xref: /freebsd/sys/dev/ste/if_ste.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/module.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/if_arp.h>
58 #include <net/ethernet.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63 
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/mii_bitbang.h>
69 #include <dev/mii/miivar.h>
70 
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73 
74 #include <dev/ste/if_stereg.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 MODULE_DEPEND(ste, pci, 1, 1, 1);
80 MODULE_DEPEND(ste, ether, 1, 1, 1);
81 MODULE_DEPEND(ste, miibus, 1, 1, 1);
82 
83 /* Define to show Tx error status. */
84 #define	STE_SHOW_TXERRORS
85 
86 /*
87  * Various supported device vendors/types and their names.
88  */
89 static const struct ste_type ste_devs[] = {
90 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
91 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
92 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
93 	{ 0, 0, NULL }
94 };
95 
96 static int	ste_attach(device_t);
97 static int	ste_detach(device_t);
98 static int	ste_probe(device_t);
99 static int	ste_resume(device_t);
100 static int	ste_shutdown(device_t);
101 static int	ste_suspend(device_t);
102 
103 static int	ste_dma_alloc(struct ste_softc *);
104 static void	ste_dma_free(struct ste_softc *);
105 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
106 static int 	ste_eeprom_wait(struct ste_softc *);
107 static int	ste_encap(struct ste_softc *, struct mbuf **,
108 		    struct ste_chain *);
109 static int	ste_ifmedia_upd(struct ifnet *);
110 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
111 static void	ste_init(void *);
112 static void	ste_init_locked(struct ste_softc *);
113 static int	ste_init_rx_list(struct ste_softc *);
114 static void	ste_init_tx_list(struct ste_softc *);
115 static void	ste_intr(void *);
116 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
117 static uint32_t ste_mii_bitbang_read(device_t);
118 static void	ste_mii_bitbang_write(device_t, uint32_t);
119 static int	ste_miibus_readreg(device_t, int, int);
120 static void	ste_miibus_statchg(device_t);
121 static int	ste_miibus_writereg(device_t, int, int, int);
122 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
124 static void	ste_reset(struct ste_softc *);
125 static void	ste_restart_tx(struct ste_softc *);
126 static int	ste_rxeof(struct ste_softc *, int);
127 static void	ste_rxfilter(struct ste_softc *);
128 static void	ste_setwol(struct ste_softc *);
129 static void	ste_start(struct ifnet *);
130 static void	ste_start_locked(struct ifnet *);
131 static void	ste_stats_clear(struct ste_softc *);
132 static void	ste_stats_update(struct ste_softc *);
133 static void	ste_stop(struct ste_softc *);
134 static void	ste_sysctl_node(struct ste_softc *);
135 static void	ste_tick(void *);
136 static void	ste_txeoc(struct ste_softc *);
137 static void	ste_txeof(struct ste_softc *);
138 static void	ste_wait(struct ste_softc *);
139 static void	ste_watchdog(struct ste_softc *);
140 
141 /*
142  * MII bit-bang glue
143  */
144 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
145 	ste_mii_bitbang_read,
146 	ste_mii_bitbang_write,
147 	{
148 		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
149 		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
150 		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
151 		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
152 		0,			/* MII_BIT_DIR_PHY_HOST */
153 	}
154 };
155 
156 static device_method_t ste_methods[] = {
157 	/* Device interface */
158 	DEVMETHOD(device_probe,		ste_probe),
159 	DEVMETHOD(device_attach,	ste_attach),
160 	DEVMETHOD(device_detach,	ste_detach),
161 	DEVMETHOD(device_shutdown,	ste_shutdown),
162 	DEVMETHOD(device_suspend,	ste_suspend),
163 	DEVMETHOD(device_resume,	ste_resume),
164 
165 	/* MII interface */
166 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
169 
170 	DEVMETHOD_END
171 };
172 
173 static driver_t ste_driver = {
174 	"ste",
175 	ste_methods,
176 	sizeof(struct ste_softc)
177 };
178 
179 static devclass_t ste_devclass;
180 
181 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
182 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
183 
184 #define STE_SETBIT4(sc, reg, x)				\
185 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
186 
187 #define STE_CLRBIT4(sc, reg, x)				\
188 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
189 
190 #define STE_SETBIT2(sc, reg, x)				\
191 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
192 
193 #define STE_CLRBIT2(sc, reg, x)				\
194 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
195 
196 #define STE_SETBIT1(sc, reg, x)				\
197 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
198 
199 #define STE_CLRBIT1(sc, reg, x)				\
200 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
201 
202 /*
203  * Read the MII serial port for the MII bit-bang module.
204  */
205 static uint32_t
206 ste_mii_bitbang_read(device_t dev)
207 {
208 	struct ste_softc *sc;
209 	uint32_t val;
210 
211 	sc = device_get_softc(dev);
212 
213 	val = CSR_READ_1(sc, STE_PHYCTL);
214 	CSR_BARRIER(sc, STE_PHYCTL, 1,
215 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
216 
217 	return (val);
218 }
219 
220 /*
221  * Write the MII serial port for the MII bit-bang module.
222  */
223 static void
224 ste_mii_bitbang_write(device_t dev, uint32_t val)
225 {
226 	struct ste_softc *sc;
227 
228 	sc = device_get_softc(dev);
229 
230 	CSR_WRITE_1(sc, STE_PHYCTL, val);
231 	CSR_BARRIER(sc, STE_PHYCTL, 1,
232 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
233 }
234 
235 static int
236 ste_miibus_readreg(device_t dev, int phy, int reg)
237 {
238 
239 	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
240 }
241 
242 static int
243 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
244 {
245 
246 	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
247 
248 	return (0);
249 }
250 
251 static void
252 ste_miibus_statchg(device_t dev)
253 {
254 	struct ste_softc *sc;
255 	struct mii_data *mii;
256 	struct ifnet *ifp;
257 	uint16_t cfg;
258 
259 	sc = device_get_softc(dev);
260 
261 	mii = device_get_softc(sc->ste_miibus);
262 	ifp = sc->ste_ifp;
263 	if (mii == NULL || ifp == NULL ||
264 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
265 		return;
266 
267 	sc->ste_flags &= ~STE_FLAG_LINK;
268 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
269 	    (IFM_ACTIVE | IFM_AVALID)) {
270 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
271 		case IFM_10_T:
272 		case IFM_100_TX:
273 		case IFM_100_FX:
274 		case IFM_100_T4:
275 			sc->ste_flags |= STE_FLAG_LINK;
276 		default:
277 			break;
278 		}
279 	}
280 
281 	/* Program MACs with resolved speed/duplex/flow-control. */
282 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
283 		cfg = CSR_READ_2(sc, STE_MACCTL0);
284 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
285 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
286 			/*
287 			 * ST201 data sheet says driver should enable receiving
288 			 * MAC control frames bit of receive mode register to
289 			 * receive flow-control frames but the register has no
290 			 * such bits. In addition the controller has no ability
291 			 * to send pause frames so it should be handled in
292 			 * driver. Implementing pause timer handling in driver
293 			 * layer is not trivial, so don't enable flow-control
294 			 * here.
295 			 */
296 			cfg |= STE_MACCTL0_FULLDUPLEX;
297 		}
298 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
299 	}
300 }
301 
302 static int
303 ste_ifmedia_upd(struct ifnet *ifp)
304 {
305 	struct ste_softc *sc;
306 	struct mii_data	*mii;
307 	struct mii_softc *miisc;
308 	int error;
309 
310 	sc = ifp->if_softc;
311 	STE_LOCK(sc);
312 	mii = device_get_softc(sc->ste_miibus);
313 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
314 		PHY_RESET(miisc);
315 	error = mii_mediachg(mii);
316 	STE_UNLOCK(sc);
317 
318 	return (error);
319 }
320 
321 static void
322 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
323 {
324 	struct ste_softc *sc;
325 	struct mii_data *mii;
326 
327 	sc = ifp->if_softc;
328 	mii = device_get_softc(sc->ste_miibus);
329 
330 	STE_LOCK(sc);
331 	if ((ifp->if_flags & IFF_UP) == 0) {
332 		STE_UNLOCK(sc);
333 		return;
334 	}
335 	mii_pollstat(mii);
336 	ifmr->ifm_active = mii->mii_media_active;
337 	ifmr->ifm_status = mii->mii_media_status;
338 	STE_UNLOCK(sc);
339 }
340 
341 static void
342 ste_wait(struct ste_softc *sc)
343 {
344 	int i;
345 
346 	for (i = 0; i < STE_TIMEOUT; i++) {
347 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
348 			break;
349 		DELAY(1);
350 	}
351 
352 	if (i == STE_TIMEOUT)
353 		device_printf(sc->ste_dev, "command never completed!\n");
354 }
355 
356 /*
357  * The EEPROM is slow: give it time to come ready after issuing
358  * it a command.
359  */
360 static int
361 ste_eeprom_wait(struct ste_softc *sc)
362 {
363 	int i;
364 
365 	DELAY(1000);
366 
367 	for (i = 0; i < 100; i++) {
368 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
369 			DELAY(1000);
370 		else
371 			break;
372 	}
373 
374 	if (i == 100) {
375 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
376 		return (1);
377 	}
378 
379 	return (0);
380 }
381 
382 /*
383  * Read a sequence of words from the EEPROM. Note that ethernet address
384  * data is stored in the EEPROM in network byte order.
385  */
386 static int
387 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
388 {
389 	int err = 0, i;
390 
391 	if (ste_eeprom_wait(sc))
392 		return (1);
393 
394 	for (i = 0; i < cnt; i++) {
395 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
396 		err = ste_eeprom_wait(sc);
397 		if (err)
398 			break;
399 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
400 		dest++;
401 	}
402 
403 	return (err ? 1 : 0);
404 }
405 
406 static void
407 ste_rxfilter(struct ste_softc *sc)
408 {
409 	struct ifnet *ifp;
410 	struct ifmultiaddr *ifma;
411 	uint32_t hashes[2] = { 0, 0 };
412 	uint8_t rxcfg;
413 	int h;
414 
415 	STE_LOCK_ASSERT(sc);
416 
417 	ifp = sc->ste_ifp;
418 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
419 	rxcfg |= STE_RXMODE_UNICAST;
420 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
421 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
422 	if (ifp->if_flags & IFF_BROADCAST)
423 		rxcfg |= STE_RXMODE_BROADCAST;
424 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
425 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
426 			rxcfg |= STE_RXMODE_ALLMULTI;
427 		if ((ifp->if_flags & IFF_PROMISC) != 0)
428 			rxcfg |= STE_RXMODE_PROMISC;
429 		goto chipit;
430 	}
431 
432 	rxcfg |= STE_RXMODE_MULTIHASH;
433 	/* Now program new ones. */
434 	if_maddr_rlock(ifp);
435 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
436 		if (ifma->ifma_addr->sa_family != AF_LINK)
437 			continue;
438 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
439 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
440 		if (h < 32)
441 			hashes[0] |= (1 << h);
442 		else
443 			hashes[1] |= (1 << (h - 32));
444 	}
445 	if_maddr_runlock(ifp);
446 
447 chipit:
448 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
449 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
450 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
451 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
452 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
453 	CSR_READ_1(sc, STE_RX_MODE);
454 }
455 
456 #ifdef DEVICE_POLLING
457 static poll_handler_t ste_poll, ste_poll_locked;
458 
459 static int
460 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
461 {
462 	struct ste_softc *sc = ifp->if_softc;
463 	int rx_npkts = 0;
464 
465 	STE_LOCK(sc);
466 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
467 		rx_npkts = ste_poll_locked(ifp, cmd, count);
468 	STE_UNLOCK(sc);
469 	return (rx_npkts);
470 }
471 
472 static int
473 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
474 {
475 	struct ste_softc *sc = ifp->if_softc;
476 	int rx_npkts;
477 
478 	STE_LOCK_ASSERT(sc);
479 
480 	rx_npkts = ste_rxeof(sc, count);
481 	ste_txeof(sc);
482 	ste_txeoc(sc);
483 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
484 		ste_start_locked(ifp);
485 
486 	if (cmd == POLL_AND_CHECK_STATUS) {
487 		uint16_t status;
488 
489 		status = CSR_READ_2(sc, STE_ISR_ACK);
490 
491 		if (status & STE_ISR_STATS_OFLOW)
492 			ste_stats_update(sc);
493 
494 		if (status & STE_ISR_HOSTERR) {
495 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
496 			ste_init_locked(sc);
497 		}
498 	}
499 	return (rx_npkts);
500 }
501 #endif /* DEVICE_POLLING */
502 
503 static void
504 ste_intr(void *xsc)
505 {
506 	struct ste_softc *sc;
507 	struct ifnet *ifp;
508 	uint16_t intrs, status;
509 
510 	sc = xsc;
511 	STE_LOCK(sc);
512 	ifp = sc->ste_ifp;
513 
514 #ifdef DEVICE_POLLING
515 	if (ifp->if_capenable & IFCAP_POLLING) {
516 		STE_UNLOCK(sc);
517 		return;
518 	}
519 #endif
520 	/* Reading STE_ISR_ACK clears STE_IMR register. */
521 	status = CSR_READ_2(sc, STE_ISR_ACK);
522 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
523 		STE_UNLOCK(sc);
524 		return;
525 	}
526 
527 	intrs = STE_INTRS;
528 	if (status == 0xFFFF || (status & intrs) == 0)
529 		goto done;
530 
531 	if (sc->ste_int_rx_act > 0) {
532 		status &= ~STE_ISR_RX_DMADONE;
533 		intrs &= ~STE_IMR_RX_DMADONE;
534 	}
535 
536 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
537 		ste_rxeof(sc, -1);
538 		/*
539 		 * The controller has no ability to Rx interrupt
540 		 * moderation feature. Receiving 64 bytes frames
541 		 * from wire generates too many interrupts which in
542 		 * turn make system useless to process other useful
543 		 * things. Fortunately ST201 supports single shot
544 		 * timer so use the timer to implement Rx interrupt
545 		 * moderation in driver. This adds more register
546 		 * access but it greatly reduces number of Rx
547 		 * interrupts under high network load.
548 		 */
549 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
550 		    (sc->ste_int_rx_mod != 0)) {
551 			if ((status & STE_ISR_RX_DMADONE) != 0) {
552 				CSR_WRITE_2(sc, STE_COUNTDOWN,
553 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
554 				intrs &= ~STE_IMR_RX_DMADONE;
555 				sc->ste_int_rx_act = 1;
556 			} else {
557 				intrs |= STE_IMR_RX_DMADONE;
558 				sc->ste_int_rx_act = 0;
559 			}
560 		}
561 	}
562 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
563 		if ((status & STE_ISR_TX_DMADONE) != 0)
564 			ste_txeof(sc);
565 		if ((status & STE_ISR_TX_DONE) != 0)
566 			ste_txeoc(sc);
567 		if ((status & STE_ISR_STATS_OFLOW) != 0)
568 			ste_stats_update(sc);
569 		if ((status & STE_ISR_HOSTERR) != 0) {
570 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
571 			ste_init_locked(sc);
572 			STE_UNLOCK(sc);
573 			return;
574 		}
575 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
576 			ste_start_locked(ifp);
577 done:
578 		/* Re-enable interrupts */
579 		CSR_WRITE_2(sc, STE_IMR, intrs);
580 	}
581 	STE_UNLOCK(sc);
582 }
583 
584 /*
585  * A frame has been uploaded: pass the resulting mbuf chain up to
586  * the higher level protocols.
587  */
588 static int
589 ste_rxeof(struct ste_softc *sc, int count)
590 {
591         struct mbuf *m;
592         struct ifnet *ifp;
593 	struct ste_chain_onefrag *cur_rx;
594 	uint32_t rxstat;
595 	int total_len, rx_npkts;
596 
597 	ifp = sc->ste_ifp;
598 
599 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
600 	    sc->ste_cdata.ste_rx_list_map,
601 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
602 
603 	cur_rx = sc->ste_cdata.ste_rx_head;
604 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
605 	    cur_rx = cur_rx->ste_next) {
606 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
607 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
608 			break;
609 #ifdef DEVICE_POLLING
610 		if (ifp->if_capenable & IFCAP_POLLING) {
611 			if (count == 0)
612 				break;
613 			count--;
614 		}
615 #endif
616 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
617 			break;
618 		/*
619 		 * If an error occurs, update stats, clear the
620 		 * status word and leave the mbuf cluster in place:
621 		 * it should simply get re-used next time this descriptor
622 	 	 * comes up in the ring.
623 		 */
624 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
625 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
626 			cur_rx->ste_ptr->ste_status = 0;
627 			continue;
628 		}
629 
630 		/* No errors; receive the packet. */
631 		m = cur_rx->ste_mbuf;
632 		total_len = STE_RX_BYTES(rxstat);
633 
634 		/*
635 		 * Try to conjure up a new mbuf cluster. If that
636 		 * fails, it means we have an out of memory condition and
637 		 * should leave the buffer in place and continue. This will
638 		 * result in a lost packet, but there's little else we
639 		 * can do in this situation.
640 		 */
641 		if (ste_newbuf(sc, cur_rx) != 0) {
642 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
643 			cur_rx->ste_ptr->ste_status = 0;
644 			continue;
645 		}
646 
647 		m->m_pkthdr.rcvif = ifp;
648 		m->m_pkthdr.len = m->m_len = total_len;
649 
650 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
651 		STE_UNLOCK(sc);
652 		(*ifp->if_input)(ifp, m);
653 		STE_LOCK(sc);
654 	}
655 
656 	if (rx_npkts > 0) {
657 		sc->ste_cdata.ste_rx_head = cur_rx;
658 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
659 		    sc->ste_cdata.ste_rx_list_map,
660 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
661 	}
662 
663 	return (rx_npkts);
664 }
665 
666 static void
667 ste_txeoc(struct ste_softc *sc)
668 {
669 	uint16_t txstat;
670 	struct ifnet *ifp;
671 
672 	STE_LOCK_ASSERT(sc);
673 
674 	ifp = sc->ste_ifp;
675 
676 	/*
677 	 * STE_TX_STATUS register implements a queue of up to 31
678 	 * transmit status byte. Writing an arbitrary value to the
679 	 * register will advance the queue to the next transmit
680 	 * status byte. This means if driver does not read
681 	 * STE_TX_STATUS register after completing sending more
682 	 * than 31 frames the controller would be stalled so driver
683 	 * should re-wake the Tx MAC. This is the most severe
684 	 * limitation of ST201 based controller.
685 	 */
686 	for (;;) {
687 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
688 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
689 			break;
690 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
691 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
692 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
693 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
694 #ifdef	STE_SHOW_TXERRORS
695 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
696 			    txstat & 0xFF, STE_ERR_BITS);
697 #endif
698 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
699 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
700 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
701 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
702 					sc->ste_tx_thresh = STE_PACKET_SIZE;
703 				device_printf(sc->ste_dev,
704 				    "TX underrun, increasing TX"
705 				    " start threshold to %d bytes\n",
706 				    sc->ste_tx_thresh);
707 				/* Make sure to disable active DMA cycles. */
708 				STE_SETBIT4(sc, STE_DMACTL,
709 				    STE_DMACTL_TXDMA_STALL);
710 				ste_wait(sc);
711 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
712 				ste_init_locked(sc);
713 				break;
714 			}
715 			/* Restart Tx. */
716 			ste_restart_tx(sc);
717 		}
718 		/*
719 		 * Advance to next status and ACK TxComplete
720 		 * interrupt. ST201 data sheet was wrong here, to
721 		 * get next Tx status, we have to write both
722 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
723 		 * Otherwise controller returns the same status
724 		 * as well as not acknowledge Tx completion
725 		 * interrupt.
726 		 */
727 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
728 	}
729 }
730 
731 static void
732 ste_tick(void *arg)
733 {
734 	struct ste_softc *sc;
735 	struct mii_data *mii;
736 
737 	sc = (struct ste_softc *)arg;
738 
739 	STE_LOCK_ASSERT(sc);
740 
741 	mii = device_get_softc(sc->ste_miibus);
742 	mii_tick(mii);
743 	/*
744 	 * ukphy(4) does not seem to generate CB that reports
745 	 * resolved link state so if we know we lost a link,
746 	 * explicitly check the link state.
747 	 */
748 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
749 		ste_miibus_statchg(sc->ste_dev);
750 	/*
751 	 * Because we are not generating Tx completion
752 	 * interrupt for every frame, reclaim transmitted
753 	 * buffers here.
754 	 */
755 	ste_txeof(sc);
756 	ste_txeoc(sc);
757 	ste_stats_update(sc);
758 	ste_watchdog(sc);
759 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
760 }
761 
762 static void
763 ste_txeof(struct ste_softc *sc)
764 {
765 	struct ifnet *ifp;
766 	struct ste_chain *cur_tx;
767 	uint32_t txstat;
768 	int idx;
769 
770 	STE_LOCK_ASSERT(sc);
771 
772 	ifp = sc->ste_ifp;
773 	idx = sc->ste_cdata.ste_tx_cons;
774 	if (idx == sc->ste_cdata.ste_tx_prod)
775 		return;
776 
777 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
778 	    sc->ste_cdata.ste_tx_list_map,
779 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
780 
781 	while (idx != sc->ste_cdata.ste_tx_prod) {
782 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
783 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
784 		if ((txstat & STE_TXCTL_DMADONE) == 0)
785 			break;
786 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
787 		    BUS_DMASYNC_POSTWRITE);
788 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
789 		KASSERT(cur_tx->ste_mbuf != NULL,
790 		    ("%s: freeing NULL mbuf!\n", __func__));
791 		m_freem(cur_tx->ste_mbuf);
792 		cur_tx->ste_mbuf = NULL;
793 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
794 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
795 		sc->ste_cdata.ste_tx_cnt--;
796 		STE_INC(idx, STE_TX_LIST_CNT);
797 	}
798 
799 	sc->ste_cdata.ste_tx_cons = idx;
800 	if (sc->ste_cdata.ste_tx_cnt == 0)
801 		sc->ste_timer = 0;
802 }
803 
804 static void
805 ste_stats_clear(struct ste_softc *sc)
806 {
807 
808 	STE_LOCK_ASSERT(sc);
809 
810 	/* Rx stats. */
811 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
812 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
813 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
814 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
815 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
816 	CSR_READ_1(sc, STE_STAT_RX_LOST);
817 	/* Tx stats. */
818 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
819 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
820 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
821 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
822 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
823 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
824 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
825 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
826 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
827 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
828 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
829 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
830 }
831 
832 static void
833 ste_stats_update(struct ste_softc *sc)
834 {
835 	struct ifnet *ifp;
836 	struct ste_hw_stats *stats;
837 	uint32_t val;
838 
839 	STE_LOCK_ASSERT(sc);
840 
841 	ifp = sc->ste_ifp;
842 	stats = &sc->ste_stats;
843 	/* Rx stats. */
844 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
845 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
846 	val &= 0x000FFFFF;
847 	stats->rx_bytes += val;
848 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
849 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
850 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
851 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
852 	/* Tx stats. */
853 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
854 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
855 	val &= 0x000FFFFF;
856 	stats->tx_bytes += val;
857 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
858 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
859 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
860 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
861 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
862 	stats->tx_single_colls += val;
863 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
864 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
865 	stats->tx_multi_colls += val;
866 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
867 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
868 	stats->tx_late_colls += val;
869 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
870 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
871 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
872 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
873 }
874 
875 /*
876  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
877  * IDs against our list and return a device name if we find a match.
878  */
879 static int
880 ste_probe(device_t dev)
881 {
882 	const struct ste_type *t;
883 
884 	t = ste_devs;
885 
886 	while (t->ste_name != NULL) {
887 		if ((pci_get_vendor(dev) == t->ste_vid) &&
888 		    (pci_get_device(dev) == t->ste_did)) {
889 			device_set_desc(dev, t->ste_name);
890 			return (BUS_PROBE_DEFAULT);
891 		}
892 		t++;
893 	}
894 
895 	return (ENXIO);
896 }
897 
898 /*
899  * Attach the interface. Allocate softc structures, do ifmedia
900  * setup and ethernet/BPF attach.
901  */
902 static int
903 ste_attach(device_t dev)
904 {
905 	struct ste_softc *sc;
906 	struct ifnet *ifp;
907 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
908 	int error = 0, phy, pmc, prefer_iomap, rid;
909 
910 	sc = device_get_softc(dev);
911 	sc->ste_dev = dev;
912 
913 	/*
914 	 * Only use one PHY since this chip reports multiple
915 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
916 	 * it is at 0 & 1.  It is rev 0x12.
917 	 */
918 	if (pci_get_vendor(dev) == DL_VENDORID &&
919 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
920 	    pci_get_revid(dev) == 0x12 )
921 		sc->ste_flags |= STE_FLAG_ONE_PHY;
922 
923 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
924 	    MTX_DEF);
925 	/*
926 	 * Map control/status registers.
927 	 */
928 	pci_enable_busmaster(dev);
929 
930 	/*
931 	 * Prefer memory space register mapping over IO space but use
932 	 * IO space for a device that is known to have issues on memory
933 	 * mapping.
934 	 */
935 	prefer_iomap = 0;
936 	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
937 		prefer_iomap = 1;
938 	else
939 		resource_int_value(device_get_name(sc->ste_dev),
940 		    device_get_unit(sc->ste_dev), "prefer_iomap",
941 		    &prefer_iomap);
942 	if (prefer_iomap == 0) {
943 		sc->ste_res_id = PCIR_BAR(1);
944 		sc->ste_res_type = SYS_RES_MEMORY;
945 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
946 		    &sc->ste_res_id, RF_ACTIVE);
947 	}
948 	if (prefer_iomap || sc->ste_res == NULL) {
949 		sc->ste_res_id = PCIR_BAR(0);
950 		sc->ste_res_type = SYS_RES_IOPORT;
951 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
952 		    &sc->ste_res_id, RF_ACTIVE);
953 	}
954 	if (sc->ste_res == NULL) {
955 		device_printf(dev, "couldn't map ports/memory\n");
956 		error = ENXIO;
957 		goto fail;
958 	}
959 
960 	/* Allocate interrupt */
961 	rid = 0;
962 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
963 	    RF_SHAREABLE | RF_ACTIVE);
964 
965 	if (sc->ste_irq == NULL) {
966 		device_printf(dev, "couldn't map interrupt\n");
967 		error = ENXIO;
968 		goto fail;
969 	}
970 
971 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
972 
973 	/* Reset the adapter. */
974 	ste_reset(sc);
975 
976 	/*
977 	 * Get station address from the EEPROM.
978 	 */
979 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
980 		device_printf(dev, "failed to read station address\n");
981 		error = ENXIO;
982 		goto fail;
983 	}
984 	ste_sysctl_node(sc);
985 
986 	if ((error = ste_dma_alloc(sc)) != 0)
987 		goto fail;
988 
989 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
990 	if (ifp == NULL) {
991 		device_printf(dev, "can not if_alloc()\n");
992 		error = ENOSPC;
993 		goto fail;
994 	}
995 
996 	/* Do MII setup. */
997 	phy = MII_PHY_ANY;
998 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
999 		phy = 0;
1000 	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1001 		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1002 	if (error != 0) {
1003 		device_printf(dev, "attaching PHYs failed\n");
1004 		goto fail;
1005 	}
1006 
1007 	ifp->if_softc = sc;
1008 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1009 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1010 	ifp->if_ioctl = ste_ioctl;
1011 	ifp->if_start = ste_start;
1012 	ifp->if_init = ste_init;
1013 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1014 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1015 	IFQ_SET_READY(&ifp->if_snd);
1016 
1017 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1018 
1019 	/*
1020 	 * Call MI attach routine.
1021 	 */
1022 	ether_ifattach(ifp, (uint8_t *)eaddr);
1023 
1024 	/*
1025 	 * Tell the upper layer(s) we support long frames.
1026 	 */
1027 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1028 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1029 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1030 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1031 	ifp->if_capenable = ifp->if_capabilities;
1032 #ifdef DEVICE_POLLING
1033 	ifp->if_capabilities |= IFCAP_POLLING;
1034 #endif
1035 
1036 	/* Hook interrupt last to avoid having to lock softc */
1037 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1038 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1039 
1040 	if (error) {
1041 		device_printf(dev, "couldn't set up irq\n");
1042 		ether_ifdetach(ifp);
1043 		goto fail;
1044 	}
1045 
1046 fail:
1047 	if (error)
1048 		ste_detach(dev);
1049 
1050 	return (error);
1051 }
1052 
1053 /*
1054  * Shutdown hardware and free up resources. This can be called any
1055  * time after the mutex has been initialized. It is called in both
1056  * the error case in attach and the normal detach case so it needs
1057  * to be careful about only freeing resources that have actually been
1058  * allocated.
1059  */
1060 static int
1061 ste_detach(device_t dev)
1062 {
1063 	struct ste_softc *sc;
1064 	struct ifnet *ifp;
1065 
1066 	sc = device_get_softc(dev);
1067 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1068 	ifp = sc->ste_ifp;
1069 
1070 #ifdef DEVICE_POLLING
1071 	if (ifp->if_capenable & IFCAP_POLLING)
1072 		ether_poll_deregister(ifp);
1073 #endif
1074 
1075 	/* These should only be active if attach succeeded */
1076 	if (device_is_attached(dev)) {
1077 		ether_ifdetach(ifp);
1078 		STE_LOCK(sc);
1079 		ste_stop(sc);
1080 		STE_UNLOCK(sc);
1081 		callout_drain(&sc->ste_callout);
1082 	}
1083 	if (sc->ste_miibus)
1084 		device_delete_child(dev, sc->ste_miibus);
1085 	bus_generic_detach(dev);
1086 
1087 	if (sc->ste_intrhand)
1088 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1089 	if (sc->ste_irq)
1090 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1091 	if (sc->ste_res)
1092 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1093 		    sc->ste_res);
1094 
1095 	if (ifp)
1096 		if_free(ifp);
1097 
1098 	ste_dma_free(sc);
1099 	mtx_destroy(&sc->ste_mtx);
1100 
1101 	return (0);
1102 }
1103 
1104 struct ste_dmamap_arg {
1105 	bus_addr_t	ste_busaddr;
1106 };
1107 
1108 static void
1109 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1110 {
1111 	struct ste_dmamap_arg *ctx;
1112 
1113 	if (error != 0)
1114 		return;
1115 
1116 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1117 
1118 	ctx = (struct ste_dmamap_arg *)arg;
1119 	ctx->ste_busaddr = segs[0].ds_addr;
1120 }
1121 
1122 static int
1123 ste_dma_alloc(struct ste_softc *sc)
1124 {
1125 	struct ste_chain *txc;
1126 	struct ste_chain_onefrag *rxc;
1127 	struct ste_dmamap_arg ctx;
1128 	int error, i;
1129 
1130 	/* Create parent DMA tag. */
1131 	error = bus_dma_tag_create(
1132 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1133 	    1, 0,			/* alignment, boundary */
1134 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1135 	    BUS_SPACE_MAXADDR,		/* highaddr */
1136 	    NULL, NULL,			/* filter, filterarg */
1137 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1138 	    0,				/* nsegments */
1139 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1140 	    0,				/* flags */
1141 	    NULL, NULL,			/* lockfunc, lockarg */
1142 	    &sc->ste_cdata.ste_parent_tag);
1143 	if (error != 0) {
1144 		device_printf(sc->ste_dev,
1145 		    "could not create parent DMA tag.\n");
1146 		goto fail;
1147 	}
1148 
1149 	/* Create DMA tag for Tx descriptor list. */
1150 	error = bus_dma_tag_create(
1151 	    sc->ste_cdata.ste_parent_tag, /* parent */
1152 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1153 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1154 	    BUS_SPACE_MAXADDR,		/* highaddr */
1155 	    NULL, NULL,			/* filter, filterarg */
1156 	    STE_TX_LIST_SZ,		/* maxsize */
1157 	    1,				/* nsegments */
1158 	    STE_TX_LIST_SZ,		/* maxsegsize */
1159 	    0,				/* flags */
1160 	    NULL, NULL,			/* lockfunc, lockarg */
1161 	    &sc->ste_cdata.ste_tx_list_tag);
1162 	if (error != 0) {
1163 		device_printf(sc->ste_dev,
1164 		    "could not create Tx list DMA tag.\n");
1165 		goto fail;
1166 	}
1167 
1168 	/* Create DMA tag for Rx descriptor list. */
1169 	error = bus_dma_tag_create(
1170 	    sc->ste_cdata.ste_parent_tag, /* parent */
1171 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1172 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1173 	    BUS_SPACE_MAXADDR,		/* highaddr */
1174 	    NULL, NULL,			/* filter, filterarg */
1175 	    STE_RX_LIST_SZ,		/* maxsize */
1176 	    1,				/* nsegments */
1177 	    STE_RX_LIST_SZ,		/* maxsegsize */
1178 	    0,				/* flags */
1179 	    NULL, NULL,			/* lockfunc, lockarg */
1180 	    &sc->ste_cdata.ste_rx_list_tag);
1181 	if (error != 0) {
1182 		device_printf(sc->ste_dev,
1183 		    "could not create Rx list DMA tag.\n");
1184 		goto fail;
1185 	}
1186 
1187 	/* Create DMA tag for Tx buffers. */
1188 	error = bus_dma_tag_create(
1189 	    sc->ste_cdata.ste_parent_tag, /* parent */
1190 	    1, 0,			/* alignment, boundary */
1191 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1192 	    BUS_SPACE_MAXADDR,		/* highaddr */
1193 	    NULL, NULL,			/* filter, filterarg */
1194 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1195 	    STE_MAXFRAGS,		/* nsegments */
1196 	    MCLBYTES,			/* maxsegsize */
1197 	    0,				/* flags */
1198 	    NULL, NULL,			/* lockfunc, lockarg */
1199 	    &sc->ste_cdata.ste_tx_tag);
1200 	if (error != 0) {
1201 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1202 		goto fail;
1203 	}
1204 
1205 	/* Create DMA tag for Rx buffers. */
1206 	error = bus_dma_tag_create(
1207 	    sc->ste_cdata.ste_parent_tag, /* parent */
1208 	    1, 0,			/* alignment, boundary */
1209 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1210 	    BUS_SPACE_MAXADDR,		/* highaddr */
1211 	    NULL, NULL,			/* filter, filterarg */
1212 	    MCLBYTES,			/* maxsize */
1213 	    1,				/* nsegments */
1214 	    MCLBYTES,			/* maxsegsize */
1215 	    0,				/* flags */
1216 	    NULL, NULL,			/* lockfunc, lockarg */
1217 	    &sc->ste_cdata.ste_rx_tag);
1218 	if (error != 0) {
1219 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1220 		goto fail;
1221 	}
1222 
1223 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1224 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1225 	    (void **)&sc->ste_ldata.ste_tx_list,
1226 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1227 	    &sc->ste_cdata.ste_tx_list_map);
1228 	if (error != 0) {
1229 		device_printf(sc->ste_dev,
1230 		    "could not allocate DMA'able memory for Tx list.\n");
1231 		goto fail;
1232 	}
1233 	ctx.ste_busaddr = 0;
1234 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1235 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1236 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1237 	if (error != 0 || ctx.ste_busaddr == 0) {
1238 		device_printf(sc->ste_dev,
1239 		    "could not load DMA'able memory for Tx list.\n");
1240 		goto fail;
1241 	}
1242 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1243 
1244 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1245 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1246 	    (void **)&sc->ste_ldata.ste_rx_list,
1247 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1248 	    &sc->ste_cdata.ste_rx_list_map);
1249 	if (error != 0) {
1250 		device_printf(sc->ste_dev,
1251 		    "could not allocate DMA'able memory for Rx list.\n");
1252 		goto fail;
1253 	}
1254 	ctx.ste_busaddr = 0;
1255 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1256 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1257 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1258 	if (error != 0 || ctx.ste_busaddr == 0) {
1259 		device_printf(sc->ste_dev,
1260 		    "could not load DMA'able memory for Rx list.\n");
1261 		goto fail;
1262 	}
1263 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1264 
1265 	/* Create DMA maps for Tx buffers. */
1266 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1267 		txc = &sc->ste_cdata.ste_tx_chain[i];
1268 		txc->ste_ptr = NULL;
1269 		txc->ste_mbuf = NULL;
1270 		txc->ste_next = NULL;
1271 		txc->ste_phys = 0;
1272 		txc->ste_map = NULL;
1273 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1274 		    &txc->ste_map);
1275 		if (error != 0) {
1276 			device_printf(sc->ste_dev,
1277 			    "could not create Tx dmamap.\n");
1278 			goto fail;
1279 		}
1280 	}
1281 	/* Create DMA maps for Rx buffers. */
1282 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1283 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1284 		device_printf(sc->ste_dev,
1285 		    "could not create spare Rx dmamap.\n");
1286 		goto fail;
1287 	}
1288 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1289 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1290 		rxc->ste_ptr = NULL;
1291 		rxc->ste_mbuf = NULL;
1292 		rxc->ste_next = NULL;
1293 		rxc->ste_map = NULL;
1294 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1295 		    &rxc->ste_map);
1296 		if (error != 0) {
1297 			device_printf(sc->ste_dev,
1298 			    "could not create Rx dmamap.\n");
1299 			goto fail;
1300 		}
1301 	}
1302 
1303 fail:
1304 	return (error);
1305 }
1306 
1307 static void
1308 ste_dma_free(struct ste_softc *sc)
1309 {
1310 	struct ste_chain *txc;
1311 	struct ste_chain_onefrag *rxc;
1312 	int i;
1313 
1314 	/* Tx buffers. */
1315 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1316 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1317 			txc = &sc->ste_cdata.ste_tx_chain[i];
1318 			if (txc->ste_map != NULL) {
1319 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1320 				    txc->ste_map);
1321 				txc->ste_map = NULL;
1322 			}
1323 		}
1324 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1325 		sc->ste_cdata.ste_tx_tag = NULL;
1326 	}
1327 	/* Rx buffers. */
1328 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1329 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1330 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1331 			if (rxc->ste_map != NULL) {
1332 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1333 				    rxc->ste_map);
1334 				rxc->ste_map = NULL;
1335 			}
1336 		}
1337 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1338 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1339 			    sc->ste_cdata.ste_rx_sparemap);
1340 			sc->ste_cdata.ste_rx_sparemap = NULL;
1341 		}
1342 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1343 		sc->ste_cdata.ste_rx_tag = NULL;
1344 	}
1345 	/* Tx descriptor list. */
1346 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1347 		if (sc->ste_ldata.ste_tx_list_paddr != 0)
1348 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1349 			    sc->ste_cdata.ste_tx_list_map);
1350 		if (sc->ste_ldata.ste_tx_list != NULL)
1351 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1352 			    sc->ste_ldata.ste_tx_list,
1353 			    sc->ste_cdata.ste_tx_list_map);
1354 		sc->ste_ldata.ste_tx_list = NULL;
1355 		sc->ste_ldata.ste_tx_list_paddr = 0;
1356 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1357 		sc->ste_cdata.ste_tx_list_tag = NULL;
1358 	}
1359 	/* Rx descriptor list. */
1360 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1361 		if (sc->ste_ldata.ste_rx_list_paddr != 0)
1362 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1363 			    sc->ste_cdata.ste_rx_list_map);
1364 		if (sc->ste_ldata.ste_rx_list != NULL)
1365 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1366 			    sc->ste_ldata.ste_rx_list,
1367 			    sc->ste_cdata.ste_rx_list_map);
1368 		sc->ste_ldata.ste_rx_list = NULL;
1369 		sc->ste_ldata.ste_rx_list_paddr = 0;
1370 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1371 		sc->ste_cdata.ste_rx_list_tag = NULL;
1372 	}
1373 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1374 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1375 		sc->ste_cdata.ste_parent_tag = NULL;
1376 	}
1377 }
1378 
1379 static int
1380 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1381 {
1382 	struct mbuf *m;
1383 	bus_dma_segment_t segs[1];
1384 	bus_dmamap_t map;
1385 	int error, nsegs;
1386 
1387 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1388 	if (m == NULL)
1389 		return (ENOBUFS);
1390 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1391 	m_adj(m, ETHER_ALIGN);
1392 
1393 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1394 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1395 		m_freem(m);
1396 		return (error);
1397 	}
1398 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1399 
1400 	if (rxc->ste_mbuf != NULL) {
1401 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1402 		    BUS_DMASYNC_POSTREAD);
1403 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1404 	}
1405 	map = rxc->ste_map;
1406 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1407 	sc->ste_cdata.ste_rx_sparemap = map;
1408 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1409 	    BUS_DMASYNC_PREREAD);
1410 	rxc->ste_mbuf = m;
1411 	rxc->ste_ptr->ste_status = 0;
1412 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1413 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1414 	    STE_FRAG_LAST);
1415 	return (0);
1416 }
1417 
1418 static int
1419 ste_init_rx_list(struct ste_softc *sc)
1420 {
1421 	struct ste_chain_data *cd;
1422 	struct ste_list_data *ld;
1423 	int error, i;
1424 
1425 	sc->ste_int_rx_act = 0;
1426 	cd = &sc->ste_cdata;
1427 	ld = &sc->ste_ldata;
1428 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1429 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1430 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1431 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1432 		if (error != 0)
1433 			return (error);
1434 		if (i == (STE_RX_LIST_CNT - 1)) {
1435 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1436 			ld->ste_rx_list[i].ste_next =
1437 			    htole32(ld->ste_rx_list_paddr +
1438 			    (sizeof(struct ste_desc_onefrag) * 0));
1439 		} else {
1440 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1441 			ld->ste_rx_list[i].ste_next =
1442 			    htole32(ld->ste_rx_list_paddr +
1443 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1444 		}
1445 	}
1446 
1447 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1448 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1449 	    sc->ste_cdata.ste_rx_list_map,
1450 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1451 
1452 	return (0);
1453 }
1454 
1455 static void
1456 ste_init_tx_list(struct ste_softc *sc)
1457 {
1458 	struct ste_chain_data *cd;
1459 	struct ste_list_data *ld;
1460 	int i;
1461 
1462 	cd = &sc->ste_cdata;
1463 	ld = &sc->ste_ldata;
1464 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1465 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1466 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1467 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1468 		if (i == (STE_TX_LIST_CNT - 1)) {
1469 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1470 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1471 			    ld->ste_tx_list_paddr +
1472 			    (sizeof(struct ste_desc) * 0)));
1473 		} else {
1474 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1475 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1476 			    ld->ste_tx_list_paddr +
1477 			    (sizeof(struct ste_desc) * (i + 1))));
1478 		}
1479 	}
1480 
1481 	cd->ste_last_tx = NULL;
1482 	cd->ste_tx_prod = 0;
1483 	cd->ste_tx_cons = 0;
1484 	cd->ste_tx_cnt = 0;
1485 
1486 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1487 	    sc->ste_cdata.ste_tx_list_map,
1488 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1489 }
1490 
1491 static void
1492 ste_init(void *xsc)
1493 {
1494 	struct ste_softc *sc;
1495 
1496 	sc = xsc;
1497 	STE_LOCK(sc);
1498 	ste_init_locked(sc);
1499 	STE_UNLOCK(sc);
1500 }
1501 
1502 static void
1503 ste_init_locked(struct ste_softc *sc)
1504 {
1505 	struct ifnet *ifp;
1506 	struct mii_data *mii;
1507 	uint8_t val;
1508 	int i;
1509 
1510 	STE_LOCK_ASSERT(sc);
1511 	ifp = sc->ste_ifp;
1512 	mii = device_get_softc(sc->ste_miibus);
1513 
1514 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1515 		return;
1516 
1517 	ste_stop(sc);
1518 	/* Reset the chip to a known state. */
1519 	ste_reset(sc);
1520 
1521 	/* Init our MAC address */
1522 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1523 		CSR_WRITE_2(sc, STE_PAR0 + i,
1524 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1525 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1526 	}
1527 
1528 	/* Init RX list */
1529 	if (ste_init_rx_list(sc) != 0) {
1530 		device_printf(sc->ste_dev,
1531 		    "initialization failed: no memory for RX buffers\n");
1532 		ste_stop(sc);
1533 		return;
1534 	}
1535 
1536 	/* Set RX polling interval */
1537 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1538 
1539 	/* Init TX descriptors */
1540 	ste_init_tx_list(sc);
1541 
1542 	/* Clear and disable WOL. */
1543 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1544 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1545 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1546 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1547 
1548 	/* Set the TX freethresh value */
1549 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1550 
1551 	/* Set the TX start threshold for best performance. */
1552 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1553 
1554 	/* Set the TX reclaim threshold. */
1555 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1556 
1557 	/* Accept VLAN length packets */
1558 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1559 
1560 	/* Set up the RX filter. */
1561 	ste_rxfilter(sc);
1562 
1563 	/* Load the address of the RX list. */
1564 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1565 	ste_wait(sc);
1566 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1567 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1568 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1569 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1570 
1571 	/* Set TX polling interval(defer until we TX first packet). */
1572 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1573 
1574 	/* Load address of the TX list */
1575 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1576 	ste_wait(sc);
1577 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1578 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1579 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1580 	ste_wait(sc);
1581 	/* Select 3.2us timer. */
1582 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1583 	    STE_DMACTL_COUNTDOWN_MODE);
1584 
1585 	/* Enable receiver and transmitter */
1586 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1587 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1588 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1589 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1590 
1591 	/* Enable stats counters. */
1592 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1593 	/* Clear stats counters. */
1594 	ste_stats_clear(sc);
1595 
1596 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1597 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1598 #ifdef DEVICE_POLLING
1599 	/* Disable interrupts if we are polling. */
1600 	if (ifp->if_capenable & IFCAP_POLLING)
1601 		CSR_WRITE_2(sc, STE_IMR, 0);
1602 	else
1603 #endif
1604 	/* Enable interrupts. */
1605 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1606 
1607 	sc->ste_flags &= ~STE_FLAG_LINK;
1608 	/* Switch to the current media. */
1609 	mii_mediachg(mii);
1610 
1611 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1612 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1613 
1614 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1615 }
1616 
1617 static void
1618 ste_stop(struct ste_softc *sc)
1619 {
1620 	struct ifnet *ifp;
1621 	struct ste_chain_onefrag *cur_rx;
1622 	struct ste_chain *cur_tx;
1623 	uint32_t val;
1624 	int i;
1625 
1626 	STE_LOCK_ASSERT(sc);
1627 	ifp = sc->ste_ifp;
1628 
1629 	callout_stop(&sc->ste_callout);
1630 	sc->ste_timer = 0;
1631 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1632 
1633 	CSR_WRITE_2(sc, STE_IMR, 0);
1634 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1635 	/* Stop pending DMA. */
1636 	val = CSR_READ_4(sc, STE_DMACTL);
1637 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1638 	CSR_WRITE_4(sc, STE_DMACTL, val);
1639 	ste_wait(sc);
1640 	/* Disable auto-polling. */
1641 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1642 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1643 	/* Nullify DMA address to stop any further DMA. */
1644 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1645 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1646 	/* Stop TX/RX MAC. */
1647 	val = CSR_READ_2(sc, STE_MACCTL1);
1648 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1649 	    STE_MACCTL1_STATS_DISABLE;
1650 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1651 	for (i = 0; i < STE_TIMEOUT; i++) {
1652 		DELAY(10);
1653 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1654 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1655 			break;
1656 	}
1657 	if (i == STE_TIMEOUT)
1658 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1659 	/* Acknowledge any pending interrupts. */
1660 	CSR_READ_2(sc, STE_ISR_ACK);
1661 	ste_stats_update(sc);
1662 
1663 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1664 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1665 		if (cur_rx->ste_mbuf != NULL) {
1666 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1667 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1668 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1669 			    cur_rx->ste_map);
1670 			m_freem(cur_rx->ste_mbuf);
1671 			cur_rx->ste_mbuf = NULL;
1672 		}
1673 	}
1674 
1675 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1676 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1677 		if (cur_tx->ste_mbuf != NULL) {
1678 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1679 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1680 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1681 			    cur_tx->ste_map);
1682 			m_freem(cur_tx->ste_mbuf);
1683 			cur_tx->ste_mbuf = NULL;
1684 		}
1685 	}
1686 }
1687 
1688 static void
1689 ste_reset(struct ste_softc *sc)
1690 {
1691 	uint32_t ctl;
1692 	int i;
1693 
1694 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1695 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1696 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1697 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1698 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1699 	    STE_ASICCTL_EXTRESET_RESET;
1700 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1701 	CSR_READ_4(sc, STE_ASICCTL);
1702 	/*
1703 	 * Due to the need of accessing EEPROM controller can take
1704 	 * up to 1ms to complete the global reset.
1705 	 */
1706 	DELAY(1000);
1707 
1708 	for (i = 0; i < STE_TIMEOUT; i++) {
1709 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1710 			break;
1711 		DELAY(10);
1712 	}
1713 
1714 	if (i == STE_TIMEOUT)
1715 		device_printf(sc->ste_dev, "global reset never completed\n");
1716 }
1717 
1718 static void
1719 ste_restart_tx(struct ste_softc *sc)
1720 {
1721 	uint16_t mac;
1722 	int i;
1723 
1724 	for (i = 0; i < STE_TIMEOUT; i++) {
1725 		mac = CSR_READ_2(sc, STE_MACCTL1);
1726 		mac |= STE_MACCTL1_TX_ENABLE;
1727 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1728 		mac = CSR_READ_2(sc, STE_MACCTL1);
1729 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1730 			break;
1731 		DELAY(10);
1732 	}
1733 
1734 	if (i == STE_TIMEOUT)
1735 		device_printf(sc->ste_dev, "starting Tx failed");
1736 }
1737 
1738 static int
1739 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1740 {
1741 	struct ste_softc *sc;
1742 	struct ifreq *ifr;
1743 	struct mii_data *mii;
1744 	int error = 0, mask;
1745 
1746 	sc = ifp->if_softc;
1747 	ifr = (struct ifreq *)data;
1748 
1749 	switch (command) {
1750 	case SIOCSIFFLAGS:
1751 		STE_LOCK(sc);
1752 		if ((ifp->if_flags & IFF_UP) != 0) {
1753 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1754 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1755 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1756 				ste_rxfilter(sc);
1757 			else
1758 				ste_init_locked(sc);
1759 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1760 			ste_stop(sc);
1761 		sc->ste_if_flags = ifp->if_flags;
1762 		STE_UNLOCK(sc);
1763 		break;
1764 	case SIOCADDMULTI:
1765 	case SIOCDELMULTI:
1766 		STE_LOCK(sc);
1767 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1768 			ste_rxfilter(sc);
1769 		STE_UNLOCK(sc);
1770 		break;
1771 	case SIOCGIFMEDIA:
1772 	case SIOCSIFMEDIA:
1773 		mii = device_get_softc(sc->ste_miibus);
1774 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1775 		break;
1776 	case SIOCSIFCAP:
1777 		STE_LOCK(sc);
1778 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1779 #ifdef DEVICE_POLLING
1780 		if ((mask & IFCAP_POLLING) != 0 &&
1781 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1782 			ifp->if_capenable ^= IFCAP_POLLING;
1783 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1784 				error = ether_poll_register(ste_poll, ifp);
1785 				if (error != 0) {
1786 					STE_UNLOCK(sc);
1787 					break;
1788 				}
1789 				/* Disable interrupts. */
1790 				CSR_WRITE_2(sc, STE_IMR, 0);
1791 			} else {
1792 				error = ether_poll_deregister(ifp);
1793 				/* Enable interrupts. */
1794 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1795 			}
1796 		}
1797 #endif /* DEVICE_POLLING */
1798 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1799 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1800 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1801 		STE_UNLOCK(sc);
1802 		break;
1803 	default:
1804 		error = ether_ioctl(ifp, command, data);
1805 		break;
1806 	}
1807 
1808 	return (error);
1809 }
1810 
1811 static int
1812 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1813 {
1814 	struct ste_frag *frag;
1815 	struct mbuf *m;
1816 	struct ste_desc *desc;
1817 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1818 	int error, i, nsegs;
1819 
1820 	STE_LOCK_ASSERT(sc);
1821 	M_ASSERTPKTHDR((*m_head));
1822 
1823 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1824 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1825 	if (error == EFBIG) {
1826 		m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1827 		if (m == NULL) {
1828 			m_freem(*m_head);
1829 			*m_head = NULL;
1830 			return (ENOMEM);
1831 		}
1832 		*m_head = m;
1833 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1834 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1835 		if (error != 0) {
1836 			m_freem(*m_head);
1837 			*m_head = NULL;
1838 			return (error);
1839 		}
1840 	} else if (error != 0)
1841 		return (error);
1842 	if (nsegs == 0) {
1843 		m_freem(*m_head);
1844 		*m_head = NULL;
1845 		return (EIO);
1846 	}
1847 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1848 	    BUS_DMASYNC_PREWRITE);
1849 
1850 	desc = txc->ste_ptr;
1851 	for (i = 0; i < nsegs; i++) {
1852 		frag = &desc->ste_frags[i];
1853 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1854 		frag->ste_len = htole32(txsegs[i].ds_len);
1855 	}
1856 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1857 	/*
1858 	 * Because we use Tx polling we can't chain multiple
1859 	 * Tx descriptors here. Otherwise we race with controller.
1860 	 */
1861 	desc->ste_next = 0;
1862 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1863 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1864 		    STE_TXCTL_DMAINTR);
1865 	else
1866 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1867 	txc->ste_mbuf = *m_head;
1868 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1869 	sc->ste_cdata.ste_tx_cnt++;
1870 
1871 	return (0);
1872 }
1873 
1874 static void
1875 ste_start(struct ifnet *ifp)
1876 {
1877 	struct ste_softc *sc;
1878 
1879 	sc = ifp->if_softc;
1880 	STE_LOCK(sc);
1881 	ste_start_locked(ifp);
1882 	STE_UNLOCK(sc);
1883 }
1884 
1885 static void
1886 ste_start_locked(struct ifnet *ifp)
1887 {
1888 	struct ste_softc *sc;
1889 	struct ste_chain *cur_tx;
1890 	struct mbuf *m_head = NULL;
1891 	int enq;
1892 
1893 	sc = ifp->if_softc;
1894 	STE_LOCK_ASSERT(sc);
1895 
1896 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1897 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1898 		return;
1899 
1900 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1901 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1902 			/*
1903 			 * Controller may have cached copy of the last used
1904 			 * next ptr so we have to reserve one TFD to avoid
1905 			 * TFD overruns.
1906 			 */
1907 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1908 			break;
1909 		}
1910 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1911 		if (m_head == NULL)
1912 			break;
1913 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1914 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1915 			if (m_head == NULL)
1916 				break;
1917 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1918 			break;
1919 		}
1920 		if (sc->ste_cdata.ste_last_tx == NULL) {
1921 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1922 			    sc->ste_cdata.ste_tx_list_map,
1923 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1924 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1925 			ste_wait(sc);
1926 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1927 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1928 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1929 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1930 			ste_wait(sc);
1931 		} else {
1932 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1933 			    sc->ste_cdata.ste_last_tx->ste_phys;
1934 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1935 			    sc->ste_cdata.ste_tx_list_map,
1936 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1937 		}
1938 		sc->ste_cdata.ste_last_tx = cur_tx;
1939 
1940 		enq++;
1941 		/*
1942 		 * If there's a BPF listener, bounce a copy of this frame
1943 		 * to him.
1944 	 	 */
1945 		BPF_MTAP(ifp, m_head);
1946 	}
1947 
1948 	if (enq > 0)
1949 		sc->ste_timer = STE_TX_TIMEOUT;
1950 }
1951 
1952 static void
1953 ste_watchdog(struct ste_softc *sc)
1954 {
1955 	struct ifnet *ifp;
1956 
1957 	ifp = sc->ste_ifp;
1958 	STE_LOCK_ASSERT(sc);
1959 
1960 	if (sc->ste_timer == 0 || --sc->ste_timer)
1961 		return;
1962 
1963 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1964 	if_printf(ifp, "watchdog timeout\n");
1965 
1966 	ste_txeof(sc);
1967 	ste_txeoc(sc);
1968 	ste_rxeof(sc, -1);
1969 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1970 	ste_init_locked(sc);
1971 
1972 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1973 		ste_start_locked(ifp);
1974 }
1975 
1976 static int
1977 ste_shutdown(device_t dev)
1978 {
1979 
1980 	return (ste_suspend(dev));
1981 }
1982 
1983 static int
1984 ste_suspend(device_t dev)
1985 {
1986 	struct ste_softc *sc;
1987 
1988 	sc = device_get_softc(dev);
1989 
1990 	STE_LOCK(sc);
1991 	ste_stop(sc);
1992 	ste_setwol(sc);
1993 	STE_UNLOCK(sc);
1994 
1995 	return (0);
1996 }
1997 
1998 static int
1999 ste_resume(device_t dev)
2000 {
2001 	struct ste_softc *sc;
2002 	struct ifnet *ifp;
2003 	int pmc;
2004 	uint16_t pmstat;
2005 
2006 	sc = device_get_softc(dev);
2007 	STE_LOCK(sc);
2008 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2009 		/* Disable PME and clear PME status. */
2010 		pmstat = pci_read_config(sc->ste_dev,
2011 		    pmc + PCIR_POWER_STATUS, 2);
2012 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2013 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2014 			pci_write_config(sc->ste_dev,
2015 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2016 		}
2017 	}
2018 	ifp = sc->ste_ifp;
2019 	if ((ifp->if_flags & IFF_UP) != 0) {
2020 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2021 		ste_init_locked(sc);
2022 	}
2023 	STE_UNLOCK(sc);
2024 
2025 	return (0);
2026 }
2027 
2028 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2029 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2030 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2031 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2032 
2033 static void
2034 ste_sysctl_node(struct ste_softc *sc)
2035 {
2036 	struct sysctl_ctx_list *ctx;
2037 	struct sysctl_oid_list *child, *parent;
2038 	struct sysctl_oid *tree;
2039 	struct ste_hw_stats *stats;
2040 
2041 	stats = &sc->ste_stats;
2042 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2043 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2044 
2045 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2046 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2047 	/* Pull in device tunables. */
2048 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2049 	resource_int_value(device_get_name(sc->ste_dev),
2050 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2051 
2052 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2053 	    NULL, "STE statistics");
2054 	parent = SYSCTL_CHILDREN(tree);
2055 
2056 	/* Rx statistics. */
2057 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2058 	    NULL, "Rx MAC statistics");
2059 	child = SYSCTL_CHILDREN(tree);
2060 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2061 	    &stats->rx_bytes, "Good octets");
2062 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2063 	    &stats->rx_frames, "Good frames");
2064 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2065 	    &stats->rx_bcast_frames, "Good broadcast frames");
2066 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2067 	    &stats->rx_mcast_frames, "Good multicast frames");
2068 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2069 	    &stats->rx_lost_frames, "Lost frames");
2070 
2071 	/* Tx statistics. */
2072 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2073 	    NULL, "Tx MAC statistics");
2074 	child = SYSCTL_CHILDREN(tree);
2075 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2076 	    &stats->tx_bytes, "Good octets");
2077 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2078 	    &stats->tx_frames, "Good frames");
2079 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2080 	    &stats->tx_bcast_frames, "Good broadcast frames");
2081 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2082 	    &stats->tx_mcast_frames, "Good multicast frames");
2083 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2084 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2085 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2086 	    &stats->tx_single_colls, "Single collisions");
2087 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2088 	    &stats->tx_multi_colls, "Multiple collisions");
2089 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2090 	    &stats->tx_late_colls, "Late collisions");
2091 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2092 	    &stats->tx_frames_defered, "Frames with deferrals");
2093 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2094 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2095 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2096 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2097 }
2098 
2099 #undef STE_SYSCTL_STAT_ADD32
2100 #undef STE_SYSCTL_STAT_ADD64
2101 
2102 static void
2103 ste_setwol(struct ste_softc *sc)
2104 {
2105 	struct ifnet *ifp;
2106 	uint16_t pmstat;
2107 	uint8_t val;
2108 	int pmc;
2109 
2110 	STE_LOCK_ASSERT(sc);
2111 
2112 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2113 		/* Disable WOL. */
2114 		CSR_READ_1(sc, STE_WAKE_EVENT);
2115 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2116 		return;
2117 	}
2118 
2119 	ifp = sc->ste_ifp;
2120 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2121 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2122 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2123 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2124 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2125 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2126 	/* Request PME. */
2127 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2128 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2129 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2130 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2131 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2132 }
2133