xref: /freebsd/sys/dev/ste/if_ste.c (revision ea906c4152774dff300bb26fbfc1e4188351c89a)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sockio.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/module.h>
47 #include <sys/socket.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <net/bpf.h>
59 
60 #include <vm/vm.h>              /* for vtophys */
61 #include <vm/pmap.h>            /* for vtophys */
62 #include <machine/bus.h>
63 #include <machine/resource.h>
64 #include <sys/bus.h>
65 #include <sys/rman.h>
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 
73 /* "device miibus" required.  See GENERIC if you get errors here. */
74 #include "miibus_if.h"
75 
76 #define STE_USEIOSPACE
77 
78 #include <dev/ste/if_stereg.h>
79 
80 MODULE_DEPEND(ste, pci, 1, 1, 1);
81 MODULE_DEPEND(ste, ether, 1, 1, 1);
82 MODULE_DEPEND(ste, miibus, 1, 1, 1);
83 
84 /*
85  * Various supported device vendors/types and their names.
86  */
87 static struct ste_type ste_devs[] = {
88 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91 	{ 0, 0, NULL }
92 };
93 
94 static int ste_probe(device_t);
95 static int ste_attach(device_t);
96 static int ste_detach(device_t);
97 static void ste_init(void *);
98 static void ste_init_locked(struct ste_softc *);
99 static void ste_intr(void *);
100 static void ste_rxeoc(struct ste_softc *);
101 static void ste_rxeof(struct ste_softc *);
102 static void ste_txeoc(struct ste_softc *);
103 static void ste_txeof(struct ste_softc *);
104 static void ste_stats_update(void *);
105 static void ste_stop(struct ste_softc *);
106 static void ste_reset(struct ste_softc *);
107 static int ste_ioctl(struct ifnet *, u_long, caddr_t);
108 static int ste_encap(struct ste_softc *, struct ste_chain *, struct mbuf *);
109 static void ste_start(struct ifnet *);
110 static void ste_start_locked(struct ifnet *);
111 static void ste_watchdog(struct ifnet *);
112 static int ste_shutdown(device_t);
113 static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *,
114 		struct mbuf *);
115 static int ste_ifmedia_upd(struct ifnet *);
116 static void ste_ifmedia_upd_locked(struct ifnet *);
117 static void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
118 
119 static void ste_mii_sync(struct ste_softc *);
120 static void ste_mii_send(struct ste_softc *, u_int32_t, int);
121 static int ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
122 static int ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
123 static int ste_miibus_readreg(device_t, int, int);
124 static int ste_miibus_writereg(device_t, int, int, int);
125 static void ste_miibus_statchg(device_t);
126 
127 static int ste_eeprom_wait(struct ste_softc *);
128 static int ste_read_eeprom(struct ste_softc *, caddr_t, int, int, int);
129 static void ste_wait(struct ste_softc *);
130 static void ste_setmulti(struct ste_softc *);
131 static int ste_init_rx_list(struct ste_softc *);
132 static void ste_init_tx_list(struct ste_softc *);
133 
134 #ifdef STE_USEIOSPACE
135 #define STE_RES			SYS_RES_IOPORT
136 #define STE_RID			STE_PCI_LOIO
137 #else
138 #define STE_RES			SYS_RES_MEMORY
139 #define STE_RID			STE_PCI_LOMEM
140 #endif
141 
142 static device_method_t ste_methods[] = {
143 	/* Device interface */
144 	DEVMETHOD(device_probe,		ste_probe),
145 	DEVMETHOD(device_attach,	ste_attach),
146 	DEVMETHOD(device_detach,	ste_detach),
147 	DEVMETHOD(device_shutdown,	ste_shutdown),
148 
149 	/* bus interface */
150 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
151 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
152 
153 	/* MII interface */
154 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
155 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
156 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
157 
158 	{ 0, 0 }
159 };
160 
161 static driver_t ste_driver = {
162 	"ste",
163 	ste_methods,
164 	sizeof(struct ste_softc)
165 };
166 
167 static devclass_t ste_devclass;
168 
169 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
170 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
171 
172 SYSCTL_NODE(_hw, OID_AUTO, ste, CTLFLAG_RD, 0, "if_ste parameters");
173 
174 static int ste_rxsyncs;
175 SYSCTL_INT(_hw_ste, OID_AUTO, rxsyncs, CTLFLAG_RW, &ste_rxsyncs, 0, "");
176 
177 #define STE_SETBIT4(sc, reg, x)				\
178 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
179 
180 #define STE_CLRBIT4(sc, reg, x)				\
181 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
182 
183 #define STE_SETBIT2(sc, reg, x)				\
184 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
185 
186 #define STE_CLRBIT2(sc, reg, x)				\
187 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
188 
189 #define STE_SETBIT1(sc, reg, x)				\
190 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
191 
192 #define STE_CLRBIT1(sc, reg, x)				\
193 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
194 
195 
196 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
197 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
198 
199 /*
200  * Sync the PHYs by setting data bit and strobing the clock 32 times.
201  */
202 static void
203 ste_mii_sync(sc)
204 	struct ste_softc		*sc;
205 {
206 	register int		i;
207 
208 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
209 
210 	for (i = 0; i < 32; i++) {
211 		MII_SET(STE_PHYCTL_MCLK);
212 		DELAY(1);
213 		MII_CLR(STE_PHYCTL_MCLK);
214 		DELAY(1);
215 	}
216 
217 	return;
218 }
219 
220 /*
221  * Clock a series of bits through the MII.
222  */
223 static void
224 ste_mii_send(sc, bits, cnt)
225 	struct ste_softc		*sc;
226 	u_int32_t		bits;
227 	int			cnt;
228 {
229 	int			i;
230 
231 	MII_CLR(STE_PHYCTL_MCLK);
232 
233 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
234 		if (bits & i) {
235 			MII_SET(STE_PHYCTL_MDATA);
236                 } else {
237 			MII_CLR(STE_PHYCTL_MDATA);
238                 }
239 		DELAY(1);
240 		MII_CLR(STE_PHYCTL_MCLK);
241 		DELAY(1);
242 		MII_SET(STE_PHYCTL_MCLK);
243 	}
244 }
245 
246 /*
247  * Read an PHY register through the MII.
248  */
249 static int
250 ste_mii_readreg(sc, frame)
251 	struct ste_softc		*sc;
252 	struct ste_mii_frame	*frame;
253 
254 {
255 	int			i, ack;
256 
257 	/*
258 	 * Set up frame for RX.
259 	 */
260 	frame->mii_stdelim = STE_MII_STARTDELIM;
261 	frame->mii_opcode = STE_MII_READOP;
262 	frame->mii_turnaround = 0;
263 	frame->mii_data = 0;
264 
265 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
266 	/*
267  	 * Turn on data xmit.
268 	 */
269 	MII_SET(STE_PHYCTL_MDIR);
270 
271 	ste_mii_sync(sc);
272 
273 	/*
274 	 * Send command/address info.
275 	 */
276 	ste_mii_send(sc, frame->mii_stdelim, 2);
277 	ste_mii_send(sc, frame->mii_opcode, 2);
278 	ste_mii_send(sc, frame->mii_phyaddr, 5);
279 	ste_mii_send(sc, frame->mii_regaddr, 5);
280 
281 	/* Turn off xmit. */
282 	MII_CLR(STE_PHYCTL_MDIR);
283 
284 	/* Idle bit */
285 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
286 	DELAY(1);
287 	MII_SET(STE_PHYCTL_MCLK);
288 	DELAY(1);
289 
290 	/* Check for ack */
291 	MII_CLR(STE_PHYCTL_MCLK);
292 	DELAY(1);
293 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
294 	MII_SET(STE_PHYCTL_MCLK);
295 	DELAY(1);
296 
297 	/*
298 	 * Now try reading data bits. If the ack failed, we still
299 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
300 	 */
301 	if (ack) {
302 		for(i = 0; i < 16; i++) {
303 			MII_CLR(STE_PHYCTL_MCLK);
304 			DELAY(1);
305 			MII_SET(STE_PHYCTL_MCLK);
306 			DELAY(1);
307 		}
308 		goto fail;
309 	}
310 
311 	for (i = 0x8000; i; i >>= 1) {
312 		MII_CLR(STE_PHYCTL_MCLK);
313 		DELAY(1);
314 		if (!ack) {
315 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
316 				frame->mii_data |= i;
317 			DELAY(1);
318 		}
319 		MII_SET(STE_PHYCTL_MCLK);
320 		DELAY(1);
321 	}
322 
323 fail:
324 
325 	MII_CLR(STE_PHYCTL_MCLK);
326 	DELAY(1);
327 	MII_SET(STE_PHYCTL_MCLK);
328 	DELAY(1);
329 
330 	if (ack)
331 		return(1);
332 	return(0);
333 }
334 
335 /*
336  * Write to a PHY register through the MII.
337  */
338 static int
339 ste_mii_writereg(sc, frame)
340 	struct ste_softc		*sc;
341 	struct ste_mii_frame	*frame;
342 
343 {
344 
345 	/*
346 	 * Set up frame for TX.
347 	 */
348 
349 	frame->mii_stdelim = STE_MII_STARTDELIM;
350 	frame->mii_opcode = STE_MII_WRITEOP;
351 	frame->mii_turnaround = STE_MII_TURNAROUND;
352 
353 	/*
354  	 * Turn on data output.
355 	 */
356 	MII_SET(STE_PHYCTL_MDIR);
357 
358 	ste_mii_sync(sc);
359 
360 	ste_mii_send(sc, frame->mii_stdelim, 2);
361 	ste_mii_send(sc, frame->mii_opcode, 2);
362 	ste_mii_send(sc, frame->mii_phyaddr, 5);
363 	ste_mii_send(sc, frame->mii_regaddr, 5);
364 	ste_mii_send(sc, frame->mii_turnaround, 2);
365 	ste_mii_send(sc, frame->mii_data, 16);
366 
367 	/* Idle bit. */
368 	MII_SET(STE_PHYCTL_MCLK);
369 	DELAY(1);
370 	MII_CLR(STE_PHYCTL_MCLK);
371 	DELAY(1);
372 
373 	/*
374 	 * Turn off xmit.
375 	 */
376 	MII_CLR(STE_PHYCTL_MDIR);
377 
378 	return(0);
379 }
380 
381 static int
382 ste_miibus_readreg(dev, phy, reg)
383 	device_t		dev;
384 	int			phy, reg;
385 {
386 	struct ste_softc	*sc;
387 	struct ste_mii_frame	frame;
388 
389 	sc = device_get_softc(dev);
390 
391 	if ( sc->ste_one_phy && phy != 0 )
392 		return (0);
393 
394 	bzero((char *)&frame, sizeof(frame));
395 
396 	frame.mii_phyaddr = phy;
397 	frame.mii_regaddr = reg;
398 	ste_mii_readreg(sc, &frame);
399 
400 	return(frame.mii_data);
401 }
402 
403 static int
404 ste_miibus_writereg(dev, phy, reg, data)
405 	device_t		dev;
406 	int			phy, reg, data;
407 {
408 	struct ste_softc	*sc;
409 	struct ste_mii_frame	frame;
410 
411 	sc = device_get_softc(dev);
412 	bzero((char *)&frame, sizeof(frame));
413 
414 	frame.mii_phyaddr = phy;
415 	frame.mii_regaddr = reg;
416 	frame.mii_data = data;
417 
418 	ste_mii_writereg(sc, &frame);
419 
420 	return(0);
421 }
422 
423 static void
424 ste_miibus_statchg(dev)
425 	device_t		dev;
426 {
427 	struct ste_softc	*sc;
428 	struct mii_data		*mii;
429 
430 	sc = device_get_softc(dev);
431 
432 	mii = device_get_softc(sc->ste_miibus);
433 
434 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
435 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
436 	} else {
437 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
438 	}
439 
440 	return;
441 }
442 
443 static int
444 ste_ifmedia_upd(ifp)
445 	struct ifnet		*ifp;
446 {
447 	struct ste_softc	*sc;
448 
449 	sc = ifp->if_softc;
450 	STE_LOCK(sc);
451 	ste_ifmedia_upd_locked(ifp);
452 	STE_UNLOCK(sc);
453 
454 	return(0);
455 }
456 
457 static void
458 ste_ifmedia_upd_locked(ifp)
459 	struct ifnet		*ifp;
460 {
461 	struct ste_softc	*sc;
462 	struct mii_data		*mii;
463 
464 	sc = ifp->if_softc;
465 	STE_LOCK_ASSERT(sc);
466 	mii = device_get_softc(sc->ste_miibus);
467 	sc->ste_link = 0;
468 	if (mii->mii_instance) {
469 		struct mii_softc	*miisc;
470 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
471 			mii_phy_reset(miisc);
472 	}
473 	mii_mediachg(mii);
474 }
475 
476 static void
477 ste_ifmedia_sts(ifp, ifmr)
478 	struct ifnet		*ifp;
479 	struct ifmediareq	*ifmr;
480 {
481 	struct ste_softc	*sc;
482 	struct mii_data		*mii;
483 
484 	sc = ifp->if_softc;
485 	mii = device_get_softc(sc->ste_miibus);
486 
487 	STE_LOCK(sc);
488 	mii_pollstat(mii);
489 	ifmr->ifm_active = mii->mii_media_active;
490 	ifmr->ifm_status = mii->mii_media_status;
491 	STE_UNLOCK(sc);
492 
493 	return;
494 }
495 
496 static void
497 ste_wait(sc)
498 	struct ste_softc		*sc;
499 {
500 	register int		i;
501 
502 	for (i = 0; i < STE_TIMEOUT; i++) {
503 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
504 			break;
505 	}
506 
507 	if (i == STE_TIMEOUT)
508 		device_printf(sc->ste_dev, "command never completed!\n");
509 
510 	return;
511 }
512 
513 /*
514  * The EEPROM is slow: give it time to come ready after issuing
515  * it a command.
516  */
517 static int
518 ste_eeprom_wait(sc)
519 	struct ste_softc		*sc;
520 {
521 	int			i;
522 
523 	DELAY(1000);
524 
525 	for (i = 0; i < 100; i++) {
526 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
527 			DELAY(1000);
528 		else
529 			break;
530 	}
531 
532 	if (i == 100) {
533 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
534 		return(1);
535 	}
536 
537 	return(0);
538 }
539 
540 /*
541  * Read a sequence of words from the EEPROM. Note that ethernet address
542  * data is stored in the EEPROM in network byte order.
543  */
544 static int
545 ste_read_eeprom(sc, dest, off, cnt, swap)
546 	struct ste_softc		*sc;
547 	caddr_t			dest;
548 	int			off;
549 	int			cnt;
550 	int			swap;
551 {
552 	int			err = 0, i;
553 	u_int16_t		word = 0, *ptr;
554 
555 	if (ste_eeprom_wait(sc))
556 		return(1);
557 
558 	for (i = 0; i < cnt; i++) {
559 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
560 		err = ste_eeprom_wait(sc);
561 		if (err)
562 			break;
563 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
564 		ptr = (u_int16_t *)(dest + (i * 2));
565 		if (swap)
566 			*ptr = ntohs(word);
567 		else
568 			*ptr = word;
569 	}
570 
571 	return(err ? 1 : 0);
572 }
573 
574 static void
575 ste_setmulti(sc)
576 	struct ste_softc	*sc;
577 {
578 	struct ifnet		*ifp;
579 	int			h = 0;
580 	u_int32_t		hashes[2] = { 0, 0 };
581 	struct ifmultiaddr	*ifma;
582 
583 	ifp = sc->ste_ifp;
584 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
585 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
586 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
587 		return;
588 	}
589 
590 	/* first, zot all the existing hash bits */
591 	CSR_WRITE_2(sc, STE_MAR0, 0);
592 	CSR_WRITE_2(sc, STE_MAR1, 0);
593 	CSR_WRITE_2(sc, STE_MAR2, 0);
594 	CSR_WRITE_2(sc, STE_MAR3, 0);
595 
596 	/* now program new ones */
597 	IF_ADDR_LOCK(ifp);
598 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
599 		if (ifma->ifma_addr->sa_family != AF_LINK)
600 			continue;
601 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
602 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
603 		if (h < 32)
604 			hashes[0] |= (1 << h);
605 		else
606 			hashes[1] |= (1 << (h - 32));
607 	}
608 	IF_ADDR_UNLOCK(ifp);
609 
610 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
611 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
612 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
613 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
614 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
615 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
616 
617 	return;
618 }
619 
620 #ifdef DEVICE_POLLING
621 static poll_handler_t ste_poll, ste_poll_locked;
622 
623 static void
624 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
625 {
626 	struct ste_softc *sc = ifp->if_softc;
627 
628 	STE_LOCK(sc);
629 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
630 		ste_poll_locked(ifp, cmd, count);
631 	STE_UNLOCK(sc);
632 }
633 
634 static void
635 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
636 {
637 	struct ste_softc *sc = ifp->if_softc;
638 
639 	STE_LOCK_ASSERT(sc);
640 
641 	sc->rxcycles = count;
642 	if (cmd == POLL_AND_CHECK_STATUS)
643 		ste_rxeoc(sc);
644 	ste_rxeof(sc);
645 	ste_txeof(sc);
646 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
647 		ste_start_locked(ifp);
648 
649 	if (cmd == POLL_AND_CHECK_STATUS) {
650 		u_int16_t status;
651 
652 		status = CSR_READ_2(sc, STE_ISR_ACK);
653 
654 		if (status & STE_ISR_TX_DONE)
655 			ste_txeoc(sc);
656 
657 		if (status & STE_ISR_STATS_OFLOW) {
658 			callout_stop(&sc->ste_stat_callout);
659 			ste_stats_update(sc);
660 		}
661 
662 		if (status & STE_ISR_LINKEVENT)
663 			mii_pollstat(device_get_softc(sc->ste_miibus));
664 
665 		if (status & STE_ISR_HOSTERR) {
666 			ste_reset(sc);
667 			ste_init_locked(sc);
668 		}
669 	}
670 }
671 #endif /* DEVICE_POLLING */
672 
673 static void
674 ste_intr(xsc)
675 	void			*xsc;
676 {
677 	struct ste_softc	*sc;
678 	struct ifnet		*ifp;
679 	u_int16_t		status;
680 
681 	sc = xsc;
682 	STE_LOCK(sc);
683 	ifp = sc->ste_ifp;
684 
685 #ifdef DEVICE_POLLING
686 	if (ifp->if_capenable & IFCAP_POLLING) {
687 		STE_UNLOCK(sc);
688 		return;
689 	}
690 #endif
691 
692 	/* See if this is really our interrupt. */
693 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
694 		STE_UNLOCK(sc);
695 		return;
696 	}
697 
698 	for (;;) {
699 		status = CSR_READ_2(sc, STE_ISR_ACK);
700 
701 		if (!(status & STE_INTRS))
702 			break;
703 
704 		if (status & STE_ISR_RX_DMADONE) {
705 			ste_rxeoc(sc);
706 			ste_rxeof(sc);
707 		}
708 
709 		if (status & STE_ISR_TX_DMADONE)
710 			ste_txeof(sc);
711 
712 		if (status & STE_ISR_TX_DONE)
713 			ste_txeoc(sc);
714 
715 		if (status & STE_ISR_STATS_OFLOW) {
716 			callout_stop(&sc->ste_stat_callout);
717 			ste_stats_update(sc);
718 		}
719 
720 		if (status & STE_ISR_LINKEVENT)
721 			mii_pollstat(device_get_softc(sc->ste_miibus));
722 
723 
724 		if (status & STE_ISR_HOSTERR) {
725 			ste_reset(sc);
726 			ste_init_locked(sc);
727 		}
728 	}
729 
730 	/* Re-enable interrupts */
731 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
732 
733 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
734 		ste_start_locked(ifp);
735 
736 	STE_UNLOCK(sc);
737 
738 	return;
739 }
740 
741 static void
742 ste_rxeoc(struct ste_softc *sc)
743 {
744 	struct ste_chain_onefrag *cur_rx;
745 
746 	STE_LOCK_ASSERT(sc);
747 
748 	if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
749 		cur_rx = sc->ste_cdata.ste_rx_head;
750 		do {
751 			cur_rx = cur_rx->ste_next;
752 			/* If the ring is empty, just return. */
753 			if (cur_rx == sc->ste_cdata.ste_rx_head)
754 				return;
755 		} while (cur_rx->ste_ptr->ste_status == 0);
756 		if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
757 			/* We've fallen behind the chip: catch it. */
758 			sc->ste_cdata.ste_rx_head = cur_rx;
759 			++ste_rxsyncs;
760 		}
761 	}
762 }
763 
764 /*
765  * A frame has been uploaded: pass the resulting mbuf chain up to
766  * the higher level protocols.
767  */
768 static void
769 ste_rxeof(sc)
770 	struct ste_softc		*sc;
771 {
772         struct mbuf		*m;
773         struct ifnet		*ifp;
774 	struct ste_chain_onefrag	*cur_rx;
775 	int			total_len = 0, count=0;
776 	u_int32_t		rxstat;
777 
778 	STE_LOCK_ASSERT(sc);
779 
780 	ifp = sc->ste_ifp;
781 
782 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
783 	      & STE_RXSTAT_DMADONE) {
784 #ifdef DEVICE_POLLING
785 		if (ifp->if_capenable & IFCAP_POLLING) {
786 			if (sc->rxcycles <= 0)
787 				break;
788 			sc->rxcycles--;
789 		}
790 #endif
791 		if ((STE_RX_LIST_CNT - count) < 3) {
792 			break;
793 		}
794 
795 		cur_rx = sc->ste_cdata.ste_rx_head;
796 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
797 
798 		/*
799 		 * If an error occurs, update stats, clear the
800 		 * status word and leave the mbuf cluster in place:
801 		 * it should simply get re-used next time this descriptor
802 	 	 * comes up in the ring.
803 		 */
804 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
805 			ifp->if_ierrors++;
806 			cur_rx->ste_ptr->ste_status = 0;
807 			continue;
808 		}
809 
810 		/*
811 		 * If there error bit was not set, the upload complete
812 		 * bit should be set which means we have a valid packet.
813 		 * If not, something truly strange has happened.
814 		 */
815 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
816 			device_printf(sc->ste_dev,
817 			    "bad receive status -- packet dropped\n");
818 			ifp->if_ierrors++;
819 			cur_rx->ste_ptr->ste_status = 0;
820 			continue;
821 		}
822 
823 		/* No errors; receive the packet. */
824 		m = cur_rx->ste_mbuf;
825 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
826 
827 		/*
828 		 * Try to conjure up a new mbuf cluster. If that
829 		 * fails, it means we have an out of memory condition and
830 		 * should leave the buffer in place and continue. This will
831 		 * result in a lost packet, but there's little else we
832 		 * can do in this situation.
833 		 */
834 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
835 			ifp->if_ierrors++;
836 			cur_rx->ste_ptr->ste_status = 0;
837 			continue;
838 		}
839 
840 		m->m_pkthdr.rcvif = ifp;
841 		m->m_pkthdr.len = m->m_len = total_len;
842 
843 		ifp->if_ipackets++;
844 		STE_UNLOCK(sc);
845 		(*ifp->if_input)(ifp, m);
846 		STE_LOCK(sc);
847 
848 		cur_rx->ste_ptr->ste_status = 0;
849 		count++;
850 	}
851 
852 	return;
853 }
854 
855 static void
856 ste_txeoc(sc)
857 	struct ste_softc	*sc;
858 {
859 	u_int8_t		txstat;
860 	struct ifnet		*ifp;
861 
862 	ifp = sc->ste_ifp;
863 
864 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
865 	    STE_TXSTATUS_TXDONE) {
866 		if (txstat & STE_TXSTATUS_UNDERRUN ||
867 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
868 		    txstat & STE_TXSTATUS_RECLAIMERR) {
869 			ifp->if_oerrors++;
870 			device_printf(sc->ste_dev,
871 			    "transmission error: %x\n", txstat);
872 
873 			ste_reset(sc);
874 			ste_init_locked(sc);
875 
876 			if (txstat & STE_TXSTATUS_UNDERRUN &&
877 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
878 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
879 				device_printf(sc->ste_dev,
880 				    "tx underrun, increasing tx"
881 				    " start threshold to %d bytes\n",
882 				    sc->ste_tx_thresh);
883 			}
884 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
885 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
886 			    (STE_PACKET_SIZE >> 4));
887 		}
888 		ste_init_locked(sc);
889 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
890 	}
891 
892 	return;
893 }
894 
895 static void
896 ste_txeof(sc)
897 	struct ste_softc	*sc;
898 {
899 	struct ste_chain	*cur_tx;
900 	struct ifnet		*ifp;
901 	int			idx;
902 
903 	ifp = sc->ste_ifp;
904 
905 	idx = sc->ste_cdata.ste_tx_cons;
906 	while(idx != sc->ste_cdata.ste_tx_prod) {
907 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
908 
909 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
910 			break;
911 
912 		m_freem(cur_tx->ste_mbuf);
913 		cur_tx->ste_mbuf = NULL;
914 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
915 		ifp->if_opackets++;
916 
917 		STE_INC(idx, STE_TX_LIST_CNT);
918 	}
919 
920 	sc->ste_cdata.ste_tx_cons = idx;
921 	if (idx == sc->ste_cdata.ste_tx_prod)
922 		ifp->if_timer = 0;
923 }
924 
925 static void
926 ste_stats_update(xsc)
927 	void			*xsc;
928 {
929 	struct ste_softc	*sc;
930 	struct ifnet		*ifp;
931 	struct mii_data		*mii;
932 
933 	sc = xsc;
934 	STE_LOCK_ASSERT(sc);
935 
936 	ifp = sc->ste_ifp;
937 	mii = device_get_softc(sc->ste_miibus);
938 
939 	ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
940 	    + CSR_READ_1(sc, STE_MULTI_COLLS)
941 	    + CSR_READ_1(sc, STE_SINGLE_COLLS);
942 
943 	if (!sc->ste_link) {
944 		mii_pollstat(mii);
945 		if (mii->mii_media_status & IFM_ACTIVE &&
946 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
947 			sc->ste_link++;
948 			/*
949 			* we don't get a call-back on re-init so do it
950 			* otherwise we get stuck in the wrong link state
951 			*/
952 			ste_miibus_statchg(sc->ste_dev);
953 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
954 				ste_start_locked(ifp);
955 		}
956 	}
957 
958 	callout_reset(&sc->ste_stat_callout, hz, ste_stats_update, sc);
959 
960 	return;
961 }
962 
963 
964 /*
965  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
966  * IDs against our list and return a device name if we find a match.
967  */
968 static int
969 ste_probe(dev)
970 	device_t		dev;
971 {
972 	struct ste_type		*t;
973 
974 	t = ste_devs;
975 
976 	while(t->ste_name != NULL) {
977 		if ((pci_get_vendor(dev) == t->ste_vid) &&
978 		    (pci_get_device(dev) == t->ste_did)) {
979 			device_set_desc(dev, t->ste_name);
980 			return (BUS_PROBE_DEFAULT);
981 		}
982 		t++;
983 	}
984 
985 	return(ENXIO);
986 }
987 
988 /*
989  * Attach the interface. Allocate softc structures, do ifmedia
990  * setup and ethernet/BPF attach.
991  */
992 static int
993 ste_attach(dev)
994 	device_t		dev;
995 {
996 	struct ste_softc	*sc;
997 	struct ifnet		*ifp;
998 	int			error = 0, rid;
999 	u_char			eaddr[6];
1000 
1001 	sc = device_get_softc(dev);
1002 	sc->ste_dev = dev;
1003 
1004 	/*
1005 	 * Only use one PHY since this chip reports multiple
1006 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1007 	 * it is at 0 & 1.  It is rev 0x12.
1008 	 */
1009 	if (pci_get_vendor(dev) == DL_VENDORID &&
1010 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1011 	    pci_get_revid(dev) == 0x12 )
1012 		sc->ste_one_phy = 1;
1013 
1014 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1015 	    MTX_DEF);
1016 	/*
1017 	 * Map control/status registers.
1018 	 */
1019 	pci_enable_busmaster(dev);
1020 
1021 	rid = STE_RID;
1022 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
1023 
1024 	if (sc->ste_res == NULL) {
1025 		device_printf(dev, "couldn't map ports/memory\n");
1026 		error = ENXIO;
1027 		goto fail;
1028 	}
1029 
1030 	sc->ste_btag = rman_get_bustag(sc->ste_res);
1031 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
1032 
1033 	/* Allocate interrupt */
1034 	rid = 0;
1035 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1036 	    RF_SHAREABLE | RF_ACTIVE);
1037 
1038 	if (sc->ste_irq == NULL) {
1039 		device_printf(dev, "couldn't map interrupt\n");
1040 		error = ENXIO;
1041 		goto fail;
1042 	}
1043 
1044 	callout_init_mtx(&sc->ste_stat_callout, &sc->ste_mtx, 0);
1045 
1046 	/* Reset the adapter. */
1047 	ste_reset(sc);
1048 
1049 	/*
1050 	 * Get station address from the EEPROM.
1051 	 */
1052 	if (ste_read_eeprom(sc, eaddr,
1053 	    STE_EEADDR_NODE0, 3, 0)) {
1054 		device_printf(dev, "failed to read station address\n");
1055 		error = ENXIO;;
1056 		goto fail;
1057 	}
1058 
1059 	/* Allocate the descriptor queues. */
1060 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1061 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1062 
1063 	if (sc->ste_ldata == NULL) {
1064 		device_printf(dev, "no memory for list buffers!\n");
1065 		error = ENXIO;
1066 		goto fail;
1067 	}
1068 
1069 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1070 
1071 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1072 	if (ifp == NULL) {
1073 		device_printf(dev, "can not if_alloc()\n");
1074 		error = ENOSPC;
1075 		goto fail;
1076 	}
1077 
1078 	/* Do MII setup. */
1079 	if (mii_phy_probe(dev, &sc->ste_miibus,
1080 	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1081 		device_printf(dev, "MII without any phy!\n");
1082 		error = ENXIO;
1083 		goto fail;
1084 	}
1085 
1086 	ifp->if_softc = sc;
1087 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1088 	ifp->if_mtu = ETHERMTU;
1089 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1090 	ifp->if_ioctl = ste_ioctl;
1091 	ifp->if_start = ste_start;
1092 	ifp->if_watchdog = ste_watchdog;
1093 	ifp->if_init = ste_init;
1094 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1095 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1096 	IFQ_SET_READY(&ifp->if_snd);
1097 
1098 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1099 
1100 	/*
1101 	 * Call MI attach routine.
1102 	 */
1103 	ether_ifattach(ifp, eaddr);
1104 
1105 	/*
1106 	 * Tell the upper layer(s) we support long frames.
1107 	 */
1108 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1109 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1110 	ifp->if_capenable = ifp->if_capabilities;
1111 #ifdef DEVICE_POLLING
1112 	ifp->if_capabilities |= IFCAP_POLLING;
1113 #endif
1114 
1115 	/* Hook interrupt last to avoid having to lock softc */
1116 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1117 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1118 
1119 	if (error) {
1120 		device_printf(dev, "couldn't set up irq\n");
1121 		ether_ifdetach(ifp);
1122 		goto fail;
1123 	}
1124 
1125 fail:
1126 	if (error)
1127 		ste_detach(dev);
1128 
1129 	return(error);
1130 }
1131 
1132 /*
1133  * Shutdown hardware and free up resources. This can be called any
1134  * time after the mutex has been initialized. It is called in both
1135  * the error case in attach and the normal detach case so it needs
1136  * to be careful about only freeing resources that have actually been
1137  * allocated.
1138  */
1139 static int
1140 ste_detach(dev)
1141 	device_t		dev;
1142 {
1143 	struct ste_softc	*sc;
1144 	struct ifnet		*ifp;
1145 
1146 	sc = device_get_softc(dev);
1147 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1148 	ifp = sc->ste_ifp;
1149 
1150 #ifdef DEVICE_POLLING
1151 	if (ifp->if_capenable & IFCAP_POLLING)
1152 		ether_poll_deregister(ifp);
1153 #endif
1154 
1155 	/* These should only be active if attach succeeded */
1156 	if (device_is_attached(dev)) {
1157 		STE_LOCK(sc);
1158 		ste_stop(sc);
1159 		STE_UNLOCK(sc);
1160 		callout_drain(&sc->ste_stat_callout);
1161 		ether_ifdetach(ifp);
1162 	}
1163 	if (sc->ste_miibus)
1164 		device_delete_child(dev, sc->ste_miibus);
1165 	bus_generic_detach(dev);
1166 
1167 	if (sc->ste_intrhand)
1168 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1169 	if (sc->ste_irq)
1170 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1171 	if (sc->ste_res)
1172 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1173 
1174 	if (ifp)
1175 		if_free(ifp);
1176 
1177 	if (sc->ste_ldata) {
1178 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1179 		    M_DEVBUF);
1180 	}
1181 
1182 	mtx_destroy(&sc->ste_mtx);
1183 
1184 	return(0);
1185 }
1186 
1187 static int
1188 ste_newbuf(sc, c, m)
1189 	struct ste_softc	*sc;
1190 	struct ste_chain_onefrag	*c;
1191 	struct mbuf		*m;
1192 {
1193 	struct mbuf		*m_new = NULL;
1194 
1195 	if (m == NULL) {
1196 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1197 		if (m_new == NULL)
1198 			return(ENOBUFS);
1199 		MCLGET(m_new, M_DONTWAIT);
1200 		if (!(m_new->m_flags & M_EXT)) {
1201 			m_freem(m_new);
1202 			return(ENOBUFS);
1203 		}
1204 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1205 	} else {
1206 		m_new = m;
1207 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1208 		m_new->m_data = m_new->m_ext.ext_buf;
1209 	}
1210 
1211 	m_adj(m_new, ETHER_ALIGN);
1212 
1213 	c->ste_mbuf = m_new;
1214 	c->ste_ptr->ste_status = 0;
1215 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1216 	c->ste_ptr->ste_frag.ste_len = (1536 + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
1217 
1218 	return(0);
1219 }
1220 
1221 static int
1222 ste_init_rx_list(sc)
1223 	struct ste_softc	*sc;
1224 {
1225 	struct ste_chain_data	*cd;
1226 	struct ste_list_data	*ld;
1227 	int			i;
1228 
1229 	cd = &sc->ste_cdata;
1230 	ld = sc->ste_ldata;
1231 
1232 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1233 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1234 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1235 			return(ENOBUFS);
1236 		if (i == (STE_RX_LIST_CNT - 1)) {
1237 			cd->ste_rx_chain[i].ste_next =
1238 			    &cd->ste_rx_chain[0];
1239 			ld->ste_rx_list[i].ste_next =
1240 			    vtophys(&ld->ste_rx_list[0]);
1241 		} else {
1242 			cd->ste_rx_chain[i].ste_next =
1243 			    &cd->ste_rx_chain[i + 1];
1244 			ld->ste_rx_list[i].ste_next =
1245 			    vtophys(&ld->ste_rx_list[i + 1]);
1246 		}
1247 		ld->ste_rx_list[i].ste_status = 0;
1248 	}
1249 
1250 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1251 
1252 	return(0);
1253 }
1254 
1255 static void
1256 ste_init_tx_list(sc)
1257 	struct ste_softc	*sc;
1258 {
1259 	struct ste_chain_data	*cd;
1260 	struct ste_list_data	*ld;
1261 	int			i;
1262 
1263 	cd = &sc->ste_cdata;
1264 	ld = sc->ste_ldata;
1265 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1266 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1267 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1268 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1269 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1270 		if (i == (STE_TX_LIST_CNT - 1))
1271 			cd->ste_tx_chain[i].ste_next =
1272 			    &cd->ste_tx_chain[0];
1273 		else
1274 			cd->ste_tx_chain[i].ste_next =
1275 			    &cd->ste_tx_chain[i + 1];
1276 	}
1277 
1278 	cd->ste_tx_prod = 0;
1279 	cd->ste_tx_cons = 0;
1280 
1281 	return;
1282 }
1283 
1284 static void
1285 ste_init(xsc)
1286 	void			*xsc;
1287 {
1288 	struct ste_softc	*sc;
1289 
1290 	sc = xsc;
1291 	STE_LOCK(sc);
1292 	ste_init_locked(sc);
1293 	STE_UNLOCK(sc);
1294 }
1295 
1296 static void
1297 ste_init_locked(sc)
1298 	struct ste_softc	*sc;
1299 {
1300 	int			i;
1301 	struct ifnet		*ifp;
1302 
1303 	STE_LOCK_ASSERT(sc);
1304 	ifp = sc->ste_ifp;
1305 
1306 	ste_stop(sc);
1307 
1308 	/* Init our MAC address */
1309 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1310 		CSR_WRITE_2(sc, STE_PAR0 + i,
1311 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1312 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1313 	}
1314 
1315 	/* Init RX list */
1316 	if (ste_init_rx_list(sc) == ENOBUFS) {
1317 		device_printf(sc->ste_dev,
1318 		    "initialization failed: no memory for RX buffers\n");
1319 		ste_stop(sc);
1320 		return;
1321 	}
1322 
1323 	/* Set RX polling interval */
1324 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1325 
1326 	/* Init TX descriptors */
1327 	ste_init_tx_list(sc);
1328 
1329 	/* Set the TX freethresh value */
1330 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1331 
1332 	/* Set the TX start threshold for best performance. */
1333 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1334 
1335 	/* Set the TX reclaim threshold. */
1336 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1337 
1338 	/* Set up the RX filter. */
1339 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1340 
1341 	/* If we want promiscuous mode, set the allframes bit. */
1342 	if (ifp->if_flags & IFF_PROMISC) {
1343 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1344 	} else {
1345 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1346 	}
1347 
1348 	/* Set capture broadcast bit to accept broadcast frames. */
1349 	if (ifp->if_flags & IFF_BROADCAST) {
1350 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1351 	} else {
1352 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1353 	}
1354 
1355 	ste_setmulti(sc);
1356 
1357 	/* Load the address of the RX list. */
1358 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1359 	ste_wait(sc);
1360 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1361 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1362 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1363 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1364 
1365 	/* Set TX polling interval (defer until we TX first packet */
1366 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1367 
1368 	/* Load address of the TX list */
1369 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1370 	ste_wait(sc);
1371 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1372 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1373 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1374 	ste_wait(sc);
1375 	sc->ste_tx_prev = NULL;
1376 
1377 	/* Enable receiver and transmitter */
1378 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1379 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1380 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1381 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1382 
1383 	/* Enable stats counters. */
1384 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1385 
1386 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1387 #ifdef DEVICE_POLLING
1388 	/* Disable interrupts if we are polling. */
1389 	if (ifp->if_capenable & IFCAP_POLLING)
1390 		CSR_WRITE_2(sc, STE_IMR, 0);
1391 	else
1392 #endif
1393 	/* Enable interrupts. */
1394 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1395 
1396 	/* Accept VLAN length packets */
1397 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1398 
1399 	ste_ifmedia_upd_locked(ifp);
1400 
1401 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1402 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1403 
1404 	callout_reset(&sc->ste_stat_callout, hz, ste_stats_update, sc);
1405 
1406 	return;
1407 }
1408 
1409 static void
1410 ste_stop(sc)
1411 	struct ste_softc	*sc;
1412 {
1413 	int			i;
1414 	struct ifnet		*ifp;
1415 
1416 	STE_LOCK_ASSERT(sc);
1417 	ifp = sc->ste_ifp;
1418 
1419 	callout_stop(&sc->ste_stat_callout);
1420 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1421 
1422 	CSR_WRITE_2(sc, STE_IMR, 0);
1423 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1424 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1425 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1426 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1427 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1428 	ste_wait(sc);
1429 	/*
1430 	 * Try really hard to stop the RX engine or under heavy RX
1431 	 * data chip will write into de-allocated memory.
1432 	 */
1433 	ste_reset(sc);
1434 
1435 	sc->ste_link = 0;
1436 
1437 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1438 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1439 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1440 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1441 		}
1442 	}
1443 
1444 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1445 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1446 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1447 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1448 		}
1449 	}
1450 
1451 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1452 
1453 	return;
1454 }
1455 
1456 static void
1457 ste_reset(sc)
1458 	struct ste_softc	*sc;
1459 {
1460 	int			i;
1461 
1462 	STE_SETBIT4(sc, STE_ASICCTL,
1463 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1464 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1465 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1466 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1467 	    STE_ASICCTL_EXTRESET_RESET);
1468 
1469 	DELAY(100000);
1470 
1471 	for (i = 0; i < STE_TIMEOUT; i++) {
1472 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1473 			break;
1474 	}
1475 
1476 	if (i == STE_TIMEOUT)
1477 		device_printf(sc->ste_dev, "global reset never completed\n");
1478 
1479 	return;
1480 }
1481 
1482 static int
1483 ste_ioctl(ifp, command, data)
1484 	struct ifnet		*ifp;
1485 	u_long			command;
1486 	caddr_t			data;
1487 {
1488 	struct ste_softc	*sc;
1489 	struct ifreq		*ifr;
1490 	struct mii_data		*mii;
1491 	int			error = 0;
1492 
1493 	sc = ifp->if_softc;
1494 	ifr = (struct ifreq *)data;
1495 
1496 	switch(command) {
1497 	case SIOCSIFFLAGS:
1498 		STE_LOCK(sc);
1499 		if (ifp->if_flags & IFF_UP) {
1500 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1501 			    ifp->if_flags & IFF_PROMISC &&
1502 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1503 				STE_SETBIT1(sc, STE_RX_MODE,
1504 				    STE_RXMODE_PROMISC);
1505 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1506 			    !(ifp->if_flags & IFF_PROMISC) &&
1507 			    sc->ste_if_flags & IFF_PROMISC) {
1508 				STE_CLRBIT1(sc, STE_RX_MODE,
1509 				    STE_RXMODE_PROMISC);
1510 			}
1511 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1512 			    (ifp->if_flags ^ sc->ste_if_flags) & IFF_ALLMULTI)
1513 				ste_setmulti(sc);
1514 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1515 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1516 				ste_init_locked(sc);
1517 			}
1518 		} else {
1519 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1520 				ste_stop(sc);
1521 		}
1522 		sc->ste_if_flags = ifp->if_flags;
1523 		STE_UNLOCK(sc);
1524 		error = 0;
1525 		break;
1526 	case SIOCADDMULTI:
1527 	case SIOCDELMULTI:
1528 		STE_LOCK(sc);
1529 		ste_setmulti(sc);
1530 		STE_UNLOCK(sc);
1531 		error = 0;
1532 		break;
1533 	case SIOCGIFMEDIA:
1534 	case SIOCSIFMEDIA:
1535 		mii = device_get_softc(sc->ste_miibus);
1536 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1537 		break;
1538 	case SIOCSIFCAP:
1539 #ifdef DEVICE_POLLING
1540 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1541 		    !(ifp->if_capenable & IFCAP_POLLING)) {
1542 			error = ether_poll_register(ste_poll, ifp);
1543 			if (error)
1544 				return(error);
1545 			STE_LOCK(sc);
1546 			/* Disable interrupts */
1547 			CSR_WRITE_2(sc, STE_IMR, 0);
1548 			ifp->if_capenable |= IFCAP_POLLING;
1549 			STE_UNLOCK(sc);
1550 			return (error);
1551 
1552 		}
1553 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1554 		    ifp->if_capenable & IFCAP_POLLING) {
1555 			error = ether_poll_deregister(ifp);
1556 			/* Enable interrupts. */
1557 			STE_LOCK(sc);
1558 			CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1559 			ifp->if_capenable &= ~IFCAP_POLLING;
1560 			STE_UNLOCK(sc);
1561 			return (error);
1562 		}
1563 #endif /* DEVICE_POLLING */
1564 		break;
1565 	default:
1566 		error = ether_ioctl(ifp, command, data);
1567 		break;
1568 	}
1569 
1570 	return(error);
1571 }
1572 
1573 static int
1574 ste_encap(sc, c, m_head)
1575 	struct ste_softc	*sc;
1576 	struct ste_chain	*c;
1577 	struct mbuf		*m_head;
1578 {
1579 	int			frag = 0;
1580 	struct ste_frag		*f = NULL;
1581 	struct mbuf		*m;
1582 	struct ste_desc		*d;
1583 
1584 	d = c->ste_ptr;
1585 	d->ste_ctl = 0;
1586 
1587 encap_retry:
1588 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1589 		if (m->m_len != 0) {
1590 			if (frag == STE_MAXFRAGS)
1591 				break;
1592 			f = &d->ste_frags[frag];
1593 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1594 			f->ste_len = m->m_len;
1595 			frag++;
1596 		}
1597 	}
1598 
1599 	if (m != NULL) {
1600 		struct mbuf *mn;
1601 
1602 		/*
1603 		 * We ran out of segments. We have to recopy this
1604 		 * mbuf chain first. Bail out if we can't get the
1605 		 * new buffers.
1606 		 */
1607 		mn = m_defrag(m_head, M_DONTWAIT);
1608 		if (mn == NULL) {
1609 			m_freem(m_head);
1610 			return ENOMEM;
1611 		}
1612 		m_head = mn;
1613 		goto encap_retry;
1614 	}
1615 
1616 	c->ste_mbuf = m_head;
1617 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1618 	d->ste_ctl = 1;
1619 
1620 	return(0);
1621 }
1622 
1623 static void
1624 ste_start(ifp)
1625 	struct ifnet		*ifp;
1626 {
1627 	struct ste_softc	*sc;
1628 
1629 	sc = ifp->if_softc;
1630 	STE_LOCK(sc);
1631 	ste_start_locked(ifp);
1632 	STE_UNLOCK(sc);
1633 }
1634 
1635 static void
1636 ste_start_locked(ifp)
1637 	struct ifnet		*ifp;
1638 {
1639 	struct ste_softc	*sc;
1640 	struct mbuf		*m_head = NULL;
1641 	struct ste_chain	*cur_tx;
1642 	int			idx;
1643 
1644 	sc = ifp->if_softc;
1645 	STE_LOCK_ASSERT(sc);
1646 
1647 	if (!sc->ste_link)
1648 		return;
1649 
1650 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1651 		return;
1652 
1653 	idx = sc->ste_cdata.ste_tx_prod;
1654 
1655 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1656 		/*
1657 		 * We cannot re-use the last (free) descriptor;
1658 		 * the chip may not have read its ste_next yet.
1659 		 */
1660 		if (STE_NEXT(idx, STE_TX_LIST_CNT) ==
1661 		    sc->ste_cdata.ste_tx_cons) {
1662 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1663 			break;
1664 		}
1665 
1666 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1667 		if (m_head == NULL)
1668 			break;
1669 
1670 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1671 
1672 		if (ste_encap(sc, cur_tx, m_head) != 0)
1673 			break;
1674 
1675 		cur_tx->ste_ptr->ste_next = 0;
1676 
1677 		if (sc->ste_tx_prev == NULL) {
1678 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1679 			/* Load address of the TX list */
1680 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1681 			ste_wait(sc);
1682 
1683 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1684 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1685 
1686 			/* Set TX polling interval to start TX engine */
1687 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1688 
1689 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1690 			ste_wait(sc);
1691 		}else{
1692 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1693 			sc->ste_tx_prev->ste_ptr->ste_next
1694 				= cur_tx->ste_phys;
1695 		}
1696 
1697 		sc->ste_tx_prev = cur_tx;
1698 
1699 		/*
1700 		 * If there's a BPF listener, bounce a copy of this frame
1701 		 * to him.
1702 	 	 */
1703 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1704 
1705 		STE_INC(idx, STE_TX_LIST_CNT);
1706 		ifp->if_timer = 5;
1707 	}
1708 	sc->ste_cdata.ste_tx_prod = idx;
1709 
1710 	return;
1711 }
1712 
1713 static void
1714 ste_watchdog(ifp)
1715 	struct ifnet		*ifp;
1716 {
1717 	struct ste_softc	*sc;
1718 
1719 	sc = ifp->if_softc;
1720 	STE_LOCK(sc);
1721 
1722 	ifp->if_oerrors++;
1723 	if_printf(ifp, "watchdog timeout\n");
1724 
1725 	ste_txeoc(sc);
1726 	ste_txeof(sc);
1727 	ste_rxeoc(sc);
1728 	ste_rxeof(sc);
1729 	ste_reset(sc);
1730 	ste_init_locked(sc);
1731 
1732 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1733 		ste_start_locked(ifp);
1734 	STE_UNLOCK(sc);
1735 
1736 	return;
1737 }
1738 
1739 static int
1740 ste_shutdown(dev)
1741 	device_t		dev;
1742 {
1743 	struct ste_softc	*sc;
1744 
1745 	sc = device_get_softc(dev);
1746 
1747 	STE_LOCK(sc);
1748 	ste_stop(sc);
1749 	STE_UNLOCK(sc);
1750 
1751 	return (0);
1752 }
1753