xref: /freebsd/sys/dev/stge/if_stge.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Sundance Tech. TC9021 10/100/1000
41  * Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #ifdef HAVE_KERNEL_OPTION_HEADERS
48 #include "opt_device_polling.h"
49 #endif
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/endian.h>
54 #include <sys/mbuf.h>
55 #include <sys/malloc.h>
56 #include <sys/kernel.h>
57 #include <sys/module.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/sysctl.h>
61 #include <sys/taskqueue.h>
62 
63 #include <net/bpf.h>
64 #include <net/ethernet.h>
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 #include <net/if_vlan_var.h>
70 
71 #include <machine/bus.h>
72 #include <machine/resource.h>
73 #include <sys/bus.h>
74 #include <sys/rman.h>
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 
79 #include <dev/pci/pcireg.h>
80 #include <dev/pci/pcivar.h>
81 
82 #include <dev/stge/if_stgereg.h>
83 
84 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
85 
86 MODULE_DEPEND(stge, pci, 1, 1, 1);
87 MODULE_DEPEND(stge, ether, 1, 1, 1);
88 MODULE_DEPEND(stge, miibus, 1, 1, 1);
89 
90 /* "device miibus" required.  See GENERIC if you get errors here. */
91 #include "miibus_if.h"
92 
93 /*
94  * Devices supported by this driver.
95  */
96 static struct stge_product {
97 	uint16_t	stge_vendorid;
98 	uint16_t	stge_deviceid;
99 	const char	*stge_name;
100 } stge_products[] = {
101 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
102 	  "Sundance ST-1023 Gigabit Ethernet" },
103 
104 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
105 	  "Sundance ST-2021 Gigabit Ethernet" },
106 
107 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
108 	  "Tamarack TC9021 Gigabit Ethernet" },
109 
110 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
111 	  "Tamarack TC9021 Gigabit Ethernet" },
112 
113 	/*
114 	 * The Sundance sample boards use the Sundance vendor ID,
115 	 * but the Tamarack product ID.
116 	 */
117 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
118 	  "Sundance TC9021 Gigabit Ethernet" },
119 
120 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
121 	  "Sundance TC9021 Gigabit Ethernet" },
122 
123 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
124 	  "D-Link DL-4000 Gigabit Ethernet" },
125 
126 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
127 	  "Antares Gigabit Ethernet" }
128 };
129 
130 static int	stge_probe(device_t);
131 static int	stge_attach(device_t);
132 static int	stge_detach(device_t);
133 static int	stge_shutdown(device_t);
134 static int	stge_suspend(device_t);
135 static int	stge_resume(device_t);
136 
137 static int	stge_encap(struct stge_softc *, struct mbuf **);
138 static void	stge_start(struct ifnet *);
139 static void	stge_start_locked(struct ifnet *);
140 static void	stge_watchdog(struct stge_softc *);
141 static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
142 static void	stge_init(void *);
143 static void	stge_init_locked(struct stge_softc *);
144 static void	stge_vlan_setup(struct stge_softc *);
145 static void	stge_stop(struct stge_softc *);
146 static void	stge_start_tx(struct stge_softc *);
147 static void	stge_start_rx(struct stge_softc *);
148 static void	stge_stop_tx(struct stge_softc *);
149 static void	stge_stop_rx(struct stge_softc *);
150 
151 static void	stge_reset(struct stge_softc *, uint32_t);
152 static int	stge_eeprom_wait(struct stge_softc *);
153 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
154 static void	stge_tick(void *);
155 static void	stge_stats_update(struct stge_softc *);
156 static void	stge_set_filter(struct stge_softc *);
157 static void	stge_set_multi(struct stge_softc *);
158 
159 static void	stge_link_task(void *, int);
160 static void	stge_intr(void *);
161 static __inline int stge_tx_error(struct stge_softc *);
162 static void	stge_txeof(struct stge_softc *);
163 static void	stge_rxeof(struct stge_softc *);
164 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
165 static int	stge_newbuf(struct stge_softc *, int);
166 #ifndef __NO_STRICT_ALIGNMENT
167 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
168 #endif
169 
170 static void	stge_mii_sync(struct stge_softc *);
171 static void	stge_mii_send(struct stge_softc *, uint32_t, int);
172 static int	stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
173 static int	stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
174 static int	stge_miibus_readreg(device_t, int, int);
175 static int	stge_miibus_writereg(device_t, int, int, int);
176 static void	stge_miibus_statchg(device_t);
177 static int	stge_mediachange(struct ifnet *);
178 static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
179 
180 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181 static int	stge_dma_alloc(struct stge_softc *);
182 static void	stge_dma_free(struct stge_softc *);
183 static void	stge_dma_wait(struct stge_softc *);
184 static void	stge_init_tx_ring(struct stge_softc *);
185 static int	stge_init_rx_ring(struct stge_softc *);
186 #ifdef DEVICE_POLLING
187 static void	stge_poll(struct ifnet *, enum poll_cmd, int);
188 #endif
189 
190 static void	stge_setwol(struct stge_softc *);
191 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
192 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
193 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
194 
195 static device_method_t stge_methods[] = {
196 	/* Device interface */
197 	DEVMETHOD(device_probe,		stge_probe),
198 	DEVMETHOD(device_attach,	stge_attach),
199 	DEVMETHOD(device_detach,	stge_detach),
200 	DEVMETHOD(device_shutdown,	stge_shutdown),
201 	DEVMETHOD(device_suspend,	stge_suspend),
202 	DEVMETHOD(device_resume,	stge_resume),
203 
204 	/* MII interface */
205 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
206 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
207 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
208 
209 	{ 0, 0 }
210 
211 };
212 
213 static driver_t stge_driver = {
214 	"stge",
215 	stge_methods,
216 	sizeof(struct stge_softc)
217 };
218 
219 static devclass_t stge_devclass;
220 
221 DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
222 DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
223 
224 static struct resource_spec stge_res_spec_io[] = {
225 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
226 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
227 	{ -1,			0,		0 }
228 };
229 
230 static struct resource_spec stge_res_spec_mem[] = {
231 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
232 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
233 	{ -1,			0,		0 }
234 };
235 
236 #define	MII_SET(x)	\
237 	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
238 #define	MII_CLR(x)	\
239 	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
240 
241 /*
242  * Sync the PHYs by setting data bit and strobing the clock 32 times.
243  */
244 static void
245 stge_mii_sync(struct stge_softc	*sc)
246 {
247 	int i;
248 
249 	MII_SET(PC_MgmtDir | PC_MgmtData);
250 
251 	for (i = 0; i < 32; i++) {
252 		MII_SET(PC_MgmtClk);
253 		DELAY(1);
254 		MII_CLR(PC_MgmtClk);
255 		DELAY(1);
256 	}
257 }
258 
259 /*
260  * Clock a series of bits through the MII.
261  */
262 static void
263 stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
264 {
265 	int i;
266 
267 	MII_CLR(PC_MgmtClk);
268 
269 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
270 		if (bits & i)
271 			MII_SET(PC_MgmtData);
272                 else
273 			MII_CLR(PC_MgmtData);
274 		DELAY(1);
275 		MII_CLR(PC_MgmtClk);
276 		DELAY(1);
277 		MII_SET(PC_MgmtClk);
278 	}
279 }
280 
281 /*
282  * Read an PHY register through the MII.
283  */
284 static int
285 stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
286 {
287 	int i, ack;
288 
289 	/*
290 	 * Set up frame for RX.
291 	 */
292 	frame->mii_stdelim = STGE_MII_STARTDELIM;
293 	frame->mii_opcode = STGE_MII_READOP;
294 	frame->mii_turnaround = 0;
295 	frame->mii_data = 0;
296 
297 	CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
298 	/*
299  	 * Turn on data xmit.
300 	 */
301 	MII_SET(PC_MgmtDir);
302 
303 	stge_mii_sync(sc);
304 
305 	/*
306 	 * Send command/address info.
307 	 */
308 	stge_mii_send(sc, frame->mii_stdelim, 2);
309 	stge_mii_send(sc, frame->mii_opcode, 2);
310 	stge_mii_send(sc, frame->mii_phyaddr, 5);
311 	stge_mii_send(sc, frame->mii_regaddr, 5);
312 
313 	/* Turn off xmit. */
314 	MII_CLR(PC_MgmtDir);
315 
316 	/* Idle bit */
317 	MII_CLR((PC_MgmtClk | PC_MgmtData));
318 	DELAY(1);
319 	MII_SET(PC_MgmtClk);
320 	DELAY(1);
321 
322 	/* Check for ack */
323 	MII_CLR(PC_MgmtClk);
324 	DELAY(1);
325 	ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
326 	MII_SET(PC_MgmtClk);
327 	DELAY(1);
328 
329 	/*
330 	 * Now try reading data bits. If the ack failed, we still
331 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
332 	 */
333 	if (ack) {
334 		for(i = 0; i < 16; i++) {
335 			MII_CLR(PC_MgmtClk);
336 			DELAY(1);
337 			MII_SET(PC_MgmtClk);
338 			DELAY(1);
339 		}
340 		goto fail;
341 	}
342 
343 	for (i = 0x8000; i; i >>= 1) {
344 		MII_CLR(PC_MgmtClk);
345 		DELAY(1);
346 		if (!ack) {
347 			if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
348 				frame->mii_data |= i;
349 			DELAY(1);
350 		}
351 		MII_SET(PC_MgmtClk);
352 		DELAY(1);
353 	}
354 
355 fail:
356 	MII_CLR(PC_MgmtClk);
357 	DELAY(1);
358 	MII_SET(PC_MgmtClk);
359 	DELAY(1);
360 
361 	if (ack)
362 		return(1);
363 	return(0);
364 }
365 
366 /*
367  * Write to a PHY register through the MII.
368  */
369 static int
370 stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
371 {
372 
373 	/*
374 	 * Set up frame for TX.
375 	 */
376 	frame->mii_stdelim = STGE_MII_STARTDELIM;
377 	frame->mii_opcode = STGE_MII_WRITEOP;
378 	frame->mii_turnaround = STGE_MII_TURNAROUND;
379 
380 	/*
381  	 * Turn on data output.
382 	 */
383 	MII_SET(PC_MgmtDir);
384 
385 	stge_mii_sync(sc);
386 
387 	stge_mii_send(sc, frame->mii_stdelim, 2);
388 	stge_mii_send(sc, frame->mii_opcode, 2);
389 	stge_mii_send(sc, frame->mii_phyaddr, 5);
390 	stge_mii_send(sc, frame->mii_regaddr, 5);
391 	stge_mii_send(sc, frame->mii_turnaround, 2);
392 	stge_mii_send(sc, frame->mii_data, 16);
393 
394 	/* Idle bit. */
395 	MII_SET(PC_MgmtClk);
396 	DELAY(1);
397 	MII_CLR(PC_MgmtClk);
398 	DELAY(1);
399 
400 	/*
401 	 * Turn off xmit.
402 	 */
403 	MII_CLR(PC_MgmtDir);
404 
405 	return(0);
406 }
407 
408 /*
409  * sc_miibus_readreg:	[mii interface function]
410  *
411  *	Read a PHY register on the MII of the TC9021.
412  */
413 static int
414 stge_miibus_readreg(device_t dev, int phy, int reg)
415 {
416 	struct stge_softc *sc;
417 	struct stge_mii_frame frame;
418 	int error;
419 
420 	sc = device_get_softc(dev);
421 
422 	if (reg == STGE_PhyCtrl) {
423 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
424 		STGE_MII_LOCK(sc);
425 		error = CSR_READ_1(sc, STGE_PhyCtrl);
426 		STGE_MII_UNLOCK(sc);
427 		return (error);
428 	}
429 	bzero(&frame, sizeof(frame));
430 	frame.mii_phyaddr = phy;
431 	frame.mii_regaddr = reg;
432 
433 	STGE_MII_LOCK(sc);
434 	error = stge_mii_readreg(sc, &frame);
435 	STGE_MII_UNLOCK(sc);
436 
437 	if (error != 0) {
438 		/* Don't show errors for PHY probe request */
439 		if (reg != 1)
440 			device_printf(sc->sc_dev, "phy read fail\n");
441 		return (0);
442 	}
443 	return (frame.mii_data);
444 }
445 
446 /*
447  * stge_miibus_writereg:	[mii interface function]
448  *
449  *	Write a PHY register on the MII of the TC9021.
450  */
451 static int
452 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
453 {
454 	struct stge_softc *sc;
455 	struct stge_mii_frame frame;
456 	int error;
457 
458 	sc = device_get_softc(dev);
459 
460 	bzero(&frame, sizeof(frame));
461 	frame.mii_phyaddr = phy;
462 	frame.mii_regaddr = reg;
463 	frame.mii_data = val;
464 
465 	STGE_MII_LOCK(sc);
466 	error = stge_mii_writereg(sc, &frame);
467 	STGE_MII_UNLOCK(sc);
468 
469 	if (error != 0)
470 		device_printf(sc->sc_dev, "phy write fail\n");
471 	return (0);
472 }
473 
474 /*
475  * stge_miibus_statchg:	[mii interface function]
476  *
477  *	Callback from MII layer when media changes.
478  */
479 static void
480 stge_miibus_statchg(device_t dev)
481 {
482 	struct stge_softc *sc;
483 
484 	sc = device_get_softc(dev);
485 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
486 }
487 
488 /*
489  * stge_mediastatus:	[ifmedia interface function]
490  *
491  *	Get the current interface media status.
492  */
493 static void
494 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
495 {
496 	struct stge_softc *sc;
497 	struct mii_data *mii;
498 
499 	sc = ifp->if_softc;
500 	mii = device_get_softc(sc->sc_miibus);
501 
502 	mii_pollstat(mii);
503 	ifmr->ifm_status = mii->mii_media_status;
504 	ifmr->ifm_active = mii->mii_media_active;
505 }
506 
507 /*
508  * stge_mediachange:	[ifmedia interface function]
509  *
510  *	Set hardware to newly-selected media.
511  */
512 static int
513 stge_mediachange(struct ifnet *ifp)
514 {
515 	struct stge_softc *sc;
516 	struct mii_data *mii;
517 
518 	sc = ifp->if_softc;
519 	mii = device_get_softc(sc->sc_miibus);
520 	mii_mediachg(mii);
521 
522 	return (0);
523 }
524 
525 static int
526 stge_eeprom_wait(struct stge_softc *sc)
527 {
528 	int i;
529 
530 	for (i = 0; i < STGE_TIMEOUT; i++) {
531 		DELAY(1000);
532 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
533 			return (0);
534 	}
535 	return (1);
536 }
537 
538 /*
539  * stge_read_eeprom:
540  *
541  *	Read data from the serial EEPROM.
542  */
543 static void
544 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
545 {
546 
547 	if (stge_eeprom_wait(sc))
548 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
549 
550 	CSR_WRITE_2(sc, STGE_EepromCtrl,
551 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
552 	if (stge_eeprom_wait(sc))
553 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
554 	*data = CSR_READ_2(sc, STGE_EepromData);
555 }
556 
557 
558 static int
559 stge_probe(device_t dev)
560 {
561 	struct stge_product *sp;
562 	int i;
563 	uint16_t vendor, devid;
564 
565 	vendor = pci_get_vendor(dev);
566 	devid = pci_get_device(dev);
567 	sp = stge_products;
568 	for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
569 	    i++, sp++) {
570 		if (vendor == sp->stge_vendorid &&
571 		    devid == sp->stge_deviceid) {
572 			device_set_desc(dev, sp->stge_name);
573 			return (BUS_PROBE_DEFAULT);
574 		}
575 	}
576 
577 	return (ENXIO);
578 }
579 
580 static int
581 stge_attach(device_t dev)
582 {
583 	struct stge_softc *sc;
584 	struct ifnet *ifp;
585 	uint8_t enaddr[ETHER_ADDR_LEN];
586 	int error, i;
587 	uint16_t cmd;
588 	uint32_t val;
589 
590 	error = 0;
591 	sc = device_get_softc(dev);
592 	sc->sc_dev = dev;
593 
594 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
595 	    MTX_DEF);
596 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
597 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
598 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
599 
600 	/*
601 	 * Map the device.
602 	 */
603 	pci_enable_busmaster(dev);
604 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
605 	val = pci_read_config(dev, PCIR_BAR(1), 4);
606 	if ((val & 0x01) != 0)
607 		sc->sc_spec = stge_res_spec_mem;
608 	else {
609 		val = pci_read_config(dev, PCIR_BAR(0), 4);
610 		if ((val & 0x01) == 0) {
611 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
612 			error = ENXIO;
613 			goto fail;
614 		}
615 		sc->sc_spec = stge_res_spec_io;
616 	}
617 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
618 	if (error != 0) {
619 		device_printf(dev, "couldn't allocate %s resources\n",
620 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
621 		goto fail;
622 	}
623 	sc->sc_rev = pci_get_revid(dev);
624 
625 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
626 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
627 	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
628 	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
629 
630 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
631 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
632 	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
633 	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
634 
635 	/* Pull in device tunables. */
636 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
637 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
638 	    "rxint_nframe", &sc->sc_rxint_nframe);
639 	if (error == 0) {
640 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
641 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
642 			device_printf(dev, "rxint_nframe value out of range; "
643 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
644 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
645 		}
646 	}
647 
648 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
649 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
650 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
651 	if (error == 0) {
652 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
653 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
654 			device_printf(dev, "rxint_dmawait value out of range; "
655 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
656 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
657 		}
658 	}
659 
660 	if ((error = stge_dma_alloc(sc) != 0))
661 		goto fail;
662 
663 	/*
664 	 * Determine if we're copper or fiber.  It affects how we
665 	 * reset the card.
666 	 */
667 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
668 		sc->sc_usefiber = 1;
669 	else
670 		sc->sc_usefiber = 0;
671 
672 	/* Load LED configuration from EEPROM. */
673 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
674 
675 	/*
676 	 * Reset the chip to a known state.
677 	 */
678 	STGE_LOCK(sc);
679 	stge_reset(sc, STGE_RESET_FULL);
680 	STGE_UNLOCK(sc);
681 
682 	/*
683 	 * Reading the station address from the EEPROM doesn't seem
684 	 * to work, at least on my sample boards.  Instead, since
685 	 * the reset sequence does AutoInit, read it from the station
686 	 * address registers. For Sundance 1023 you can only read it
687 	 * from EEPROM.
688 	 */
689 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
690 		uint16_t v;
691 
692 		v = CSR_READ_2(sc, STGE_StationAddress0);
693 		enaddr[0] = v & 0xff;
694 		enaddr[1] = v >> 8;
695 		v = CSR_READ_2(sc, STGE_StationAddress1);
696 		enaddr[2] = v & 0xff;
697 		enaddr[3] = v >> 8;
698 		v = CSR_READ_2(sc, STGE_StationAddress2);
699 		enaddr[4] = v & 0xff;
700 		enaddr[5] = v >> 8;
701 		sc->sc_stge1023 = 0;
702 	} else {
703 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
704 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
705 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
706 			    &myaddr[i]);
707 			myaddr[i] = le16toh(myaddr[i]);
708 		}
709 		bcopy(myaddr, enaddr, sizeof(enaddr));
710 		sc->sc_stge1023 = 1;
711 	}
712 
713 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
714 	if (ifp == NULL) {
715 		device_printf(sc->sc_dev, "failed to if_alloc()\n");
716 		error = ENXIO;
717 		goto fail;
718 	}
719 
720 	ifp->if_softc = sc;
721 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
722 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
723 	ifp->if_ioctl = stge_ioctl;
724 	ifp->if_start = stge_start;
725 	ifp->if_timer = 0;
726 	ifp->if_watchdog = NULL;
727 	ifp->if_init = stge_init;
728 	ifp->if_mtu = ETHERMTU;
729 	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
730 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
731 	IFQ_SET_READY(&ifp->if_snd);
732 	/* Revision B3 and earlier chips have checksum bug. */
733 	if (sc->sc_rev >= 0x0c) {
734 		ifp->if_hwassist = STGE_CSUM_FEATURES;
735 		ifp->if_capabilities = IFCAP_HWCSUM;
736 	} else {
737 		ifp->if_hwassist = 0;
738 		ifp->if_capabilities = 0;
739 	}
740 	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
741 	ifp->if_capenable = ifp->if_capabilities;
742 
743 	/*
744 	 * Read some important bits from the PhyCtrl register.
745 	 */
746 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
747 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
748 
749 	/* Set up MII bus. */
750 	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, stge_mediachange,
751 	    stge_mediastatus)) != 0) {
752 		device_printf(sc->sc_dev, "no PHY found!\n");
753 		goto fail;
754 	}
755 
756 	ether_ifattach(ifp, enaddr);
757 
758 	/* VLAN capability setup */
759 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
760 	if (sc->sc_rev >= 0x0c)
761 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
762 	ifp->if_capenable = ifp->if_capabilities;
763 #ifdef DEVICE_POLLING
764 	ifp->if_capabilities |= IFCAP_POLLING;
765 #endif
766 	/*
767 	 * Tell the upper layer(s) we support long frames.
768 	 * Must appear after the call to ether_ifattach() because
769 	 * ether_ifattach() sets ifi_hdrlen to the default value.
770 	 */
771 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
772 
773 	/*
774 	 * The manual recommends disabling early transmit, so we
775 	 * do.  It's disabled anyway, if using IP checksumming,
776 	 * since the entire packet must be in the FIFO in order
777 	 * for the chip to perform the checksum.
778 	 */
779 	sc->sc_txthresh = 0x0fff;
780 
781 	/*
782 	 * Disable MWI if the PCI layer tells us to.
783 	 */
784 	sc->sc_DMACtrl = 0;
785 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
786 		sc->sc_DMACtrl |= DMAC_MWIDisable;
787 
788 	/*
789 	 * Hookup IRQ
790 	 */
791 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
792 	    NULL, stge_intr, sc, &sc->sc_ih);
793 	if (error != 0) {
794 		ether_ifdetach(ifp);
795 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
796 		sc->sc_ifp = NULL;
797 		goto fail;
798 	}
799 
800 fail:
801 	if (error != 0)
802 		stge_detach(dev);
803 
804 	return (error);
805 }
806 
807 static int
808 stge_detach(device_t dev)
809 {
810 	struct stge_softc *sc;
811 	struct ifnet *ifp;
812 
813 	sc = device_get_softc(dev);
814 
815 	ifp = sc->sc_ifp;
816 #ifdef DEVICE_POLLING
817 	if (ifp && ifp->if_capenable & IFCAP_POLLING)
818 		ether_poll_deregister(ifp);
819 #endif
820 	if (device_is_attached(dev)) {
821 		STGE_LOCK(sc);
822 		/* XXX */
823 		sc->sc_detach = 1;
824 		stge_stop(sc);
825 		STGE_UNLOCK(sc);
826 		callout_drain(&sc->sc_tick_ch);
827 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
828 		ether_ifdetach(ifp);
829 	}
830 
831 	if (sc->sc_miibus != NULL) {
832 		device_delete_child(dev, sc->sc_miibus);
833 		sc->sc_miibus = NULL;
834 	}
835 	bus_generic_detach(dev);
836 	stge_dma_free(sc);
837 
838 	if (ifp != NULL) {
839 		if_free(ifp);
840 		sc->sc_ifp = NULL;
841 	}
842 
843 	if (sc->sc_ih) {
844 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
845 		sc->sc_ih = NULL;
846 	}
847 	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
848 
849 	mtx_destroy(&sc->sc_mii_mtx);
850 	mtx_destroy(&sc->sc_mtx);
851 
852 	return (0);
853 }
854 
855 struct stge_dmamap_arg {
856 	bus_addr_t	stge_busaddr;
857 };
858 
859 static void
860 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
861 {
862 	struct stge_dmamap_arg *ctx;
863 
864 	if (error != 0)
865 		return;
866 
867 	ctx = (struct stge_dmamap_arg *)arg;
868 	ctx->stge_busaddr = segs[0].ds_addr;
869 }
870 
871 static int
872 stge_dma_alloc(struct stge_softc *sc)
873 {
874 	struct stge_dmamap_arg ctx;
875 	struct stge_txdesc *txd;
876 	struct stge_rxdesc *rxd;
877 	int error, i;
878 
879 	/* create parent tag. */
880 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
881 		    1, 0,			/* algnmnt, boundary */
882 		    STGE_DMA_MAXADDR,		/* lowaddr */
883 		    BUS_SPACE_MAXADDR,		/* highaddr */
884 		    NULL, NULL,			/* filter, filterarg */
885 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
886 		    0,				/* nsegments */
887 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
888 		    0,				/* flags */
889 		    NULL, NULL,			/* lockfunc, lockarg */
890 		    &sc->sc_cdata.stge_parent_tag);
891 	if (error != 0) {
892 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
893 		goto fail;
894 	}
895 	/* create tag for Tx ring. */
896 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
897 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
898 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
899 		    BUS_SPACE_MAXADDR,		/* highaddr */
900 		    NULL, NULL,			/* filter, filterarg */
901 		    STGE_TX_RING_SZ,		/* maxsize */
902 		    1,				/* nsegments */
903 		    STGE_TX_RING_SZ,		/* maxsegsize */
904 		    0,				/* flags */
905 		    NULL, NULL,			/* lockfunc, lockarg */
906 		    &sc->sc_cdata.stge_tx_ring_tag);
907 	if (error != 0) {
908 		device_printf(sc->sc_dev,
909 		    "failed to allocate Tx ring DMA tag\n");
910 		goto fail;
911 	}
912 
913 	/* create tag for Rx ring. */
914 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
915 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
916 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
917 		    BUS_SPACE_MAXADDR,		/* highaddr */
918 		    NULL, NULL,			/* filter, filterarg */
919 		    STGE_RX_RING_SZ,		/* maxsize */
920 		    1,				/* nsegments */
921 		    STGE_RX_RING_SZ,		/* maxsegsize */
922 		    0,				/* flags */
923 		    NULL, NULL,			/* lockfunc, lockarg */
924 		    &sc->sc_cdata.stge_rx_ring_tag);
925 	if (error != 0) {
926 		device_printf(sc->sc_dev,
927 		    "failed to allocate Rx ring DMA tag\n");
928 		goto fail;
929 	}
930 
931 	/* create tag for Tx buffers. */
932 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
933 		    1, 0,			/* algnmnt, boundary */
934 		    BUS_SPACE_MAXADDR,		/* lowaddr */
935 		    BUS_SPACE_MAXADDR,		/* highaddr */
936 		    NULL, NULL,			/* filter, filterarg */
937 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
938 		    STGE_MAXTXSEGS,		/* nsegments */
939 		    MCLBYTES,			/* maxsegsize */
940 		    0,				/* flags */
941 		    NULL, NULL,			/* lockfunc, lockarg */
942 		    &sc->sc_cdata.stge_tx_tag);
943 	if (error != 0) {
944 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
945 		goto fail;
946 	}
947 
948 	/* create tag for Rx buffers. */
949 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
950 		    1, 0,			/* algnmnt, boundary */
951 		    BUS_SPACE_MAXADDR,		/* lowaddr */
952 		    BUS_SPACE_MAXADDR,		/* highaddr */
953 		    NULL, NULL,			/* filter, filterarg */
954 		    MCLBYTES,			/* maxsize */
955 		    1,				/* nsegments */
956 		    MCLBYTES,			/* maxsegsize */
957 		    0,				/* flags */
958 		    NULL, NULL,			/* lockfunc, lockarg */
959 		    &sc->sc_cdata.stge_rx_tag);
960 	if (error != 0) {
961 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
962 		goto fail;
963 	}
964 
965 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
966 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
967 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
968 	    &sc->sc_cdata.stge_tx_ring_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "failed to allocate DMA'able memory for Tx ring\n");
972 		goto fail;
973 	}
974 
975 	ctx.stge_busaddr = 0;
976 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
977 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
978 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
979 	if (error != 0 || ctx.stge_busaddr == 0) {
980 		device_printf(sc->sc_dev,
981 		    "failed to load DMA'able memory for Tx ring\n");
982 		goto fail;
983 	}
984 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
985 
986 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
987 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
988 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
989 	    &sc->sc_cdata.stge_rx_ring_map);
990 	if (error != 0) {
991 		device_printf(sc->sc_dev,
992 		    "failed to allocate DMA'able memory for Rx ring\n");
993 		goto fail;
994 	}
995 
996 	ctx.stge_busaddr = 0;
997 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
998 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
999 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1000 	if (error != 0 || ctx.stge_busaddr == 0) {
1001 		device_printf(sc->sc_dev,
1002 		    "failed to load DMA'able memory for Rx ring\n");
1003 		goto fail;
1004 	}
1005 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
1006 
1007 	/* create DMA maps for Tx buffers. */
1008 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
1009 		txd = &sc->sc_cdata.stge_txdesc[i];
1010 		txd->tx_m = NULL;
1011 		txd->tx_dmamap = 0;
1012 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
1013 		    &txd->tx_dmamap);
1014 		if (error != 0) {
1015 			device_printf(sc->sc_dev,
1016 			    "failed to create Tx dmamap\n");
1017 			goto fail;
1018 		}
1019 	}
1020 	/* create DMA maps for Rx buffers. */
1021 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1022 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
1023 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
1024 		goto fail;
1025 	}
1026 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
1027 		rxd = &sc->sc_cdata.stge_rxdesc[i];
1028 		rxd->rx_m = NULL;
1029 		rxd->rx_dmamap = 0;
1030 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1031 		    &rxd->rx_dmamap);
1032 		if (error != 0) {
1033 			device_printf(sc->sc_dev,
1034 			    "failed to create Rx dmamap\n");
1035 			goto fail;
1036 		}
1037 	}
1038 
1039 fail:
1040 	return (error);
1041 }
1042 
1043 static void
1044 stge_dma_free(struct stge_softc *sc)
1045 {
1046 	struct stge_txdesc *txd;
1047 	struct stge_rxdesc *rxd;
1048 	int i;
1049 
1050 	/* Tx ring */
1051 	if (sc->sc_cdata.stge_tx_ring_tag) {
1052 		if (sc->sc_cdata.stge_tx_ring_map)
1053 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
1054 			    sc->sc_cdata.stge_tx_ring_map);
1055 		if (sc->sc_cdata.stge_tx_ring_map &&
1056 		    sc->sc_rdata.stge_tx_ring)
1057 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
1058 			    sc->sc_rdata.stge_tx_ring,
1059 			    sc->sc_cdata.stge_tx_ring_map);
1060 		sc->sc_rdata.stge_tx_ring = NULL;
1061 		sc->sc_cdata.stge_tx_ring_map = 0;
1062 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
1063 		sc->sc_cdata.stge_tx_ring_tag = NULL;
1064 	}
1065 	/* Rx ring */
1066 	if (sc->sc_cdata.stge_rx_ring_tag) {
1067 		if (sc->sc_cdata.stge_rx_ring_map)
1068 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
1069 			    sc->sc_cdata.stge_rx_ring_map);
1070 		if (sc->sc_cdata.stge_rx_ring_map &&
1071 		    sc->sc_rdata.stge_rx_ring)
1072 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
1073 			    sc->sc_rdata.stge_rx_ring,
1074 			    sc->sc_cdata.stge_rx_ring_map);
1075 		sc->sc_rdata.stge_rx_ring = NULL;
1076 		sc->sc_cdata.stge_rx_ring_map = 0;
1077 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
1078 		sc->sc_cdata.stge_rx_ring_tag = NULL;
1079 	}
1080 	/* Tx buffers */
1081 	if (sc->sc_cdata.stge_tx_tag) {
1082 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
1083 			txd = &sc->sc_cdata.stge_txdesc[i];
1084 			if (txd->tx_dmamap) {
1085 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
1086 				    txd->tx_dmamap);
1087 				txd->tx_dmamap = 0;
1088 			}
1089 		}
1090 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
1091 		sc->sc_cdata.stge_tx_tag = NULL;
1092 	}
1093 	/* Rx buffers */
1094 	if (sc->sc_cdata.stge_rx_tag) {
1095 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
1096 			rxd = &sc->sc_cdata.stge_rxdesc[i];
1097 			if (rxd->rx_dmamap) {
1098 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1099 				    rxd->rx_dmamap);
1100 				rxd->rx_dmamap = 0;
1101 			}
1102 		}
1103 		if (sc->sc_cdata.stge_rx_sparemap) {
1104 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1105 			    sc->sc_cdata.stge_rx_sparemap);
1106 			sc->sc_cdata.stge_rx_sparemap = 0;
1107 		}
1108 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
1109 		sc->sc_cdata.stge_rx_tag = NULL;
1110 	}
1111 
1112 	if (sc->sc_cdata.stge_parent_tag) {
1113 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
1114 		sc->sc_cdata.stge_parent_tag = NULL;
1115 	}
1116 }
1117 
1118 /*
1119  * stge_shutdown:
1120  *
1121  *	Make sure the interface is stopped at reboot time.
1122  */
1123 static int
1124 stge_shutdown(device_t dev)
1125 {
1126 
1127 	return (stge_suspend(dev));
1128 }
1129 
1130 static void
1131 stge_setwol(struct stge_softc *sc)
1132 {
1133 	struct ifnet *ifp;
1134 	uint8_t v;
1135 
1136 	STGE_LOCK_ASSERT(sc);
1137 
1138 	ifp = sc->sc_ifp;
1139 	v = CSR_READ_1(sc, STGE_WakeEvent);
1140 	/* Disable all WOL bits. */
1141 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1142 	    WE_WakeOnLanEnable);
1143 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1144 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
1145 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1146 	/* Reset Tx and prevent transmission. */
1147 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1148 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1149 	/*
1150 	 * TC9021 automatically reset link speed to 100Mbps when it's put
1151 	 * into sleep so there is no need to try to resetting link speed.
1152 	 */
1153 }
1154 
1155 static int
1156 stge_suspend(device_t dev)
1157 {
1158 	struct stge_softc *sc;
1159 
1160 	sc = device_get_softc(dev);
1161 
1162 	STGE_LOCK(sc);
1163 	stge_stop(sc);
1164 	sc->sc_suspended = 1;
1165 	stge_setwol(sc);
1166 	STGE_UNLOCK(sc);
1167 
1168 	return (0);
1169 }
1170 
1171 static int
1172 stge_resume(device_t dev)
1173 {
1174 	struct stge_softc *sc;
1175 	struct ifnet *ifp;
1176 	uint8_t v;
1177 
1178 	sc = device_get_softc(dev);
1179 
1180 	STGE_LOCK(sc);
1181 	/*
1182 	 * Clear WOL bits, so special frames wouldn't interfere
1183 	 * normal Rx operation anymore.
1184 	 */
1185 	v = CSR_READ_1(sc, STGE_WakeEvent);
1186 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1187 	    WE_WakeOnLanEnable);
1188 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1189 	ifp = sc->sc_ifp;
1190 	if (ifp->if_flags & IFF_UP)
1191 		stge_init_locked(sc);
1192 
1193 	sc->sc_suspended = 0;
1194 	STGE_UNLOCK(sc);
1195 
1196 	return (0);
1197 }
1198 
1199 static void
1200 stge_dma_wait(struct stge_softc *sc)
1201 {
1202 	int i;
1203 
1204 	for (i = 0; i < STGE_TIMEOUT; i++) {
1205 		DELAY(2);
1206 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1207 			break;
1208 	}
1209 
1210 	if (i == STGE_TIMEOUT)
1211 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1212 }
1213 
1214 static int
1215 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1216 {
1217 	struct stge_txdesc *txd;
1218 	struct stge_tfd *tfd;
1219 	struct mbuf *m;
1220 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1221 	int error, i, nsegs, si;
1222 	uint64_t csum_flags, tfc;
1223 
1224 	STGE_LOCK_ASSERT(sc);
1225 
1226 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1227 		return (ENOBUFS);
1228 
1229 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1230 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1231 	if (error == EFBIG) {
1232 		m = m_defrag(*m_head, M_DONTWAIT);
1233 		if (m == NULL) {
1234 			m_freem(*m_head);
1235 			*m_head = NULL;
1236 			return (ENOMEM);
1237 		}
1238 		*m_head = m;
1239 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1240 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1241 		if (error != 0) {
1242 			m_freem(*m_head);
1243 			*m_head = NULL;
1244 			return (error);
1245 		}
1246 	} else if (error != 0)
1247 		return (error);
1248 	if (nsegs == 0) {
1249 		m_freem(*m_head);
1250 		*m_head = NULL;
1251 		return (EIO);
1252 	}
1253 
1254 	m = *m_head;
1255 	csum_flags = 0;
1256 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1257 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1258 			csum_flags |= TFD_IPChecksumEnable;
1259 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1260 			csum_flags |= TFD_TCPChecksumEnable;
1261 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1262 			csum_flags |= TFD_UDPChecksumEnable;
1263 	}
1264 
1265 	si = sc->sc_cdata.stge_tx_prod;
1266 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1267 	for (i = 0; i < nsegs; i++)
1268 		tfd->tfd_frags[i].frag_word0 =
1269 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1270 		    FRAG_LEN(txsegs[i].ds_len));
1271 	sc->sc_cdata.stge_tx_cnt++;
1272 
1273 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1274 	    TFD_FragCount(nsegs) | csum_flags;
1275 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1276 		tfc |= TFD_TxDMAIndicate;
1277 
1278 	/* Update producer index. */
1279 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1280 
1281 	/* Check if we have a VLAN tag to insert. */
1282 	if (m->m_flags & M_VLANTAG)
1283 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1284 	tfd->tfd_control = htole64(tfc);
1285 
1286 	/* Update Tx Queue. */
1287 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1288 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1289 	txd->tx_m = m;
1290 
1291 	/* Sync descriptors. */
1292 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1293 	    BUS_DMASYNC_PREWRITE);
1294 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1295 	    sc->sc_cdata.stge_tx_ring_map,
1296 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1297 
1298 	return (0);
1299 }
1300 
1301 /*
1302  * stge_start:		[ifnet interface function]
1303  *
1304  *	Start packet transmission on the interface.
1305  */
1306 static void
1307 stge_start(struct ifnet *ifp)
1308 {
1309 	struct stge_softc *sc;
1310 
1311 	sc = ifp->if_softc;
1312 	STGE_LOCK(sc);
1313 	stge_start_locked(ifp);
1314 	STGE_UNLOCK(sc);
1315 }
1316 
1317 static void
1318 stge_start_locked(struct ifnet *ifp)
1319 {
1320         struct stge_softc *sc;
1321         struct mbuf *m_head;
1322 	int enq;
1323 
1324 	sc = ifp->if_softc;
1325 
1326 	STGE_LOCK_ASSERT(sc);
1327 
1328 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1329 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1330 		return;
1331 
1332 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1333 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1334 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1335 			break;
1336 		}
1337 
1338 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1339 		if (m_head == NULL)
1340 			break;
1341 		/*
1342 		 * Pack the data into the transmit ring. If we
1343 		 * don't have room, set the OACTIVE flag and wait
1344 		 * for the NIC to drain the ring.
1345 		 */
1346 		if (stge_encap(sc, &m_head)) {
1347 			if (m_head == NULL)
1348 				break;
1349 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1350 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1351 			break;
1352 		}
1353 
1354 		enq++;
1355 		/*
1356 		 * If there's a BPF listener, bounce a copy of this frame
1357 		 * to him.
1358 		 */
1359 		ETHER_BPF_MTAP(ifp, m_head);
1360 	}
1361 
1362 	if (enq > 0) {
1363 		/* Transmit */
1364 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1365 
1366 		/* Set a timeout in case the chip goes out to lunch. */
1367 		sc->sc_watchdog_timer = 5;
1368 	}
1369 }
1370 
1371 /*
1372  * stge_watchdog:
1373  *
1374  *	Watchdog timer handler.
1375  */
1376 static void
1377 stge_watchdog(struct stge_softc *sc)
1378 {
1379 	struct ifnet *ifp;
1380 
1381 	STGE_LOCK_ASSERT(sc);
1382 
1383 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1384 		return;
1385 
1386 	ifp = sc->sc_ifp;
1387 	if_printf(sc->sc_ifp, "device timeout\n");
1388 	ifp->if_oerrors++;
1389 	stge_init_locked(sc);
1390 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1391 		stge_start_locked(ifp);
1392 }
1393 
1394 /*
1395  * stge_ioctl:		[ifnet interface function]
1396  *
1397  *	Handle control requests from the operator.
1398  */
1399 static int
1400 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1401 {
1402 	struct stge_softc *sc;
1403 	struct ifreq *ifr;
1404 	struct mii_data *mii;
1405 	int error, mask;
1406 
1407 	sc = ifp->if_softc;
1408 	ifr = (struct ifreq *)data;
1409 	error = 0;
1410 	switch (cmd) {
1411 	case SIOCSIFMTU:
1412 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1413 			error = EINVAL;
1414 		else if (ifp->if_mtu != ifr->ifr_mtu) {
1415 			ifp->if_mtu = ifr->ifr_mtu;
1416 			STGE_LOCK(sc);
1417 			stge_init_locked(sc);
1418 			STGE_UNLOCK(sc);
1419 		}
1420 		break;
1421 	case SIOCSIFFLAGS:
1422 		STGE_LOCK(sc);
1423 		if ((ifp->if_flags & IFF_UP) != 0) {
1424 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1425 				if (((ifp->if_flags ^ sc->sc_if_flags)
1426 				    & IFF_PROMISC) != 0)
1427 					stge_set_filter(sc);
1428 			} else {
1429 				if (sc->sc_detach == 0)
1430 					stge_init_locked(sc);
1431 			}
1432 		} else {
1433 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1434 				stge_stop(sc);
1435 		}
1436 		sc->sc_if_flags = ifp->if_flags;
1437 		STGE_UNLOCK(sc);
1438 		break;
1439 	case SIOCADDMULTI:
1440 	case SIOCDELMULTI:
1441 		STGE_LOCK(sc);
1442 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1443 			stge_set_multi(sc);
1444 		STGE_UNLOCK(sc);
1445 		break;
1446 	case SIOCSIFMEDIA:
1447 	case SIOCGIFMEDIA:
1448 		mii = device_get_softc(sc->sc_miibus);
1449 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1450 		break;
1451 	case SIOCSIFCAP:
1452 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1453 #ifdef DEVICE_POLLING
1454 		if ((mask & IFCAP_POLLING) != 0) {
1455 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1456 				error = ether_poll_register(stge_poll, ifp);
1457 				if (error != 0)
1458 					break;
1459 				STGE_LOCK(sc);
1460 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1461 				ifp->if_capenable |= IFCAP_POLLING;
1462 				STGE_UNLOCK(sc);
1463 			} else {
1464 				error = ether_poll_deregister(ifp);
1465 				if (error != 0)
1466 					break;
1467 				STGE_LOCK(sc);
1468 				CSR_WRITE_2(sc, STGE_IntEnable,
1469 				    sc->sc_IntEnable);
1470 				ifp->if_capenable &= ~IFCAP_POLLING;
1471 				STGE_UNLOCK(sc);
1472 			}
1473 		}
1474 #endif
1475 		if ((mask & IFCAP_HWCSUM) != 0) {
1476 			ifp->if_capenable ^= IFCAP_HWCSUM;
1477 			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1478 			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1479 				ifp->if_hwassist = STGE_CSUM_FEATURES;
1480 			else
1481 				ifp->if_hwassist = 0;
1482 		}
1483 		if ((mask & IFCAP_WOL) != 0 &&
1484 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1485 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1486 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1487 		}
1488 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1489 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1490 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1491 				STGE_LOCK(sc);
1492 				stge_vlan_setup(sc);
1493 				STGE_UNLOCK(sc);
1494 			}
1495 		}
1496 		VLAN_CAPABILITIES(ifp);
1497 		break;
1498 	default:
1499 		error = ether_ioctl(ifp, cmd, data);
1500 		break;
1501 	}
1502 
1503 	return (error);
1504 }
1505 
1506 static void
1507 stge_link_task(void *arg, int pending)
1508 {
1509 	struct stge_softc *sc;
1510 	struct mii_data *mii;
1511 	uint32_t v, ac;
1512 	int i;
1513 
1514 	sc = (struct stge_softc *)arg;
1515 	STGE_LOCK(sc);
1516 
1517 	mii = device_get_softc(sc->sc_miibus);
1518 	if (mii->mii_media_status & IFM_ACTIVE) {
1519 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1520 			sc->sc_link = 1;
1521 	} else
1522 		sc->sc_link = 0;
1523 
1524 	sc->sc_MACCtrl = 0;
1525 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1526 		sc->sc_MACCtrl |= MC_DuplexSelect;
1527 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
1528 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1529 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
1530 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1531 	/*
1532 	 * Update STGE_MACCtrl register depending on link status.
1533 	 * (duplex, flow control etc)
1534 	 */
1535 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1536 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1537 	v |= sc->sc_MACCtrl;
1538 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1539 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1540 		/* Duplex setting changed, reset Tx/Rx functions. */
1541 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1542 		ac |= AC_TxReset | AC_RxReset;
1543 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1544 		for (i = 0; i < STGE_TIMEOUT; i++) {
1545 			DELAY(100);
1546 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1547 				break;
1548 		}
1549 		if (i == STGE_TIMEOUT)
1550 			device_printf(sc->sc_dev, "reset failed to complete\n");
1551 	}
1552 	STGE_UNLOCK(sc);
1553 }
1554 
1555 static __inline int
1556 stge_tx_error(struct stge_softc *sc)
1557 {
1558 	uint32_t txstat;
1559 	int error;
1560 
1561 	for (error = 0;;) {
1562 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1563 		if ((txstat & TS_TxComplete) == 0)
1564 			break;
1565 		/* Tx underrun */
1566 		if ((txstat & TS_TxUnderrun) != 0) {
1567 			/*
1568 			 * XXX
1569 			 * There should be a more better way to recover
1570 			 * from Tx underrun instead of a full reset.
1571 			 */
1572 			if (sc->sc_nerr++ < STGE_MAXERR)
1573 				device_printf(sc->sc_dev, "Tx underrun, "
1574 				    "resetting...\n");
1575 			if (sc->sc_nerr == STGE_MAXERR)
1576 				device_printf(sc->sc_dev, "too many errors; "
1577 				    "not reporting any more\n");
1578 			error = -1;
1579 			break;
1580 		}
1581 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1582 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1583 			CSR_WRITE_4(sc, STGE_MACCtrl,
1584 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1585 			    MC_TxEnable);
1586 	}
1587 
1588 	return (error);
1589 }
1590 
1591 /*
1592  * stge_intr:
1593  *
1594  *	Interrupt service routine.
1595  */
1596 static void
1597 stge_intr(void *arg)
1598 {
1599 	struct stge_softc *sc;
1600 	struct ifnet *ifp;
1601 	int reinit;
1602 	uint16_t status;
1603 
1604 	sc = (struct stge_softc *)arg;
1605 	ifp = sc->sc_ifp;
1606 
1607 	STGE_LOCK(sc);
1608 
1609 #ifdef DEVICE_POLLING
1610 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1611 		goto done_locked;
1612 #endif
1613 	status = CSR_READ_2(sc, STGE_IntStatus);
1614 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1615 		goto done_locked;
1616 
1617 	/* Disable interrupts. */
1618 	for (reinit = 0;;) {
1619 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1620 		status &= sc->sc_IntEnable;
1621 		if (status == 0)
1622 			break;
1623 		/* Host interface errors. */
1624 		if ((status & IS_HostError) != 0) {
1625 			device_printf(sc->sc_dev,
1626 			    "Host interface error, resetting...\n");
1627 			reinit = 1;
1628 			goto force_init;
1629 		}
1630 
1631 		/* Receive interrupts. */
1632 		if ((status & IS_RxDMAComplete) != 0) {
1633 			stge_rxeof(sc);
1634 			if ((status & IS_RFDListEnd) != 0)
1635 				CSR_WRITE_4(sc, STGE_DMACtrl,
1636 				    DMAC_RxDMAPollNow);
1637 		}
1638 
1639 		/* Transmit interrupts. */
1640 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1641 			stge_txeof(sc);
1642 
1643 		/* Transmission errors.*/
1644 		if ((status & IS_TxComplete) != 0) {
1645 			if ((reinit = stge_tx_error(sc)) != 0)
1646 				break;
1647 		}
1648 	}
1649 
1650 force_init:
1651 	if (reinit != 0)
1652 		stge_init_locked(sc);
1653 
1654 	/* Re-enable interrupts. */
1655 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1656 
1657 	/* Try to get more packets going. */
1658 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1659 		stge_start_locked(ifp);
1660 
1661 done_locked:
1662 	STGE_UNLOCK(sc);
1663 }
1664 
1665 /*
1666  * stge_txeof:
1667  *
1668  *	Helper; handle transmit interrupts.
1669  */
1670 static void
1671 stge_txeof(struct stge_softc *sc)
1672 {
1673 	struct ifnet *ifp;
1674 	struct stge_txdesc *txd;
1675 	uint64_t control;
1676 	int cons;
1677 
1678 	STGE_LOCK_ASSERT(sc);
1679 
1680 	ifp = sc->sc_ifp;
1681 
1682 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1683 	if (txd == NULL)
1684 		return;
1685 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1686 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1687 
1688 	/*
1689 	 * Go through our Tx list and free mbufs for those
1690 	 * frames which have been transmitted.
1691 	 */
1692 	for (cons = sc->sc_cdata.stge_tx_cons;;
1693 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1694 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1695 			break;
1696 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1697 		if ((control & TFD_TFDDone) == 0)
1698 			break;
1699 		sc->sc_cdata.stge_tx_cnt--;
1700 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1701 
1702 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1703 		    BUS_DMASYNC_POSTWRITE);
1704 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1705 
1706 		/* Output counter is updated with statistics register */
1707 		m_freem(txd->tx_m);
1708 		txd->tx_m = NULL;
1709 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1710 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1711 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1712 	}
1713 	sc->sc_cdata.stge_tx_cons = cons;
1714 	if (sc->sc_cdata.stge_tx_cnt == 0)
1715 		sc->sc_watchdog_timer = 0;
1716 
1717         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1718 	    sc->sc_cdata.stge_tx_ring_map,
1719 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1720 }
1721 
1722 static __inline void
1723 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1724 {
1725 	struct stge_rfd *rfd;
1726 
1727 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1728 	rfd->rfd_status = 0;
1729 }
1730 
1731 #ifndef __NO_STRICT_ALIGNMENT
1732 /*
1733  * It seems that TC9021's DMA engine has alignment restrictions in
1734  * DMA scatter operations. The first DMA segment has no address
1735  * alignment restrictins but the rest should be aligned on 4(?) bytes
1736  * boundary. Otherwise it would corrupt random memory. Since we don't
1737  * know which one is used for the first segment in advance we simply
1738  * don't align at all.
1739  * To avoid copying over an entire frame to align, we allocate a new
1740  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1741  * prepended into the existing mbuf chain.
1742  */
1743 static __inline struct mbuf *
1744 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1745 {
1746 	struct mbuf *n;
1747 
1748 	n = NULL;
1749 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1750 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1751 		m->m_data += ETHER_HDR_LEN;
1752 		n = m;
1753 	} else {
1754 		MGETHDR(n, M_DONTWAIT, MT_DATA);
1755 		if (n != NULL) {
1756 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1757 			m->m_data += ETHER_HDR_LEN;
1758 			m->m_len -= ETHER_HDR_LEN;
1759 			n->m_len = ETHER_HDR_LEN;
1760 			M_MOVE_PKTHDR(n, m);
1761 			n->m_next = m;
1762 		} else
1763 			m_freem(m);
1764 	}
1765 
1766 	return (n);
1767 }
1768 #endif
1769 
1770 /*
1771  * stge_rxeof:
1772  *
1773  *	Helper; handle receive interrupts.
1774  */
1775 static void
1776 stge_rxeof(struct stge_softc *sc)
1777 {
1778 	struct ifnet *ifp;
1779 	struct stge_rxdesc *rxd;
1780 	struct mbuf *mp, *m;
1781 	uint64_t status64;
1782 	uint32_t status;
1783 	int cons, prog;
1784 
1785 	STGE_LOCK_ASSERT(sc);
1786 
1787 	ifp = sc->sc_ifp;
1788 
1789 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1790 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1791 
1792 	prog = 0;
1793 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1794 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1795 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1796 		status = RFD_RxStatus(status64);
1797 		if ((status & RFD_RFDDone) == 0)
1798 			break;
1799 #ifdef DEVICE_POLLING
1800 		if (ifp->if_capenable & IFCAP_POLLING) {
1801 			if (sc->sc_cdata.stge_rxcycles <= 0)
1802 				break;
1803 			sc->sc_cdata.stge_rxcycles--;
1804 		}
1805 #endif
1806 		prog++;
1807 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1808 		mp = rxd->rx_m;
1809 
1810 		/*
1811 		 * If the packet had an error, drop it.  Note we count
1812 		 * the error later in the periodic stats update.
1813 		 */
1814 		if ((status & RFD_FrameEnd) != 0 && (status &
1815 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1816 		    RFD_RxAlignmentError | RFD_RxFCSError |
1817 		    RFD_RxLengthError)) != 0) {
1818 			stge_discard_rxbuf(sc, cons);
1819 			if (sc->sc_cdata.stge_rxhead != NULL) {
1820 				m_freem(sc->sc_cdata.stge_rxhead);
1821 				STGE_RXCHAIN_RESET(sc);
1822 			}
1823 			continue;
1824 		}
1825 		/*
1826 		 * Add a new receive buffer to the ring.
1827 		 */
1828 		if (stge_newbuf(sc, cons) != 0) {
1829 			ifp->if_iqdrops++;
1830 			stge_discard_rxbuf(sc, cons);
1831 			if (sc->sc_cdata.stge_rxhead != NULL) {
1832 				m_freem(sc->sc_cdata.stge_rxhead);
1833 				STGE_RXCHAIN_RESET(sc);
1834 			}
1835 			continue;
1836 		}
1837 
1838 		if ((status & RFD_FrameEnd) != 0)
1839 			mp->m_len = RFD_RxDMAFrameLen(status) -
1840 			    sc->sc_cdata.stge_rxlen;
1841 		sc->sc_cdata.stge_rxlen += mp->m_len;
1842 
1843 		/* Chain mbufs. */
1844 		if (sc->sc_cdata.stge_rxhead == NULL) {
1845 			sc->sc_cdata.stge_rxhead = mp;
1846 			sc->sc_cdata.stge_rxtail = mp;
1847 		} else {
1848 			mp->m_flags &= ~M_PKTHDR;
1849 			sc->sc_cdata.stge_rxtail->m_next = mp;
1850 			sc->sc_cdata.stge_rxtail = mp;
1851 		}
1852 
1853 		if ((status & RFD_FrameEnd) != 0) {
1854 			m = sc->sc_cdata.stge_rxhead;
1855 			m->m_pkthdr.rcvif = ifp;
1856 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1857 
1858 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1859 				m_freem(m);
1860 				STGE_RXCHAIN_RESET(sc);
1861 				continue;
1862 			}
1863 			/*
1864 			 * Set the incoming checksum information for
1865 			 * the packet.
1866 			 */
1867 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1868 				if ((status & RFD_IPDetected) != 0) {
1869 					m->m_pkthdr.csum_flags |=
1870 						CSUM_IP_CHECKED;
1871 					if ((status & RFD_IPError) == 0)
1872 						m->m_pkthdr.csum_flags |=
1873 						    CSUM_IP_VALID;
1874 				}
1875 				if (((status & RFD_TCPDetected) != 0 &&
1876 				    (status & RFD_TCPError) == 0) ||
1877 				    ((status & RFD_UDPDetected) != 0 &&
1878 				    (status & RFD_UDPError) == 0)) {
1879 					m->m_pkthdr.csum_flags |=
1880 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1881 					m->m_pkthdr.csum_data = 0xffff;
1882 				}
1883 			}
1884 
1885 #ifndef __NO_STRICT_ALIGNMENT
1886 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1887 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1888 					STGE_RXCHAIN_RESET(sc);
1889 					continue;
1890 				}
1891 			}
1892 #endif
1893 			/* Check for VLAN tagged packets. */
1894 			if ((status & RFD_VLANDetected) != 0 &&
1895 			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1896 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1897 				m->m_flags |= M_VLANTAG;
1898 			}
1899 
1900 			STGE_UNLOCK(sc);
1901 			/* Pass it on. */
1902 			(*ifp->if_input)(ifp, m);
1903 			STGE_LOCK(sc);
1904 
1905 			STGE_RXCHAIN_RESET(sc);
1906 		}
1907 	}
1908 
1909 	if (prog > 0) {
1910 		/* Update the consumer index. */
1911 		sc->sc_cdata.stge_rx_cons = cons;
1912 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1913 		    sc->sc_cdata.stge_rx_ring_map,
1914 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1915 	}
1916 }
1917 
1918 #ifdef DEVICE_POLLING
1919 static void
1920 stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1921 {
1922 	struct stge_softc *sc;
1923 	uint16_t status;
1924 
1925 	sc = ifp->if_softc;
1926 	STGE_LOCK(sc);
1927 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1928 		STGE_UNLOCK(sc);
1929 		return;
1930 	}
1931 
1932 	sc->sc_cdata.stge_rxcycles = count;
1933 	stge_rxeof(sc);
1934 	stge_txeof(sc);
1935 
1936 	if (cmd == POLL_AND_CHECK_STATUS) {
1937 		status = CSR_READ_2(sc, STGE_IntStatus);
1938 		status &= sc->sc_IntEnable;
1939 		if (status != 0) {
1940 			if ((status & IS_HostError) != 0) {
1941 				device_printf(sc->sc_dev,
1942 				    "Host interface error, resetting...\n");
1943 				stge_init_locked(sc);
1944 			}
1945 			if ((status & IS_TxComplete) != 0) {
1946 				if (stge_tx_error(sc) != 0)
1947 					stge_init_locked(sc);
1948 			}
1949 		}
1950 
1951 	}
1952 
1953 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1954 		stge_start_locked(ifp);
1955 
1956 	STGE_UNLOCK(sc);
1957 }
1958 #endif	/* DEVICE_POLLING */
1959 
1960 /*
1961  * stge_tick:
1962  *
1963  *	One second timer, used to tick the MII.
1964  */
1965 static void
1966 stge_tick(void *arg)
1967 {
1968 	struct stge_softc *sc;
1969 	struct mii_data *mii;
1970 
1971 	sc = (struct stge_softc *)arg;
1972 
1973 	STGE_LOCK_ASSERT(sc);
1974 
1975 	mii = device_get_softc(sc->sc_miibus);
1976 	mii_tick(mii);
1977 
1978 	/* Update statistics counters. */
1979 	stge_stats_update(sc);
1980 
1981 	/*
1982 	 * Relcaim any pending Tx descriptors to release mbufs in a
1983 	 * timely manner as we don't generate Tx completion interrupts
1984 	 * for every frame. This limits the delay to a maximum of one
1985 	 * second.
1986 	 */
1987 	if (sc->sc_cdata.stge_tx_cnt != 0)
1988 		stge_txeof(sc);
1989 
1990 	stge_watchdog(sc);
1991 
1992 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1993 }
1994 
1995 /*
1996  * stge_stats_update:
1997  *
1998  *	Read the TC9021 statistics counters.
1999  */
2000 static void
2001 stge_stats_update(struct stge_softc *sc)
2002 {
2003 	struct ifnet *ifp;
2004 
2005 	STGE_LOCK_ASSERT(sc);
2006 
2007 	ifp = sc->sc_ifp;
2008 
2009 	CSR_READ_4(sc,STGE_OctetRcvOk);
2010 
2011 	ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
2012 
2013 	ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
2014 
2015 	CSR_READ_4(sc, STGE_OctetXmtdOk);
2016 
2017 	ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
2018 
2019 	ifp->if_collisions +=
2020 	    CSR_READ_4(sc, STGE_LateCollisions) +
2021 	    CSR_READ_4(sc, STGE_MultiColFrames) +
2022 	    CSR_READ_4(sc, STGE_SingleColFrames);
2023 
2024 	ifp->if_oerrors +=
2025 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
2026 	    CSR_READ_2(sc, STGE_FramesWEXDeferal);
2027 }
2028 
2029 /*
2030  * stge_reset:
2031  *
2032  *	Perform a soft reset on the TC9021.
2033  */
2034 static void
2035 stge_reset(struct stge_softc *sc, uint32_t how)
2036 {
2037 	uint32_t ac;
2038 	uint8_t v;
2039 	int i, dv;
2040 
2041 	STGE_LOCK_ASSERT(sc);
2042 
2043 	dv = 5000;
2044 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2045 	switch (how) {
2046 	case STGE_RESET_TX:
2047 		ac |= AC_TxReset | AC_FIFO;
2048 		dv = 100;
2049 		break;
2050 	case STGE_RESET_RX:
2051 		ac |= AC_RxReset | AC_FIFO;
2052 		dv = 100;
2053 		break;
2054 	case STGE_RESET_FULL:
2055 	default:
2056 		/*
2057 		 * Only assert RstOut if we're fiber.  We need GMII clocks
2058 		 * to be present in order for the reset to complete on fiber
2059 		 * cards.
2060 		 */
2061 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
2062 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
2063 		    (sc->sc_usefiber ? AC_RstOut : 0);
2064 		break;
2065 	}
2066 
2067 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2068 
2069 	/* Account for reset problem at 10Mbps. */
2070 	DELAY(dv);
2071 
2072 	for (i = 0; i < STGE_TIMEOUT; i++) {
2073 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
2074 			break;
2075 		DELAY(dv);
2076 	}
2077 
2078 	if (i == STGE_TIMEOUT)
2079 		device_printf(sc->sc_dev, "reset failed to complete\n");
2080 
2081 	/* Set LED, from Linux IPG driver. */
2082 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2083 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
2084 	if ((sc->sc_led & 0x01) != 0)
2085 		ac |= AC_LEDMode;
2086 	if ((sc->sc_led & 0x03) != 0)
2087 		ac |= AC_LEDModeBit1;
2088 	if ((sc->sc_led & 0x08) != 0)
2089 		ac |= AC_LEDSpeed;
2090 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2091 
2092 	/* Set PHY, from Linux IPG driver */
2093 	v = CSR_READ_1(sc, STGE_PhySet);
2094 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
2095 	v |= ((sc->sc_led & 0x70) >> 4);
2096 	CSR_WRITE_1(sc, STGE_PhySet, v);
2097 }
2098 
2099 /*
2100  * stge_init:		[ ifnet interface function ]
2101  *
2102  *	Initialize the interface.
2103  */
2104 static void
2105 stge_init(void *xsc)
2106 {
2107 	struct stge_softc *sc;
2108 
2109 	sc = (struct stge_softc *)xsc;
2110 	STGE_LOCK(sc);
2111 	stge_init_locked(sc);
2112 	STGE_UNLOCK(sc);
2113 }
2114 
2115 static void
2116 stge_init_locked(struct stge_softc *sc)
2117 {
2118 	struct ifnet *ifp;
2119 	struct mii_data *mii;
2120 	uint16_t eaddr[3];
2121 	uint32_t v;
2122 	int error;
2123 
2124 	STGE_LOCK_ASSERT(sc);
2125 
2126 	ifp = sc->sc_ifp;
2127 	mii = device_get_softc(sc->sc_miibus);
2128 
2129 	/*
2130 	 * Cancel any pending I/O.
2131 	 */
2132 	stge_stop(sc);
2133 
2134 	/*
2135 	 * Reset the chip to a known state.
2136 	 */
2137 	stge_reset(sc, STGE_RESET_FULL);
2138 
2139 	/* Init descriptors. */
2140 	error = stge_init_rx_ring(sc);
2141         if (error != 0) {
2142                 device_printf(sc->sc_dev,
2143                     "initialization failed: no memory for rx buffers\n");
2144                 stge_stop(sc);
2145 		goto out;
2146         }
2147 	stge_init_tx_ring(sc);
2148 
2149 	/* Set the station address. */
2150 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2151 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2152 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2153 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2154 
2155 	/*
2156 	 * Set the statistics masks.  Disable all the RMON stats,
2157 	 * and disable selected stats in the non-RMON stats registers.
2158 	 */
2159 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2160 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2161 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2162 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2163 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2164 	    (1U << 21));
2165 
2166 	/* Set up the receive filter. */
2167 	stge_set_filter(sc);
2168 	/* Program multicast filter. */
2169 	stge_set_multi(sc);
2170 
2171 	/*
2172 	 * Give the transmit and receive ring to the chip.
2173 	 */
2174 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2175 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2176 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2177 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2178 
2179 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2180 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2181 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2182 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2183 
2184 	/*
2185 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2186 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2187 	 * transmit engine when there's actually a packet.
2188 	 */
2189 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2190 
2191 	/* ..and the Rx auto-poll period. */
2192 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2193 
2194 	/* Initialize the Tx start threshold. */
2195 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2196 
2197 	/* Rx DMA thresholds, from Linux */
2198 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2199 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2200 
2201 	/* Rx early threhold, from Linux */
2202 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2203 
2204 	/* Tx DMA thresholds, from Linux */
2205 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2206 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2207 
2208 	/*
2209 	 * Initialize the Rx DMA interrupt control register.  We
2210 	 * request an interrupt after every incoming packet, but
2211 	 * defer it for sc_rxint_dmawait us. When the number of
2212 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2213 	 * deferring the interrupt, and signal it immediately.
2214 	 */
2215 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2216 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2217 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2218 
2219 	/*
2220 	 * Initialize the interrupt mask.
2221 	 */
2222 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2223 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2224 #ifdef DEVICE_POLLING
2225 	/* Disable interrupts if we are polling. */
2226 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2227 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2228 	else
2229 #endif
2230 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2231 
2232 	/*
2233 	 * Configure the DMA engine.
2234 	 * XXX Should auto-tune TxBurstLimit.
2235 	 */
2236 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2237 
2238 	/*
2239 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2240 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2241 	 * in the Rx FIFO.
2242 	 */
2243 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2244 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2245 
2246 	/*
2247 	 * Set the maximum frame size.
2248 	 */
2249 	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2250 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2251 
2252 	/*
2253 	 * Initialize MacCtrl -- do it before setting the media,
2254 	 * as setting the media will actually program the register.
2255 	 *
2256 	 * Note: We have to poke the IFS value before poking
2257 	 * anything else.
2258 	 */
2259 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2260 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2261 
2262 	stge_vlan_setup(sc);
2263 
2264 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2265 		/* Multi-frag frame bug work-around. */
2266 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2267 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2268 
2269 		/* Tx Poll Now bug work-around. */
2270 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2271 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2272 		/* Tx Poll Now bug work-around. */
2273 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2274 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2275 	}
2276 
2277 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2278 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2279 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2280 	/*
2281 	 * It seems that transmitting frames without checking the state of
2282 	 * Rx/Tx MAC wedge the hardware.
2283 	 */
2284 	stge_start_tx(sc);
2285 	stge_start_rx(sc);
2286 
2287 	sc->sc_link = 0;
2288 	/*
2289 	 * Set the current media.
2290 	 */
2291 	mii_mediachg(mii);
2292 
2293 	/*
2294 	 * Start the one second MII clock.
2295 	 */
2296 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2297 
2298 	/*
2299 	 * ...all done!
2300 	 */
2301 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2302 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2303 
2304  out:
2305 	if (error != 0)
2306 		device_printf(sc->sc_dev, "interface not running\n");
2307 }
2308 
2309 static void
2310 stge_vlan_setup(struct stge_softc *sc)
2311 {
2312 	struct ifnet *ifp;
2313 	uint32_t v;
2314 
2315 	ifp = sc->sc_ifp;
2316 	/*
2317 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2318 	 * MC_AutoVLANuntagging bit.
2319 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2320 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2321 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2322 	 * use TFC instead of STGE_VLANTag register.
2323 	 */
2324 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2325 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2326 		v |= MC_AutoVLANuntagging;
2327 	else
2328 		v &= ~MC_AutoVLANuntagging;
2329 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2330 }
2331 
2332 /*
2333  *	Stop transmission on the interface.
2334  */
2335 static void
2336 stge_stop(struct stge_softc *sc)
2337 {
2338 	struct ifnet *ifp;
2339 	struct stge_txdesc *txd;
2340 	struct stge_rxdesc *rxd;
2341 	uint32_t v;
2342 	int i;
2343 
2344 	STGE_LOCK_ASSERT(sc);
2345 	/*
2346 	 * Stop the one second clock.
2347 	 */
2348 	callout_stop(&sc->sc_tick_ch);
2349 	sc->sc_watchdog_timer = 0;
2350 
2351 	/*
2352 	 * Disable interrupts.
2353 	 */
2354 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2355 
2356 	/*
2357 	 * Stop receiver, transmitter, and stats update.
2358 	 */
2359 	stge_stop_rx(sc);
2360 	stge_stop_tx(sc);
2361 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2362 	v |= MC_StatisticsDisable;
2363 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2364 
2365 	/*
2366 	 * Stop the transmit and receive DMA.
2367 	 */
2368 	stge_dma_wait(sc);
2369 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2370 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2371 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2372 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2373 
2374 	/*
2375 	 * Free RX and TX mbufs still in the queues.
2376 	 */
2377 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2378 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2379 		if (rxd->rx_m != NULL) {
2380 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2381 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2382 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2383 			    rxd->rx_dmamap);
2384 			m_freem(rxd->rx_m);
2385 			rxd->rx_m = NULL;
2386 		}
2387         }
2388 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2389 		txd = &sc->sc_cdata.stge_txdesc[i];
2390 		if (txd->tx_m != NULL) {
2391 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2392 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2393 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2394 			    txd->tx_dmamap);
2395 			m_freem(txd->tx_m);
2396 			txd->tx_m = NULL;
2397 		}
2398         }
2399 
2400 	/*
2401 	 * Mark the interface down and cancel the watchdog timer.
2402 	 */
2403 	ifp = sc->sc_ifp;
2404 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2405 	sc->sc_link = 0;
2406 }
2407 
2408 static void
2409 stge_start_tx(struct stge_softc *sc)
2410 {
2411 	uint32_t v;
2412 	int i;
2413 
2414 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2415 	if ((v & MC_TxEnabled) != 0)
2416 		return;
2417 	v |= MC_TxEnable;
2418 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2419 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2420 	for (i = STGE_TIMEOUT; i > 0; i--) {
2421 		DELAY(10);
2422 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2423 		if ((v & MC_TxEnabled) != 0)
2424 			break;
2425 	}
2426 	if (i == 0)
2427 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2428 }
2429 
2430 static void
2431 stge_start_rx(struct stge_softc *sc)
2432 {
2433 	uint32_t v;
2434 	int i;
2435 
2436 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2437 	if ((v & MC_RxEnabled) != 0)
2438 		return;
2439 	v |= MC_RxEnable;
2440 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2441 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2442 	for (i = STGE_TIMEOUT; i > 0; i--) {
2443 		DELAY(10);
2444 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2445 		if ((v & MC_RxEnabled) != 0)
2446 			break;
2447 	}
2448 	if (i == 0)
2449 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2450 }
2451 
2452 static void
2453 stge_stop_tx(struct stge_softc *sc)
2454 {
2455 	uint32_t v;
2456 	int i;
2457 
2458 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2459 	if ((v & MC_TxEnabled) == 0)
2460 		return;
2461 	v |= MC_TxDisable;
2462 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2463 	for (i = STGE_TIMEOUT; i > 0; i--) {
2464 		DELAY(10);
2465 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2466 		if ((v & MC_TxEnabled) == 0)
2467 			break;
2468 	}
2469 	if (i == 0)
2470 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2471 }
2472 
2473 static void
2474 stge_stop_rx(struct stge_softc *sc)
2475 {
2476 	uint32_t v;
2477 	int i;
2478 
2479 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2480 	if ((v & MC_RxEnabled) == 0)
2481 		return;
2482 	v |= MC_RxDisable;
2483 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2484 	for (i = STGE_TIMEOUT; i > 0; i--) {
2485 		DELAY(10);
2486 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2487 		if ((v & MC_RxEnabled) == 0)
2488 			break;
2489 	}
2490 	if (i == 0)
2491 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2492 }
2493 
2494 static void
2495 stge_init_tx_ring(struct stge_softc *sc)
2496 {
2497 	struct stge_ring_data *rd;
2498 	struct stge_txdesc *txd;
2499 	bus_addr_t addr;
2500 	int i;
2501 
2502 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2503 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2504 
2505 	sc->sc_cdata.stge_tx_prod = 0;
2506 	sc->sc_cdata.stge_tx_cons = 0;
2507 	sc->sc_cdata.stge_tx_cnt = 0;
2508 
2509 	rd = &sc->sc_rdata;
2510 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2511 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2512 		if (i == (STGE_TX_RING_CNT - 1))
2513 			addr = STGE_TX_RING_ADDR(sc, 0);
2514 		else
2515 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2516 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2517 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2518 		txd = &sc->sc_cdata.stge_txdesc[i];
2519 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2520 	}
2521 
2522 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2523 	    sc->sc_cdata.stge_tx_ring_map,
2524 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2525 
2526 }
2527 
2528 static int
2529 stge_init_rx_ring(struct stge_softc *sc)
2530 {
2531 	struct stge_ring_data *rd;
2532 	bus_addr_t addr;
2533 	int i;
2534 
2535 	sc->sc_cdata.stge_rx_cons = 0;
2536 	STGE_RXCHAIN_RESET(sc);
2537 
2538 	rd = &sc->sc_rdata;
2539 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2540 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2541 		if (stge_newbuf(sc, i) != 0)
2542 			return (ENOBUFS);
2543 		if (i == (STGE_RX_RING_CNT - 1))
2544 			addr = STGE_RX_RING_ADDR(sc, 0);
2545 		else
2546 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2547 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2548 		rd->stge_rx_ring[i].rfd_status = 0;
2549 	}
2550 
2551 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2552 	    sc->sc_cdata.stge_rx_ring_map,
2553 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2554 
2555 	return (0);
2556 }
2557 
2558 /*
2559  * stge_newbuf:
2560  *
2561  *	Add a receive buffer to the indicated descriptor.
2562  */
2563 static int
2564 stge_newbuf(struct stge_softc *sc, int idx)
2565 {
2566 	struct stge_rxdesc *rxd;
2567 	struct stge_rfd *rfd;
2568 	struct mbuf *m;
2569 	bus_dma_segment_t segs[1];
2570 	bus_dmamap_t map;
2571 	int nsegs;
2572 
2573 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2574 	if (m == NULL)
2575 		return (ENOBUFS);
2576 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2577 	/*
2578 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2579 	 * frame is used.
2580 	 */
2581 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2582 		m_adj(m, ETHER_ALIGN);
2583 
2584 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2585 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2586 		m_freem(m);
2587 		return (ENOBUFS);
2588 	}
2589 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2590 
2591 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2592 	if (rxd->rx_m != NULL) {
2593 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2594 		    BUS_DMASYNC_POSTREAD);
2595 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2596 	}
2597 	map = rxd->rx_dmamap;
2598 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2599 	sc->sc_cdata.stge_rx_sparemap = map;
2600 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2601 	    BUS_DMASYNC_PREREAD);
2602 	rxd->rx_m = m;
2603 
2604 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2605 	rfd->rfd_frag.frag_word0 =
2606 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2607 	rfd->rfd_status = 0;
2608 
2609 	return (0);
2610 }
2611 
2612 /*
2613  * stge_set_filter:
2614  *
2615  *	Set up the receive filter.
2616  */
2617 static void
2618 stge_set_filter(struct stge_softc *sc)
2619 {
2620 	struct ifnet *ifp;
2621 	uint16_t mode;
2622 
2623 	STGE_LOCK_ASSERT(sc);
2624 
2625 	ifp = sc->sc_ifp;
2626 
2627 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2628 	mode |= RM_ReceiveUnicast;
2629 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2630 		mode |= RM_ReceiveBroadcast;
2631 	else
2632 		mode &= ~RM_ReceiveBroadcast;
2633 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2634 		mode |= RM_ReceiveAllFrames;
2635 	else
2636 		mode &= ~RM_ReceiveAllFrames;
2637 
2638 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2639 }
2640 
2641 static void
2642 stge_set_multi(struct stge_softc *sc)
2643 {
2644 	struct ifnet *ifp;
2645 	struct ifmultiaddr *ifma;
2646 	uint32_t crc;
2647 	uint32_t mchash[2];
2648 	uint16_t mode;
2649 	int count;
2650 
2651 	STGE_LOCK_ASSERT(sc);
2652 
2653 	ifp = sc->sc_ifp;
2654 
2655 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2656 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2657 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2658 			mode |= RM_ReceiveAllFrames;
2659 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2660 			mode |= RM_ReceiveMulticast;
2661 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2662 		return;
2663 	}
2664 
2665 	/* clear existing filters. */
2666 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2667 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2668 
2669 	/*
2670 	 * Set up the multicast address filter by passing all multicast
2671 	 * addresses through a CRC generator, and then using the low-order
2672 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2673 	 * high order bits select the register, while the rest of the bits
2674 	 * select the bit within the register.
2675 	 */
2676 
2677 	bzero(mchash, sizeof(mchash));
2678 
2679 	count = 0;
2680 	IF_ADDR_LOCK(sc->sc_ifp);
2681 	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2682 		if (ifma->ifma_addr->sa_family != AF_LINK)
2683 			continue;
2684 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2685 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2686 
2687 		/* Just want the 6 least significant bits. */
2688 		crc &= 0x3f;
2689 
2690 		/* Set the corresponding bit in the hash table. */
2691 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2692 		count++;
2693 	}
2694 	IF_ADDR_UNLOCK(ifp);
2695 
2696 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2697 	if (count > 0)
2698 		mode |= RM_ReceiveMulticastHash;
2699 	else
2700 		mode &= ~RM_ReceiveMulticastHash;
2701 
2702 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2703 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2704 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2705 }
2706 
2707 static int
2708 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2709 {
2710 	int error, value;
2711 
2712 	if (!arg1)
2713 		return (EINVAL);
2714 	value = *(int *)arg1;
2715 	error = sysctl_handle_int(oidp, &value, 0, req);
2716 	if (error || !req->newptr)
2717 		return (error);
2718 	if (value < low || value > high)
2719 		return (EINVAL);
2720         *(int *)arg1 = value;
2721 
2722         return (0);
2723 }
2724 
2725 static int
2726 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2727 {
2728 	return (sysctl_int_range(oidp, arg1, arg2, req,
2729 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2730 }
2731 
2732 static int
2733 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2734 {
2735 	return (sysctl_int_range(oidp, arg1, arg2, req,
2736 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2737 }
2738