 {
1067 	struct stge_txdesc *txd;
1068 	struct stge_tfd *tfd;
1069 	struct mbuf *m;
1070 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1071 	int error, i, nsegs, si;
1072 	uint64_t csum_flags, tfc;
1073 
1074 	STGE_LOCK_ASSERT(sc);
1075 
1076 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1077 		return (ENOBUFS);
1078 
1079 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1080 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1081 	if (error == EFBIG) {
1082 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1083 		if (m == NULL) {
1084 			m_freem(*m_head);
1085 			*m_head = NULL;
1086 			return (ENOMEM);
1087 		}
1088 		*m_head = m;
1089 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1090 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1091 		if (error != 0) {
1092 			m_freem(*m_head);
1093 			*m_head = NULL;
1094 			return (error);
1095 		}
1096 	} else if (error != 0)
1097 		return (error);
1098 	if (nsegs == 0) {
1099 		m_freem(*m_head);
1100 		*m_head = NULL;
1101 		return (EIO);
1102 	}
1103 
1104 	m = *m_head;
1105 	csum_flags = 0;
1106 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1107 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1108 			csum_flags |= TFD_IPChecksumEnable;
1109 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1110 			csum_flags |= TFD_TCPChecksumEnable;
1111 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1112 			csum_flags |= TFD_UDPChecksumEnable;
1113 	}
1114 
1115 	si = sc->sc_cdata.stge_tx_prod;
1116 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1117 	for (i = 0; i < nsegs; i++)
1118 		tfd->tfd_frags[i].frag_word0 =
1119 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1120 		    FRAG_LEN(txsegs[i].ds_len));
1121 	sc->sc_cdata.stge_tx_cnt++;
1122 
1123 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1124 	    TFD_FragCount(nsegs) | csum_flags;
1125 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1126 		tfc |= TFD_TxDMAIndicate;
1127 
1128 	/* Update producer index. */
1129 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1130 
1131 	/* Check if we have a VLAN tag to insert. */
1132 	if (m->m_flags & M_VLANTAG)
1133 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1134 	tfd->tfd_control = htole64(tfc);
1135 
1136 	/* Update Tx Queue. */
1137 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1138 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1139 	txd->tx_m = m;
1140 
1141 	/* Sync descriptors. */
1142 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1143 	    BUS_DMASYNC_PREWRITE);
1144 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1145 	    sc->sc_cdata.stge_tx_ring_map,
1146 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1147 
1148 	return (0);
1149 }
1150 
1151 /*
1152  * stge_start:		[ifnet interface function]
1153  *
1154  *	Start packet transmission on the interface.
1155  */
1156 static void
1157 stge_start(struct ifnet *ifp)
1158 {
1159 	struct stge_softc *sc;
1160 
1161 	sc = ifp->if_softc;
1162 	STGE_LOCK(sc);
1163 	stge_start_locked(ifp);
1164 	STGE_UNLOCK(sc);
1165 }
1166 
1167 static void
1168 stge_start_locked(struct ifnet *ifp)
1169 {
1170         struct stge_softc *sc;
1171         struct mbuf *m_head;
1172 	int enq;
1173 
1174 	sc = ifp->if_softc;
1175 
1176 	STGE_LOCK_ASSERT(sc);
1177 
1178 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1179 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1180 		return;
1181 
1182 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1183 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1184 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1185 			break;
1186 		}
1187 
1188 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1189 		if (m_head == NULL)
1190 			break;
1191 		/*
1192 		 * Pack the data into the transmit ring. If we
1193 		 * don't have room, set the OACTIVE flag and wait
1194 		 * for the NIC to drain the ring.
1195 		 */
1196 		if (stge_encap(sc, &m_head)) {
1197 			if (m_head == NULL)
1198 				break;
1199 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1200 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1201 			break;
1202 		}
1203 
1204 		enq++;
1205 		/*
1206 		 * If there's a BPF listener, bounce a copy of this frame
1207 		 * to him.
1208 		 */
1209 		ETHER_BPF_MTAP(ifp, m_head);
1210 	}
1211 
1212 	if (enq > 0) {
1213 		/* Transmit */
1214 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1215 
1216 		/* Set a timeout in case the chip goes out to lunch. */
1217 		sc->sc_watchdog_timer = 5;
1218 	}
1219 }
1220 
1221 /*
1222  * stge_watchdog:
1223  *
1224  *	Watchdog timer handler.
1225  */
1226 static void
1227 stge_watchdog(struct stge_softc *sc)
1228 {
1229 	struct ifnet *ifp;
1230 
1231 	STGE_LOCK_ASSERT(sc);
1232 
1233 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1234 		return;
1235 
1236 	ifp = sc->sc_ifp;
1237 	if_printf(sc->sc_ifp, "device timeout\n");
1238 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1239 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1240 	stge_init_locked(sc);
1241 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1242 		stge_start_locked(ifp);
1243 }
1244 
1245 /*
1246  * stge_ioctl:		[ifnet interface function]
1247  *
1248  *	Handle control requests from the operator.
1249  */
1250 static int
1251 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1252 {
1253 	struct stge_softc *sc;
1254 	struct ifreq *ifr;
1255 	struct mii_data *mii;
1256 	int error, mask;
1257 
1258 	sc = ifp->if_softc;
1259 	ifr = (struct ifreq *)data;
1260 	error = 0;
1261 	switch (cmd) {
1262 	case SIOCSIFMTU:
1263 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1264 			error = EINVAL;
1265 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1266 			ifp->if_mtu = ifr->ifr_mtu;
1267 			STGE_LOCK(sc);
1268 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1269 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1270 				stge_init_locked(sc);
1271 			}
1272 			STGE_UNLOCK(sc);
1273 		}
1274 		break;
1275 	case SIOCSIFFLAGS:
1276 		STGE_LOCK(sc);
1277 		if ((ifp->if_flags & IFF_UP) != 0) {
1278 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1279 				if (((ifp->if_flags ^ sc->sc_if_flags)
1280 				    & IFF_PROMISC) != 0)
1281 					stge_set_filter(sc);
1282 			} else {
1283 				if (sc->sc_detach == 0)
1284 					stge_init_locked(sc);
1285 			}
1286 		} else {
1287 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1288 				stge_stop(sc);
1289 		}
1290 		sc->sc_if_flags = ifp->if_flags;
1291 		STGE_UNLOCK(sc);
1292 		break;
1293 	case SIOCADDMULTI:
1294 	case SIOCDELMULTI:
1295 		STGE_LOCK(sc);
1296 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1297 			stge_set_multi(sc);
1298 		STGE_UNLOCK(sc);
1299 		break;
1300 	case SIOCSIFMEDIA:
1301 	case SIOCGIFMEDIA:
1302 		mii = device_get_softc(sc->sc_miibus);
1303 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1304 		break;
1305 	case SIOCSIFCAP:
1306 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1307 #ifdef DEVICE_POLLING
1308 		if ((mask & IFCAP_POLLING) != 0) {
1309 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1310 				error = ether_poll_register(stge_poll, ifp);
1311 				if (error != 0)
1312 					break;
1313 				STGE_LOCK(sc);
1314 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1315 				ifp->if_capenable |= IFCAP_POLLING;
1316 				STGE_UNLOCK(sc);
1317 			} else {
1318 				error = ether_poll_deregister(ifp);
1319 				if (error != 0)
1320 					break;
1321 				STGE_LOCK(sc);
1322 				CSR_WRITE_2(sc, STGE_IntEnable,
1323 				    sc->sc_IntEnable);
1324 				ifp->if_capenable &= ~IFCAP_POLLING;
1325 				STGE_UNLOCK(sc);
1326 			}
1327 		}
1328 #endif
1329 		if ((mask & IFCAP_HWCSUM) != 0) {
1330 			ifp->if_capenable ^= IFCAP_HWCSUM;
1331 			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1332 			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1333 				ifp->if_hwassist = STGE_CSUM_FEATURES;
1334 			else
1335 				ifp->if_hwassist = 0;
1336 		}
1337 		if ((mask & IFCAP_WOL) != 0 &&
1338 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1339 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1340 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1341 		}
1342 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1343 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1344 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1345 				STGE_LOCK(sc);
1346 				stge_vlan_setup(sc);
1347 				STGE_UNLOCK(sc);
1348 			}
1349 		}
1350 		VLAN_CAPABILITIES(ifp);
1351 		break;
1352 	default:
1353 		error = ether_ioctl(ifp, cmd, data);
1354 		break;
1355 	}
1356 
1357 	return (error);
1358 }
1359 
1360 static void
1361 stge_link_task(void *arg, int pending)
1362 {
1363 	struct stge_softc *sc;
1364 	struct mii_data *mii;
1365 	uint32_t v, ac;
1366 	int i;
1367 
1368 	sc = (struct stge_softc *)arg;
1369 	STGE_LOCK(sc);
1370 
1371 	mii = device_get_softc(sc->sc_miibus);
1372 	if (mii->mii_media_status & IFM_ACTIVE) {
1373 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1374 			sc->sc_link = 1;
1375 	} else
1376 		sc->sc_link = 0;
1377 
1378 	sc->sc_MACCtrl = 0;
1379 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1380 		sc->sc_MACCtrl |= MC_DuplexSelect;
1381 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1382 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1383 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1384 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1385 	/*
1386 	 * Update STGE_MACCtrl register depending on link status.
1387 	 * (duplex, flow control etc)
1388 	 */
1389 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1390 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1391 	v |= sc->sc_MACCtrl;
1392 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1393 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1394 		/* Duplex setting changed, reset Tx/Rx functions. */
1395 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1396 		ac |= AC_TxReset | AC_RxReset;
1397 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1398 		for (i = 0; i < STGE_TIMEOUT; i++) {
1399 			DELAY(100);
1400 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1401 				break;
1402 		}
1403 		if (i == STGE_TIMEOUT)
1404 			device_printf(sc->sc_dev, "reset failed to complete\n");
1405 	}
1406 	STGE_UNLOCK(sc);
1407 }
1408 
1409 static __inline int
1410 stge_tx_error(struct stge_softc *sc)
1411 {
1412 	uint32_t txstat;
1413 	int error;
1414 
1415 	for (error = 0;;) {
1416 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1417 		if ((txstat & TS_TxComplete) == 0)
1418 			break;
1419 		/* Tx underrun */
1420 		if ((txstat & TS_TxUnderrun) != 0) {
1421 			/*
1422 			 * XXX
1423 			 * There should be a more better way to recover
1424 			 * from Tx underrun instead of a full reset.
1425 			 */
1426 			if (sc->sc_nerr++ < STGE_MAXERR)
1427 				device_printf(sc->sc_dev, "Tx underrun, "
1428 				    "resetting...\n");
1429 			if (sc->sc_nerr == STGE_MAXERR)
1430 				device_printf(sc->sc_dev, "too many errors; "
1431 				    "not reporting any more\n");
1432 			error = -1;
1433 			break;
1434 		}
1435 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1436 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1437 			CSR_WRITE_4(sc, STGE_MACCtrl,
1438 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1439 			    MC_TxEnable);
1440 	}
1441 
1442 	return (error);
1443 }
1444 
1445 /*
1446  * stge_intr:
1447  *
1448  *	Interrupt service routine.
1449  */
1450 static void
1451 stge_intr(void *arg)
1452 {
1453 	struct stge_softc *sc;
1454 	struct ifnet *ifp;
1455 	int reinit;
1456 	uint16_t status;
1457 
1458 	sc = (struct stge_softc *)arg;
1459 	ifp = sc->sc_ifp;
1460 
1461 	STGE_LOCK(sc);
1462 
1463 #ifdef DEVICE_POLLING
1464 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1465 		goto done_locked;
1466 #endif
1467 	status = CSR_READ_2(sc, STGE_IntStatus);
1468 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1469 		goto done_locked;
1470 
1471 	/* Disable interrupts. */
1472 	for (reinit = 0;;) {
1473 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1474 		status &= sc->sc_IntEnable;
1475 		if (status == 0)
1476 			break;
1477 		/* Host interface errors. */
1478 		if ((status & IS_HostError) != 0) {
1479 			device_printf(sc->sc_dev,
1480 			    "Host interface error, resetting...\n");
1481 			reinit = 1;
1482 			goto force_init;
1483 		}
1484 
1485 		/* Receive interrupts. */
1486 		if ((status & IS_RxDMAComplete) != 0) {
1487 			stge_rxeof(sc);
1488 			if ((status & IS_RFDListEnd) != 0)
1489 				CSR_WRITE_4(sc, STGE_DMACtrl,
1490 				    DMAC_RxDMAPollNow);
1491 		}
1492 
1493 		/* Transmit interrupts. */
1494 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1495 			stge_txeof(sc);
1496 
1497 		/* Transmission errors.*/
1498 		if ((status & IS_TxComplete) != 0) {
1499 			if ((reinit = stge_tx_error(sc)) != 0)
1500 				break;
1501 		}
1502 	}
1503 
1504 force_init:
1505 	if (reinit != 0) {
1506 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1507 		stge_init_locked(sc);
1508 	}
1509 
1510 	/* Re-enable interrupts. */
1511 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1512 
1513 	/* Try to get more packets going. */
1514 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1515 		stge_start_locked(ifp);
1516 
1517 done_locked:
1518 	STGE_UNLOCK(sc);
1519 }
1520 
1521 /*
1522  * stge_txeof:
1523  *
1524  *	Helper; handle transmit interrupts.
1525  */
1526 static void
1527 stge_txeof(struct stge_softc *sc)
1528 {
1529 	struct ifnet *ifp;
1530 	struct stge_txdesc *txd;
1531 	uint64_t control;
1532 	int cons;
1533 
1534 	STGE_LOCK_ASSERT(sc);
1535 
1536 	ifp = sc->sc_ifp;
1537 
1538 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1539 	if (txd == NULL)
1540 		return;
1541 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1542 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1543 
1544 	/*
1545 	 * Go through our Tx list and free mbufs for those
1546 	 * frames which have been transmitted.
1547 	 */
1548 	for (cons = sc->sc_cdata.stge_tx_cons;;
1549 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1550 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1551 			break;
1552 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1553 		if ((control & TFD_TFDDone) == 0)
1554 			break;
1555 		sc->sc_cdata.stge_tx_cnt--;
1556 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1557 
1558 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1559 		    BUS_DMASYNC_POSTWRITE);
1560 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1561 
1562 		/* Output counter is updated with statistics register */
1563 		m_freem(txd->tx_m);
1564 		txd->tx_m = NULL;
1565 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1566 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1567 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1568 	}
1569 	sc->sc_cdata.stge_tx_cons = cons;
1570 	if (sc->sc_cdata.stge_tx_cnt == 0)
1571 		sc->sc_watchdog_timer = 0;
1572 
1573         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1574 	    sc->sc_cdata.stge_tx_ring_map,
1575 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1576 }
1577 
1578 static __inline void
1579 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1580 {
1581 	struct stge_rfd *rfd;
1582 
1583 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1584 	rfd->rfd_status = 0;
1585 }
1586 
1587 #ifndef __NO_STRICT_ALIGNMENT
1588 /*
1589  * It seems that TC9021's DMA engine has alignment restrictions in
1590  * DMA scatter operations. The first DMA segment has no address
1591  * alignment restrictins but the rest should be aligned on 4(?) bytes
1592  * boundary. Otherwise it would corrupt random memory. Since we don't
1593  * know which one is used for the first segment in advance we simply
1594  * don't align at all.
1595  * To avoid copying over an entire frame to align, we allocate a new
1596  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1597  * prepended into the existing mbuf chain.
1598  */
1599 static __inline struct mbuf *
1600 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1601 {
1602 	struct mbuf *n;
1603 
1604 	n = NULL;
1605 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1606 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1607 		m->m_data += ETHER_HDR_LEN;
1608 		n = m;
1609 	} else {
1610 		MGETHDR(n, M_NOWAIT, MT_DATA);
1611 		if (n != NULL) {
1612 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1613 			m->m_data += ETHER_HDR_LEN;
1614 			m->m_len -= ETHER_HDR_LEN;
1615 			n->m_len = ETHER_HDR_LEN;
1616 			M_MOVE_PKTHDR(n, m);
1617 			n->m_next = m;
1618 		} else
1619 			m_freem(m);
1620 	}
1621 
1622 	return (n);
1623 }
1624 #endif
1625 
1626 /*
1627  * stge_rxeof:
1628  *
1629  *	Helper; handle receive interrupts.
1630  */
1631 static int
1632 stge_rxeof(struct stge_softc *sc)
1633 {
1634 	struct ifnet *ifp;
1635 	struct stge_rxdesc *rxd;
1636 	struct mbuf *mp, *m;
1637 	uint64_t status64;
1638 	uint32_t status;
1639 	int cons, prog, rx_npkts;
1640 
1641 	STGE_LOCK_ASSERT(sc);
1642 
1643 	rx_npkts = 0;
1644 	ifp = sc->sc_ifp;
1645 
1646 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1647 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1648 
1649 	prog = 0;
1650 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1651 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1652 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1653 		status = RFD_RxStatus(status64);
1654 		if ((status & RFD_RFDDone) == 0)
1655 			break;
1656 #ifdef DEVICE_POLLING
1657 		if (ifp->if_capenable & IFCAP_POLLING) {
1658 			if (sc->sc_cdata.stge_rxcycles <= 0)
1659 				break;
1660 			sc->sc_cdata.stge_rxcycles--;
1661 		}
1662 #endif
1663 		prog++;
1664 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1665 		mp = rxd->rx_m;
1666 
1667 		/*
1668 		 * If the packet had an error, drop it.  Note we count
1669 		 * the error later in the periodic stats update.
1670 		 */
1671 		if ((status & RFD_FrameEnd) != 0 && (status &
1672 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1673 		    RFD_RxAlignmentError | RFD_RxFCSError |
1674 		    RFD_RxLengthError)) != 0) {
1675 			stge_discard_rxbuf(sc, cons);
1676 			if (sc->sc_cdata.stge_rxhead != NULL) {
1677 				m_freem(sc->sc_cdata.stge_rxhead);
1678 				STGE_RXCHAIN_RESET(sc);
1679 			}
1680 			continue;
1681 		}
1682 		/*
1683 		 * Add a new receive buffer to the ring.
1684 		 */
1685 		if (stge_newbuf(sc, cons) != 0) {
1686 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1687 			stge_discard_rxbuf(sc, cons);
1688 			if (sc->sc_cdata.stge_rxhead != NULL) {
1689 				m_freem(sc->sc_cdata.stge_rxhead);
1690 				STGE_RXCHAIN_RESET(sc);
1691 			}
1692 			continue;
1693 		}
1694 
1695 		if ((status & RFD_FrameEnd) != 0)
1696 			mp->m_len = RFD_RxDMAFrameLen(status) -
1697 			    sc->sc_cdata.stge_rxlen;
1698 		sc->sc_cdata.stge_rxlen += mp->m_len;
1699 
1700 		/* Chain mbufs. */
1701 		if (sc->sc_cdata.stge_rxhead == NULL) {
1702 			sc->sc_cdata.stge_rxhead = mp;
1703 			sc->sc_cdata.stge_rxtail = mp;
1704 		} else {
1705 			mp->m_flags &= ~M_PKTHDR;
1706 			sc->sc_cdata.stge_rxtail->m_next = mp;
1707 			sc->sc_cdata.stge_rxtail = mp;
1708 		}
1709 
1710 		if ((status & RFD_FrameEnd) != 0) {
1711 			m = sc->sc_cdata.stge_rxhead;
1712 			m->m_pkthdr.rcvif = ifp;
1713 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1714 
1715 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1716 				m_freem(m);
1717 				STGE_RXCHAIN_RESET(sc);
1718 				continue;
1719 			}
1720 			/*
1721 			 * Set the incoming checksum information for
1722 			 * the packet.
1723 			 */
1724 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1725 				if ((status & RFD_IPDetected) != 0) {
1726 					m->m_pkthdr.csum_flags |=
1727 						CSUM_IP_CHECKED;
1728 					if ((status & RFD_IPError) == 0)
1729 						m->m_pkthdr.csum_flags |=
1730 						    CSUM_IP_VALID;
1731 				}
1732 				if (((status & RFD_TCPDetected) != 0 &&
1733 				    (status & RFD_TCPError) == 0) ||
1734 				    ((status & RFD_UDPDetected) != 0 &&
1735 				    (status & RFD_UDPError) == 0)) {
1736 					m->m_pkthdr.csum_flags |=
1737 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1738 					m->m_pkthdr.csum_data = 0xffff;
1739 				}
1740 			}
1741 
1742 #ifndef __NO_STRICT_ALIGNMENT
1743 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1744 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1745 					STGE_RXCHAIN_RESET(sc);
1746 					continue;
1747 				}
1748 			}
1749 #endif
1750 			/* Check for VLAN tagged packets. */
1751 			if ((status & RFD_VLANDetected) != 0 &&
1752 			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1753 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1754 				m->m_flags |= M_VLANTAG;
1755 			}
1756 
1757 			STGE_UNLOCK(sc);
1758 			/* Pass it on. */
1759 			(*ifp->if_input)(ifp, m);
1760 			STGE_LOCK(sc);
1761 			rx_npkts++;
1762 
1763 			STGE_RXCHAIN_RESET(sc);
1764 		}
1765 	}
1766 
1767 	if (prog > 0) {
1768 		/* Update the consumer index. */
1769 		sc->sc_cdata.stge_rx_cons = cons;
1770 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1771 		    sc->sc_cdata.stge_rx_ring_map,
1772 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1773 	}
1774 	return (rx_npkts);
1775 }
1776 
1777 #ifdef DEVICE_POLLING
1778 static int
1779 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1780 {
1781 	struct stge_softc *sc;
1782 	uint16_t status;
1783 	int rx_npkts;
1784 
1785 	rx_npkts = 0;
1786 	sc = ifp->if_softc;
1787 	STGE_LOCK(sc);
1788 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1789 		STGE_UNLOCK(sc);
1790 		return (rx_npkts);
1791 	}
1792 
1793 	sc->sc_cdata.stge_rxcycles = count;
1794 	rx_npkts = stge_rxeof(sc);
1795 	stge_txeof(sc);
1796 
1797 	if (cmd == POLL_AND_CHECK_STATUS) {
1798 		status = CSR_READ_2(sc, STGE_IntStatus);
1799 		status &= sc->sc_IntEnable;
1800 		if (status != 0) {
1801 			if ((status & IS_HostError) != 0) {
1802 				device_printf(sc->sc_dev,
1803 				    "Host interface error, resetting...\n");
1804 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1805 				stge_init_locked(sc);
1806 			}
1807 			if ((status & IS_TxComplete) != 0) {
1808 				if (stge_tx_error(sc) != 0) {
1809 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1810 					stge_init_locked(sc);
1811 				}
1812 			}
1813 		}
1814 
1815 	}
1816 
1817 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1818 		stge_start_locked(ifp);
1819 
1820 	STGE_UNLOCK(sc);
1821 	return (rx_npkts);
1822 }
1823 #endif	/* DEVICE_POLLING */
1824 
1825 /*
1826  * stge_tick:
1827  *
1828  *	One second timer, used to tick the MII.
1829  */
1830 static void
1831 stge_tick(void *arg)
1832 {
1833 	struct stge_softc *sc;
1834 	struct mii_data *mii;
1835 
1836 	sc = (struct stge_softc *)arg;
1837 
1838 	STGE_LOCK_ASSERT(sc);
1839 
1840 	mii = device_get_softc(sc->sc_miibus);
1841 	mii_tick(mii);
1842 
1843 	/* Update statistics counters. */
1844 	stge_stats_update(sc);
1845 
1846 	/*
1847 	 * Relcaim any pending Tx descriptors to release mbufs in a
1848 	 * timely manner as we don't generate Tx completion interrupts
1849 	 * for every frame. This limits the delay to a maximum of one
1850 	 * second.
1851 	 */
1852 	if (sc->sc_cdata.stge_tx_cnt != 0)
1853 		stge_txeof(sc);
1854 
1855 	stge_watchdog(sc);
1856 
1857 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1858 }
1859 
1860 /*
1861  * stge_stats_update:
1862  *
1863  *	Read the TC9021 statistics counters.
1864  */
1865 static void
1866 stge_stats_update(struct stge_softc *sc)
1867 {
1868 	struct ifnet *ifp;
1869 
1870 	STGE_LOCK_ASSERT(sc);
1871 
1872 	ifp = sc->sc_ifp;
1873 
1874 	CSR_READ_4(sc,STGE_OctetRcvOk);
1875 
1876 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1877 
1878 	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1879 
1880 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1881 
1882 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1883 
1884 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1885 	    CSR_READ_4(sc, STGE_LateCollisions) +
1886 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1887 	    CSR_READ_4(sc, STGE_SingleColFrames));
1888 
1889 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1890 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1891 	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1892 }
1893 
1894 /*
1895  * stge_reset:
1896  *
1897  *	Perform a soft reset on the TC9021.
1898  */
1899 static void
1900 stge_reset(struct stge_softc *sc, uint32_t how)
1901 {
1902 	uint32_t ac;
1903 	uint8_t v;
1904 	int i, dv;
1905 
1906 	STGE_LOCK_ASSERT(sc);
1907 
1908 	dv = 5000;
1909 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1910 	switch (how) {
1911 	case STGE_RESET_TX:
1912 		ac |= AC_TxReset | AC_FIFO;
1913 		dv = 100;
1914 		break;
1915 	case STGE_RESET_RX:
1916 		ac |= AC_RxReset | AC_FIFO;
1917 		dv = 100;
1918 		break;
1919 	case STGE_RESET_FULL:
1920 	default:
1921 		/*
1922 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1923 		 * to be present in order for the reset to complete on fiber
1924 		 * cards.
1925 		 */
1926 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1927 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1928 		    (sc->sc_usefiber ? AC_RstOut : 0);
1929 		break;
1930 	}
1931 
1932 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1933 
1934 	/* Account for reset problem at 10Mbps. */
1935 	DELAY(dv);
1936 
1937 	for (i = 0; i < STGE_TIMEOUT; i++) {
1938 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1939 			break;
1940 		DELAY(dv);
1941 	}
1942 
1943 	if (i == STGE_TIMEOUT)
1944 		device_printf(sc->sc_dev, "reset failed to complete\n");
1945 
1946 	/* Set LED, from Linux IPG driver. */
1947 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1948 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1949 	if ((sc->sc_led & 0x01) != 0)
1950 		ac |= AC_LEDMode;
1951 	if ((sc->sc_led & 0x03) != 0)
1952 		ac |= AC_LEDModeBit1;
1953 	if ((sc->sc_led & 0x08) != 0)
1954 		ac |= AC_LEDSpeed;
1955 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1956 
1957 	/* Set PHY, from Linux IPG driver */
1958 	v = CSR_READ_1(sc, STGE_PhySet);
1959 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1960 	v |= ((sc->sc_led & 0x70) >> 4);
1961 	CSR_WRITE_1(sc, STGE_PhySet, v);
1962 }
1963 
1964 /*
1965  * stge_init:		[ ifnet interface function ]
1966  *
1967  *	Initialize the interface.
1968  */
1969 static void
1970 stge_init(void *xsc)
1971 {
1972 	struct stge_softc *sc;
1973 
1974 	sc = (struct stge_softc *)xsc;
1975 	STGE_LOCK(sc);
1976 	stge_init_locked(sc);
1977 	STGE_UNLOCK(sc);
1978 }
1979 
1980 static void
1981 stge_init_locked(struct stge_softc *sc)
1982 {
1983 	struct ifnet *ifp;
1984 	struct mii_data *mii;
1985 	uint16_t eaddr[3];
1986 	uint32_t v;
1987 	int error;
1988 
1989 	STGE_LOCK_ASSERT(sc);
1990 
1991 	ifp = sc->sc_ifp;
1992 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1993 		return;
1994 	mii = device_get_softc(sc->sc_miibus);
1995 
1996 	/*
1997 	 * Cancel any pending I/O.
1998 	 */
1999 	stge_stop(sc);
2000 
2001 	/*
2002 	 * Reset the chip to a known state.
2003 	 */
2004 	stge_reset(sc, STGE_RESET_FULL);
2005 
2006 	/* Init descriptors. */
2007 	error = stge_init_rx_ring(sc);
2008         if (error != 0) {
2009                 device_printf(sc->sc_dev,
2010                     "initialization failed: no memory for rx buffers\n");
2011                 stge_stop(sc);
2012 		goto out;
2013         }
2014 	stge_init_tx_ring(sc);
2015 
2016 	/* Set the station address. */
2017 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2018 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2019 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2020 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2021 
2022 	/*
2023 	 * Set the statistics masks.  Disable all the RMON stats,
2024 	 * and disable selected stats in the non-RMON stats registers.
2025 	 */
2026 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2027 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2028 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2029 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2030 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2031 	    (1U << 21));
2032 
2033 	/* Set up the receive filter. */
2034 	stge_set_filter(sc);
2035 	/* Program multicast filter. */
2036 	stge_set_multi(sc);
2037 
2038 	/*
2039 	 * Give the transmit and receive ring to the chip.
2040 	 */
2041 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2042 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2043 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2044 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2045 
2046 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2047 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2048 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2049 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2050 
2051 	/*
2052 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2053 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2054 	 * transmit engine when there's actually a packet.
2055 	 */
2056 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2057 
2058 	/* ..and the Rx auto-poll period. */
2059 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2060 
2061 	/* Initialize the Tx start threshold. */
2062 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2063 
2064 	/* Rx DMA thresholds, from Linux */
2065 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2066 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2067 
2068 	/* Rx early threhold, from Linux */
2069 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2070 
2071 	/* Tx DMA thresholds, from Linux */
2072 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2073 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2074 
2075 	/*
2076 	 * Initialize the Rx DMA interrupt control register.  We
2077 	 * request an interrupt after every incoming packet, but
2078 	 * defer it for sc_rxint_dmawait us. When the number of
2079 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2080 	 * deferring the interrupt, and signal it immediately.
2081 	 */
2082 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2083 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2084 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2085 
2086 	/*
2087 	 * Initialize the interrupt mask.
2088 	 */
2089 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2090 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2091 #ifdef DEVICE_POLLING
2092 	/* Disable interrupts if we are polling. */
2093 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2094 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2095 	else
2096 #endif
2097 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2098 
2099 	/*
2100 	 * Configure the DMA engine.
2101 	 * XXX Should auto-tune TxBurstLimit.
2102 	 */
2103 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2104 
2105 	/*
2106 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2107 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2108 	 * in the Rx FIFO.
2109 	 */
2110 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2111 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2112 
2113 	/*
2114 	 * Set the maximum frame size.
2115 	 */
2116 	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2117 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2118 
2119 	/*
2120 	 * Initialize MacCtrl -- do it before setting the media,
2121 	 * as setting the media will actually program the register.
2122 	 *
2123 	 * Note: We have to poke the IFS value before poking
2124 	 * anything else.
2125 	 */
2126 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2127 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2128 
2129 	stge_vlan_setup(sc);
2130 
2131 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2132 		/* Multi-frag frame bug work-around. */
2133 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2134 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2135 
2136 		/* Tx Poll Now bug work-around. */
2137 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2138 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2139 		/* Tx Poll Now bug work-around. */
2140 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2141 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2142 	}
2143 
2144 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2145 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2146 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2147 	/*
2148 	 * It seems that transmitting frames without checking the state of
2149 	 * Rx/Tx MAC wedge the hardware.
2150 	 */
2151 	stge_start_tx(sc);
2152 	stge_start_rx(sc);
2153 
2154 	sc->sc_link = 0;
2155 	/*
2156 	 * Set the current media.
2157 	 */
2158 	mii_mediachg(mii);
2159 
2160 	/*
2161 	 * Start the one second MII clock.
2162 	 */
2163 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2164 
2165 	/*
2166 	 * ...all done!
2167 	 */
2168 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2169 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2170 
2171  out:
2172 	if (error != 0)
2173 		device_printf(sc->sc_dev, "interface not running\n");
2174 }
2175 
2176 static void
2177 stge_vlan_setup(struct stge_softc *sc)
2178 {
2179 	struct ifnet *ifp;
2180 	uint32_t v;
2181 
2182 	ifp = sc->sc_ifp;
2183 	/*
2184 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2185 	 * MC_AutoVLANuntagging bit.
2186 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2187 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2188 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2189 	 * use TFC instead of STGE_VLANTag register.
2190 	 */
2191 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2192 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2193 		v |= MC_AutoVLANuntagging;
2194 	else
2195 		v &= ~MC_AutoVLANuntagging;
2196 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2197 }
2198 
2199 /*
2200  *	Stop transmission on the interface.
2201  */
2202 static void
2203 stge_stop(struct stge_softc *sc)
2204 {
2205 	struct ifnet *ifp;
2206 	struct stge_txdesc *txd;
2207 	struct stge_rxdesc *rxd;
2208 	uint32_t v;
2209 	int i;
2210 
2211 	STGE_LOCK_ASSERT(sc);
2212 	/*
2213 	 * Stop the one second clock.
2214 	 */
2215 	callout_stop(&sc->sc_tick_ch);
2216 	sc->sc_watchdog_timer = 0;
2217 
2218 	/*
2219 	 * Disable interrupts.
2220 	 */
2221 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2222 
2223 	/*
2224 	 * Stop receiver, transmitter, and stats update.
2225 	 */
2226 	stge_stop_rx(sc);
2227 	stge_stop_tx(sc);
2228 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2229 	v |= MC_StatisticsDisable;
2230 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2231 
2232 	/*
2233 	 * Stop the transmit and receive DMA.
2234 	 */
2235 	stge_dma_wait(sc);
2236 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2237 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2238 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2239 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2240 
2241 	/*
2242 	 * Free RX and TX mbufs still in the queues.
2243 	 */
2244 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2245 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2246 		if (rxd->rx_m != NULL) {
2247 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2248 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2249 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2250 			    rxd->rx_dmamap);
2251 			m_freem(rxd->rx_m);
2252 			rxd->rx_m = NULL;
2253 		}
2254         }
2255 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2256 		txd = &sc->sc_cdata.stge_txdesc[i];
2257 		if (txd->tx_m != NULL) {
2258 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2259 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2260 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2261 			    txd->tx_dmamap);
2262 			m_freem(txd->tx_m);
2263 			txd->tx_m = NULL;
2264 		}
2265         }
2266 
2267 	/*
2268 	 * Mark the interface down and cancel the watchdog timer.
2269 	 */
2270 	ifp = sc->sc_ifp;
2271 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2272 	sc->sc_link = 0;
2273 }
2274 
2275 static void
2276 stge_start_tx(struct stge_softc *sc)
2277 {
2278 	uint32_t v;
2279 	int i;
2280 
2281 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2282 	if ((v & MC_TxEnabled) != 0)
2283 		return;
2284 	v |= MC_TxEnable;
2285 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2286 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2287 	for (i = STGE_TIMEOUT; i > 0; i--) {
2288 		DELAY(10);
2289 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2290 		if ((v & MC_TxEnabled) != 0)
2291 			break;
2292 	}
2293 	if (i == 0)
2294 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2295 }
2296 
2297 static void
2298 stge_start_rx(struct stge_softc *sc)
2299 {
2300 	uint32_t v;
2301 	int i;
2302 
2303 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2304 	if ((v & MC_RxEnabled) != 0)
2305 		return;
2306 	v |= MC_RxEnable;
2307 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2308 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2309 	for (i = STGE_TIMEOUT; i > 0; i--) {
2310 		DELAY(10);
2311 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2312 		if ((v & MC_RxEnabled) != 0)
2313 			break;
2314 	}
2315 	if (i == 0)
2316 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2317 }
2318 
2319 static void
2320 stge_stop_tx(struct stge_softc *sc)
2321 {
2322 	uint32_t v;
2323 	int i;
2324 
2325 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2326 	if ((v & MC_TxEnabled) == 0)
2327 		return;
2328 	v |= MC_TxDisable;
2329 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2330 	for (i = STGE_TIMEOUT; i > 0; i--) {
2331 		DELAY(10);
2332 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2333 		if ((v & MC_TxEnabled) == 0)
2334 			break;
2335 	}
2336 	if (i == 0)
2337 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2338 }
2339 
2340 static void
2341 stge_stop_rx(struct stge_softc *sc)
2342 {
2343 	uint32_t v;
2344 	int i;
2345 
2346 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2347 	if ((v & MC_RxEnabled) == 0)
2348 		return;
2349 	v |= MC_RxDisable;
2350 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2351 	for (i = STGE_TIMEOUT; i > 0; i--) {
2352 		DELAY(10);
2353 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2354 		if ((v & MC_RxEnabled) == 0)
2355 			break;
2356 	}
2357 	if (i == 0)
2358 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2359 }
2360 
2361 static void
2362 stge_init_tx_ring(struct stge_softc *sc)
2363 {
2364 	struct stge_ring_data *rd;
2365 	struct stge_txdesc *txd;
2366 	bus_addr_t addr;
2367 	int i;
2368 
2369 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2370 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2371 
2372 	sc->sc_cdata.stge_tx_prod = 0;
2373 	sc->sc_cdata.stge_tx_cons = 0;
2374 	sc->sc_cdata.stge_tx_cnt = 0;
2375 
2376 	rd = &sc->sc_rdata;
2377 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2378 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2379 		if (i == (STGE_TX_RING_CNT - 1))
2380 			addr = STGE_TX_RING_ADDR(sc, 0);
2381 		else
2382 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2383 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2384 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2385 		txd = &sc->sc_cdata.stge_txdesc[i];
2386 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2387 	}
2388 
2389 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2390 	    sc->sc_cdata.stge_tx_ring_map,
2391 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2392 
2393 }
2394 
2395 static int
2396 stge_init_rx_ring(struct stge_softc *sc)
2397 {
2398 	struct stge_ring_data *rd;
2399 	bus_addr_t addr;
2400 	int i;
2401 
2402 	sc->sc_cdata.stge_rx_cons = 0;
2403 	STGE_RXCHAIN_RESET(sc);
2404 
2405 	rd = &sc->sc_rdata;
2406 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2407 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2408 		if (stge_newbuf(sc, i) != 0)
2409 			return (ENOBUFS);
2410 		if (i == (STGE_RX_RING_CNT - 1))
2411 			addr = STGE_RX_RING_ADDR(sc, 0);
2412 		else
2413 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2414 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2415 		rd->stge_rx_ring[i].rfd_status = 0;
2416 	}
2417 
2418 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2419 	    sc->sc_cdata.stge_rx_ring_map,
2420 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2421 
2422 	return (0);
2423 }
2424 
2425 /*
2426  * stge_newbuf:
2427  *
2428  *	Add a receive buffer to the indicated descriptor.
2429  */
2430 static int
2431 stge_newbuf(struct stge_softc *sc, int idx)
2432 {
2433 	struct stge_rxdesc *rxd;
2434 	struct stge_rfd *rfd;
2435 	struct mbuf *m;
2436 	bus_dma_segment_t segs[1];
2437 	bus_dmamap_t map;
2438 	int nsegs;
2439 
2440 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2441 	if (m == NULL)
2442 		return (ENOBUFS);
2443 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2444 	/*
2445 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2446 	 * frame is used.
2447 	 */
2448 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2449 		m_adj(m, ETHER_ALIGN);
2450 
2451 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2452 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2453 		m_freem(m);
2454 		return (ENOBUFS);
2455 	}
2456 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2457 
2458 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2459 	if (rxd->rx_m != NULL) {
2460 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2461 		    BUS_DMASYNC_POSTREAD);
2462 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2463 	}
2464 	map = rxd->rx_dmamap;
2465 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2466 	sc->sc_cdata.stge_rx_sparemap = map;
2467 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2468 	    BUS_DMASYNC_PREREAD);
2469 	rxd->rx_m = m;
2470 
2471 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2472 	rfd->rfd_frag.frag_word0 =
2473 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2474 	rfd->rfd_status = 0;
2475 
2476 	return (0);
2477 }
2478 
2479 /*
2480  * stge_set_filter:
2481  *
2482  *	Set up the receive filter.
2483  */
2484 static void
2485 stge_set_filter(struct stge_softc *sc)
2486 {
2487 	struct ifnet *ifp;
2488 	uint16_t mode;
2489 
2490 	STGE_LOCK_ASSERT(sc);
2491 
2492 	ifp = sc->sc_ifp;
2493 
2494 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2495 	mode |= RM_ReceiveUnicast;
2496 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2497 		mode |= RM_ReceiveBroadcast;
2498 	else
2499 		mode &= ~RM_ReceiveBroadcast;
2500 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2501 		mode |= RM_ReceiveAllFrames;
2502 	else
2503 		mode &= ~RM_ReceiveAllFrames;
2504 
2505 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2506 }
2507 
2508 static void
2509 stge_set_multi(struct stge_softc *sc)
2510 {
2511 	struct ifnet *ifp;
2512 	struct ifmultiaddr *ifma;
2513 	uint32_t crc;
2514 	uint32_t mchash[2];
2515 	uint16_t mode;
2516 	int count;
2517 
2518 	STGE_LOCK_ASSERT(sc);
2519 
2520 	ifp = sc->sc_ifp;
2521 
2522 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2523 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2524 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2525 			mode |= RM_ReceiveAllFrames;
2526 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2527 			mode |= RM_ReceiveMulticast;
2528 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2529 		return;
2530 	}
2531 
2532 	/* clear existing filters. */
2533 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2534 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2535 
2536 	/*
2537 	 * Set up the multicast address filter by passing all multicast
2538 	 * addresses through a CRC generator, and then using the low-order
2539 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2540 	 * high order bits select the register, while the rest of the bits
2541 	 * select the bit within the register.
2542 	 */
2543 
2544 	bzero(mchash, sizeof(mchash));
2545 
2546 	count = 0;
2547 	if_maddr_rlock(sc->sc_ifp);
2548 	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2549 		if (ifma->ifma_addr->sa_family != AF_LINK)
2550 			continue;
2551 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2552 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2553 
2554 		/* Just want the 6 least significant bits. */
2555 		crc &= 0x3f;
2556 
2557 		/* Set the corresponding bit in the hash table. */
2558 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2559 		count++;
2560 	}
2561 	if_maddr_runlock(ifp);
2562 
2563 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2564 	if (count > 0)
2565 		mode |= RM_ReceiveMulticastHash;
2566 	else
2567 		mode &= ~RM_ReceiveMulticastHash;
2568 
2569 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2570 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2571 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2572 }
2573 
2574 static int
2575 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2576 {
2577 	int error, value;
2578 
2579 	if (!arg1)
2580 		return (EINVAL);
2581 	value = *(int *)arg1;
2582 	error = sysctl_handle_int(oidp, &value, 0, req);
2583 	if (error || !req->newptr)
2584 		return (error);
2585 	if (value < low || value > high)
2586 		return (EINVAL);
2587         *(int *)arg1 = value;
2588 
2589         return (0);
2590 }
2591 
2592 static int
2593 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2594 {
2595 	return (sysctl_int_range(oidp, arg1, arg2, req,
2596 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2597 }
2598 
2599 static int
2600 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2601 {
2602 	return (sysctl_int_range(oidp, arg1, arg2, req,
2603 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2604 }
2605