xref: /freebsd/sys/dev/ste/if_ste.c (revision ec0ea6efa1ad229d75c394c1a9b9cac33af2b1d3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #ifdef HAVE_KERNEL_OPTION_HEADERS
39 #include "opt_device_polling.h"
40 #endif
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/rman.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #include <machine/bus.h>
67 #include <machine/resource.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/mii_bitbang.h>
71 #include <dev/mii/miivar.h>
72 
73 #include <dev/pci/pcireg.h>
74 #include <dev/pci/pcivar.h>
75 
76 #include <dev/ste/if_stereg.h>
77 
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80 
81 MODULE_DEPEND(ste, pci, 1, 1, 1);
82 MODULE_DEPEND(ste, ether, 1, 1, 1);
83 MODULE_DEPEND(ste, miibus, 1, 1, 1);
84 
85 /* Define to show Tx error status. */
86 #define	STE_SHOW_TXERRORS
87 
88 /*
89  * Various supported device vendors/types and their names.
90  */
91 static const struct ste_type ste_devs[] = {
92 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
93 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
94 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
95 	{ 0, 0, NULL }
96 };
97 
98 static int	ste_attach(device_t);
99 static int	ste_detach(device_t);
100 static int	ste_probe(device_t);
101 static int	ste_resume(device_t);
102 static int	ste_shutdown(device_t);
103 static int	ste_suspend(device_t);
104 
105 static int	ste_dma_alloc(struct ste_softc *);
106 static void	ste_dma_free(struct ste_softc *);
107 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
108 static int 	ste_eeprom_wait(struct ste_softc *);
109 static int	ste_encap(struct ste_softc *, struct mbuf **,
110 		    struct ste_chain *);
111 static int	ste_ifmedia_upd(struct ifnet *);
112 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
113 static void	ste_init(void *);
114 static void	ste_init_locked(struct ste_softc *);
115 static int	ste_init_rx_list(struct ste_softc *);
116 static void	ste_init_tx_list(struct ste_softc *);
117 static void	ste_intr(void *);
118 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
119 static uint32_t ste_mii_bitbang_read(device_t);
120 static void	ste_mii_bitbang_write(device_t, uint32_t);
121 static int	ste_miibus_readreg(device_t, int, int);
122 static void	ste_miibus_statchg(device_t);
123 static int	ste_miibus_writereg(device_t, int, int, int);
124 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
125 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
126 static void	ste_reset(struct ste_softc *);
127 static void	ste_restart_tx(struct ste_softc *);
128 static int	ste_rxeof(struct ste_softc *, int);
129 static void	ste_rxfilter(struct ste_softc *);
130 static void	ste_setwol(struct ste_softc *);
131 static void	ste_start(struct ifnet *);
132 static void	ste_start_locked(struct ifnet *);
133 static void	ste_stats_clear(struct ste_softc *);
134 static void	ste_stats_update(struct ste_softc *);
135 static void	ste_stop(struct ste_softc *);
136 static void	ste_sysctl_node(struct ste_softc *);
137 static void	ste_tick(void *);
138 static void	ste_txeoc(struct ste_softc *);
139 static void	ste_txeof(struct ste_softc *);
140 static void	ste_wait(struct ste_softc *);
141 static void	ste_watchdog(struct ste_softc *);
142 
143 /*
144  * MII bit-bang glue
145  */
146 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
147 	ste_mii_bitbang_read,
148 	ste_mii_bitbang_write,
149 	{
150 		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
151 		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
152 		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
153 		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
154 		0,			/* MII_BIT_DIR_PHY_HOST */
155 	}
156 };
157 
158 static device_method_t ste_methods[] = {
159 	/* Device interface */
160 	DEVMETHOD(device_probe,		ste_probe),
161 	DEVMETHOD(device_attach,	ste_attach),
162 	DEVMETHOD(device_detach,	ste_detach),
163 	DEVMETHOD(device_shutdown,	ste_shutdown),
164 	DEVMETHOD(device_suspend,	ste_suspend),
165 	DEVMETHOD(device_resume,	ste_resume),
166 
167 	/* MII interface */
168 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
169 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
170 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
171 
172 	DEVMETHOD_END
173 };
174 
175 static driver_t ste_driver = {
176 	"ste",
177 	ste_methods,
178 	sizeof(struct ste_softc)
179 };
180 
181 static devclass_t ste_devclass;
182 
183 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
184 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
185 
186 #define STE_SETBIT4(sc, reg, x)				\
187 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
188 
189 #define STE_CLRBIT4(sc, reg, x)				\
190 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
191 
192 #define STE_SETBIT2(sc, reg, x)				\
193 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
194 
195 #define STE_CLRBIT2(sc, reg, x)				\
196 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
197 
198 #define STE_SETBIT1(sc, reg, x)				\
199 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
200 
201 #define STE_CLRBIT1(sc, reg, x)				\
202 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
203 
204 /*
205  * Read the MII serial port for the MII bit-bang module.
206  */
207 static uint32_t
208 ste_mii_bitbang_read(device_t dev)
209 {
210 	struct ste_softc *sc;
211 	uint32_t val;
212 
213 	sc = device_get_softc(dev);
214 
215 	val = CSR_READ_1(sc, STE_PHYCTL);
216 	CSR_BARRIER(sc, STE_PHYCTL, 1,
217 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
218 
219 	return (val);
220 }
221 
222 /*
223  * Write the MII serial port for the MII bit-bang module.
224  */
225 static void
226 ste_mii_bitbang_write(device_t dev, uint32_t val)
227 {
228 	struct ste_softc *sc;
229 
230 	sc = device_get_softc(dev);
231 
232 	CSR_WRITE_1(sc, STE_PHYCTL, val);
233 	CSR_BARRIER(sc, STE_PHYCTL, 1,
234 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
235 }
236 
237 static int
238 ste_miibus_readreg(device_t dev, int phy, int reg)
239 {
240 
241 	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
242 }
243 
244 static int
245 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
246 {
247 
248 	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
249 
250 	return (0);
251 }
252 
253 static void
254 ste_miibus_statchg(device_t dev)
255 {
256 	struct ste_softc *sc;
257 	struct mii_data *mii;
258 	struct ifnet *ifp;
259 	uint16_t cfg;
260 
261 	sc = device_get_softc(dev);
262 
263 	mii = device_get_softc(sc->ste_miibus);
264 	ifp = sc->ste_ifp;
265 	if (mii == NULL || ifp == NULL ||
266 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
267 		return;
268 
269 	sc->ste_flags &= ~STE_FLAG_LINK;
270 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
271 	    (IFM_ACTIVE | IFM_AVALID)) {
272 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
273 		case IFM_10_T:
274 		case IFM_100_TX:
275 		case IFM_100_FX:
276 		case IFM_100_T4:
277 			sc->ste_flags |= STE_FLAG_LINK;
278 		default:
279 			break;
280 		}
281 	}
282 
283 	/* Program MACs with resolved speed/duplex/flow-control. */
284 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
285 		cfg = CSR_READ_2(sc, STE_MACCTL0);
286 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
287 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
288 			/*
289 			 * ST201 data sheet says driver should enable receiving
290 			 * MAC control frames bit of receive mode register to
291 			 * receive flow-control frames but the register has no
292 			 * such bits. In addition the controller has no ability
293 			 * to send pause frames so it should be handled in
294 			 * driver. Implementing pause timer handling in driver
295 			 * layer is not trivial, so don't enable flow-control
296 			 * here.
297 			 */
298 			cfg |= STE_MACCTL0_FULLDUPLEX;
299 		}
300 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
301 	}
302 }
303 
304 static int
305 ste_ifmedia_upd(struct ifnet *ifp)
306 {
307 	struct ste_softc *sc;
308 	struct mii_data	*mii;
309 	struct mii_softc *miisc;
310 	int error;
311 
312 	sc = ifp->if_softc;
313 	STE_LOCK(sc);
314 	mii = device_get_softc(sc->ste_miibus);
315 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
316 		PHY_RESET(miisc);
317 	error = mii_mediachg(mii);
318 	STE_UNLOCK(sc);
319 
320 	return (error);
321 }
322 
323 static void
324 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
325 {
326 	struct ste_softc *sc;
327 	struct mii_data *mii;
328 
329 	sc = ifp->if_softc;
330 	mii = device_get_softc(sc->ste_miibus);
331 
332 	STE_LOCK(sc);
333 	if ((ifp->if_flags & IFF_UP) == 0) {
334 		STE_UNLOCK(sc);
335 		return;
336 	}
337 	mii_pollstat(mii);
338 	ifmr->ifm_active = mii->mii_media_active;
339 	ifmr->ifm_status = mii->mii_media_status;
340 	STE_UNLOCK(sc);
341 }
342 
343 static void
344 ste_wait(struct ste_softc *sc)
345 {
346 	int i;
347 
348 	for (i = 0; i < STE_TIMEOUT; i++) {
349 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
350 			break;
351 		DELAY(1);
352 	}
353 
354 	if (i == STE_TIMEOUT)
355 		device_printf(sc->ste_dev, "command never completed!\n");
356 }
357 
358 /*
359  * The EEPROM is slow: give it time to come ready after issuing
360  * it a command.
361  */
362 static int
363 ste_eeprom_wait(struct ste_softc *sc)
364 {
365 	int i;
366 
367 	DELAY(1000);
368 
369 	for (i = 0; i < 100; i++) {
370 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
371 			DELAY(1000);
372 		else
373 			break;
374 	}
375 
376 	if (i == 100) {
377 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
378 		return (1);
379 	}
380 
381 	return (0);
382 }
383 
384 /*
385  * Read a sequence of words from the EEPROM. Note that ethernet address
386  * data is stored in the EEPROM in network byte order.
387  */
388 static int
389 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
390 {
391 	int err = 0, i;
392 
393 	if (ste_eeprom_wait(sc))
394 		return (1);
395 
396 	for (i = 0; i < cnt; i++) {
397 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
398 		err = ste_eeprom_wait(sc);
399 		if (err)
400 			break;
401 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
402 		dest++;
403 	}
404 
405 	return (err ? 1 : 0);
406 }
407 
408 static u_int
409 ste_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
410 {
411 	uint32_t *hashes = arg;
412 	int h;
413 
414 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) & 0x3F;
415 	if (h < 32)
416 		hashes[0] |= (1 << h);
417 	else
418 		hashes[1] |= (1 << (h - 32));
419 
420 	return (1);
421 }
422 
423 static void
424 ste_rxfilter(struct ste_softc *sc)
425 {
426 	struct ifnet *ifp;
427 	uint32_t hashes[2] = { 0, 0 };
428 	uint8_t rxcfg;
429 
430 	STE_LOCK_ASSERT(sc);
431 
432 	ifp = sc->ste_ifp;
433 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
434 	rxcfg |= STE_RXMODE_UNICAST;
435 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
436 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
437 	if (ifp->if_flags & IFF_BROADCAST)
438 		rxcfg |= STE_RXMODE_BROADCAST;
439 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
440 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
441 			rxcfg |= STE_RXMODE_ALLMULTI;
442 		if ((ifp->if_flags & IFF_PROMISC) != 0)
443 			rxcfg |= STE_RXMODE_PROMISC;
444 		goto chipit;
445 	}
446 
447 	rxcfg |= STE_RXMODE_MULTIHASH;
448 	/* Now program new ones. */
449 	if_foreach_llmaddr(ifp, ste_hash_maddr, hashes);
450 
451 chipit:
452 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
453 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
454 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
455 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
456 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
457 	CSR_READ_1(sc, STE_RX_MODE);
458 }
459 
460 #ifdef DEVICE_POLLING
461 static poll_handler_t ste_poll, ste_poll_locked;
462 
463 static int
464 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
465 {
466 	struct ste_softc *sc = ifp->if_softc;
467 	int rx_npkts = 0;
468 
469 	STE_LOCK(sc);
470 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
471 		rx_npkts = ste_poll_locked(ifp, cmd, count);
472 	STE_UNLOCK(sc);
473 	return (rx_npkts);
474 }
475 
476 static int
477 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
478 {
479 	struct ste_softc *sc = ifp->if_softc;
480 	int rx_npkts;
481 
482 	STE_LOCK_ASSERT(sc);
483 
484 	rx_npkts = ste_rxeof(sc, count);
485 	ste_txeof(sc);
486 	ste_txeoc(sc);
487 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
488 		ste_start_locked(ifp);
489 
490 	if (cmd == POLL_AND_CHECK_STATUS) {
491 		uint16_t status;
492 
493 		status = CSR_READ_2(sc, STE_ISR_ACK);
494 
495 		if (status & STE_ISR_STATS_OFLOW)
496 			ste_stats_update(sc);
497 
498 		if (status & STE_ISR_HOSTERR) {
499 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
500 			ste_init_locked(sc);
501 		}
502 	}
503 	return (rx_npkts);
504 }
505 #endif /* DEVICE_POLLING */
506 
507 static void
508 ste_intr(void *xsc)
509 {
510 	struct ste_softc *sc;
511 	struct ifnet *ifp;
512 	uint16_t intrs, status;
513 
514 	sc = xsc;
515 	STE_LOCK(sc);
516 	ifp = sc->ste_ifp;
517 
518 #ifdef DEVICE_POLLING
519 	if (ifp->if_capenable & IFCAP_POLLING) {
520 		STE_UNLOCK(sc);
521 		return;
522 	}
523 #endif
524 	/* Reading STE_ISR_ACK clears STE_IMR register. */
525 	status = CSR_READ_2(sc, STE_ISR_ACK);
526 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
527 		STE_UNLOCK(sc);
528 		return;
529 	}
530 
531 	intrs = STE_INTRS;
532 	if (status == 0xFFFF || (status & intrs) == 0)
533 		goto done;
534 
535 	if (sc->ste_int_rx_act > 0) {
536 		status &= ~STE_ISR_RX_DMADONE;
537 		intrs &= ~STE_IMR_RX_DMADONE;
538 	}
539 
540 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
541 		ste_rxeof(sc, -1);
542 		/*
543 		 * The controller has no ability to Rx interrupt
544 		 * moderation feature. Receiving 64 bytes frames
545 		 * from wire generates too many interrupts which in
546 		 * turn make system useless to process other useful
547 		 * things. Fortunately ST201 supports single shot
548 		 * timer so use the timer to implement Rx interrupt
549 		 * moderation in driver. This adds more register
550 		 * access but it greatly reduces number of Rx
551 		 * interrupts under high network load.
552 		 */
553 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
554 		    (sc->ste_int_rx_mod != 0)) {
555 			if ((status & STE_ISR_RX_DMADONE) != 0) {
556 				CSR_WRITE_2(sc, STE_COUNTDOWN,
557 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
558 				intrs &= ~STE_IMR_RX_DMADONE;
559 				sc->ste_int_rx_act = 1;
560 			} else {
561 				intrs |= STE_IMR_RX_DMADONE;
562 				sc->ste_int_rx_act = 0;
563 			}
564 		}
565 	}
566 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
567 		if ((status & STE_ISR_TX_DMADONE) != 0)
568 			ste_txeof(sc);
569 		if ((status & STE_ISR_TX_DONE) != 0)
570 			ste_txeoc(sc);
571 		if ((status & STE_ISR_STATS_OFLOW) != 0)
572 			ste_stats_update(sc);
573 		if ((status & STE_ISR_HOSTERR) != 0) {
574 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
575 			ste_init_locked(sc);
576 			STE_UNLOCK(sc);
577 			return;
578 		}
579 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
580 			ste_start_locked(ifp);
581 done:
582 		/* Re-enable interrupts */
583 		CSR_WRITE_2(sc, STE_IMR, intrs);
584 	}
585 	STE_UNLOCK(sc);
586 }
587 
588 /*
589  * A frame has been uploaded: pass the resulting mbuf chain up to
590  * the higher level protocols.
591  */
592 static int
593 ste_rxeof(struct ste_softc *sc, int count)
594 {
595         struct mbuf *m;
596         struct ifnet *ifp;
597 	struct ste_chain_onefrag *cur_rx;
598 	uint32_t rxstat;
599 	int total_len, rx_npkts;
600 
601 	ifp = sc->ste_ifp;
602 
603 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
604 	    sc->ste_cdata.ste_rx_list_map,
605 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
606 
607 	cur_rx = sc->ste_cdata.ste_rx_head;
608 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
609 	    cur_rx = cur_rx->ste_next) {
610 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
611 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
612 			break;
613 #ifdef DEVICE_POLLING
614 		if (ifp->if_capenable & IFCAP_POLLING) {
615 			if (count == 0)
616 				break;
617 			count--;
618 		}
619 #endif
620 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
621 			break;
622 		/*
623 		 * If an error occurs, update stats, clear the
624 		 * status word and leave the mbuf cluster in place:
625 		 * it should simply get re-used next time this descriptor
626 	 	 * comes up in the ring.
627 		 */
628 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
629 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
630 			cur_rx->ste_ptr->ste_status = 0;
631 			continue;
632 		}
633 
634 		/* No errors; receive the packet. */
635 		m = cur_rx->ste_mbuf;
636 		total_len = STE_RX_BYTES(rxstat);
637 
638 		/*
639 		 * Try to conjure up a new mbuf cluster. If that
640 		 * fails, it means we have an out of memory condition and
641 		 * should leave the buffer in place and continue. This will
642 		 * result in a lost packet, but there's little else we
643 		 * can do in this situation.
644 		 */
645 		if (ste_newbuf(sc, cur_rx) != 0) {
646 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
647 			cur_rx->ste_ptr->ste_status = 0;
648 			continue;
649 		}
650 
651 		m->m_pkthdr.rcvif = ifp;
652 		m->m_pkthdr.len = m->m_len = total_len;
653 
654 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
655 		STE_UNLOCK(sc);
656 		(*ifp->if_input)(ifp, m);
657 		STE_LOCK(sc);
658 	}
659 
660 	if (rx_npkts > 0) {
661 		sc->ste_cdata.ste_rx_head = cur_rx;
662 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
663 		    sc->ste_cdata.ste_rx_list_map,
664 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
665 	}
666 
667 	return (rx_npkts);
668 }
669 
670 static void
671 ste_txeoc(struct ste_softc *sc)
672 {
673 	uint16_t txstat;
674 	struct ifnet *ifp;
675 
676 	STE_LOCK_ASSERT(sc);
677 
678 	ifp = sc->ste_ifp;
679 
680 	/*
681 	 * STE_TX_STATUS register implements a queue of up to 31
682 	 * transmit status byte. Writing an arbitrary value to the
683 	 * register will advance the queue to the next transmit
684 	 * status byte. This means if driver does not read
685 	 * STE_TX_STATUS register after completing sending more
686 	 * than 31 frames the controller would be stalled so driver
687 	 * should re-wake the Tx MAC. This is the most severe
688 	 * limitation of ST201 based controller.
689 	 */
690 	for (;;) {
691 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
692 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
693 			break;
694 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
695 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
696 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
697 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
698 #ifdef	STE_SHOW_TXERRORS
699 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
700 			    txstat & 0xFF, STE_ERR_BITS);
701 #endif
702 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
703 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
704 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
705 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
706 					sc->ste_tx_thresh = STE_PACKET_SIZE;
707 				device_printf(sc->ste_dev,
708 				    "TX underrun, increasing TX"
709 				    " start threshold to %d bytes\n",
710 				    sc->ste_tx_thresh);
711 				/* Make sure to disable active DMA cycles. */
712 				STE_SETBIT4(sc, STE_DMACTL,
713 				    STE_DMACTL_TXDMA_STALL);
714 				ste_wait(sc);
715 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
716 				ste_init_locked(sc);
717 				break;
718 			}
719 			/* Restart Tx. */
720 			ste_restart_tx(sc);
721 		}
722 		/*
723 		 * Advance to next status and ACK TxComplete
724 		 * interrupt. ST201 data sheet was wrong here, to
725 		 * get next Tx status, we have to write both
726 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
727 		 * Otherwise controller returns the same status
728 		 * as well as not acknowledge Tx completion
729 		 * interrupt.
730 		 */
731 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
732 	}
733 }
734 
735 static void
736 ste_tick(void *arg)
737 {
738 	struct ste_softc *sc;
739 	struct mii_data *mii;
740 
741 	sc = (struct ste_softc *)arg;
742 
743 	STE_LOCK_ASSERT(sc);
744 
745 	mii = device_get_softc(sc->ste_miibus);
746 	mii_tick(mii);
747 	/*
748 	 * ukphy(4) does not seem to generate CB that reports
749 	 * resolved link state so if we know we lost a link,
750 	 * explicitly check the link state.
751 	 */
752 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
753 		ste_miibus_statchg(sc->ste_dev);
754 	/*
755 	 * Because we are not generating Tx completion
756 	 * interrupt for every frame, reclaim transmitted
757 	 * buffers here.
758 	 */
759 	ste_txeof(sc);
760 	ste_txeoc(sc);
761 	ste_stats_update(sc);
762 	ste_watchdog(sc);
763 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
764 }
765 
766 static void
767 ste_txeof(struct ste_softc *sc)
768 {
769 	struct ifnet *ifp;
770 	struct ste_chain *cur_tx;
771 	uint32_t txstat;
772 	int idx;
773 
774 	STE_LOCK_ASSERT(sc);
775 
776 	ifp = sc->ste_ifp;
777 	idx = sc->ste_cdata.ste_tx_cons;
778 	if (idx == sc->ste_cdata.ste_tx_prod)
779 		return;
780 
781 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
782 	    sc->ste_cdata.ste_tx_list_map,
783 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
784 
785 	while (idx != sc->ste_cdata.ste_tx_prod) {
786 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
787 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
788 		if ((txstat & STE_TXCTL_DMADONE) == 0)
789 			break;
790 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
791 		    BUS_DMASYNC_POSTWRITE);
792 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
793 		KASSERT(cur_tx->ste_mbuf != NULL,
794 		    ("%s: freeing NULL mbuf!\n", __func__));
795 		m_freem(cur_tx->ste_mbuf);
796 		cur_tx->ste_mbuf = NULL;
797 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
798 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
799 		sc->ste_cdata.ste_tx_cnt--;
800 		STE_INC(idx, STE_TX_LIST_CNT);
801 	}
802 
803 	sc->ste_cdata.ste_tx_cons = idx;
804 	if (sc->ste_cdata.ste_tx_cnt == 0)
805 		sc->ste_timer = 0;
806 }
807 
808 static void
809 ste_stats_clear(struct ste_softc *sc)
810 {
811 
812 	STE_LOCK_ASSERT(sc);
813 
814 	/* Rx stats. */
815 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
816 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
817 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
818 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
819 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
820 	CSR_READ_1(sc, STE_STAT_RX_LOST);
821 	/* Tx stats. */
822 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
823 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
824 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
825 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
826 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
827 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
828 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
829 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
830 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
831 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
832 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
833 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
834 }
835 
836 static void
837 ste_stats_update(struct ste_softc *sc)
838 {
839 	struct ifnet *ifp;
840 	struct ste_hw_stats *stats;
841 	uint32_t val;
842 
843 	STE_LOCK_ASSERT(sc);
844 
845 	ifp = sc->ste_ifp;
846 	stats = &sc->ste_stats;
847 	/* Rx stats. */
848 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
849 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
850 	val &= 0x000FFFFF;
851 	stats->rx_bytes += val;
852 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
853 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
854 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
855 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
856 	/* Tx stats. */
857 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
858 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
859 	val &= 0x000FFFFF;
860 	stats->tx_bytes += val;
861 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
862 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
863 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
864 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
865 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
866 	stats->tx_single_colls += val;
867 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
868 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
869 	stats->tx_multi_colls += val;
870 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
871 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
872 	stats->tx_late_colls += val;
873 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
874 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
875 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
876 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
877 }
878 
879 /*
880  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
881  * IDs against our list and return a device name if we find a match.
882  */
883 static int
884 ste_probe(device_t dev)
885 {
886 	const struct ste_type *t;
887 
888 	t = ste_devs;
889 
890 	while (t->ste_name != NULL) {
891 		if ((pci_get_vendor(dev) == t->ste_vid) &&
892 		    (pci_get_device(dev) == t->ste_did)) {
893 			device_set_desc(dev, t->ste_name);
894 			return (BUS_PROBE_DEFAULT);
895 		}
896 		t++;
897 	}
898 
899 	return (ENXIO);
900 }
901 
902 /*
903  * Attach the interface. Allocate softc structures, do ifmedia
904  * setup and ethernet/BPF attach.
905  */
906 static int
907 ste_attach(device_t dev)
908 {
909 	struct ste_softc *sc;
910 	struct ifnet *ifp;
911 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
912 	int error = 0, phy, pmc, prefer_iomap, rid;
913 
914 	sc = device_get_softc(dev);
915 	sc->ste_dev = dev;
916 
917 	/*
918 	 * Only use one PHY since this chip reports multiple
919 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
920 	 * it is at 0 & 1.  It is rev 0x12.
921 	 */
922 	if (pci_get_vendor(dev) == DL_VENDORID &&
923 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
924 	    pci_get_revid(dev) == 0x12 )
925 		sc->ste_flags |= STE_FLAG_ONE_PHY;
926 
927 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
928 	    MTX_DEF);
929 	/*
930 	 * Map control/status registers.
931 	 */
932 	pci_enable_busmaster(dev);
933 
934 	/*
935 	 * Prefer memory space register mapping over IO space but use
936 	 * IO space for a device that is known to have issues on memory
937 	 * mapping.
938 	 */
939 	prefer_iomap = 0;
940 	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
941 		prefer_iomap = 1;
942 	else
943 		resource_int_value(device_get_name(sc->ste_dev),
944 		    device_get_unit(sc->ste_dev), "prefer_iomap",
945 		    &prefer_iomap);
946 	if (prefer_iomap == 0) {
947 		sc->ste_res_id = PCIR_BAR(1);
948 		sc->ste_res_type = SYS_RES_MEMORY;
949 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
950 		    &sc->ste_res_id, RF_ACTIVE);
951 	}
952 	if (prefer_iomap || sc->ste_res == NULL) {
953 		sc->ste_res_id = PCIR_BAR(0);
954 		sc->ste_res_type = SYS_RES_IOPORT;
955 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
956 		    &sc->ste_res_id, RF_ACTIVE);
957 	}
958 	if (sc->ste_res == NULL) {
959 		device_printf(dev, "couldn't map ports/memory\n");
960 		error = ENXIO;
961 		goto fail;
962 	}
963 
964 	/* Allocate interrupt */
965 	rid = 0;
966 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
967 	    RF_SHAREABLE | RF_ACTIVE);
968 
969 	if (sc->ste_irq == NULL) {
970 		device_printf(dev, "couldn't map interrupt\n");
971 		error = ENXIO;
972 		goto fail;
973 	}
974 
975 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
976 
977 	/* Reset the adapter. */
978 	ste_reset(sc);
979 
980 	/*
981 	 * Get station address from the EEPROM.
982 	 */
983 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
984 		device_printf(dev, "failed to read station address\n");
985 		error = ENXIO;
986 		goto fail;
987 	}
988 	ste_sysctl_node(sc);
989 
990 	if ((error = ste_dma_alloc(sc)) != 0)
991 		goto fail;
992 
993 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
994 	if (ifp == NULL) {
995 		device_printf(dev, "can not if_alloc()\n");
996 		error = ENOSPC;
997 		goto fail;
998 	}
999 
1000 	/* Do MII setup. */
1001 	phy = MII_PHY_ANY;
1002 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
1003 		phy = 0;
1004 	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1005 		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1006 	if (error != 0) {
1007 		device_printf(dev, "attaching PHYs failed\n");
1008 		goto fail;
1009 	}
1010 
1011 	ifp->if_softc = sc;
1012 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1013 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1014 	ifp->if_ioctl = ste_ioctl;
1015 	ifp->if_start = ste_start;
1016 	ifp->if_init = ste_init;
1017 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1018 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1019 	IFQ_SET_READY(&ifp->if_snd);
1020 
1021 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1022 
1023 	/*
1024 	 * Call MI attach routine.
1025 	 */
1026 	ether_ifattach(ifp, (uint8_t *)eaddr);
1027 
1028 	/*
1029 	 * Tell the upper layer(s) we support long frames.
1030 	 */
1031 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1032 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1033 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1034 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1035 	ifp->if_capenable = ifp->if_capabilities;
1036 #ifdef DEVICE_POLLING
1037 	ifp->if_capabilities |= IFCAP_POLLING;
1038 #endif
1039 
1040 	/* Hook interrupt last to avoid having to lock softc */
1041 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1042 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1043 
1044 	if (error) {
1045 		device_printf(dev, "couldn't set up irq\n");
1046 		ether_ifdetach(ifp);
1047 		goto fail;
1048 	}
1049 
1050 fail:
1051 	if (error)
1052 		ste_detach(dev);
1053 
1054 	return (error);
1055 }
1056 
1057 /*
1058  * Shutdown hardware and free up resources. This can be called any
1059  * time after the mutex has been initialized. It is called in both
1060  * the error case in attach and the normal detach case so it needs
1061  * to be careful about only freeing resources that have actually been
1062  * allocated.
1063  */
1064 static int
1065 ste_detach(device_t dev)
1066 {
1067 	struct ste_softc *sc;
1068 	struct ifnet *ifp;
1069 
1070 	sc = device_get_softc(dev);
1071 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1072 	ifp = sc->ste_ifp;
1073 
1074 #ifdef DEVICE_POLLING
1075 	if (ifp->if_capenable & IFCAP_POLLING)
1076 		ether_poll_deregister(ifp);
1077 #endif
1078 
1079 	/* These should only be active if attach succeeded */
1080 	if (device_is_attached(dev)) {
1081 		ether_ifdetach(ifp);
1082 		STE_LOCK(sc);
1083 		ste_stop(sc);
1084 		STE_UNLOCK(sc);
1085 		callout_drain(&sc->ste_callout);
1086 	}
1087 	if (sc->ste_miibus)
1088 		device_delete_child(dev, sc->ste_miibus);
1089 	bus_generic_detach(dev);
1090 
1091 	if (sc->ste_intrhand)
1092 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1093 	if (sc->ste_irq)
1094 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1095 	if (sc->ste_res)
1096 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1097 		    sc->ste_res);
1098 
1099 	if (ifp)
1100 		if_free(ifp);
1101 
1102 	ste_dma_free(sc);
1103 	mtx_destroy(&sc->ste_mtx);
1104 
1105 	return (0);
1106 }
1107 
1108 struct ste_dmamap_arg {
1109 	bus_addr_t	ste_busaddr;
1110 };
1111 
1112 static void
1113 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1114 {
1115 	struct ste_dmamap_arg *ctx;
1116 
1117 	if (error != 0)
1118 		return;
1119 
1120 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1121 
1122 	ctx = (struct ste_dmamap_arg *)arg;
1123 	ctx->ste_busaddr = segs[0].ds_addr;
1124 }
1125 
1126 static int
1127 ste_dma_alloc(struct ste_softc *sc)
1128 {
1129 	struct ste_chain *txc;
1130 	struct ste_chain_onefrag *rxc;
1131 	struct ste_dmamap_arg ctx;
1132 	int error, i;
1133 
1134 	/* Create parent DMA tag. */
1135 	error = bus_dma_tag_create(
1136 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1137 	    1, 0,			/* alignment, boundary */
1138 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1139 	    BUS_SPACE_MAXADDR,		/* highaddr */
1140 	    NULL, NULL,			/* filter, filterarg */
1141 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1142 	    0,				/* nsegments */
1143 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1144 	    0,				/* flags */
1145 	    NULL, NULL,			/* lockfunc, lockarg */
1146 	    &sc->ste_cdata.ste_parent_tag);
1147 	if (error != 0) {
1148 		device_printf(sc->ste_dev,
1149 		    "could not create parent DMA tag.\n");
1150 		goto fail;
1151 	}
1152 
1153 	/* Create DMA tag for Tx descriptor list. */
1154 	error = bus_dma_tag_create(
1155 	    sc->ste_cdata.ste_parent_tag, /* parent */
1156 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1157 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1158 	    BUS_SPACE_MAXADDR,		/* highaddr */
1159 	    NULL, NULL,			/* filter, filterarg */
1160 	    STE_TX_LIST_SZ,		/* maxsize */
1161 	    1,				/* nsegments */
1162 	    STE_TX_LIST_SZ,		/* maxsegsize */
1163 	    0,				/* flags */
1164 	    NULL, NULL,			/* lockfunc, lockarg */
1165 	    &sc->ste_cdata.ste_tx_list_tag);
1166 	if (error != 0) {
1167 		device_printf(sc->ste_dev,
1168 		    "could not create Tx list DMA tag.\n");
1169 		goto fail;
1170 	}
1171 
1172 	/* Create DMA tag for Rx descriptor list. */
1173 	error = bus_dma_tag_create(
1174 	    sc->ste_cdata.ste_parent_tag, /* parent */
1175 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1176 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1177 	    BUS_SPACE_MAXADDR,		/* highaddr */
1178 	    NULL, NULL,			/* filter, filterarg */
1179 	    STE_RX_LIST_SZ,		/* maxsize */
1180 	    1,				/* nsegments */
1181 	    STE_RX_LIST_SZ,		/* maxsegsize */
1182 	    0,				/* flags */
1183 	    NULL, NULL,			/* lockfunc, lockarg */
1184 	    &sc->ste_cdata.ste_rx_list_tag);
1185 	if (error != 0) {
1186 		device_printf(sc->ste_dev,
1187 		    "could not create Rx list DMA tag.\n");
1188 		goto fail;
1189 	}
1190 
1191 	/* Create DMA tag for Tx buffers. */
1192 	error = bus_dma_tag_create(
1193 	    sc->ste_cdata.ste_parent_tag, /* parent */
1194 	    1, 0,			/* alignment, boundary */
1195 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1196 	    BUS_SPACE_MAXADDR,		/* highaddr */
1197 	    NULL, NULL,			/* filter, filterarg */
1198 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1199 	    STE_MAXFRAGS,		/* nsegments */
1200 	    MCLBYTES,			/* maxsegsize */
1201 	    0,				/* flags */
1202 	    NULL, NULL,			/* lockfunc, lockarg */
1203 	    &sc->ste_cdata.ste_tx_tag);
1204 	if (error != 0) {
1205 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1206 		goto fail;
1207 	}
1208 
1209 	/* Create DMA tag for Rx buffers. */
1210 	error = bus_dma_tag_create(
1211 	    sc->ste_cdata.ste_parent_tag, /* parent */
1212 	    1, 0,			/* alignment, boundary */
1213 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1214 	    BUS_SPACE_MAXADDR,		/* highaddr */
1215 	    NULL, NULL,			/* filter, filterarg */
1216 	    MCLBYTES,			/* maxsize */
1217 	    1,				/* nsegments */
1218 	    MCLBYTES,			/* maxsegsize */
1219 	    0,				/* flags */
1220 	    NULL, NULL,			/* lockfunc, lockarg */
1221 	    &sc->ste_cdata.ste_rx_tag);
1222 	if (error != 0) {
1223 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1224 		goto fail;
1225 	}
1226 
1227 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1228 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1229 	    (void **)&sc->ste_ldata.ste_tx_list,
1230 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1231 	    &sc->ste_cdata.ste_tx_list_map);
1232 	if (error != 0) {
1233 		device_printf(sc->ste_dev,
1234 		    "could not allocate DMA'able memory for Tx list.\n");
1235 		goto fail;
1236 	}
1237 	ctx.ste_busaddr = 0;
1238 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1239 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1240 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1241 	if (error != 0 || ctx.ste_busaddr == 0) {
1242 		device_printf(sc->ste_dev,
1243 		    "could not load DMA'able memory for Tx list.\n");
1244 		goto fail;
1245 	}
1246 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1247 
1248 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1249 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1250 	    (void **)&sc->ste_ldata.ste_rx_list,
1251 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1252 	    &sc->ste_cdata.ste_rx_list_map);
1253 	if (error != 0) {
1254 		device_printf(sc->ste_dev,
1255 		    "could not allocate DMA'able memory for Rx list.\n");
1256 		goto fail;
1257 	}
1258 	ctx.ste_busaddr = 0;
1259 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1260 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1261 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1262 	if (error != 0 || ctx.ste_busaddr == 0) {
1263 		device_printf(sc->ste_dev,
1264 		    "could not load DMA'able memory for Rx list.\n");
1265 		goto fail;
1266 	}
1267 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1268 
1269 	/* Create DMA maps for Tx buffers. */
1270 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1271 		txc = &sc->ste_cdata.ste_tx_chain[i];
1272 		txc->ste_ptr = NULL;
1273 		txc->ste_mbuf = NULL;
1274 		txc->ste_next = NULL;
1275 		txc->ste_phys = 0;
1276 		txc->ste_map = NULL;
1277 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1278 		    &txc->ste_map);
1279 		if (error != 0) {
1280 			device_printf(sc->ste_dev,
1281 			    "could not create Tx dmamap.\n");
1282 			goto fail;
1283 		}
1284 	}
1285 	/* Create DMA maps for Rx buffers. */
1286 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1287 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1288 		device_printf(sc->ste_dev,
1289 		    "could not create spare Rx dmamap.\n");
1290 		goto fail;
1291 	}
1292 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1293 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1294 		rxc->ste_ptr = NULL;
1295 		rxc->ste_mbuf = NULL;
1296 		rxc->ste_next = NULL;
1297 		rxc->ste_map = NULL;
1298 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1299 		    &rxc->ste_map);
1300 		if (error != 0) {
1301 			device_printf(sc->ste_dev,
1302 			    "could not create Rx dmamap.\n");
1303 			goto fail;
1304 		}
1305 	}
1306 
1307 fail:
1308 	return (error);
1309 }
1310 
1311 static void
1312 ste_dma_free(struct ste_softc *sc)
1313 {
1314 	struct ste_chain *txc;
1315 	struct ste_chain_onefrag *rxc;
1316 	int i;
1317 
1318 	/* Tx buffers. */
1319 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1320 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1321 			txc = &sc->ste_cdata.ste_tx_chain[i];
1322 			if (txc->ste_map != NULL) {
1323 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1324 				    txc->ste_map);
1325 				txc->ste_map = NULL;
1326 			}
1327 		}
1328 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1329 		sc->ste_cdata.ste_tx_tag = NULL;
1330 	}
1331 	/* Rx buffers. */
1332 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1333 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1334 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1335 			if (rxc->ste_map != NULL) {
1336 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1337 				    rxc->ste_map);
1338 				rxc->ste_map = NULL;
1339 			}
1340 		}
1341 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1342 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1343 			    sc->ste_cdata.ste_rx_sparemap);
1344 			sc->ste_cdata.ste_rx_sparemap = NULL;
1345 		}
1346 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1347 		sc->ste_cdata.ste_rx_tag = NULL;
1348 	}
1349 	/* Tx descriptor list. */
1350 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1351 		if (sc->ste_ldata.ste_tx_list_paddr != 0)
1352 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1353 			    sc->ste_cdata.ste_tx_list_map);
1354 		if (sc->ste_ldata.ste_tx_list != NULL)
1355 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1356 			    sc->ste_ldata.ste_tx_list,
1357 			    sc->ste_cdata.ste_tx_list_map);
1358 		sc->ste_ldata.ste_tx_list = NULL;
1359 		sc->ste_ldata.ste_tx_list_paddr = 0;
1360 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1361 		sc->ste_cdata.ste_tx_list_tag = NULL;
1362 	}
1363 	/* Rx descriptor list. */
1364 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1365 		if (sc->ste_ldata.ste_rx_list_paddr != 0)
1366 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1367 			    sc->ste_cdata.ste_rx_list_map);
1368 		if (sc->ste_ldata.ste_rx_list != NULL)
1369 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1370 			    sc->ste_ldata.ste_rx_list,
1371 			    sc->ste_cdata.ste_rx_list_map);
1372 		sc->ste_ldata.ste_rx_list = NULL;
1373 		sc->ste_ldata.ste_rx_list_paddr = 0;
1374 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1375 		sc->ste_cdata.ste_rx_list_tag = NULL;
1376 	}
1377 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1378 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1379 		sc->ste_cdata.ste_parent_tag = NULL;
1380 	}
1381 }
1382 
1383 static int
1384 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1385 {
1386 	struct mbuf *m;
1387 	bus_dma_segment_t segs[1];
1388 	bus_dmamap_t map;
1389 	int error, nsegs;
1390 
1391 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1392 	if (m == NULL)
1393 		return (ENOBUFS);
1394 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1395 	m_adj(m, ETHER_ALIGN);
1396 
1397 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1398 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1399 		m_freem(m);
1400 		return (error);
1401 	}
1402 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1403 
1404 	if (rxc->ste_mbuf != NULL) {
1405 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1406 		    BUS_DMASYNC_POSTREAD);
1407 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1408 	}
1409 	map = rxc->ste_map;
1410 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1411 	sc->ste_cdata.ste_rx_sparemap = map;
1412 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1413 	    BUS_DMASYNC_PREREAD);
1414 	rxc->ste_mbuf = m;
1415 	rxc->ste_ptr->ste_status = 0;
1416 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1417 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1418 	    STE_FRAG_LAST);
1419 	return (0);
1420 }
1421 
1422 static int
1423 ste_init_rx_list(struct ste_softc *sc)
1424 {
1425 	struct ste_chain_data *cd;
1426 	struct ste_list_data *ld;
1427 	int error, i;
1428 
1429 	sc->ste_int_rx_act = 0;
1430 	cd = &sc->ste_cdata;
1431 	ld = &sc->ste_ldata;
1432 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1433 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1434 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1435 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1436 		if (error != 0)
1437 			return (error);
1438 		if (i == (STE_RX_LIST_CNT - 1)) {
1439 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1440 			ld->ste_rx_list[i].ste_next =
1441 			    htole32(ld->ste_rx_list_paddr +
1442 			    (sizeof(struct ste_desc_onefrag) * 0));
1443 		} else {
1444 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1445 			ld->ste_rx_list[i].ste_next =
1446 			    htole32(ld->ste_rx_list_paddr +
1447 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1448 		}
1449 	}
1450 
1451 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1452 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1453 	    sc->ste_cdata.ste_rx_list_map,
1454 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1455 
1456 	return (0);
1457 }
1458 
1459 static void
1460 ste_init_tx_list(struct ste_softc *sc)
1461 {
1462 	struct ste_chain_data *cd;
1463 	struct ste_list_data *ld;
1464 	int i;
1465 
1466 	cd = &sc->ste_cdata;
1467 	ld = &sc->ste_ldata;
1468 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1469 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1470 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1471 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1472 		if (i == (STE_TX_LIST_CNT - 1)) {
1473 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1474 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1475 			    ld->ste_tx_list_paddr +
1476 			    (sizeof(struct ste_desc) * 0)));
1477 		} else {
1478 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1479 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1480 			    ld->ste_tx_list_paddr +
1481 			    (sizeof(struct ste_desc) * (i + 1))));
1482 		}
1483 	}
1484 
1485 	cd->ste_last_tx = NULL;
1486 	cd->ste_tx_prod = 0;
1487 	cd->ste_tx_cons = 0;
1488 	cd->ste_tx_cnt = 0;
1489 
1490 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1491 	    sc->ste_cdata.ste_tx_list_map,
1492 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1493 }
1494 
1495 static void
1496 ste_init(void *xsc)
1497 {
1498 	struct ste_softc *sc;
1499 
1500 	sc = xsc;
1501 	STE_LOCK(sc);
1502 	ste_init_locked(sc);
1503 	STE_UNLOCK(sc);
1504 }
1505 
1506 static void
1507 ste_init_locked(struct ste_softc *sc)
1508 {
1509 	struct ifnet *ifp;
1510 	struct mii_data *mii;
1511 	uint8_t val;
1512 	int i;
1513 
1514 	STE_LOCK_ASSERT(sc);
1515 	ifp = sc->ste_ifp;
1516 	mii = device_get_softc(sc->ste_miibus);
1517 
1518 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1519 		return;
1520 
1521 	ste_stop(sc);
1522 	/* Reset the chip to a known state. */
1523 	ste_reset(sc);
1524 
1525 	/* Init our MAC address */
1526 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1527 		CSR_WRITE_2(sc, STE_PAR0 + i,
1528 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1529 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1530 	}
1531 
1532 	/* Init RX list */
1533 	if (ste_init_rx_list(sc) != 0) {
1534 		device_printf(sc->ste_dev,
1535 		    "initialization failed: no memory for RX buffers\n");
1536 		ste_stop(sc);
1537 		return;
1538 	}
1539 
1540 	/* Set RX polling interval */
1541 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1542 
1543 	/* Init TX descriptors */
1544 	ste_init_tx_list(sc);
1545 
1546 	/* Clear and disable WOL. */
1547 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1548 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1549 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1550 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1551 
1552 	/* Set the TX freethresh value */
1553 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1554 
1555 	/* Set the TX start threshold for best performance. */
1556 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1557 
1558 	/* Set the TX reclaim threshold. */
1559 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1560 
1561 	/* Accept VLAN length packets */
1562 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1563 
1564 	/* Set up the RX filter. */
1565 	ste_rxfilter(sc);
1566 
1567 	/* Load the address of the RX list. */
1568 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1569 	ste_wait(sc);
1570 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1571 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1572 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1573 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1574 
1575 	/* Set TX polling interval(defer until we TX first packet). */
1576 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1577 
1578 	/* Load address of the TX list */
1579 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1580 	ste_wait(sc);
1581 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1582 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1583 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1584 	ste_wait(sc);
1585 	/* Select 3.2us timer. */
1586 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1587 	    STE_DMACTL_COUNTDOWN_MODE);
1588 
1589 	/* Enable receiver and transmitter */
1590 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1591 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1592 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1593 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1594 
1595 	/* Enable stats counters. */
1596 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1597 	/* Clear stats counters. */
1598 	ste_stats_clear(sc);
1599 
1600 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1601 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1602 #ifdef DEVICE_POLLING
1603 	/* Disable interrupts if we are polling. */
1604 	if (ifp->if_capenable & IFCAP_POLLING)
1605 		CSR_WRITE_2(sc, STE_IMR, 0);
1606 	else
1607 #endif
1608 	/* Enable interrupts. */
1609 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1610 
1611 	sc->ste_flags &= ~STE_FLAG_LINK;
1612 	/* Switch to the current media. */
1613 	mii_mediachg(mii);
1614 
1615 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1616 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1617 
1618 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1619 }
1620 
1621 static void
1622 ste_stop(struct ste_softc *sc)
1623 {
1624 	struct ifnet *ifp;
1625 	struct ste_chain_onefrag *cur_rx;
1626 	struct ste_chain *cur_tx;
1627 	uint32_t val;
1628 	int i;
1629 
1630 	STE_LOCK_ASSERT(sc);
1631 	ifp = sc->ste_ifp;
1632 
1633 	callout_stop(&sc->ste_callout);
1634 	sc->ste_timer = 0;
1635 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1636 
1637 	CSR_WRITE_2(sc, STE_IMR, 0);
1638 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1639 	/* Stop pending DMA. */
1640 	val = CSR_READ_4(sc, STE_DMACTL);
1641 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1642 	CSR_WRITE_4(sc, STE_DMACTL, val);
1643 	ste_wait(sc);
1644 	/* Disable auto-polling. */
1645 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1646 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1647 	/* Nullify DMA address to stop any further DMA. */
1648 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1649 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1650 	/* Stop TX/RX MAC. */
1651 	val = CSR_READ_2(sc, STE_MACCTL1);
1652 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1653 	    STE_MACCTL1_STATS_DISABLE;
1654 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1655 	for (i = 0; i < STE_TIMEOUT; i++) {
1656 		DELAY(10);
1657 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1658 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1659 			break;
1660 	}
1661 	if (i == STE_TIMEOUT)
1662 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1663 	/* Acknowledge any pending interrupts. */
1664 	CSR_READ_2(sc, STE_ISR_ACK);
1665 	ste_stats_update(sc);
1666 
1667 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1668 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1669 		if (cur_rx->ste_mbuf != NULL) {
1670 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1671 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1672 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1673 			    cur_rx->ste_map);
1674 			m_freem(cur_rx->ste_mbuf);
1675 			cur_rx->ste_mbuf = NULL;
1676 		}
1677 	}
1678 
1679 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1680 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1681 		if (cur_tx->ste_mbuf != NULL) {
1682 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1683 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1684 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1685 			    cur_tx->ste_map);
1686 			m_freem(cur_tx->ste_mbuf);
1687 			cur_tx->ste_mbuf = NULL;
1688 		}
1689 	}
1690 }
1691 
1692 static void
1693 ste_reset(struct ste_softc *sc)
1694 {
1695 	uint32_t ctl;
1696 	int i;
1697 
1698 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1699 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1700 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1701 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1702 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1703 	    STE_ASICCTL_EXTRESET_RESET;
1704 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1705 	CSR_READ_4(sc, STE_ASICCTL);
1706 	/*
1707 	 * Due to the need of accessing EEPROM controller can take
1708 	 * up to 1ms to complete the global reset.
1709 	 */
1710 	DELAY(1000);
1711 
1712 	for (i = 0; i < STE_TIMEOUT; i++) {
1713 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1714 			break;
1715 		DELAY(10);
1716 	}
1717 
1718 	if (i == STE_TIMEOUT)
1719 		device_printf(sc->ste_dev, "global reset never completed\n");
1720 }
1721 
1722 static void
1723 ste_restart_tx(struct ste_softc *sc)
1724 {
1725 	uint16_t mac;
1726 	int i;
1727 
1728 	for (i = 0; i < STE_TIMEOUT; i++) {
1729 		mac = CSR_READ_2(sc, STE_MACCTL1);
1730 		mac |= STE_MACCTL1_TX_ENABLE;
1731 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1732 		mac = CSR_READ_2(sc, STE_MACCTL1);
1733 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1734 			break;
1735 		DELAY(10);
1736 	}
1737 
1738 	if (i == STE_TIMEOUT)
1739 		device_printf(sc->ste_dev, "starting Tx failed");
1740 }
1741 
1742 static int
1743 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1744 {
1745 	struct ste_softc *sc;
1746 	struct ifreq *ifr;
1747 	struct mii_data *mii;
1748 	int error = 0, mask;
1749 
1750 	sc = ifp->if_softc;
1751 	ifr = (struct ifreq *)data;
1752 
1753 	switch (command) {
1754 	case SIOCSIFFLAGS:
1755 		STE_LOCK(sc);
1756 		if ((ifp->if_flags & IFF_UP) != 0) {
1757 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1758 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1759 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1760 				ste_rxfilter(sc);
1761 			else
1762 				ste_init_locked(sc);
1763 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1764 			ste_stop(sc);
1765 		sc->ste_if_flags = ifp->if_flags;
1766 		STE_UNLOCK(sc);
1767 		break;
1768 	case SIOCADDMULTI:
1769 	case SIOCDELMULTI:
1770 		STE_LOCK(sc);
1771 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1772 			ste_rxfilter(sc);
1773 		STE_UNLOCK(sc);
1774 		break;
1775 	case SIOCGIFMEDIA:
1776 	case SIOCSIFMEDIA:
1777 		mii = device_get_softc(sc->ste_miibus);
1778 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1779 		break;
1780 	case SIOCSIFCAP:
1781 		STE_LOCK(sc);
1782 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1783 #ifdef DEVICE_POLLING
1784 		if ((mask & IFCAP_POLLING) != 0 &&
1785 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1786 			ifp->if_capenable ^= IFCAP_POLLING;
1787 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1788 				error = ether_poll_register(ste_poll, ifp);
1789 				if (error != 0) {
1790 					STE_UNLOCK(sc);
1791 					break;
1792 				}
1793 				/* Disable interrupts. */
1794 				CSR_WRITE_2(sc, STE_IMR, 0);
1795 			} else {
1796 				error = ether_poll_deregister(ifp);
1797 				/* Enable interrupts. */
1798 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1799 			}
1800 		}
1801 #endif /* DEVICE_POLLING */
1802 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1803 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1804 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1805 		STE_UNLOCK(sc);
1806 		break;
1807 	default:
1808 		error = ether_ioctl(ifp, command, data);
1809 		break;
1810 	}
1811 
1812 	return (error);
1813 }
1814 
1815 static int
1816 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1817 {
1818 	struct ste_frag *frag;
1819 	struct mbuf *m;
1820 	struct ste_desc *desc;
1821 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1822 	int error, i, nsegs;
1823 
1824 	STE_LOCK_ASSERT(sc);
1825 	M_ASSERTPKTHDR((*m_head));
1826 
1827 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1828 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1829 	if (error == EFBIG) {
1830 		m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1831 		if (m == NULL) {
1832 			m_freem(*m_head);
1833 			*m_head = NULL;
1834 			return (ENOMEM);
1835 		}
1836 		*m_head = m;
1837 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1838 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1839 		if (error != 0) {
1840 			m_freem(*m_head);
1841 			*m_head = NULL;
1842 			return (error);
1843 		}
1844 	} else if (error != 0)
1845 		return (error);
1846 	if (nsegs == 0) {
1847 		m_freem(*m_head);
1848 		*m_head = NULL;
1849 		return (EIO);
1850 	}
1851 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1852 	    BUS_DMASYNC_PREWRITE);
1853 
1854 	desc = txc->ste_ptr;
1855 	for (i = 0; i < nsegs; i++) {
1856 		frag = &desc->ste_frags[i];
1857 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1858 		frag->ste_len = htole32(txsegs[i].ds_len);
1859 	}
1860 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1861 	/*
1862 	 * Because we use Tx polling we can't chain multiple
1863 	 * Tx descriptors here. Otherwise we race with controller.
1864 	 */
1865 	desc->ste_next = 0;
1866 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1867 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1868 		    STE_TXCTL_DMAINTR);
1869 	else
1870 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1871 	txc->ste_mbuf = *m_head;
1872 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1873 	sc->ste_cdata.ste_tx_cnt++;
1874 
1875 	return (0);
1876 }
1877 
1878 static void
1879 ste_start(struct ifnet *ifp)
1880 {
1881 	struct ste_softc *sc;
1882 
1883 	sc = ifp->if_softc;
1884 	STE_LOCK(sc);
1885 	ste_start_locked(ifp);
1886 	STE_UNLOCK(sc);
1887 }
1888 
1889 static void
1890 ste_start_locked(struct ifnet *ifp)
1891 {
1892 	struct ste_softc *sc;
1893 	struct ste_chain *cur_tx;
1894 	struct mbuf *m_head = NULL;
1895 	int enq;
1896 
1897 	sc = ifp->if_softc;
1898 	STE_LOCK_ASSERT(sc);
1899 
1900 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1901 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1902 		return;
1903 
1904 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1905 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1906 			/*
1907 			 * Controller may have cached copy of the last used
1908 			 * next ptr so we have to reserve one TFD to avoid
1909 			 * TFD overruns.
1910 			 */
1911 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1912 			break;
1913 		}
1914 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1915 		if (m_head == NULL)
1916 			break;
1917 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1918 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1919 			if (m_head == NULL)
1920 				break;
1921 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1922 			break;
1923 		}
1924 		if (sc->ste_cdata.ste_last_tx == NULL) {
1925 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1926 			    sc->ste_cdata.ste_tx_list_map,
1927 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1928 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1929 			ste_wait(sc);
1930 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1931 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1932 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1933 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1934 			ste_wait(sc);
1935 		} else {
1936 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1937 			    sc->ste_cdata.ste_last_tx->ste_phys;
1938 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1939 			    sc->ste_cdata.ste_tx_list_map,
1940 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1941 		}
1942 		sc->ste_cdata.ste_last_tx = cur_tx;
1943 
1944 		enq++;
1945 		/*
1946 		 * If there's a BPF listener, bounce a copy of this frame
1947 		 * to him.
1948 	 	 */
1949 		BPF_MTAP(ifp, m_head);
1950 	}
1951 
1952 	if (enq > 0)
1953 		sc->ste_timer = STE_TX_TIMEOUT;
1954 }
1955 
1956 static void
1957 ste_watchdog(struct ste_softc *sc)
1958 {
1959 	struct ifnet *ifp;
1960 
1961 	ifp = sc->ste_ifp;
1962 	STE_LOCK_ASSERT(sc);
1963 
1964 	if (sc->ste_timer == 0 || --sc->ste_timer)
1965 		return;
1966 
1967 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1968 	if_printf(ifp, "watchdog timeout\n");
1969 
1970 	ste_txeof(sc);
1971 	ste_txeoc(sc);
1972 	ste_rxeof(sc, -1);
1973 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1974 	ste_init_locked(sc);
1975 
1976 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1977 		ste_start_locked(ifp);
1978 }
1979 
1980 static int
1981 ste_shutdown(device_t dev)
1982 {
1983 
1984 	return (ste_suspend(dev));
1985 }
1986 
1987 static int
1988 ste_suspend(device_t dev)
1989 {
1990 	struct ste_softc *sc;
1991 
1992 	sc = device_get_softc(dev);
1993 
1994 	STE_LOCK(sc);
1995 	ste_stop(sc);
1996 	ste_setwol(sc);
1997 	STE_UNLOCK(sc);
1998 
1999 	return (0);
2000 }
2001 
2002 static int
2003 ste_resume(device_t dev)
2004 {
2005 	struct ste_softc *sc;
2006 	struct ifnet *ifp;
2007 	int pmc;
2008 	uint16_t pmstat;
2009 
2010 	sc = device_get_softc(dev);
2011 	STE_LOCK(sc);
2012 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2013 		/* Disable PME and clear PME status. */
2014 		pmstat = pci_read_config(sc->ste_dev,
2015 		    pmc + PCIR_POWER_STATUS, 2);
2016 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2017 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2018 			pci_write_config(sc->ste_dev,
2019 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2020 		}
2021 	}
2022 	ifp = sc->ste_ifp;
2023 	if ((ifp->if_flags & IFF_UP) != 0) {
2024 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2025 		ste_init_locked(sc);
2026 	}
2027 	STE_UNLOCK(sc);
2028 
2029 	return (0);
2030 }
2031 
2032 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2033 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2034 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2035 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2036 
2037 static void
2038 ste_sysctl_node(struct ste_softc *sc)
2039 {
2040 	struct sysctl_ctx_list *ctx;
2041 	struct sysctl_oid_list *child, *parent;
2042 	struct sysctl_oid *tree;
2043 	struct ste_hw_stats *stats;
2044 
2045 	stats = &sc->ste_stats;
2046 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2047 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2048 
2049 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2050 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2051 	/* Pull in device tunables. */
2052 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2053 	resource_int_value(device_get_name(sc->ste_dev),
2054 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2055 
2056 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2057 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "STE statistics");
2058 	parent = SYSCTL_CHILDREN(tree);
2059 
2060 	/* Rx statistics. */
2061 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2062 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2063 	child = SYSCTL_CHILDREN(tree);
2064 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2065 	    &stats->rx_bytes, "Good octets");
2066 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2067 	    &stats->rx_frames, "Good frames");
2068 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2069 	    &stats->rx_bcast_frames, "Good broadcast frames");
2070 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2071 	    &stats->rx_mcast_frames, "Good multicast frames");
2072 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2073 	    &stats->rx_lost_frames, "Lost frames");
2074 
2075 	/* Tx statistics. */
2076 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2077 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2078 	child = SYSCTL_CHILDREN(tree);
2079 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2080 	    &stats->tx_bytes, "Good octets");
2081 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2082 	    &stats->tx_frames, "Good frames");
2083 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2084 	    &stats->tx_bcast_frames, "Good broadcast frames");
2085 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2086 	    &stats->tx_mcast_frames, "Good multicast frames");
2087 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2088 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2089 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2090 	    &stats->tx_single_colls, "Single collisions");
2091 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2092 	    &stats->tx_multi_colls, "Multiple collisions");
2093 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2094 	    &stats->tx_late_colls, "Late collisions");
2095 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2096 	    &stats->tx_frames_defered, "Frames with deferrals");
2097 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2098 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2099 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2100 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2101 }
2102 
2103 #undef STE_SYSCTL_STAT_ADD32
2104 #undef STE_SYSCTL_STAT_ADD64
2105 
2106 static void
2107 ste_setwol(struct ste_softc *sc)
2108 {
2109 	struct ifnet *ifp;
2110 	uint16_t pmstat;
2111 	uint8_t val;
2112 	int pmc;
2113 
2114 	STE_LOCK_ASSERT(sc);
2115 
2116 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2117 		/* Disable WOL. */
2118 		CSR_READ_1(sc, STE_WAKE_EVENT);
2119 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2120 		return;
2121 	}
2122 
2123 	ifp = sc->ste_ifp;
2124 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2125 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2126 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2127 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2128 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2129 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2130 	/* Request PME. */
2131 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2132 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2133 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2134 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2135 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2136 }
2137