xref: /freebsd/sys/dev/stge/if_stge.c (revision 3cbb4cc200f8a0ad7ed08233425ea54524a21f1c)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause-NetBSD
5  *
6  * Copyright (c) 2001 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Jason R. Thorpe.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Device driver for the Sundance Tech. TC9021 10/100/1000
36  * Ethernet controller.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #ifdef HAVE_KERNEL_OPTION_HEADERS
43 #include "opt_device_polling.h"
44 #endif
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/endian.h>
49 #include <sys/mbuf.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/sysctl.h>
56 #include <sys/taskqueue.h>
57 
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_vlan_var.h>
66 
67 #include <machine/bus.h>
68 #include <machine/resource.h>
69 #include <sys/bus.h>
70 #include <sys/rman.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/mii_bitbang.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 
79 #include <dev/stge/if_stgereg.h>
80 
81 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
82 
83 MODULE_DEPEND(stge, pci, 1, 1, 1);
84 MODULE_DEPEND(stge, ether, 1, 1, 1);
85 MODULE_DEPEND(stge, miibus, 1, 1, 1);
86 
87 /* "device miibus" required.  See GENERIC if you get errors here. */
88 #include "miibus_if.h"
89 
90 /*
91  * Devices supported by this driver.
92  */
93 static const struct stge_product {
94 	uint16_t	stge_vendorid;
95 	uint16_t	stge_deviceid;
96 	const char	*stge_name;
97 } stge_products[] = {
98 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
99 	  "Sundance ST-1023 Gigabit Ethernet" },
100 
101 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
102 	  "Sundance ST-2021 Gigabit Ethernet" },
103 
104 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
105 	  "Tamarack TC9021 Gigabit Ethernet" },
106 
107 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
108 	  "Tamarack TC9021 Gigabit Ethernet" },
109 
110 	/*
111 	 * The Sundance sample boards use the Sundance vendor ID,
112 	 * but the Tamarack product ID.
113 	 */
114 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
115 	  "Sundance TC9021 Gigabit Ethernet" },
116 
117 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
118 	  "Sundance TC9021 Gigabit Ethernet" },
119 
120 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
121 	  "D-Link DL-4000 Gigabit Ethernet" },
122 
123 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
124 	  "Antares Gigabit Ethernet" }
125 };
126 
127 static int	stge_probe(device_t);
128 static int	stge_attach(device_t);
129 static int	stge_detach(device_t);
130 static int	stge_shutdown(device_t);
131 static int	stge_suspend(device_t);
132 static int	stge_resume(device_t);
133 
134 static int	stge_encap(struct stge_softc *, struct mbuf **);
135 static void	stge_start(struct ifnet *);
136 static void	stge_start_locked(struct ifnet *);
137 static void	stge_watchdog(struct stge_softc *);
138 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	stge_init(void *);
140 static void	stge_init_locked(struct stge_softc *);
141 static void	stge_vlan_setup(struct stge_softc *);
142 static void	stge_stop(struct stge_softc *);
143 static void	stge_start_tx(struct stge_softc *);
144 static void	stge_start_rx(struct stge_softc *);
145 static void	stge_stop_tx(struct stge_softc *);
146 static void	stge_stop_rx(struct stge_softc *);
147 
148 static void	stge_reset(struct stge_softc *, uint32_t);
149 static int	stge_eeprom_wait(struct stge_softc *);
150 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
151 static void	stge_tick(void *);
152 static void	stge_stats_update(struct stge_softc *);
153 static void	stge_set_filter(struct stge_softc *);
154 static void	stge_set_multi(struct stge_softc *);
155 
156 static void	stge_link_task(void *, int);
157 static void	stge_intr(void *);
158 static __inline int stge_tx_error(struct stge_softc *);
159 static void	stge_txeof(struct stge_softc *);
160 static int	stge_rxeof(struct stge_softc *);
161 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
162 static int	stge_newbuf(struct stge_softc *, int);
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
165 #endif
166 
167 static int	stge_miibus_readreg(device_t, int, int);
168 static int	stge_miibus_writereg(device_t, int, int, int);
169 static void	stge_miibus_statchg(device_t);
170 static int	stge_mediachange(struct ifnet *);
171 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
172 
173 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
174 static int	stge_dma_alloc(struct stge_softc *);
175 static void	stge_dma_free(struct stge_softc *);
176 static void	stge_dma_wait(struct stge_softc *);
177 static void	stge_init_tx_ring(struct stge_softc *);
178 static int	stge_init_rx_ring(struct stge_softc *);
179 #ifdef DEVICE_POLLING
180 static int	stge_poll(struct ifnet *, enum poll_cmd, int);
181 #endif
182 
183 static void	stge_setwol(struct stge_softc *);
184 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
185 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
186 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
187 
188 /*
189  * MII bit-bang glue
190  */
191 static uint32_t stge_mii_bitbang_read(device_t);
192 static void	stge_mii_bitbang_write(device_t, uint32_t);
193 
194 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
195 	stge_mii_bitbang_read,
196 	stge_mii_bitbang_write,
197 	{
198 		PC_MgmtData,		/* MII_BIT_MDO */
199 		PC_MgmtData,		/* MII_BIT_MDI */
200 		PC_MgmtClk,		/* MII_BIT_MDC */
201 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
202 		0,			/* MII_BIT_DIR_PHY_HOST */
203 	}
204 };
205 
206 static device_method_t stge_methods[] = {
207 	/* Device interface */
208 	DEVMETHOD(device_probe,		stge_probe),
209 	DEVMETHOD(device_attach,	stge_attach),
210 	DEVMETHOD(device_detach,	stge_detach),
211 	DEVMETHOD(device_shutdown,	stge_shutdown),
212 	DEVMETHOD(device_suspend,	stge_suspend),
213 	DEVMETHOD(device_resume,	stge_resume),
214 
215 	/* MII interface */
216 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
217 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
218 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
219 
220 	DEVMETHOD_END
221 };
222 
223 static driver_t stge_driver = {
224 	"stge",
225 	stge_methods,
226 	sizeof(struct stge_softc)
227 };
228 
229 static devclass_t stge_devclass;
230 
231 DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
232 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
233 
234 static struct resource_spec stge_res_spec_io[] = {
235 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
236 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
237 	{ -1,			0,		0 }
238 };
239 
240 static struct resource_spec stge_res_spec_mem[] = {
241 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
242 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
243 	{ -1,			0,		0 }
244 };
245 
246 /*
247  * stge_mii_bitbang_read: [mii bit-bang interface function]
248  *
249  *	Read the MII serial port for the MII bit-bang module.
250  */
251 static uint32_t
252 stge_mii_bitbang_read(device_t dev)
253 {
254 	struct stge_softc *sc;
255 	uint32_t val;
256 
257 	sc = device_get_softc(dev);
258 
259 	val = CSR_READ_1(sc, STGE_PhyCtrl);
260 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
261 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
262 	return (val);
263 }
264 
265 /*
266  * stge_mii_bitbang_write: [mii big-bang interface function]
267  *
268  *	Write the MII serial port for the MII bit-bang module.
269  */
270 static void
271 stge_mii_bitbang_write(device_t dev, uint32_t val)
272 {
273 	struct stge_softc *sc;
274 
275 	sc = device_get_softc(dev);
276 
277 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
278 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
279 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
280 }
281 
282 /*
283  * sc_miibus_readreg:	[mii interface function]
284  *
285  *	Read a PHY register on the MII of the TC9021.
286  */
287 static int
288 stge_miibus_readreg(device_t dev, int phy, int reg)
289 {
290 	struct stge_softc *sc;
291 	int error, val;
292 
293 	sc = device_get_softc(dev);
294 
295 	if (reg == STGE_PhyCtrl) {
296 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
297 		STGE_MII_LOCK(sc);
298 		error = CSR_READ_1(sc, STGE_PhyCtrl);
299 		STGE_MII_UNLOCK(sc);
300 		return (error);
301 	}
302 
303 	STGE_MII_LOCK(sc);
304 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
305 	STGE_MII_UNLOCK(sc);
306 	return (val);
307 }
308 
309 /*
310  * stge_miibus_writereg:	[mii interface function]
311  *
312  *	Write a PHY register on the MII of the TC9021.
313  */
314 static int
315 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
316 {
317 	struct stge_softc *sc;
318 
319 	sc = device_get_softc(dev);
320 
321 	STGE_MII_LOCK(sc);
322 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
323 	STGE_MII_UNLOCK(sc);
324 	return (0);
325 }
326 
327 /*
328  * stge_miibus_statchg:	[mii interface function]
329  *
330  *	Callback from MII layer when media changes.
331  */
332 static void
333 stge_miibus_statchg(device_t dev)
334 {
335 	struct stge_softc *sc;
336 
337 	sc = device_get_softc(dev);
338 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
339 }
340 
341 /*
342  * stge_mediastatus:	[ifmedia interface function]
343  *
344  *	Get the current interface media status.
345  */
346 static void
347 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
348 {
349 	struct stge_softc *sc;
350 	struct mii_data *mii;
351 
352 	sc = ifp->if_softc;
353 	mii = device_get_softc(sc->sc_miibus);
354 
355 	mii_pollstat(mii);
356 	ifmr->ifm_status = mii->mii_media_status;
357 	ifmr->ifm_active = mii->mii_media_active;
358 }
359 
360 /*
361  * stge_mediachange:	[ifmedia interface function]
362  *
363  *	Set hardware to newly-selected media.
364  */
365 static int
366 stge_mediachange(struct ifnet *ifp)
367 {
368 	struct stge_softc *sc;
369 	struct mii_data *mii;
370 
371 	sc = ifp->if_softc;
372 	mii = device_get_softc(sc->sc_miibus);
373 	mii_mediachg(mii);
374 
375 	return (0);
376 }
377 
378 static int
379 stge_eeprom_wait(struct stge_softc *sc)
380 {
381 	int i;
382 
383 	for (i = 0; i < STGE_TIMEOUT; i++) {
384 		DELAY(1000);
385 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
386 			return (0);
387 	}
388 	return (1);
389 }
390 
391 /*
392  * stge_read_eeprom:
393  *
394  *	Read data from the serial EEPROM.
395  */
396 static void
397 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
398 {
399 
400 	if (stge_eeprom_wait(sc))
401 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
402 
403 	CSR_WRITE_2(sc, STGE_EepromCtrl,
404 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
405 	if (stge_eeprom_wait(sc))
406 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
407 	*data = CSR_READ_2(sc, STGE_EepromData);
408 }
409 
410 static int
411 stge_probe(device_t dev)
412 {
413 	const struct stge_product *sp;
414 	int i;
415 	uint16_t vendor, devid;
416 
417 	vendor = pci_get_vendor(dev);
418 	devid = pci_get_device(dev);
419 	sp = stge_products;
420 	for (i = 0; i < nitems(stge_products); i++, sp++) {
421 		if (vendor == sp->stge_vendorid &&
422 		    devid == sp->stge_deviceid) {
423 			device_set_desc(dev, sp->stge_name);
424 			return (BUS_PROBE_DEFAULT);
425 		}
426 	}
427 
428 	return (ENXIO);
429 }
430 
431 static int
432 stge_attach(device_t dev)
433 {
434 	struct stge_softc *sc;
435 	struct ifnet *ifp;
436 	uint8_t enaddr[ETHER_ADDR_LEN];
437 	int error, flags, i;
438 	uint16_t cmd;
439 	uint32_t val;
440 
441 	error = 0;
442 	sc = device_get_softc(dev);
443 	sc->sc_dev = dev;
444 
445 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
446 	    MTX_DEF);
447 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
448 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
449 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
450 
451 	/*
452 	 * Map the device.
453 	 */
454 	pci_enable_busmaster(dev);
455 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
456 	val = pci_read_config(dev, PCIR_BAR(1), 4);
457 	if (PCI_BAR_IO(val))
458 		sc->sc_spec = stge_res_spec_mem;
459 	else {
460 		val = pci_read_config(dev, PCIR_BAR(0), 4);
461 		if (!PCI_BAR_IO(val)) {
462 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
463 			error = ENXIO;
464 			goto fail;
465 		}
466 		sc->sc_spec = stge_res_spec_io;
467 	}
468 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
469 	if (error != 0) {
470 		device_printf(dev, "couldn't allocate %s resources\n",
471 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
472 		goto fail;
473 	}
474 	sc->sc_rev = pci_get_revid(dev);
475 
476 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
477 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
478 	    "rxint_nframe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
479 	    &sc->sc_rxint_nframe, 0, sysctl_hw_stge_rxint_nframe, "I",
480 	    "stge rx interrupt nframe");
481 
482 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
483 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
484 	    "rxint_dmawait", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
485 	    &sc->sc_rxint_dmawait, 0, sysctl_hw_stge_rxint_dmawait, "I",
486 	    "stge rx interrupt dmawait");
487 
488 	/* Pull in device tunables. */
489 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
490 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
491 	    "rxint_nframe", &sc->sc_rxint_nframe);
492 	if (error == 0) {
493 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
494 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
495 			device_printf(dev, "rxint_nframe value out of range; "
496 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
497 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
498 		}
499 	}
500 
501 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
502 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
503 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
504 	if (error == 0) {
505 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
506 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
507 			device_printf(dev, "rxint_dmawait value out of range; "
508 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
509 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
510 		}
511 	}
512 
513 	if ((error = stge_dma_alloc(sc)) != 0)
514 		goto fail;
515 
516 	/*
517 	 * Determine if we're copper or fiber.  It affects how we
518 	 * reset the card.
519 	 */
520 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
521 		sc->sc_usefiber = 1;
522 	else
523 		sc->sc_usefiber = 0;
524 
525 	/* Load LED configuration from EEPROM. */
526 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
527 
528 	/*
529 	 * Reset the chip to a known state.
530 	 */
531 	STGE_LOCK(sc);
532 	stge_reset(sc, STGE_RESET_FULL);
533 	STGE_UNLOCK(sc);
534 
535 	/*
536 	 * Reading the station address from the EEPROM doesn't seem
537 	 * to work, at least on my sample boards.  Instead, since
538 	 * the reset sequence does AutoInit, read it from the station
539 	 * address registers. For Sundance 1023 you can only read it
540 	 * from EEPROM.
541 	 */
542 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
543 		uint16_t v;
544 
545 		v = CSR_READ_2(sc, STGE_StationAddress0);
546 		enaddr[0] = v & 0xff;
547 		enaddr[1] = v >> 8;
548 		v = CSR_READ_2(sc, STGE_StationAddress1);
549 		enaddr[2] = v & 0xff;
550 		enaddr[3] = v >> 8;
551 		v = CSR_READ_2(sc, STGE_StationAddress2);
552 		enaddr[4] = v & 0xff;
553 		enaddr[5] = v >> 8;
554 		sc->sc_stge1023 = 0;
555 	} else {
556 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
557 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
558 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
559 			    &myaddr[i]);
560 			myaddr[i] = le16toh(myaddr[i]);
561 		}
562 		bcopy(myaddr, enaddr, sizeof(enaddr));
563 		sc->sc_stge1023 = 1;
564 	}
565 
566 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
567 	if (ifp == NULL) {
568 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
569 		error = ENXIO;
570 		goto fail;
571 	}
572 
573 	ifp->if_softc = sc;
574 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
575 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
576 	ifp->if_ioctl = stge_ioctl;
577 	ifp->if_start = stge_start;
578 	ifp->if_init = stge_init;
579 	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
580 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
581 	IFQ_SET_READY(&ifp->if_snd);
582 	/* Revision B3 and earlier chips have checksum bug. */
583 	if (sc->sc_rev >= 0x0c) {
584 		ifp->if_hwassist = STGE_CSUM_FEATURES;
585 		ifp->if_capabilities = IFCAP_HWCSUM;
586 	} else {
587 		ifp->if_hwassist = 0;
588 		ifp->if_capabilities = 0;
589 	}
590 	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
591 	ifp->if_capenable = ifp->if_capabilities;
592 
593 	/*
594 	 * Read some important bits from the PhyCtrl register.
595 	 */
596 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
597 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
598 
599 	/* Set up MII bus. */
600 	flags = MIIF_DOPAUSE;
601 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
602 		flags |= MIIF_MACPRIV0;
603 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
604 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
605 	    flags);
606 	if (error != 0) {
607 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
608 		goto fail;
609 	}
610 
611 	ether_ifattach(ifp, enaddr);
612 
613 	/* VLAN capability setup */
614 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
615 	if (sc->sc_rev >= 0x0c)
616 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
617 	ifp->if_capenable = ifp->if_capabilities;
618 #ifdef DEVICE_POLLING
619 	ifp->if_capabilities |= IFCAP_POLLING;
620 #endif
621 	/*
622 	 * Tell the upper layer(s) we support long frames.
623 	 * Must appear after the call to ether_ifattach() because
624 	 * ether_ifattach() sets ifi_hdrlen to the default value.
625 	 */
626 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
627 
628 	/*
629 	 * The manual recommends disabling early transmit, so we
630 	 * do.  It's disabled anyway, if using IP checksumming,
631 	 * since the entire packet must be in the FIFO in order
632 	 * for the chip to perform the checksum.
633 	 */
634 	sc->sc_txthresh = 0x0fff;
635 
636 	/*
637 	 * Disable MWI if the PCI layer tells us to.
638 	 */
639 	sc->sc_DMACtrl = 0;
640 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
641 		sc->sc_DMACtrl |= DMAC_MWIDisable;
642 
643 	/*
644 	 * Hookup IRQ
645 	 */
646 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
647 	    NULL, stge_intr, sc, &sc->sc_ih);
648 	if (error != 0) {
649 		ether_ifdetach(ifp);
650 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
651 		sc->sc_ifp = NULL;
652 		goto fail;
653 	}
654 
655 fail:
656 	if (error != 0)
657 		stge_detach(dev);
658 
659 	return (error);
660 }
661 
662 static int
663 stge_detach(device_t dev)
664 {
665 	struct stge_softc *sc;
666 	struct ifnet *ifp;
667 
668 	sc = device_get_softc(dev);
669 
670 	ifp = sc->sc_ifp;
671 #ifdef DEVICE_POLLING
672 	if (ifp && ifp->if_capenable & IFCAP_POLLING)
673 		ether_poll_deregister(ifp);
674 #endif
675 	if (device_is_attached(dev)) {
676 		STGE_LOCK(sc);
677 		/* XXX */
678 		sc->sc_detach = 1;
679 		stge_stop(sc);
680 		STGE_UNLOCK(sc);
681 		callout_drain(&sc->sc_tick_ch);
682 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
683 		ether_ifdetach(ifp);
684 	}
685 
686 	if (sc->sc_miibus != NULL) {
687 		device_delete_child(dev, sc->sc_miibus);
688 		sc->sc_miibus = NULL;
689 	}
690 	bus_generic_detach(dev);
691 	stge_dma_free(sc);
692 
693 	if (ifp != NULL) {
694 		if_free(ifp);
695 		sc->sc_ifp = NULL;
696 	}
697 
698 	if (sc->sc_ih) {
699 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
700 		sc->sc_ih = NULL;
701 	}
702 	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
703 
704 	mtx_destroy(&sc->sc_mii_mtx);
705 	mtx_destroy(&sc->sc_mtx);
706 
707 	return (0);
708 }
709 
710 struct stge_dmamap_arg {
711 	bus_addr_t	stge_busaddr;
712 };
713 
714 static void
715 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
716 {
717 	struct stge_dmamap_arg *ctx;
718 
719 	if (error != 0)
720 		return;
721 
722 	ctx = (struct stge_dmamap_arg *)arg;
723 	ctx->stge_busaddr = segs[0].ds_addr;
724 }
725 
726 static int
727 stge_dma_alloc(struct stge_softc *sc)
728 {
729 	struct stge_dmamap_arg ctx;
730 	struct stge_txdesc *txd;
731 	struct stge_rxdesc *rxd;
732 	int error, i;
733 
734 	/* create parent tag. */
735 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
736 		    1, 0,			/* algnmnt, boundary */
737 		    STGE_DMA_MAXADDR,		/* lowaddr */
738 		    BUS_SPACE_MAXADDR,		/* highaddr */
739 		    NULL, NULL,			/* filter, filterarg */
740 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
741 		    0,				/* nsegments */
742 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
743 		    0,				/* flags */
744 		    NULL, NULL,			/* lockfunc, lockarg */
745 		    &sc->sc_cdata.stge_parent_tag);
746 	if (error != 0) {
747 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
748 		goto fail;
749 	}
750 	/* create tag for Tx ring. */
751 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
752 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
753 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
754 		    BUS_SPACE_MAXADDR,		/* highaddr */
755 		    NULL, NULL,			/* filter, filterarg */
756 		    STGE_TX_RING_SZ,		/* maxsize */
757 		    1,				/* nsegments */
758 		    STGE_TX_RING_SZ,		/* maxsegsize */
759 		    0,				/* flags */
760 		    NULL, NULL,			/* lockfunc, lockarg */
761 		    &sc->sc_cdata.stge_tx_ring_tag);
762 	if (error != 0) {
763 		device_printf(sc->sc_dev,
764 		    "failed to allocate Tx ring DMA tag\n");
765 		goto fail;
766 	}
767 
768 	/* create tag for Rx ring. */
769 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
770 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
771 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
772 		    BUS_SPACE_MAXADDR,		/* highaddr */
773 		    NULL, NULL,			/* filter, filterarg */
774 		    STGE_RX_RING_SZ,		/* maxsize */
775 		    1,				/* nsegments */
776 		    STGE_RX_RING_SZ,		/* maxsegsize */
777 		    0,				/* flags */
778 		    NULL, NULL,			/* lockfunc, lockarg */
779 		    &sc->sc_cdata.stge_rx_ring_tag);
780 	if (error != 0) {
781 		device_printf(sc->sc_dev,
782 		    "failed to allocate Rx ring DMA tag\n");
783 		goto fail;
784 	}
785 
786 	/* create tag for Tx buffers. */
787 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
788 		    1, 0,			/* algnmnt, boundary */
789 		    BUS_SPACE_MAXADDR,		/* lowaddr */
790 		    BUS_SPACE_MAXADDR,		/* highaddr */
791 		    NULL, NULL,			/* filter, filterarg */
792 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
793 		    STGE_MAXTXSEGS,		/* nsegments */
794 		    MCLBYTES,			/* maxsegsize */
795 		    0,				/* flags */
796 		    NULL, NULL,			/* lockfunc, lockarg */
797 		    &sc->sc_cdata.stge_tx_tag);
798 	if (error != 0) {
799 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
800 		goto fail;
801 	}
802 
803 	/* create tag for Rx buffers. */
804 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
805 		    1, 0,			/* algnmnt, boundary */
806 		    BUS_SPACE_MAXADDR,		/* lowaddr */
807 		    BUS_SPACE_MAXADDR,		/* highaddr */
808 		    NULL, NULL,			/* filter, filterarg */
809 		    MCLBYTES,			/* maxsize */
810 		    1,				/* nsegments */
811 		    MCLBYTES,			/* maxsegsize */
812 		    0,				/* flags */
813 		    NULL, NULL,			/* lockfunc, lockarg */
814 		    &sc->sc_cdata.stge_rx_tag);
815 	if (error != 0) {
816 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
817 		goto fail;
818 	}
819 
820 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
821 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
822 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
823 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
824 	if (error != 0) {
825 		device_printf(sc->sc_dev,
826 		    "failed to allocate DMA'able memory for Tx ring\n");
827 		goto fail;
828 	}
829 
830 	ctx.stge_busaddr = 0;
831 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
832 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
833 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
834 	if (error != 0 || ctx.stge_busaddr == 0) {
835 		device_printf(sc->sc_dev,
836 		    "failed to load DMA'able memory for Tx ring\n");
837 		goto fail;
838 	}
839 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
840 
841 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
842 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
843 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
844 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
845 	if (error != 0) {
846 		device_printf(sc->sc_dev,
847 		    "failed to allocate DMA'able memory for Rx ring\n");
848 		goto fail;
849 	}
850 
851 	ctx.stge_busaddr = 0;
852 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
853 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
854 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
855 	if (error != 0 || ctx.stge_busaddr == 0) {
856 		device_printf(sc->sc_dev,
857 		    "failed to load DMA'able memory for Rx ring\n");
858 		goto fail;
859 	}
860 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
861 
862 	/* create DMA maps for Tx buffers. */
863 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
864 		txd = &sc->sc_cdata.stge_txdesc[i];
865 		txd->tx_m = NULL;
866 		txd->tx_dmamap = 0;
867 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
868 		    &txd->tx_dmamap);
869 		if (error != 0) {
870 			device_printf(sc->sc_dev,
871 			    "failed to create Tx dmamap\n");
872 			goto fail;
873 		}
874 	}
875 	/* create DMA maps for Rx buffers. */
876 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
877 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
878 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
879 		goto fail;
880 	}
881 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
882 		rxd = &sc->sc_cdata.stge_rxdesc[i];
883 		rxd->rx_m = NULL;
884 		rxd->rx_dmamap = 0;
885 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
886 		    &rxd->rx_dmamap);
887 		if (error != 0) {
888 			device_printf(sc->sc_dev,
889 			    "failed to create Rx dmamap\n");
890 			goto fail;
891 		}
892 	}
893 
894 fail:
895 	return (error);
896 }
897 
898 static void
899 stge_dma_free(struct stge_softc *sc)
900 {
901 	struct stge_txdesc *txd;
902 	struct stge_rxdesc *rxd;
903 	int i;
904 
905 	/* Tx ring */
906 	if (sc->sc_cdata.stge_tx_ring_tag) {
907 		if (sc->sc_rdata.stge_tx_ring_paddr)
908 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
909 			    sc->sc_cdata.stge_tx_ring_map);
910 		if (sc->sc_rdata.stge_tx_ring)
911 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
912 			    sc->sc_rdata.stge_tx_ring,
913 			    sc->sc_cdata.stge_tx_ring_map);
914 		sc->sc_rdata.stge_tx_ring = NULL;
915 		sc->sc_rdata.stge_tx_ring_paddr = 0;
916 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
917 		sc->sc_cdata.stge_tx_ring_tag = NULL;
918 	}
919 	/* Rx ring */
920 	if (sc->sc_cdata.stge_rx_ring_tag) {
921 		if (sc->sc_rdata.stge_rx_ring_paddr)
922 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
923 			    sc->sc_cdata.stge_rx_ring_map);
924 		if (sc->sc_rdata.stge_rx_ring)
925 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
926 			    sc->sc_rdata.stge_rx_ring,
927 			    sc->sc_cdata.stge_rx_ring_map);
928 		sc->sc_rdata.stge_rx_ring = NULL;
929 		sc->sc_rdata.stge_rx_ring_paddr = 0;
930 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
931 		sc->sc_cdata.stge_rx_ring_tag = NULL;
932 	}
933 	/* Tx buffers */
934 	if (sc->sc_cdata.stge_tx_tag) {
935 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
936 			txd = &sc->sc_cdata.stge_txdesc[i];
937 			if (txd->tx_dmamap) {
938 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
939 				    txd->tx_dmamap);
940 				txd->tx_dmamap = 0;
941 			}
942 		}
943 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
944 		sc->sc_cdata.stge_tx_tag = NULL;
945 	}
946 	/* Rx buffers */
947 	if (sc->sc_cdata.stge_rx_tag) {
948 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
949 			rxd = &sc->sc_cdata.stge_rxdesc[i];
950 			if (rxd->rx_dmamap) {
951 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
952 				    rxd->rx_dmamap);
953 				rxd->rx_dmamap = 0;
954 			}
955 		}
956 		if (sc->sc_cdata.stge_rx_sparemap) {
957 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
958 			    sc->sc_cdata.stge_rx_sparemap);
959 			sc->sc_cdata.stge_rx_sparemap = 0;
960 		}
961 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
962 		sc->sc_cdata.stge_rx_tag = NULL;
963 	}
964 
965 	if (sc->sc_cdata.stge_parent_tag) {
966 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
967 		sc->sc_cdata.stge_parent_tag = NULL;
968 	}
969 }
970 
971 /*
972  * stge_shutdown:
973  *
974  *	Make sure the interface is stopped at reboot time.
975  */
976 static int
977 stge_shutdown(device_t dev)
978 {
979 
980 	return (stge_suspend(dev));
981 }
982 
983 static void
984 stge_setwol(struct stge_softc *sc)
985 {
986 	struct ifnet *ifp;
987 	uint8_t v;
988 
989 	STGE_LOCK_ASSERT(sc);
990 
991 	ifp = sc->sc_ifp;
992 	v = CSR_READ_1(sc, STGE_WakeEvent);
993 	/* Disable all WOL bits. */
994 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
995 	    WE_WakeOnLanEnable);
996 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
997 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
998 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
999 	/* Reset Tx and prevent transmission. */
1000 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1001 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1002 	/*
1003 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1004 	 * into sleep so there is no need to try to resetting link speed.
1005 	 */
1006 }
1007 
1008 static int
1009 stge_suspend(device_t dev)
1010 {
1011 	struct stge_softc *sc;
1012 
1013 	sc = device_get_softc(dev);
1014 
1015 	STGE_LOCK(sc);
1016 	stge_stop(sc);
1017 	sc->sc_suspended = 1;
1018 	stge_setwol(sc);
1019 	STGE_UNLOCK(sc);
1020 
1021 	return (0);
1022 }
1023 
1024 static int
1025 stge_resume(device_t dev)
1026 {
1027 	struct stge_softc *sc;
1028 	struct ifnet *ifp;
1029 	uint8_t v;
1030 
1031 	sc = device_get_softc(dev);
1032 
1033 	STGE_LOCK(sc);
1034 	/*
1035 	 * Clear WOL bits, so special frames wouldn't interfere
1036 	 * normal Rx operation anymore.
1037 	 */
1038 	v = CSR_READ_1(sc, STGE_WakeEvent);
1039 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1040 	    WE_WakeOnLanEnable);
1041 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1042 	ifp = sc->sc_ifp;
1043 	if (ifp->if_flags & IFF_UP)
1044 		stge_init_locked(sc);
1045 
1046 	sc->sc_suspended = 0;
1047 	STGE_UNLOCK(sc);
1048 
1049 	return (0);
1050 }
1051 
1052 static void
1053 stge_dma_wait(struct stge_softc *sc)
1054 {
1055 	int i;
1056 
1057 	for (i = 0; i < STGE_TIMEOUT; i++) {
1058 		DELAY(2);
1059 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1060 			break;
1061 	}
1062 
1063 	if (i == STGE_TIMEOUT)
1064 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1065 }
1066 
1067 static int
1068 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1069 {
1070 	struct stge_txdesc *txd;
1071 	struct stge_tfd *tfd;
1072 	struct mbuf *m;
1073 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1074 	int error, i, nsegs, si;
1075 	uint64_t csum_flags, tfc;
1076 
1077 	STGE_LOCK_ASSERT(sc);
1078 
1079 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1080 		return (ENOBUFS);
1081 
1082 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1083 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1084 	if (error == EFBIG) {
1085 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1086 		if (m == NULL) {
1087 			m_freem(*m_head);
1088 			*m_head = NULL;
1089 			return (ENOMEM);
1090 		}
1091 		*m_head = m;
1092 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1093 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1094 		if (error != 0) {
1095 			m_freem(*m_head);
1096 			*m_head = NULL;
1097 			return (error);
1098 		}
1099 	} else if (error != 0)
1100 		return (error);
1101 	if (nsegs == 0) {
1102 		m_freem(*m_head);
1103 		*m_head = NULL;
1104 		return (EIO);
1105 	}
1106 
1107 	m = *m_head;
1108 	csum_flags = 0;
1109 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1110 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1111 			csum_flags |= TFD_IPChecksumEnable;
1112 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1113 			csum_flags |= TFD_TCPChecksumEnable;
1114 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1115 			csum_flags |= TFD_UDPChecksumEnable;
1116 	}
1117 
1118 	si = sc->sc_cdata.stge_tx_prod;
1119 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1120 	for (i = 0; i < nsegs; i++)
1121 		tfd->tfd_frags[i].frag_word0 =
1122 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1123 		    FRAG_LEN(txsegs[i].ds_len));
1124 	sc->sc_cdata.stge_tx_cnt++;
1125 
1126 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1127 	    TFD_FragCount(nsegs) | csum_flags;
1128 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1129 		tfc |= TFD_TxDMAIndicate;
1130 
1131 	/* Update producer index. */
1132 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1133 
1134 	/* Check if we have a VLAN tag to insert. */
1135 	if (m->m_flags & M_VLANTAG)
1136 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1137 	tfd->tfd_control = htole64(tfc);
1138 
1139 	/* Update Tx Queue. */
1140 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1141 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1142 	txd->tx_m = m;
1143 
1144 	/* Sync descriptors. */
1145 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1146 	    BUS_DMASYNC_PREWRITE);
1147 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1148 	    sc->sc_cdata.stge_tx_ring_map,
1149 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1150 
1151 	return (0);
1152 }
1153 
1154 /*
1155  * stge_start:		[ifnet interface function]
1156  *
1157  *	Start packet transmission on the interface.
1158  */
1159 static void
1160 stge_start(struct ifnet *ifp)
1161 {
1162 	struct stge_softc *sc;
1163 
1164 	sc = ifp->if_softc;
1165 	STGE_LOCK(sc);
1166 	stge_start_locked(ifp);
1167 	STGE_UNLOCK(sc);
1168 }
1169 
1170 static void
1171 stge_start_locked(struct ifnet *ifp)
1172 {
1173         struct stge_softc *sc;
1174         struct mbuf *m_head;
1175 	int enq;
1176 
1177 	sc = ifp->if_softc;
1178 
1179 	STGE_LOCK_ASSERT(sc);
1180 
1181 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1182 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1183 		return;
1184 
1185 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1186 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1187 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1188 			break;
1189 		}
1190 
1191 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1192 		if (m_head == NULL)
1193 			break;
1194 		/*
1195 		 * Pack the data into the transmit ring. If we
1196 		 * don't have room, set the OACTIVE flag and wait
1197 		 * for the NIC to drain the ring.
1198 		 */
1199 		if (stge_encap(sc, &m_head)) {
1200 			if (m_head == NULL)
1201 				break;
1202 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1203 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1204 			break;
1205 		}
1206 
1207 		enq++;
1208 		/*
1209 		 * If there's a BPF listener, bounce a copy of this frame
1210 		 * to him.
1211 		 */
1212 		ETHER_BPF_MTAP(ifp, m_head);
1213 	}
1214 
1215 	if (enq > 0) {
1216 		/* Transmit */
1217 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1218 
1219 		/* Set a timeout in case the chip goes out to lunch. */
1220 		sc->sc_watchdog_timer = 5;
1221 	}
1222 }
1223 
1224 /*
1225  * stge_watchdog:
1226  *
1227  *	Watchdog timer handler.
1228  */
1229 static void
1230 stge_watchdog(struct stge_softc *sc)
1231 {
1232 	struct ifnet *ifp;
1233 
1234 	STGE_LOCK_ASSERT(sc);
1235 
1236 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1237 		return;
1238 
1239 	ifp = sc->sc_ifp;
1240 	if_printf(sc->sc_ifp, "device timeout\n");
1241 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1242 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1243 	stge_init_locked(sc);
1244 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1245 		stge_start_locked(ifp);
1246 }
1247 
1248 /*
1249  * stge_ioctl:		[ifnet interface function]
1250  *
1251  *	Handle control requests from the operator.
1252  */
1253 static int
1254 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1255 {
1256 	struct stge_softc *sc;
1257 	struct ifreq *ifr;
1258 	struct mii_data *mii;
1259 	int error, mask;
1260 
1261 	sc = ifp->if_softc;
1262 	ifr = (struct ifreq *)data;
1263 	error = 0;
1264 	switch (cmd) {
1265 	case SIOCSIFMTU:
1266 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1267 			error = EINVAL;
1268 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1269 			ifp->if_mtu = ifr->ifr_mtu;
1270 			STGE_LOCK(sc);
1271 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1272 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1273 				stge_init_locked(sc);
1274 			}
1275 			STGE_UNLOCK(sc);
1276 		}
1277 		break;
1278 	case SIOCSIFFLAGS:
1279 		STGE_LOCK(sc);
1280 		if ((ifp->if_flags & IFF_UP) != 0) {
1281 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1282 				if (((ifp->if_flags ^ sc->sc_if_flags)
1283 				    & IFF_PROMISC) != 0)
1284 					stge_set_filter(sc);
1285 			} else {
1286 				if (sc->sc_detach == 0)
1287 					stge_init_locked(sc);
1288 			}
1289 		} else {
1290 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1291 				stge_stop(sc);
1292 		}
1293 		sc->sc_if_flags = ifp->if_flags;
1294 		STGE_UNLOCK(sc);
1295 		break;
1296 	case SIOCADDMULTI:
1297 	case SIOCDELMULTI:
1298 		STGE_LOCK(sc);
1299 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1300 			stge_set_multi(sc);
1301 		STGE_UNLOCK(sc);
1302 		break;
1303 	case SIOCSIFMEDIA:
1304 	case SIOCGIFMEDIA:
1305 		mii = device_get_softc(sc->sc_miibus);
1306 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1307 		break;
1308 	case SIOCSIFCAP:
1309 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1310 #ifdef DEVICE_POLLING
1311 		if ((mask & IFCAP_POLLING) != 0) {
1312 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1313 				error = ether_poll_register(stge_poll, ifp);
1314 				if (error != 0)
1315 					break;
1316 				STGE_LOCK(sc);
1317 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1318 				ifp->if_capenable |= IFCAP_POLLING;
1319 				STGE_UNLOCK(sc);
1320 			} else {
1321 				error = ether_poll_deregister(ifp);
1322 				if (error != 0)
1323 					break;
1324 				STGE_LOCK(sc);
1325 				CSR_WRITE_2(sc, STGE_IntEnable,
1326 				    sc->sc_IntEnable);
1327 				ifp->if_capenable &= ~IFCAP_POLLING;
1328 				STGE_UNLOCK(sc);
1329 			}
1330 		}
1331 #endif
1332 		if ((mask & IFCAP_HWCSUM) != 0) {
1333 			ifp->if_capenable ^= IFCAP_HWCSUM;
1334 			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1335 			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1336 				ifp->if_hwassist = STGE_CSUM_FEATURES;
1337 			else
1338 				ifp->if_hwassist = 0;
1339 		}
1340 		if ((mask & IFCAP_WOL) != 0 &&
1341 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1342 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1343 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1344 		}
1345 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1346 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1347 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1348 				STGE_LOCK(sc);
1349 				stge_vlan_setup(sc);
1350 				STGE_UNLOCK(sc);
1351 			}
1352 		}
1353 		VLAN_CAPABILITIES(ifp);
1354 		break;
1355 	default:
1356 		error = ether_ioctl(ifp, cmd, data);
1357 		break;
1358 	}
1359 
1360 	return (error);
1361 }
1362 
1363 static void
1364 stge_link_task(void *arg, int pending)
1365 {
1366 	struct stge_softc *sc;
1367 	struct mii_data *mii;
1368 	uint32_t v, ac;
1369 	int i;
1370 
1371 	sc = (struct stge_softc *)arg;
1372 	STGE_LOCK(sc);
1373 
1374 	mii = device_get_softc(sc->sc_miibus);
1375 	if (mii->mii_media_status & IFM_ACTIVE) {
1376 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1377 			sc->sc_link = 1;
1378 	} else
1379 		sc->sc_link = 0;
1380 
1381 	sc->sc_MACCtrl = 0;
1382 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1383 		sc->sc_MACCtrl |= MC_DuplexSelect;
1384 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1385 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1386 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1387 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1388 	/*
1389 	 * Update STGE_MACCtrl register depending on link status.
1390 	 * (duplex, flow control etc)
1391 	 */
1392 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1393 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1394 	v |= sc->sc_MACCtrl;
1395 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1396 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1397 		/* Duplex setting changed, reset Tx/Rx functions. */
1398 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1399 		ac |= AC_TxReset | AC_RxReset;
1400 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1401 		for (i = 0; i < STGE_TIMEOUT; i++) {
1402 			DELAY(100);
1403 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1404 				break;
1405 		}
1406 		if (i == STGE_TIMEOUT)
1407 			device_printf(sc->sc_dev, "reset failed to complete\n");
1408 	}
1409 	STGE_UNLOCK(sc);
1410 }
1411 
1412 static __inline int
1413 stge_tx_error(struct stge_softc *sc)
1414 {
1415 	uint32_t txstat;
1416 	int error;
1417 
1418 	for (error = 0;;) {
1419 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1420 		if ((txstat & TS_TxComplete) == 0)
1421 			break;
1422 		/* Tx underrun */
1423 		if ((txstat & TS_TxUnderrun) != 0) {
1424 			/*
1425 			 * XXX
1426 			 * There should be a more better way to recover
1427 			 * from Tx underrun instead of a full reset.
1428 			 */
1429 			if (sc->sc_nerr++ < STGE_MAXERR)
1430 				device_printf(sc->sc_dev, "Tx underrun, "
1431 				    "resetting...\n");
1432 			if (sc->sc_nerr == STGE_MAXERR)
1433 				device_printf(sc->sc_dev, "too many errors; "
1434 				    "not reporting any more\n");
1435 			error = -1;
1436 			break;
1437 		}
1438 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1439 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1440 			CSR_WRITE_4(sc, STGE_MACCtrl,
1441 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1442 			    MC_TxEnable);
1443 	}
1444 
1445 	return (error);
1446 }
1447 
1448 /*
1449  * stge_intr:
1450  *
1451  *	Interrupt service routine.
1452  */
1453 static void
1454 stge_intr(void *arg)
1455 {
1456 	struct stge_softc *sc;
1457 	struct ifnet *ifp;
1458 	int reinit;
1459 	uint16_t status;
1460 
1461 	sc = (struct stge_softc *)arg;
1462 	ifp = sc->sc_ifp;
1463 
1464 	STGE_LOCK(sc);
1465 
1466 #ifdef DEVICE_POLLING
1467 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1468 		goto done_locked;
1469 #endif
1470 	status = CSR_READ_2(sc, STGE_IntStatus);
1471 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1472 		goto done_locked;
1473 
1474 	/* Disable interrupts. */
1475 	for (reinit = 0;;) {
1476 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1477 		status &= sc->sc_IntEnable;
1478 		if (status == 0)
1479 			break;
1480 		/* Host interface errors. */
1481 		if ((status & IS_HostError) != 0) {
1482 			device_printf(sc->sc_dev,
1483 			    "Host interface error, resetting...\n");
1484 			reinit = 1;
1485 			goto force_init;
1486 		}
1487 
1488 		/* Receive interrupts. */
1489 		if ((status & IS_RxDMAComplete) != 0) {
1490 			stge_rxeof(sc);
1491 			if ((status & IS_RFDListEnd) != 0)
1492 				CSR_WRITE_4(sc, STGE_DMACtrl,
1493 				    DMAC_RxDMAPollNow);
1494 		}
1495 
1496 		/* Transmit interrupts. */
1497 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1498 			stge_txeof(sc);
1499 
1500 		/* Transmission errors.*/
1501 		if ((status & IS_TxComplete) != 0) {
1502 			if ((reinit = stge_tx_error(sc)) != 0)
1503 				break;
1504 		}
1505 	}
1506 
1507 force_init:
1508 	if (reinit != 0) {
1509 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1510 		stge_init_locked(sc);
1511 	}
1512 
1513 	/* Re-enable interrupts. */
1514 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1515 
1516 	/* Try to get more packets going. */
1517 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1518 		stge_start_locked(ifp);
1519 
1520 done_locked:
1521 	STGE_UNLOCK(sc);
1522 }
1523 
1524 /*
1525  * stge_txeof:
1526  *
1527  *	Helper; handle transmit interrupts.
1528  */
1529 static void
1530 stge_txeof(struct stge_softc *sc)
1531 {
1532 	struct ifnet *ifp;
1533 	struct stge_txdesc *txd;
1534 	uint64_t control;
1535 	int cons;
1536 
1537 	STGE_LOCK_ASSERT(sc);
1538 
1539 	ifp = sc->sc_ifp;
1540 
1541 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1542 	if (txd == NULL)
1543 		return;
1544 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1545 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1546 
1547 	/*
1548 	 * Go through our Tx list and free mbufs for those
1549 	 * frames which have been transmitted.
1550 	 */
1551 	for (cons = sc->sc_cdata.stge_tx_cons;;
1552 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1553 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1554 			break;
1555 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1556 		if ((control & TFD_TFDDone) == 0)
1557 			break;
1558 		sc->sc_cdata.stge_tx_cnt--;
1559 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1560 
1561 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1562 		    BUS_DMASYNC_POSTWRITE);
1563 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1564 
1565 		/* Output counter is updated with statistics register */
1566 		m_freem(txd->tx_m);
1567 		txd->tx_m = NULL;
1568 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1569 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1570 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1571 	}
1572 	sc->sc_cdata.stge_tx_cons = cons;
1573 	if (sc->sc_cdata.stge_tx_cnt == 0)
1574 		sc->sc_watchdog_timer = 0;
1575 
1576         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1577 	    sc->sc_cdata.stge_tx_ring_map,
1578 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1579 }
1580 
1581 static __inline void
1582 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1583 {
1584 	struct stge_rfd *rfd;
1585 
1586 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1587 	rfd->rfd_status = 0;
1588 }
1589 
1590 #ifndef __NO_STRICT_ALIGNMENT
1591 /*
1592  * It seems that TC9021's DMA engine has alignment restrictions in
1593  * DMA scatter operations. The first DMA segment has no address
1594  * alignment restrictins but the rest should be aligned on 4(?) bytes
1595  * boundary. Otherwise it would corrupt random memory. Since we don't
1596  * know which one is used for the first segment in advance we simply
1597  * don't align at all.
1598  * To avoid copying over an entire frame to align, we allocate a new
1599  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1600  * prepended into the existing mbuf chain.
1601  */
1602 static __inline struct mbuf *
1603 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1604 {
1605 	struct mbuf *n;
1606 
1607 	n = NULL;
1608 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1609 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1610 		m->m_data += ETHER_HDR_LEN;
1611 		n = m;
1612 	} else {
1613 		MGETHDR(n, M_NOWAIT, MT_DATA);
1614 		if (n != NULL) {
1615 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1616 			m->m_data += ETHER_HDR_LEN;
1617 			m->m_len -= ETHER_HDR_LEN;
1618 			n->m_len = ETHER_HDR_LEN;
1619 			M_MOVE_PKTHDR(n, m);
1620 			n->m_next = m;
1621 		} else
1622 			m_freem(m);
1623 	}
1624 
1625 	return (n);
1626 }
1627 #endif
1628 
1629 /*
1630  * stge_rxeof:
1631  *
1632  *	Helper; handle receive interrupts.
1633  */
1634 static int
1635 stge_rxeof(struct stge_softc *sc)
1636 {
1637 	struct ifnet *ifp;
1638 	struct stge_rxdesc *rxd;
1639 	struct mbuf *mp, *m;
1640 	uint64_t status64;
1641 	uint32_t status;
1642 	int cons, prog, rx_npkts;
1643 
1644 	STGE_LOCK_ASSERT(sc);
1645 
1646 	rx_npkts = 0;
1647 	ifp = sc->sc_ifp;
1648 
1649 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1650 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1651 
1652 	prog = 0;
1653 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1654 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1655 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1656 		status = RFD_RxStatus(status64);
1657 		if ((status & RFD_RFDDone) == 0)
1658 			break;
1659 #ifdef DEVICE_POLLING
1660 		if (ifp->if_capenable & IFCAP_POLLING) {
1661 			if (sc->sc_cdata.stge_rxcycles <= 0)
1662 				break;
1663 			sc->sc_cdata.stge_rxcycles--;
1664 		}
1665 #endif
1666 		prog++;
1667 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1668 		mp = rxd->rx_m;
1669 
1670 		/*
1671 		 * If the packet had an error, drop it.  Note we count
1672 		 * the error later in the periodic stats update.
1673 		 */
1674 		if ((status & RFD_FrameEnd) != 0 && (status &
1675 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1676 		    RFD_RxAlignmentError | RFD_RxFCSError |
1677 		    RFD_RxLengthError)) != 0) {
1678 			stge_discard_rxbuf(sc, cons);
1679 			if (sc->sc_cdata.stge_rxhead != NULL) {
1680 				m_freem(sc->sc_cdata.stge_rxhead);
1681 				STGE_RXCHAIN_RESET(sc);
1682 			}
1683 			continue;
1684 		}
1685 		/*
1686 		 * Add a new receive buffer to the ring.
1687 		 */
1688 		if (stge_newbuf(sc, cons) != 0) {
1689 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1690 			stge_discard_rxbuf(sc, cons);
1691 			if (sc->sc_cdata.stge_rxhead != NULL) {
1692 				m_freem(sc->sc_cdata.stge_rxhead);
1693 				STGE_RXCHAIN_RESET(sc);
1694 			}
1695 			continue;
1696 		}
1697 
1698 		if ((status & RFD_FrameEnd) != 0)
1699 			mp->m_len = RFD_RxDMAFrameLen(status) -
1700 			    sc->sc_cdata.stge_rxlen;
1701 		sc->sc_cdata.stge_rxlen += mp->m_len;
1702 
1703 		/* Chain mbufs. */
1704 		if (sc->sc_cdata.stge_rxhead == NULL) {
1705 			sc->sc_cdata.stge_rxhead = mp;
1706 			sc->sc_cdata.stge_rxtail = mp;
1707 		} else {
1708 			mp->m_flags &= ~M_PKTHDR;
1709 			sc->sc_cdata.stge_rxtail->m_next = mp;
1710 			sc->sc_cdata.stge_rxtail = mp;
1711 		}
1712 
1713 		if ((status & RFD_FrameEnd) != 0) {
1714 			m = sc->sc_cdata.stge_rxhead;
1715 			m->m_pkthdr.rcvif = ifp;
1716 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1717 
1718 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1719 				m_freem(m);
1720 				STGE_RXCHAIN_RESET(sc);
1721 				continue;
1722 			}
1723 			/*
1724 			 * Set the incoming checksum information for
1725 			 * the packet.
1726 			 */
1727 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1728 				if ((status & RFD_IPDetected) != 0) {
1729 					m->m_pkthdr.csum_flags |=
1730 						CSUM_IP_CHECKED;
1731 					if ((status & RFD_IPError) == 0)
1732 						m->m_pkthdr.csum_flags |=
1733 						    CSUM_IP_VALID;
1734 				}
1735 				if (((status & RFD_TCPDetected) != 0 &&
1736 				    (status & RFD_TCPError) == 0) ||
1737 				    ((status & RFD_UDPDetected) != 0 &&
1738 				    (status & RFD_UDPError) == 0)) {
1739 					m->m_pkthdr.csum_flags |=
1740 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1741 					m->m_pkthdr.csum_data = 0xffff;
1742 				}
1743 			}
1744 
1745 #ifndef __NO_STRICT_ALIGNMENT
1746 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1747 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1748 					STGE_RXCHAIN_RESET(sc);
1749 					continue;
1750 				}
1751 			}
1752 #endif
1753 			/* Check for VLAN tagged packets. */
1754 			if ((status & RFD_VLANDetected) != 0 &&
1755 			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1756 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1757 				m->m_flags |= M_VLANTAG;
1758 			}
1759 
1760 			STGE_UNLOCK(sc);
1761 			/* Pass it on. */
1762 			(*ifp->if_input)(ifp, m);
1763 			STGE_LOCK(sc);
1764 			rx_npkts++;
1765 
1766 			STGE_RXCHAIN_RESET(sc);
1767 		}
1768 	}
1769 
1770 	if (prog > 0) {
1771 		/* Update the consumer index. */
1772 		sc->sc_cdata.stge_rx_cons = cons;
1773 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1774 		    sc->sc_cdata.stge_rx_ring_map,
1775 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1776 	}
1777 	return (rx_npkts);
1778 }
1779 
1780 #ifdef DEVICE_POLLING
1781 static int
1782 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1783 {
1784 	struct stge_softc *sc;
1785 	uint16_t status;
1786 	int rx_npkts;
1787 
1788 	rx_npkts = 0;
1789 	sc = ifp->if_softc;
1790 	STGE_LOCK(sc);
1791 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1792 		STGE_UNLOCK(sc);
1793 		return (rx_npkts);
1794 	}
1795 
1796 	sc->sc_cdata.stge_rxcycles = count;
1797 	rx_npkts = stge_rxeof(sc);
1798 	stge_txeof(sc);
1799 
1800 	if (cmd == POLL_AND_CHECK_STATUS) {
1801 		status = CSR_READ_2(sc, STGE_IntStatus);
1802 		status &= sc->sc_IntEnable;
1803 		if (status != 0) {
1804 			if ((status & IS_HostError) != 0) {
1805 				device_printf(sc->sc_dev,
1806 				    "Host interface error, resetting...\n");
1807 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1808 				stge_init_locked(sc);
1809 			}
1810 			if ((status & IS_TxComplete) != 0) {
1811 				if (stge_tx_error(sc) != 0) {
1812 					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1813 					stge_init_locked(sc);
1814 				}
1815 			}
1816 		}
1817 	}
1818 
1819 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1820 		stge_start_locked(ifp);
1821 
1822 	STGE_UNLOCK(sc);
1823 	return (rx_npkts);
1824 }
1825 #endif	/* DEVICE_POLLING */
1826 
1827 /*
1828  * stge_tick:
1829  *
1830  *	One second timer, used to tick the MII.
1831  */
1832 static void
1833 stge_tick(void *arg)
1834 {
1835 	struct stge_softc *sc;
1836 	struct mii_data *mii;
1837 
1838 	sc = (struct stge_softc *)arg;
1839 
1840 	STGE_LOCK_ASSERT(sc);
1841 
1842 	mii = device_get_softc(sc->sc_miibus);
1843 	mii_tick(mii);
1844 
1845 	/* Update statistics counters. */
1846 	stge_stats_update(sc);
1847 
1848 	/*
1849 	 * Relcaim any pending Tx descriptors to release mbufs in a
1850 	 * timely manner as we don't generate Tx completion interrupts
1851 	 * for every frame. This limits the delay to a maximum of one
1852 	 * second.
1853 	 */
1854 	if (sc->sc_cdata.stge_tx_cnt != 0)
1855 		stge_txeof(sc);
1856 
1857 	stge_watchdog(sc);
1858 
1859 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1860 }
1861 
1862 /*
1863  * stge_stats_update:
1864  *
1865  *	Read the TC9021 statistics counters.
1866  */
1867 static void
1868 stge_stats_update(struct stge_softc *sc)
1869 {
1870 	struct ifnet *ifp;
1871 
1872 	STGE_LOCK_ASSERT(sc);
1873 
1874 	ifp = sc->sc_ifp;
1875 
1876 	CSR_READ_4(sc,STGE_OctetRcvOk);
1877 
1878 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1879 
1880 	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1881 
1882 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1883 
1884 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1885 
1886 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1887 	    CSR_READ_4(sc, STGE_LateCollisions) +
1888 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1889 	    CSR_READ_4(sc, STGE_SingleColFrames));
1890 
1891 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1892 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1893 	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1894 }
1895 
1896 /*
1897  * stge_reset:
1898  *
1899  *	Perform a soft reset on the TC9021.
1900  */
1901 static void
1902 stge_reset(struct stge_softc *sc, uint32_t how)
1903 {
1904 	uint32_t ac;
1905 	uint8_t v;
1906 	int i, dv;
1907 
1908 	STGE_LOCK_ASSERT(sc);
1909 
1910 	dv = 5000;
1911 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1912 	switch (how) {
1913 	case STGE_RESET_TX:
1914 		ac |= AC_TxReset | AC_FIFO;
1915 		dv = 100;
1916 		break;
1917 	case STGE_RESET_RX:
1918 		ac |= AC_RxReset | AC_FIFO;
1919 		dv = 100;
1920 		break;
1921 	case STGE_RESET_FULL:
1922 	default:
1923 		/*
1924 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1925 		 * to be present in order for the reset to complete on fiber
1926 		 * cards.
1927 		 */
1928 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1929 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1930 		    (sc->sc_usefiber ? AC_RstOut : 0);
1931 		break;
1932 	}
1933 
1934 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1935 
1936 	/* Account for reset problem at 10Mbps. */
1937 	DELAY(dv);
1938 
1939 	for (i = 0; i < STGE_TIMEOUT; i++) {
1940 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1941 			break;
1942 		DELAY(dv);
1943 	}
1944 
1945 	if (i == STGE_TIMEOUT)
1946 		device_printf(sc->sc_dev, "reset failed to complete\n");
1947 
1948 	/* Set LED, from Linux IPG driver. */
1949 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1950 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1951 	if ((sc->sc_led & 0x01) != 0)
1952 		ac |= AC_LEDMode;
1953 	if ((sc->sc_led & 0x03) != 0)
1954 		ac |= AC_LEDModeBit1;
1955 	if ((sc->sc_led & 0x08) != 0)
1956 		ac |= AC_LEDSpeed;
1957 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1958 
1959 	/* Set PHY, from Linux IPG driver */
1960 	v = CSR_READ_1(sc, STGE_PhySet);
1961 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1962 	v |= ((sc->sc_led & 0x70) >> 4);
1963 	CSR_WRITE_1(sc, STGE_PhySet, v);
1964 }
1965 
1966 /*
1967  * stge_init:		[ ifnet interface function ]
1968  *
1969  *	Initialize the interface.
1970  */
1971 static void
1972 stge_init(void *xsc)
1973 {
1974 	struct stge_softc *sc;
1975 
1976 	sc = (struct stge_softc *)xsc;
1977 	STGE_LOCK(sc);
1978 	stge_init_locked(sc);
1979 	STGE_UNLOCK(sc);
1980 }
1981 
1982 static void
1983 stge_init_locked(struct stge_softc *sc)
1984 {
1985 	struct ifnet *ifp;
1986 	struct mii_data *mii;
1987 	uint16_t eaddr[3];
1988 	uint32_t v;
1989 	int error;
1990 
1991 	STGE_LOCK_ASSERT(sc);
1992 
1993 	ifp = sc->sc_ifp;
1994 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1995 		return;
1996 	mii = device_get_softc(sc->sc_miibus);
1997 
1998 	/*
1999 	 * Cancel any pending I/O.
2000 	 */
2001 	stge_stop(sc);
2002 
2003 	/*
2004 	 * Reset the chip to a known state.
2005 	 */
2006 	stge_reset(sc, STGE_RESET_FULL);
2007 
2008 	/* Init descriptors. */
2009 	error = stge_init_rx_ring(sc);
2010         if (error != 0) {
2011                 device_printf(sc->sc_dev,
2012                     "initialization failed: no memory for rx buffers\n");
2013                 stge_stop(sc);
2014 		goto out;
2015         }
2016 	stge_init_tx_ring(sc);
2017 
2018 	/* Set the station address. */
2019 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2020 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2021 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2022 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2023 
2024 	/*
2025 	 * Set the statistics masks.  Disable all the RMON stats,
2026 	 * and disable selected stats in the non-RMON stats registers.
2027 	 */
2028 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2029 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2030 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2031 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2032 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2033 	    (1U << 21));
2034 
2035 	/* Set up the receive filter. */
2036 	stge_set_filter(sc);
2037 	/* Program multicast filter. */
2038 	stge_set_multi(sc);
2039 
2040 	/*
2041 	 * Give the transmit and receive ring to the chip.
2042 	 */
2043 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2044 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2045 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2046 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2047 
2048 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2049 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2050 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2051 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2052 
2053 	/*
2054 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2055 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2056 	 * transmit engine when there's actually a packet.
2057 	 */
2058 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2059 
2060 	/* ..and the Rx auto-poll period. */
2061 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2062 
2063 	/* Initialize the Tx start threshold. */
2064 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2065 
2066 	/* Rx DMA thresholds, from Linux */
2067 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2068 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2069 
2070 	/* Rx early threhold, from Linux */
2071 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2072 
2073 	/* Tx DMA thresholds, from Linux */
2074 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2075 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2076 
2077 	/*
2078 	 * Initialize the Rx DMA interrupt control register.  We
2079 	 * request an interrupt after every incoming packet, but
2080 	 * defer it for sc_rxint_dmawait us. When the number of
2081 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2082 	 * deferring the interrupt, and signal it immediately.
2083 	 */
2084 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2085 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2086 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2087 
2088 	/*
2089 	 * Initialize the interrupt mask.
2090 	 */
2091 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2092 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2093 #ifdef DEVICE_POLLING
2094 	/* Disable interrupts if we are polling. */
2095 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2096 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2097 	else
2098 #endif
2099 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2100 
2101 	/*
2102 	 * Configure the DMA engine.
2103 	 * XXX Should auto-tune TxBurstLimit.
2104 	 */
2105 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2106 
2107 	/*
2108 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2109 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2110 	 * in the Rx FIFO.
2111 	 */
2112 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2113 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2114 
2115 	/*
2116 	 * Set the maximum frame size.
2117 	 */
2118 	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2119 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2120 
2121 	/*
2122 	 * Initialize MacCtrl -- do it before setting the media,
2123 	 * as setting the media will actually program the register.
2124 	 *
2125 	 * Note: We have to poke the IFS value before poking
2126 	 * anything else.
2127 	 */
2128 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2129 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2130 
2131 	stge_vlan_setup(sc);
2132 
2133 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2134 		/* Multi-frag frame bug work-around. */
2135 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2136 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2137 
2138 		/* Tx Poll Now bug work-around. */
2139 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2140 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2141 		/* Tx Poll Now bug work-around. */
2142 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2143 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2144 	}
2145 
2146 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2147 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2148 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2149 	/*
2150 	 * It seems that transmitting frames without checking the state of
2151 	 * Rx/Tx MAC wedge the hardware.
2152 	 */
2153 	stge_start_tx(sc);
2154 	stge_start_rx(sc);
2155 
2156 	sc->sc_link = 0;
2157 	/*
2158 	 * Set the current media.
2159 	 */
2160 	mii_mediachg(mii);
2161 
2162 	/*
2163 	 * Start the one second MII clock.
2164 	 */
2165 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2166 
2167 	/*
2168 	 * ...all done!
2169 	 */
2170 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2171 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2172 
2173  out:
2174 	if (error != 0)
2175 		device_printf(sc->sc_dev, "interface not running\n");
2176 }
2177 
2178 static void
2179 stge_vlan_setup(struct stge_softc *sc)
2180 {
2181 	struct ifnet *ifp;
2182 	uint32_t v;
2183 
2184 	ifp = sc->sc_ifp;
2185 	/*
2186 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2187 	 * MC_AutoVLANuntagging bit.
2188 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2189 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2190 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2191 	 * use TFC instead of STGE_VLANTag register.
2192 	 */
2193 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2194 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2195 		v |= MC_AutoVLANuntagging;
2196 	else
2197 		v &= ~MC_AutoVLANuntagging;
2198 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2199 }
2200 
2201 /*
2202  *	Stop transmission on the interface.
2203  */
2204 static void
2205 stge_stop(struct stge_softc *sc)
2206 {
2207 	struct ifnet *ifp;
2208 	struct stge_txdesc *txd;
2209 	struct stge_rxdesc *rxd;
2210 	uint32_t v;
2211 	int i;
2212 
2213 	STGE_LOCK_ASSERT(sc);
2214 	/*
2215 	 * Stop the one second clock.
2216 	 */
2217 	callout_stop(&sc->sc_tick_ch);
2218 	sc->sc_watchdog_timer = 0;
2219 
2220 	/*
2221 	 * Disable interrupts.
2222 	 */
2223 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2224 
2225 	/*
2226 	 * Stop receiver, transmitter, and stats update.
2227 	 */
2228 	stge_stop_rx(sc);
2229 	stge_stop_tx(sc);
2230 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2231 	v |= MC_StatisticsDisable;
2232 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2233 
2234 	/*
2235 	 * Stop the transmit and receive DMA.
2236 	 */
2237 	stge_dma_wait(sc);
2238 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2239 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2240 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2241 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2242 
2243 	/*
2244 	 * Free RX and TX mbufs still in the queues.
2245 	 */
2246 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2247 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2248 		if (rxd->rx_m != NULL) {
2249 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2250 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2251 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2252 			    rxd->rx_dmamap);
2253 			m_freem(rxd->rx_m);
2254 			rxd->rx_m = NULL;
2255 		}
2256         }
2257 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2258 		txd = &sc->sc_cdata.stge_txdesc[i];
2259 		if (txd->tx_m != NULL) {
2260 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2261 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2262 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2263 			    txd->tx_dmamap);
2264 			m_freem(txd->tx_m);
2265 			txd->tx_m = NULL;
2266 		}
2267         }
2268 
2269 	/*
2270 	 * Mark the interface down and cancel the watchdog timer.
2271 	 */
2272 	ifp = sc->sc_ifp;
2273 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2274 	sc->sc_link = 0;
2275 }
2276 
2277 static void
2278 stge_start_tx(struct stge_softc *sc)
2279 {
2280 	uint32_t v;
2281 	int i;
2282 
2283 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2284 	if ((v & MC_TxEnabled) != 0)
2285 		return;
2286 	v |= MC_TxEnable;
2287 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2288 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2289 	for (i = STGE_TIMEOUT; i > 0; i--) {
2290 		DELAY(10);
2291 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2292 		if ((v & MC_TxEnabled) != 0)
2293 			break;
2294 	}
2295 	if (i == 0)
2296 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2297 }
2298 
2299 static void
2300 stge_start_rx(struct stge_softc *sc)
2301 {
2302 	uint32_t v;
2303 	int i;
2304 
2305 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2306 	if ((v & MC_RxEnabled) != 0)
2307 		return;
2308 	v |= MC_RxEnable;
2309 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2310 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2311 	for (i = STGE_TIMEOUT; i > 0; i--) {
2312 		DELAY(10);
2313 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2314 		if ((v & MC_RxEnabled) != 0)
2315 			break;
2316 	}
2317 	if (i == 0)
2318 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2319 }
2320 
2321 static void
2322 stge_stop_tx(struct stge_softc *sc)
2323 {
2324 	uint32_t v;
2325 	int i;
2326 
2327 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2328 	if ((v & MC_TxEnabled) == 0)
2329 		return;
2330 	v |= MC_TxDisable;
2331 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2332 	for (i = STGE_TIMEOUT; i > 0; i--) {
2333 		DELAY(10);
2334 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2335 		if ((v & MC_TxEnabled) == 0)
2336 			break;
2337 	}
2338 	if (i == 0)
2339 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2340 }
2341 
2342 static void
2343 stge_stop_rx(struct stge_softc *sc)
2344 {
2345 	uint32_t v;
2346 	int i;
2347 
2348 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2349 	if ((v & MC_RxEnabled) == 0)
2350 		return;
2351 	v |= MC_RxDisable;
2352 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2353 	for (i = STGE_TIMEOUT; i > 0; i--) {
2354 		DELAY(10);
2355 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2356 		if ((v & MC_RxEnabled) == 0)
2357 			break;
2358 	}
2359 	if (i == 0)
2360 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2361 }
2362 
2363 static void
2364 stge_init_tx_ring(struct stge_softc *sc)
2365 {
2366 	struct stge_ring_data *rd;
2367 	struct stge_txdesc *txd;
2368 	bus_addr_t addr;
2369 	int i;
2370 
2371 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2372 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2373 
2374 	sc->sc_cdata.stge_tx_prod = 0;
2375 	sc->sc_cdata.stge_tx_cons = 0;
2376 	sc->sc_cdata.stge_tx_cnt = 0;
2377 
2378 	rd = &sc->sc_rdata;
2379 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2380 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2381 		if (i == (STGE_TX_RING_CNT - 1))
2382 			addr = STGE_TX_RING_ADDR(sc, 0);
2383 		else
2384 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2385 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2386 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2387 		txd = &sc->sc_cdata.stge_txdesc[i];
2388 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2389 	}
2390 
2391 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2392 	    sc->sc_cdata.stge_tx_ring_map,
2393 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2394 
2395 }
2396 
2397 static int
2398 stge_init_rx_ring(struct stge_softc *sc)
2399 {
2400 	struct stge_ring_data *rd;
2401 	bus_addr_t addr;
2402 	int i;
2403 
2404 	sc->sc_cdata.stge_rx_cons = 0;
2405 	STGE_RXCHAIN_RESET(sc);
2406 
2407 	rd = &sc->sc_rdata;
2408 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2409 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2410 		if (stge_newbuf(sc, i) != 0)
2411 			return (ENOBUFS);
2412 		if (i == (STGE_RX_RING_CNT - 1))
2413 			addr = STGE_RX_RING_ADDR(sc, 0);
2414 		else
2415 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2416 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2417 		rd->stge_rx_ring[i].rfd_status = 0;
2418 	}
2419 
2420 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2421 	    sc->sc_cdata.stge_rx_ring_map,
2422 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2423 
2424 	return (0);
2425 }
2426 
2427 /*
2428  * stge_newbuf:
2429  *
2430  *	Add a receive buffer to the indicated descriptor.
2431  */
2432 static int
2433 stge_newbuf(struct stge_softc *sc, int idx)
2434 {
2435 	struct stge_rxdesc *rxd;
2436 	struct stge_rfd *rfd;
2437 	struct mbuf *m;
2438 	bus_dma_segment_t segs[1];
2439 	bus_dmamap_t map;
2440 	int nsegs;
2441 
2442 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2443 	if (m == NULL)
2444 		return (ENOBUFS);
2445 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2446 	/*
2447 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2448 	 * frame is used.
2449 	 */
2450 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2451 		m_adj(m, ETHER_ALIGN);
2452 
2453 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2454 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2455 		m_freem(m);
2456 		return (ENOBUFS);
2457 	}
2458 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2459 
2460 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2461 	if (rxd->rx_m != NULL) {
2462 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2463 		    BUS_DMASYNC_POSTREAD);
2464 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2465 	}
2466 	map = rxd->rx_dmamap;
2467 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2468 	sc->sc_cdata.stge_rx_sparemap = map;
2469 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2470 	    BUS_DMASYNC_PREREAD);
2471 	rxd->rx_m = m;
2472 
2473 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2474 	rfd->rfd_frag.frag_word0 =
2475 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2476 	rfd->rfd_status = 0;
2477 
2478 	return (0);
2479 }
2480 
2481 /*
2482  * stge_set_filter:
2483  *
2484  *	Set up the receive filter.
2485  */
2486 static void
2487 stge_set_filter(struct stge_softc *sc)
2488 {
2489 	struct ifnet *ifp;
2490 	uint16_t mode;
2491 
2492 	STGE_LOCK_ASSERT(sc);
2493 
2494 	ifp = sc->sc_ifp;
2495 
2496 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2497 	mode |= RM_ReceiveUnicast;
2498 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2499 		mode |= RM_ReceiveBroadcast;
2500 	else
2501 		mode &= ~RM_ReceiveBroadcast;
2502 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2503 		mode |= RM_ReceiveAllFrames;
2504 	else
2505 		mode &= ~RM_ReceiveAllFrames;
2506 
2507 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2508 }
2509 
2510 static u_int
2511 stge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2512 {
2513 	uint32_t crc, *mchash = arg;
2514 
2515 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2516 	/* Just want the 6 least significant bits. */
2517 	crc &= 0x3f;
2518 	/* Set the corresponding bit in the hash table. */
2519 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
2520 
2521 	return (1);
2522 }
2523 
2524 static void
2525 stge_set_multi(struct stge_softc *sc)
2526 {
2527 	struct ifnet *ifp;
2528 	uint32_t mchash[2];
2529 	uint16_t mode;
2530 	int count;
2531 
2532 	STGE_LOCK_ASSERT(sc);
2533 
2534 	ifp = sc->sc_ifp;
2535 
2536 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2537 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2538 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2539 			mode |= RM_ReceiveAllFrames;
2540 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2541 			mode |= RM_ReceiveMulticast;
2542 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2543 		return;
2544 	}
2545 
2546 	/* clear existing filters. */
2547 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2548 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2549 
2550 	/*
2551 	 * Set up the multicast address filter by passing all multicast
2552 	 * addresses through a CRC generator, and then using the low-order
2553 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2554 	 * high order bits select the register, while the rest of the bits
2555 	 * select the bit within the register.
2556 	 */
2557 	bzero(mchash, sizeof(mchash));
2558 	count = if_foreach_llmaddr(ifp, stge_hash_maddr, mchash);
2559 
2560 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2561 	if (count > 0)
2562 		mode |= RM_ReceiveMulticastHash;
2563 	else
2564 		mode &= ~RM_ReceiveMulticastHash;
2565 
2566 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2567 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2568 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2569 }
2570 
2571 static int
2572 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2573 {
2574 	int error, value;
2575 
2576 	if (!arg1)
2577 		return (EINVAL);
2578 	value = *(int *)arg1;
2579 	error = sysctl_handle_int(oidp, &value, 0, req);
2580 	if (error || !req->newptr)
2581 		return (error);
2582 	if (value < low || value > high)
2583 		return (EINVAL);
2584         *(int *)arg1 = value;
2585 
2586         return (0);
2587 }
2588 
2589 static int
2590 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2591 {
2592 	return (sysctl_int_range(oidp, arg1, arg2, req,
2593 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2594 }
2595 
2596 static int
2597 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2598 {
2599 	return (sysctl_int_range(oidp, arg1, arg2, req,
2600 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2601 }
2602