xref: /freebsd/sys/dev/ste/if_ste.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/module.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 #include <net/if_vlan_var.h>
62 
63 #include <machine/bus.h>
64 #include <machine/resource.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <dev/ste/if_stereg.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 MODULE_DEPEND(ste, pci, 1, 1, 1);
78 MODULE_DEPEND(ste, ether, 1, 1, 1);
79 MODULE_DEPEND(ste, miibus, 1, 1, 1);
80 
81 /* Define to show Tx error status. */
82 #define	STE_SHOW_TXERRORS
83 
84 /*
85  * Various supported device vendors/types and their names.
86  */
87 static struct ste_type ste_devs[] = {
88 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91 	{ 0, 0, NULL }
92 };
93 
94 static int	ste_attach(device_t);
95 static int	ste_detach(device_t);
96 static int	ste_probe(device_t);
97 static int	ste_resume(device_t);
98 static int	ste_shutdown(device_t);
99 static int	ste_suspend(device_t);
100 
101 static int	ste_dma_alloc(struct ste_softc *);
102 static void	ste_dma_free(struct ste_softc *);
103 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
104 static int 	ste_eeprom_wait(struct ste_softc *);
105 static int	ste_encap(struct ste_softc *, struct mbuf **,
106 		    struct ste_chain *);
107 static int	ste_ifmedia_upd(struct ifnet *);
108 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 static void	ste_init(void *);
110 static void	ste_init_locked(struct ste_softc *);
111 static int	ste_init_rx_list(struct ste_softc *);
112 static void	ste_init_tx_list(struct ste_softc *);
113 static void	ste_intr(void *);
114 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
115 static int	ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
116 static void	ste_mii_send(struct ste_softc *, uint32_t, int);
117 static void	ste_mii_sync(struct ste_softc *);
118 static int	ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
119 static int	ste_miibus_readreg(device_t, int, int);
120 static void	ste_miibus_statchg(device_t);
121 static int	ste_miibus_writereg(device_t, int, int, int);
122 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
124 static void	ste_reset(struct ste_softc *);
125 static void	ste_restart_tx(struct ste_softc *);
126 static int	ste_rxeof(struct ste_softc *, int);
127 static void	ste_rxfilter(struct ste_softc *);
128 static void	ste_setwol(struct ste_softc *);
129 static void	ste_start(struct ifnet *);
130 static void	ste_start_locked(struct ifnet *);
131 static void	ste_stats_clear(struct ste_softc *);
132 static void	ste_stats_update(struct ste_softc *);
133 static void	ste_stop(struct ste_softc *);
134 static void	ste_sysctl_node(struct ste_softc *);
135 static void	ste_tick(void *);
136 static void	ste_txeoc(struct ste_softc *);
137 static void	ste_txeof(struct ste_softc *);
138 static void	ste_wait(struct ste_softc *);
139 static void	ste_watchdog(struct ste_softc *);
140 
141 static device_method_t ste_methods[] = {
142 	/* Device interface */
143 	DEVMETHOD(device_probe,		ste_probe),
144 	DEVMETHOD(device_attach,	ste_attach),
145 	DEVMETHOD(device_detach,	ste_detach),
146 	DEVMETHOD(device_shutdown,	ste_shutdown),
147 	DEVMETHOD(device_suspend,	ste_suspend),
148 	DEVMETHOD(device_resume,	ste_resume),
149 
150 	/* bus interface */
151 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153 
154 	/* MII interface */
155 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
156 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
157 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
158 
159 	{ 0, 0 }
160 };
161 
162 static driver_t ste_driver = {
163 	"ste",
164 	ste_methods,
165 	sizeof(struct ste_softc)
166 };
167 
168 static devclass_t ste_devclass;
169 
170 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
171 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
172 
173 #define STE_SETBIT4(sc, reg, x)				\
174 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
175 
176 #define STE_CLRBIT4(sc, reg, x)				\
177 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
178 
179 #define STE_SETBIT2(sc, reg, x)				\
180 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
181 
182 #define STE_CLRBIT2(sc, reg, x)				\
183 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
184 
185 #define STE_SETBIT1(sc, reg, x)				\
186 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
187 
188 #define STE_CLRBIT1(sc, reg, x)				\
189 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
190 
191 
192 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
193 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
194 
195 /*
196  * Sync the PHYs by setting data bit and strobing the clock 32 times.
197  */
198 static void
199 ste_mii_sync(struct ste_softc *sc)
200 {
201 	int i;
202 
203 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
204 
205 	for (i = 0; i < 32; i++) {
206 		MII_SET(STE_PHYCTL_MCLK);
207 		DELAY(1);
208 		MII_CLR(STE_PHYCTL_MCLK);
209 		DELAY(1);
210 	}
211 }
212 
213 /*
214  * Clock a series of bits through the MII.
215  */
216 static void
217 ste_mii_send(struct ste_softc *sc, uint32_t bits, int cnt)
218 {
219 	int i;
220 
221 	MII_CLR(STE_PHYCTL_MCLK);
222 
223 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224 		if (bits & i) {
225 			MII_SET(STE_PHYCTL_MDATA);
226                 } else {
227 			MII_CLR(STE_PHYCTL_MDATA);
228                 }
229 		DELAY(1);
230 		MII_CLR(STE_PHYCTL_MCLK);
231 		DELAY(1);
232 		MII_SET(STE_PHYCTL_MCLK);
233 	}
234 }
235 
236 /*
237  * Read an PHY register through the MII.
238  */
239 static int
240 ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
241 {
242 	int i, ack;
243 
244 	/*
245 	 * Set up frame for RX.
246 	 */
247 	frame->mii_stdelim = STE_MII_STARTDELIM;
248 	frame->mii_opcode = STE_MII_READOP;
249 	frame->mii_turnaround = 0;
250 	frame->mii_data = 0;
251 
252 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
253 	/*
254  	 * Turn on data xmit.
255 	 */
256 	MII_SET(STE_PHYCTL_MDIR);
257 
258 	ste_mii_sync(sc);
259 
260 	/*
261 	 * Send command/address info.
262 	 */
263 	ste_mii_send(sc, frame->mii_stdelim, 2);
264 	ste_mii_send(sc, frame->mii_opcode, 2);
265 	ste_mii_send(sc, frame->mii_phyaddr, 5);
266 	ste_mii_send(sc, frame->mii_regaddr, 5);
267 
268 	/* Turn off xmit. */
269 	MII_CLR(STE_PHYCTL_MDIR);
270 
271 	/* Idle bit */
272 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
273 	DELAY(1);
274 	MII_SET(STE_PHYCTL_MCLK);
275 	DELAY(1);
276 
277 	/* Check for ack */
278 	MII_CLR(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
281 	MII_SET(STE_PHYCTL_MCLK);
282 	DELAY(1);
283 
284 	/*
285 	 * Now try reading data bits. If the ack failed, we still
286 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
287 	 */
288 	if (ack) {
289 		for (i = 0; i < 16; i++) {
290 			MII_CLR(STE_PHYCTL_MCLK);
291 			DELAY(1);
292 			MII_SET(STE_PHYCTL_MCLK);
293 			DELAY(1);
294 		}
295 		goto fail;
296 	}
297 
298 	for (i = 0x8000; i; i >>= 1) {
299 		MII_CLR(STE_PHYCTL_MCLK);
300 		DELAY(1);
301 		if (!ack) {
302 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
303 				frame->mii_data |= i;
304 			DELAY(1);
305 		}
306 		MII_SET(STE_PHYCTL_MCLK);
307 		DELAY(1);
308 	}
309 
310 fail:
311 
312 	MII_CLR(STE_PHYCTL_MCLK);
313 	DELAY(1);
314 	MII_SET(STE_PHYCTL_MCLK);
315 	DELAY(1);
316 
317 	if (ack)
318 		return (1);
319 	return (0);
320 }
321 
322 /*
323  * Write to a PHY register through the MII.
324  */
325 static int
326 ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
327 {
328 
329 	/*
330 	 * Set up frame for TX.
331 	 */
332 
333 	frame->mii_stdelim = STE_MII_STARTDELIM;
334 	frame->mii_opcode = STE_MII_WRITEOP;
335 	frame->mii_turnaround = STE_MII_TURNAROUND;
336 
337 	/*
338  	 * Turn on data output.
339 	 */
340 	MII_SET(STE_PHYCTL_MDIR);
341 
342 	ste_mii_sync(sc);
343 
344 	ste_mii_send(sc, frame->mii_stdelim, 2);
345 	ste_mii_send(sc, frame->mii_opcode, 2);
346 	ste_mii_send(sc, frame->mii_phyaddr, 5);
347 	ste_mii_send(sc, frame->mii_regaddr, 5);
348 	ste_mii_send(sc, frame->mii_turnaround, 2);
349 	ste_mii_send(sc, frame->mii_data, 16);
350 
351 	/* Idle bit. */
352 	MII_SET(STE_PHYCTL_MCLK);
353 	DELAY(1);
354 	MII_CLR(STE_PHYCTL_MCLK);
355 	DELAY(1);
356 
357 	/*
358 	 * Turn off xmit.
359 	 */
360 	MII_CLR(STE_PHYCTL_MDIR);
361 
362 	return (0);
363 }
364 
365 static int
366 ste_miibus_readreg(device_t dev, int phy, int reg)
367 {
368 	struct ste_softc *sc;
369 	struct ste_mii_frame frame;
370 
371 	sc = device_get_softc(dev);
372 	bzero((char *)&frame, sizeof(frame));
373 
374 	frame.mii_phyaddr = phy;
375 	frame.mii_regaddr = reg;
376 	ste_mii_readreg(sc, &frame);
377 
378 	return (frame.mii_data);
379 }
380 
381 static int
382 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
383 {
384 	struct ste_softc *sc;
385 	struct ste_mii_frame frame;
386 
387 	sc = device_get_softc(dev);
388 	bzero((char *)&frame, sizeof(frame));
389 
390 	frame.mii_phyaddr = phy;
391 	frame.mii_regaddr = reg;
392 	frame.mii_data = data;
393 
394 	ste_mii_writereg(sc, &frame);
395 
396 	return (0);
397 }
398 
399 static void
400 ste_miibus_statchg(device_t dev)
401 {
402 	struct ste_softc *sc;
403 	struct mii_data *mii;
404 	struct ifnet *ifp;
405 	uint16_t cfg;
406 
407 	sc = device_get_softc(dev);
408 
409 	mii = device_get_softc(sc->ste_miibus);
410 	ifp = sc->ste_ifp;
411 	if (mii == NULL || ifp == NULL ||
412 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
413 		return;
414 
415 	sc->ste_flags &= ~STE_FLAG_LINK;
416 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
417 	    (IFM_ACTIVE | IFM_AVALID)) {
418 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
419 		case IFM_10_T:
420 		case IFM_100_TX:
421 		case IFM_100_FX:
422 		case IFM_100_T4:
423 			sc->ste_flags |= STE_FLAG_LINK;
424 		default:
425 			break;
426 		}
427 	}
428 
429 	/* Program MACs with resolved speed/duplex/flow-control. */
430 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
431 		cfg = CSR_READ_2(sc, STE_MACCTL0);
432 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
433 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
434 			/*
435 			 * ST201 data sheet says driver should enable receiving
436 			 * MAC control frames bit of receive mode register to
437 			 * receive flow-control frames but the register has no
438 			 * such bits. In addition the controller has no ability
439 			 * to send pause frames so it should be handled in
440 			 * driver. Implementing pause timer handling in driver
441 			 * layer is not trivial, so don't enable flow-control
442 			 * here.
443 			 */
444 			cfg |= STE_MACCTL0_FULLDUPLEX;
445 		}
446 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
447 	}
448 }
449 
450 static int
451 ste_ifmedia_upd(struct ifnet *ifp)
452 {
453 	struct ste_softc *sc;
454 	struct mii_data	*mii;
455 	struct mii_softc *miisc;
456 	int error;
457 
458 	sc = ifp->if_softc;
459 	STE_LOCK(sc);
460 	mii = device_get_softc(sc->ste_miibus);
461 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
462 		PHY_RESET(miisc);
463 	error = mii_mediachg(mii);
464 	STE_UNLOCK(sc);
465 
466 	return (error);
467 }
468 
469 static void
470 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
471 {
472 	struct ste_softc *sc;
473 	struct mii_data *mii;
474 
475 	sc = ifp->if_softc;
476 	mii = device_get_softc(sc->ste_miibus);
477 
478 	STE_LOCK(sc);
479 	if ((ifp->if_flags & IFF_UP) == 0) {
480 		STE_UNLOCK(sc);
481 		return;
482 	}
483 	mii_pollstat(mii);
484 	ifmr->ifm_active = mii->mii_media_active;
485 	ifmr->ifm_status = mii->mii_media_status;
486 	STE_UNLOCK(sc);
487 }
488 
489 static void
490 ste_wait(struct ste_softc *sc)
491 {
492 	int i;
493 
494 	for (i = 0; i < STE_TIMEOUT; i++) {
495 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
496 			break;
497 		DELAY(1);
498 	}
499 
500 	if (i == STE_TIMEOUT)
501 		device_printf(sc->ste_dev, "command never completed!\n");
502 }
503 
504 /*
505  * The EEPROM is slow: give it time to come ready after issuing
506  * it a command.
507  */
508 static int
509 ste_eeprom_wait(struct ste_softc *sc)
510 {
511 	int i;
512 
513 	DELAY(1000);
514 
515 	for (i = 0; i < 100; i++) {
516 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
517 			DELAY(1000);
518 		else
519 			break;
520 	}
521 
522 	if (i == 100) {
523 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
524 		return (1);
525 	}
526 
527 	return (0);
528 }
529 
530 /*
531  * Read a sequence of words from the EEPROM. Note that ethernet address
532  * data is stored in the EEPROM in network byte order.
533  */
534 static int
535 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
536 {
537 	int err = 0, i;
538 
539 	if (ste_eeprom_wait(sc))
540 		return (1);
541 
542 	for (i = 0; i < cnt; i++) {
543 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
544 		err = ste_eeprom_wait(sc);
545 		if (err)
546 			break;
547 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
548 		dest++;
549 	}
550 
551 	return (err ? 1 : 0);
552 }
553 
554 static void
555 ste_rxfilter(struct ste_softc *sc)
556 {
557 	struct ifnet *ifp;
558 	struct ifmultiaddr *ifma;
559 	uint32_t hashes[2] = { 0, 0 };
560 	uint8_t rxcfg;
561 	int h;
562 
563 	STE_LOCK_ASSERT(sc);
564 
565 	ifp = sc->ste_ifp;
566 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
567 	rxcfg |= STE_RXMODE_UNICAST;
568 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
569 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
570 	if (ifp->if_flags & IFF_BROADCAST)
571 		rxcfg |= STE_RXMODE_BROADCAST;
572 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
573 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
574 			rxcfg |= STE_RXMODE_ALLMULTI;
575 		if ((ifp->if_flags & IFF_PROMISC) != 0)
576 			rxcfg |= STE_RXMODE_PROMISC;
577 		goto chipit;
578 	}
579 
580 	rxcfg |= STE_RXMODE_MULTIHASH;
581 	/* Now program new ones. */
582 	if_maddr_rlock(ifp);
583 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
584 		if (ifma->ifma_addr->sa_family != AF_LINK)
585 			continue;
586 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
587 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
588 		if (h < 32)
589 			hashes[0] |= (1 << h);
590 		else
591 			hashes[1] |= (1 << (h - 32));
592 	}
593 	if_maddr_runlock(ifp);
594 
595 chipit:
596 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
597 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
598 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
599 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
600 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
601 	CSR_READ_1(sc, STE_RX_MODE);
602 }
603 
604 #ifdef DEVICE_POLLING
605 static poll_handler_t ste_poll, ste_poll_locked;
606 
607 static int
608 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
609 {
610 	struct ste_softc *sc = ifp->if_softc;
611 	int rx_npkts = 0;
612 
613 	STE_LOCK(sc);
614 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
615 		rx_npkts = ste_poll_locked(ifp, cmd, count);
616 	STE_UNLOCK(sc);
617 	return (rx_npkts);
618 }
619 
620 static int
621 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
622 {
623 	struct ste_softc *sc = ifp->if_softc;
624 	int rx_npkts;
625 
626 	STE_LOCK_ASSERT(sc);
627 
628 	rx_npkts = ste_rxeof(sc, count);
629 	ste_txeof(sc);
630 	ste_txeoc(sc);
631 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
632 		ste_start_locked(ifp);
633 
634 	if (cmd == POLL_AND_CHECK_STATUS) {
635 		uint16_t status;
636 
637 		status = CSR_READ_2(sc, STE_ISR_ACK);
638 
639 		if (status & STE_ISR_STATS_OFLOW)
640 			ste_stats_update(sc);
641 
642 		if (status & STE_ISR_HOSTERR) {
643 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
644 			ste_init_locked(sc);
645 		}
646 	}
647 	return (rx_npkts);
648 }
649 #endif /* DEVICE_POLLING */
650 
651 static void
652 ste_intr(void *xsc)
653 {
654 	struct ste_softc *sc;
655 	struct ifnet *ifp;
656 	uint16_t intrs, status;
657 
658 	sc = xsc;
659 	STE_LOCK(sc);
660 	ifp = sc->ste_ifp;
661 
662 #ifdef DEVICE_POLLING
663 	if (ifp->if_capenable & IFCAP_POLLING) {
664 		STE_UNLOCK(sc);
665 		return;
666 	}
667 #endif
668 	/* Reading STE_ISR_ACK clears STE_IMR register. */
669 	status = CSR_READ_2(sc, STE_ISR_ACK);
670 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
671 		STE_UNLOCK(sc);
672 		return;
673 	}
674 
675 	intrs = STE_INTRS;
676 	if (status == 0xFFFF || (status & intrs) == 0)
677 		goto done;
678 
679 	if (sc->ste_int_rx_act > 0) {
680 		status &= ~STE_ISR_RX_DMADONE;
681 		intrs &= ~STE_IMR_RX_DMADONE;
682 	}
683 
684 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
685 		ste_rxeof(sc, -1);
686 		/*
687 		 * The controller has no ability to Rx interrupt
688 		 * moderation feature. Receiving 64 bytes frames
689 		 * from wire generates too many interrupts which in
690 		 * turn make system useless to process other useful
691 		 * things. Fortunately ST201 supports single shot
692 		 * timer so use the timer to implement Rx interrupt
693 		 * moderation in driver. This adds more register
694 		 * access but it greatly reduces number of Rx
695 		 * interrupts under high network load.
696 		 */
697 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
698 		    (sc->ste_int_rx_mod != 0)) {
699 			if ((status & STE_ISR_RX_DMADONE) != 0) {
700 				CSR_WRITE_2(sc, STE_COUNTDOWN,
701 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
702 				intrs &= ~STE_IMR_RX_DMADONE;
703 				sc->ste_int_rx_act = 1;
704 			} else {
705 				intrs |= STE_IMR_RX_DMADONE;
706 				sc->ste_int_rx_act = 0;
707 			}
708 		}
709 	}
710 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
711 		if ((status & STE_ISR_TX_DMADONE) != 0)
712 			ste_txeof(sc);
713 		if ((status & STE_ISR_TX_DONE) != 0)
714 			ste_txeoc(sc);
715 		if ((status & STE_ISR_STATS_OFLOW) != 0)
716 			ste_stats_update(sc);
717 		if ((status & STE_ISR_HOSTERR) != 0) {
718 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
719 			ste_init_locked(sc);
720 			STE_UNLOCK(sc);
721 			return;
722 		}
723 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
724 			ste_start_locked(ifp);
725 done:
726 		/* Re-enable interrupts */
727 		CSR_WRITE_2(sc, STE_IMR, intrs);
728 	}
729 	STE_UNLOCK(sc);
730 }
731 
732 /*
733  * A frame has been uploaded: pass the resulting mbuf chain up to
734  * the higher level protocols.
735  */
736 static int
737 ste_rxeof(struct ste_softc *sc, int count)
738 {
739         struct mbuf *m;
740         struct ifnet *ifp;
741 	struct ste_chain_onefrag *cur_rx;
742 	uint32_t rxstat;
743 	int total_len, rx_npkts;
744 
745 	ifp = sc->ste_ifp;
746 
747 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
748 	    sc->ste_cdata.ste_rx_list_map,
749 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
750 
751 	cur_rx = sc->ste_cdata.ste_rx_head;
752 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
753 	    cur_rx = cur_rx->ste_next) {
754 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
755 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
756 			break;
757 #ifdef DEVICE_POLLING
758 		if (ifp->if_capenable & IFCAP_POLLING) {
759 			if (count == 0)
760 				break;
761 			count--;
762 		}
763 #endif
764 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
765 			break;
766 		/*
767 		 * If an error occurs, update stats, clear the
768 		 * status word and leave the mbuf cluster in place:
769 		 * it should simply get re-used next time this descriptor
770 	 	 * comes up in the ring.
771 		 */
772 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
773 			ifp->if_ierrors++;
774 			cur_rx->ste_ptr->ste_status = 0;
775 			continue;
776 		}
777 
778 		/* No errors; receive the packet. */
779 		m = cur_rx->ste_mbuf;
780 		total_len = STE_RX_BYTES(rxstat);
781 
782 		/*
783 		 * Try to conjure up a new mbuf cluster. If that
784 		 * fails, it means we have an out of memory condition and
785 		 * should leave the buffer in place and continue. This will
786 		 * result in a lost packet, but there's little else we
787 		 * can do in this situation.
788 		 */
789 		if (ste_newbuf(sc, cur_rx) != 0) {
790 			ifp->if_iqdrops++;
791 			cur_rx->ste_ptr->ste_status = 0;
792 			continue;
793 		}
794 
795 		m->m_pkthdr.rcvif = ifp;
796 		m->m_pkthdr.len = m->m_len = total_len;
797 
798 		ifp->if_ipackets++;
799 		STE_UNLOCK(sc);
800 		(*ifp->if_input)(ifp, m);
801 		STE_LOCK(sc);
802 	}
803 
804 	if (rx_npkts > 0) {
805 		sc->ste_cdata.ste_rx_head = cur_rx;
806 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
807 		    sc->ste_cdata.ste_rx_list_map,
808 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
809 	}
810 
811 	return (rx_npkts);
812 }
813 
814 static void
815 ste_txeoc(struct ste_softc *sc)
816 {
817 	uint16_t txstat;
818 	struct ifnet *ifp;
819 
820 	STE_LOCK_ASSERT(sc);
821 
822 	ifp = sc->ste_ifp;
823 
824 	/*
825 	 * STE_TX_STATUS register implements a queue of up to 31
826 	 * transmit status byte. Writing an arbitrary value to the
827 	 * register will advance the queue to the next transmit
828 	 * status byte. This means if driver does not read
829 	 * STE_TX_STATUS register after completing sending more
830 	 * than 31 frames the controller would be stalled so driver
831 	 * should re-wake the Tx MAC. This is the most severe
832 	 * limitation of ST201 based controller.
833 	 */
834 	for (;;) {
835 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
836 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
837 			break;
838 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
839 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
840 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
841 			ifp->if_oerrors++;
842 #ifdef	STE_SHOW_TXERRORS
843 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
844 			    txstat & 0xFF, STE_ERR_BITS);
845 #endif
846 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
847 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
848 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
849 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
850 					sc->ste_tx_thresh = STE_PACKET_SIZE;
851 				device_printf(sc->ste_dev,
852 				    "TX underrun, increasing TX"
853 				    " start threshold to %d bytes\n",
854 				    sc->ste_tx_thresh);
855 				/* Make sure to disable active DMA cycles. */
856 				STE_SETBIT4(sc, STE_DMACTL,
857 				    STE_DMACTL_TXDMA_STALL);
858 				ste_wait(sc);
859 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
860 				ste_init_locked(sc);
861 				break;
862 			}
863 			/* Restart Tx. */
864 			ste_restart_tx(sc);
865 		}
866 		/*
867 		 * Advance to next status and ACK TxComplete
868 		 * interrupt. ST201 data sheet was wrong here, to
869 		 * get next Tx status, we have to write both
870 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
871 		 * Otherwise controller returns the same status
872 		 * as well as not acknowledge Tx completion
873 		 * interrupt.
874 		 */
875 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
876 	}
877 }
878 
879 static void
880 ste_tick(void *arg)
881 {
882 	struct ste_softc *sc;
883 	struct mii_data *mii;
884 
885 	sc = (struct ste_softc *)arg;
886 
887 	STE_LOCK_ASSERT(sc);
888 
889 	mii = device_get_softc(sc->ste_miibus);
890 	mii_tick(mii);
891 	/*
892 	 * ukphy(4) does not seem to generate CB that reports
893 	 * resolved link state so if we know we lost a link,
894 	 * explicitly check the link state.
895 	 */
896 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
897 		ste_miibus_statchg(sc->ste_dev);
898 	/*
899 	 * Because we are not generating Tx completion
900 	 * interrupt for every frame, reclaim transmitted
901 	 * buffers here.
902 	 */
903 	ste_txeof(sc);
904 	ste_txeoc(sc);
905 	ste_stats_update(sc);
906 	ste_watchdog(sc);
907 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
908 }
909 
910 static void
911 ste_txeof(struct ste_softc *sc)
912 {
913 	struct ifnet *ifp;
914 	struct ste_chain *cur_tx;
915 	uint32_t txstat;
916 	int idx;
917 
918 	STE_LOCK_ASSERT(sc);
919 
920 	ifp = sc->ste_ifp;
921 	idx = sc->ste_cdata.ste_tx_cons;
922 	if (idx == sc->ste_cdata.ste_tx_prod)
923 		return;
924 
925 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
926 	    sc->ste_cdata.ste_tx_list_map,
927 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
928 
929 	while (idx != sc->ste_cdata.ste_tx_prod) {
930 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
931 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
932 		if ((txstat & STE_TXCTL_DMADONE) == 0)
933 			break;
934 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
935 		    BUS_DMASYNC_POSTWRITE);
936 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
937 		KASSERT(cur_tx->ste_mbuf != NULL,
938 		    ("%s: freeing NULL mbuf!\n", __func__));
939 		m_freem(cur_tx->ste_mbuf);
940 		cur_tx->ste_mbuf = NULL;
941 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
942 		ifp->if_opackets++;
943 		sc->ste_cdata.ste_tx_cnt--;
944 		STE_INC(idx, STE_TX_LIST_CNT);
945 	}
946 
947 	sc->ste_cdata.ste_tx_cons = idx;
948 	if (sc->ste_cdata.ste_tx_cnt == 0)
949 		sc->ste_timer = 0;
950 }
951 
952 static void
953 ste_stats_clear(struct ste_softc *sc)
954 {
955 
956 	STE_LOCK_ASSERT(sc);
957 
958 	/* Rx stats. */
959 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
960 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
961 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
962 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
963 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
964 	CSR_READ_1(sc, STE_STAT_RX_LOST);
965 	/* Tx stats. */
966 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
967 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
968 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
969 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
970 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
971 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
972 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
973 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
974 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
975 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
976 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
977 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
978 }
979 
980 static void
981 ste_stats_update(struct ste_softc *sc)
982 {
983 	struct ifnet *ifp;
984 	struct ste_hw_stats *stats;
985 	uint32_t val;
986 
987 	STE_LOCK_ASSERT(sc);
988 
989 	ifp = sc->ste_ifp;
990 	stats = &sc->ste_stats;
991 	/* Rx stats. */
992 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
993 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
994 	val &= 0x000FFFFF;
995 	stats->rx_bytes += val;
996 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
997 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
998 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
999 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
1000 	/* Tx stats. */
1001 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
1002 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
1003 	val &= 0x000FFFFF;
1004 	stats->tx_bytes += val;
1005 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
1006 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
1007 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
1008 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
1009 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
1010 	stats->tx_single_colls += val;
1011 	ifp->if_collisions += val;
1012 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
1013 	stats->tx_multi_colls += val;
1014 	ifp->if_collisions += val;
1015 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
1016 	stats->tx_late_colls += val;
1017 	ifp->if_collisions += val;
1018 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
1019 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
1020 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
1021 }
1022 
1023 /*
1024  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
1025  * IDs against our list and return a device name if we find a match.
1026  */
1027 static int
1028 ste_probe(device_t dev)
1029 {
1030 	struct ste_type *t;
1031 
1032 	t = ste_devs;
1033 
1034 	while (t->ste_name != NULL) {
1035 		if ((pci_get_vendor(dev) == t->ste_vid) &&
1036 		    (pci_get_device(dev) == t->ste_did)) {
1037 			device_set_desc(dev, t->ste_name);
1038 			return (BUS_PROBE_DEFAULT);
1039 		}
1040 		t++;
1041 	}
1042 
1043 	return (ENXIO);
1044 }
1045 
1046 /*
1047  * Attach the interface. Allocate softc structures, do ifmedia
1048  * setup and ethernet/BPF attach.
1049  */
1050 static int
1051 ste_attach(device_t dev)
1052 {
1053 	struct ste_softc *sc;
1054 	struct ifnet *ifp;
1055 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
1056 	int error = 0, phy, pmc, prefer_iomap, rid;
1057 
1058 	sc = device_get_softc(dev);
1059 	sc->ste_dev = dev;
1060 
1061 	/*
1062 	 * Only use one PHY since this chip reports multiple
1063 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1064 	 * it is at 0 & 1.  It is rev 0x12.
1065 	 */
1066 	if (pci_get_vendor(dev) == DL_VENDORID &&
1067 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1068 	    pci_get_revid(dev) == 0x12 )
1069 		sc->ste_flags |= STE_FLAG_ONE_PHY;
1070 
1071 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1072 	    MTX_DEF);
1073 	/*
1074 	 * Map control/status registers.
1075 	 */
1076 	pci_enable_busmaster(dev);
1077 
1078 	/*
1079 	 * Prefer memory space register mapping over IO space but use
1080 	 * IO space for a device that is known to have issues on memory
1081 	 * mapping.
1082 	 */
1083 	prefer_iomap = 0;
1084 	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
1085 		prefer_iomap = 1;
1086 	else
1087 		resource_int_value(device_get_name(sc->ste_dev),
1088 		    device_get_unit(sc->ste_dev), "prefer_iomap",
1089 		    &prefer_iomap);
1090 	if (prefer_iomap == 0) {
1091 		sc->ste_res_id = PCIR_BAR(1);
1092 		sc->ste_res_type = SYS_RES_MEMORY;
1093 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1094 		    &sc->ste_res_id, RF_ACTIVE);
1095 	}
1096 	if (prefer_iomap || sc->ste_res == NULL) {
1097 		sc->ste_res_id = PCIR_BAR(0);
1098 		sc->ste_res_type = SYS_RES_IOPORT;
1099 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1100 		    &sc->ste_res_id, RF_ACTIVE);
1101 	}
1102 	if (sc->ste_res == NULL) {
1103 		device_printf(dev, "couldn't map ports/memory\n");
1104 		error = ENXIO;
1105 		goto fail;
1106 	}
1107 
1108 	/* Allocate interrupt */
1109 	rid = 0;
1110 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1111 	    RF_SHAREABLE | RF_ACTIVE);
1112 
1113 	if (sc->ste_irq == NULL) {
1114 		device_printf(dev, "couldn't map interrupt\n");
1115 		error = ENXIO;
1116 		goto fail;
1117 	}
1118 
1119 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
1120 
1121 	/* Reset the adapter. */
1122 	ste_reset(sc);
1123 
1124 	/*
1125 	 * Get station address from the EEPROM.
1126 	 */
1127 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
1128 		device_printf(dev, "failed to read station address\n");
1129 		error = ENXIO;
1130 		goto fail;
1131 	}
1132 	ste_sysctl_node(sc);
1133 
1134 	if ((error = ste_dma_alloc(sc)) != 0)
1135 		goto fail;
1136 
1137 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1138 	if (ifp == NULL) {
1139 		device_printf(dev, "can not if_alloc()\n");
1140 		error = ENOSPC;
1141 		goto fail;
1142 	}
1143 
1144 	/* Do MII setup. */
1145 	phy = MII_PHY_ANY;
1146 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
1147 		phy = 0;
1148 	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1149 		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1150 	if (error != 0) {
1151 		device_printf(dev, "attaching PHYs failed\n");
1152 		goto fail;
1153 	}
1154 
1155 	ifp->if_softc = sc;
1156 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1157 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1158 	ifp->if_ioctl = ste_ioctl;
1159 	ifp->if_start = ste_start;
1160 	ifp->if_init = ste_init;
1161 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1162 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1163 	IFQ_SET_READY(&ifp->if_snd);
1164 
1165 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1166 
1167 	/*
1168 	 * Call MI attach routine.
1169 	 */
1170 	ether_ifattach(ifp, (uint8_t *)eaddr);
1171 
1172 	/*
1173 	 * Tell the upper layer(s) we support long frames.
1174 	 */
1175 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1176 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1177 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1178 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1179 	ifp->if_capenable = ifp->if_capabilities;
1180 #ifdef DEVICE_POLLING
1181 	ifp->if_capabilities |= IFCAP_POLLING;
1182 #endif
1183 
1184 	/* Hook interrupt last to avoid having to lock softc */
1185 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1186 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1187 
1188 	if (error) {
1189 		device_printf(dev, "couldn't set up irq\n");
1190 		ether_ifdetach(ifp);
1191 		goto fail;
1192 	}
1193 
1194 fail:
1195 	if (error)
1196 		ste_detach(dev);
1197 
1198 	return (error);
1199 }
1200 
1201 /*
1202  * Shutdown hardware and free up resources. This can be called any
1203  * time after the mutex has been initialized. It is called in both
1204  * the error case in attach and the normal detach case so it needs
1205  * to be careful about only freeing resources that have actually been
1206  * allocated.
1207  */
1208 static int
1209 ste_detach(device_t dev)
1210 {
1211 	struct ste_softc *sc;
1212 	struct ifnet *ifp;
1213 
1214 	sc = device_get_softc(dev);
1215 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1216 	ifp = sc->ste_ifp;
1217 
1218 #ifdef DEVICE_POLLING
1219 	if (ifp->if_capenable & IFCAP_POLLING)
1220 		ether_poll_deregister(ifp);
1221 #endif
1222 
1223 	/* These should only be active if attach succeeded */
1224 	if (device_is_attached(dev)) {
1225 		ether_ifdetach(ifp);
1226 		STE_LOCK(sc);
1227 		ste_stop(sc);
1228 		STE_UNLOCK(sc);
1229 		callout_drain(&sc->ste_callout);
1230 	}
1231 	if (sc->ste_miibus)
1232 		device_delete_child(dev, sc->ste_miibus);
1233 	bus_generic_detach(dev);
1234 
1235 	if (sc->ste_intrhand)
1236 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1237 	if (sc->ste_irq)
1238 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1239 	if (sc->ste_res)
1240 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1241 		    sc->ste_res);
1242 
1243 	if (ifp)
1244 		if_free(ifp);
1245 
1246 	ste_dma_free(sc);
1247 	mtx_destroy(&sc->ste_mtx);
1248 
1249 	return (0);
1250 }
1251 
1252 struct ste_dmamap_arg {
1253 	bus_addr_t	ste_busaddr;
1254 };
1255 
1256 static void
1257 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1258 {
1259 	struct ste_dmamap_arg *ctx;
1260 
1261 	if (error != 0)
1262 		return;
1263 
1264 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1265 
1266 	ctx = (struct ste_dmamap_arg *)arg;
1267 	ctx->ste_busaddr = segs[0].ds_addr;
1268 }
1269 
1270 static int
1271 ste_dma_alloc(struct ste_softc *sc)
1272 {
1273 	struct ste_chain *txc;
1274 	struct ste_chain_onefrag *rxc;
1275 	struct ste_dmamap_arg ctx;
1276 	int error, i;
1277 
1278 	/* Create parent DMA tag. */
1279 	error = bus_dma_tag_create(
1280 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1281 	    1, 0,			/* alignment, boundary */
1282 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1283 	    BUS_SPACE_MAXADDR,		/* highaddr */
1284 	    NULL, NULL,			/* filter, filterarg */
1285 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1286 	    0,				/* nsegments */
1287 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1288 	    0,				/* flags */
1289 	    NULL, NULL,			/* lockfunc, lockarg */
1290 	    &sc->ste_cdata.ste_parent_tag);
1291 	if (error != 0) {
1292 		device_printf(sc->ste_dev,
1293 		    "could not create parent DMA tag.\n");
1294 		goto fail;
1295 	}
1296 
1297 	/* Create DMA tag for Tx descriptor list. */
1298 	error = bus_dma_tag_create(
1299 	    sc->ste_cdata.ste_parent_tag, /* parent */
1300 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1301 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1302 	    BUS_SPACE_MAXADDR,		/* highaddr */
1303 	    NULL, NULL,			/* filter, filterarg */
1304 	    STE_TX_LIST_SZ,		/* maxsize */
1305 	    1,				/* nsegments */
1306 	    STE_TX_LIST_SZ,		/* maxsegsize */
1307 	    0,				/* flags */
1308 	    NULL, NULL,			/* lockfunc, lockarg */
1309 	    &sc->ste_cdata.ste_tx_list_tag);
1310 	if (error != 0) {
1311 		device_printf(sc->ste_dev,
1312 		    "could not create Tx list DMA tag.\n");
1313 		goto fail;
1314 	}
1315 
1316 	/* Create DMA tag for Rx descriptor list. */
1317 	error = bus_dma_tag_create(
1318 	    sc->ste_cdata.ste_parent_tag, /* parent */
1319 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1320 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1321 	    BUS_SPACE_MAXADDR,		/* highaddr */
1322 	    NULL, NULL,			/* filter, filterarg */
1323 	    STE_RX_LIST_SZ,		/* maxsize */
1324 	    1,				/* nsegments */
1325 	    STE_RX_LIST_SZ,		/* maxsegsize */
1326 	    0,				/* flags */
1327 	    NULL, NULL,			/* lockfunc, lockarg */
1328 	    &sc->ste_cdata.ste_rx_list_tag);
1329 	if (error != 0) {
1330 		device_printf(sc->ste_dev,
1331 		    "could not create Rx list DMA tag.\n");
1332 		goto fail;
1333 	}
1334 
1335 	/* Create DMA tag for Tx buffers. */
1336 	error = bus_dma_tag_create(
1337 	    sc->ste_cdata.ste_parent_tag, /* parent */
1338 	    1, 0,			/* alignment, boundary */
1339 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1340 	    BUS_SPACE_MAXADDR,		/* highaddr */
1341 	    NULL, NULL,			/* filter, filterarg */
1342 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1343 	    STE_MAXFRAGS,		/* nsegments */
1344 	    MCLBYTES,			/* maxsegsize */
1345 	    0,				/* flags */
1346 	    NULL, NULL,			/* lockfunc, lockarg */
1347 	    &sc->ste_cdata.ste_tx_tag);
1348 	if (error != 0) {
1349 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1350 		goto fail;
1351 	}
1352 
1353 	/* Create DMA tag for Rx buffers. */
1354 	error = bus_dma_tag_create(
1355 	    sc->ste_cdata.ste_parent_tag, /* parent */
1356 	    1, 0,			/* alignment, boundary */
1357 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1358 	    BUS_SPACE_MAXADDR,		/* highaddr */
1359 	    NULL, NULL,			/* filter, filterarg */
1360 	    MCLBYTES,			/* maxsize */
1361 	    1,				/* nsegments */
1362 	    MCLBYTES,			/* maxsegsize */
1363 	    0,				/* flags */
1364 	    NULL, NULL,			/* lockfunc, lockarg */
1365 	    &sc->ste_cdata.ste_rx_tag);
1366 	if (error != 0) {
1367 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1368 		goto fail;
1369 	}
1370 
1371 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1372 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1373 	    (void **)&sc->ste_ldata.ste_tx_list,
1374 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1375 	    &sc->ste_cdata.ste_tx_list_map);
1376 	if (error != 0) {
1377 		device_printf(sc->ste_dev,
1378 		    "could not allocate DMA'able memory for Tx list.\n");
1379 		goto fail;
1380 	}
1381 	ctx.ste_busaddr = 0;
1382 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1383 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1384 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1385 	if (error != 0 || ctx.ste_busaddr == 0) {
1386 		device_printf(sc->ste_dev,
1387 		    "could not load DMA'able memory for Tx list.\n");
1388 		goto fail;
1389 	}
1390 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1391 
1392 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1393 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1394 	    (void **)&sc->ste_ldata.ste_rx_list,
1395 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1396 	    &sc->ste_cdata.ste_rx_list_map);
1397 	if (error != 0) {
1398 		device_printf(sc->ste_dev,
1399 		    "could not allocate DMA'able memory for Rx list.\n");
1400 		goto fail;
1401 	}
1402 	ctx.ste_busaddr = 0;
1403 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1404 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1405 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1406 	if (error != 0 || ctx.ste_busaddr == 0) {
1407 		device_printf(sc->ste_dev,
1408 		    "could not load DMA'able memory for Rx list.\n");
1409 		goto fail;
1410 	}
1411 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1412 
1413 	/* Create DMA maps for Tx buffers. */
1414 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1415 		txc = &sc->ste_cdata.ste_tx_chain[i];
1416 		txc->ste_ptr = NULL;
1417 		txc->ste_mbuf = NULL;
1418 		txc->ste_next = NULL;
1419 		txc->ste_phys = 0;
1420 		txc->ste_map = NULL;
1421 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1422 		    &txc->ste_map);
1423 		if (error != 0) {
1424 			device_printf(sc->ste_dev,
1425 			    "could not create Tx dmamap.\n");
1426 			goto fail;
1427 		}
1428 	}
1429 	/* Create DMA maps for Rx buffers. */
1430 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1431 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1432 		device_printf(sc->ste_dev,
1433 		    "could not create spare Rx dmamap.\n");
1434 		goto fail;
1435 	}
1436 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1437 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1438 		rxc->ste_ptr = NULL;
1439 		rxc->ste_mbuf = NULL;
1440 		rxc->ste_next = NULL;
1441 		rxc->ste_map = NULL;
1442 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1443 		    &rxc->ste_map);
1444 		if (error != 0) {
1445 			device_printf(sc->ste_dev,
1446 			    "could not create Rx dmamap.\n");
1447 			goto fail;
1448 		}
1449 	}
1450 
1451 fail:
1452 	return (error);
1453 }
1454 
1455 static void
1456 ste_dma_free(struct ste_softc *sc)
1457 {
1458 	struct ste_chain *txc;
1459 	struct ste_chain_onefrag *rxc;
1460 	int i;
1461 
1462 	/* Tx buffers. */
1463 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1464 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1465 			txc = &sc->ste_cdata.ste_tx_chain[i];
1466 			if (txc->ste_map != NULL) {
1467 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1468 				    txc->ste_map);
1469 				txc->ste_map = NULL;
1470 			}
1471 		}
1472 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1473 		sc->ste_cdata.ste_tx_tag = NULL;
1474 	}
1475 	/* Rx buffers. */
1476 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1477 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1478 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1479 			if (rxc->ste_map != NULL) {
1480 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1481 				    rxc->ste_map);
1482 				rxc->ste_map = NULL;
1483 			}
1484 		}
1485 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1486 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1487 			    sc->ste_cdata.ste_rx_sparemap);
1488 			sc->ste_cdata.ste_rx_sparemap = NULL;
1489 		}
1490 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1491 		sc->ste_cdata.ste_rx_tag = NULL;
1492 	}
1493 	/* Tx descriptor list. */
1494 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1495 		if (sc->ste_cdata.ste_tx_list_map != NULL)
1496 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1497 			    sc->ste_cdata.ste_tx_list_map);
1498 		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1499 		    sc->ste_ldata.ste_tx_list != NULL)
1500 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1501 			    sc->ste_ldata.ste_tx_list,
1502 			    sc->ste_cdata.ste_tx_list_map);
1503 		sc->ste_ldata.ste_tx_list = NULL;
1504 		sc->ste_cdata.ste_tx_list_map = NULL;
1505 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1506 		sc->ste_cdata.ste_tx_list_tag = NULL;
1507 	}
1508 	/* Rx descriptor list. */
1509 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1510 		if (sc->ste_cdata.ste_rx_list_map != NULL)
1511 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1512 			    sc->ste_cdata.ste_rx_list_map);
1513 		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1514 		    sc->ste_ldata.ste_rx_list != NULL)
1515 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1516 			    sc->ste_ldata.ste_rx_list,
1517 			    sc->ste_cdata.ste_rx_list_map);
1518 		sc->ste_ldata.ste_rx_list = NULL;
1519 		sc->ste_cdata.ste_rx_list_map = NULL;
1520 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1521 		sc->ste_cdata.ste_rx_list_tag = NULL;
1522 	}
1523 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1524 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1525 		sc->ste_cdata.ste_parent_tag = NULL;
1526 	}
1527 }
1528 
1529 static int
1530 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1531 {
1532 	struct mbuf *m;
1533 	bus_dma_segment_t segs[1];
1534 	bus_dmamap_t map;
1535 	int error, nsegs;
1536 
1537 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1538 	if (m == NULL)
1539 		return (ENOBUFS);
1540 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1541 	m_adj(m, ETHER_ALIGN);
1542 
1543 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1544 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1545 		m_freem(m);
1546 		return (error);
1547 	}
1548 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1549 
1550 	if (rxc->ste_mbuf != NULL) {
1551 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1552 		    BUS_DMASYNC_POSTREAD);
1553 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1554 	}
1555 	map = rxc->ste_map;
1556 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1557 	sc->ste_cdata.ste_rx_sparemap = map;
1558 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1559 	    BUS_DMASYNC_PREREAD);
1560 	rxc->ste_mbuf = m;
1561 	rxc->ste_ptr->ste_status = 0;
1562 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1563 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1564 	    STE_FRAG_LAST);
1565 	return (0);
1566 }
1567 
1568 static int
1569 ste_init_rx_list(struct ste_softc *sc)
1570 {
1571 	struct ste_chain_data *cd;
1572 	struct ste_list_data *ld;
1573 	int error, i;
1574 
1575 	sc->ste_int_rx_act = 0;
1576 	cd = &sc->ste_cdata;
1577 	ld = &sc->ste_ldata;
1578 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1579 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1580 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1581 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1582 		if (error != 0)
1583 			return (error);
1584 		if (i == (STE_RX_LIST_CNT - 1)) {
1585 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1586 			ld->ste_rx_list[i].ste_next =
1587 			    htole32(ld->ste_rx_list_paddr +
1588 			    (sizeof(struct ste_desc_onefrag) * 0));
1589 		} else {
1590 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1591 			ld->ste_rx_list[i].ste_next =
1592 			    htole32(ld->ste_rx_list_paddr +
1593 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1594 		}
1595 	}
1596 
1597 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1598 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1599 	    sc->ste_cdata.ste_rx_list_map,
1600 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1601 
1602 	return (0);
1603 }
1604 
1605 static void
1606 ste_init_tx_list(struct ste_softc *sc)
1607 {
1608 	struct ste_chain_data *cd;
1609 	struct ste_list_data *ld;
1610 	int i;
1611 
1612 	cd = &sc->ste_cdata;
1613 	ld = &sc->ste_ldata;
1614 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1615 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1616 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1617 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1618 		if (i == (STE_TX_LIST_CNT - 1)) {
1619 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1620 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1621 			    ld->ste_tx_list_paddr +
1622 			    (sizeof(struct ste_desc) * 0)));
1623 		} else {
1624 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1625 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1626 			    ld->ste_tx_list_paddr +
1627 			    (sizeof(struct ste_desc) * (i + 1))));
1628 		}
1629 	}
1630 
1631 	cd->ste_last_tx = NULL;
1632 	cd->ste_tx_prod = 0;
1633 	cd->ste_tx_cons = 0;
1634 	cd->ste_tx_cnt = 0;
1635 
1636 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1637 	    sc->ste_cdata.ste_tx_list_map,
1638 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1639 }
1640 
1641 static void
1642 ste_init(void *xsc)
1643 {
1644 	struct ste_softc *sc;
1645 
1646 	sc = xsc;
1647 	STE_LOCK(sc);
1648 	ste_init_locked(sc);
1649 	STE_UNLOCK(sc);
1650 }
1651 
1652 static void
1653 ste_init_locked(struct ste_softc *sc)
1654 {
1655 	struct ifnet *ifp;
1656 	struct mii_data *mii;
1657 	uint8_t val;
1658 	int i;
1659 
1660 	STE_LOCK_ASSERT(sc);
1661 	ifp = sc->ste_ifp;
1662 	mii = device_get_softc(sc->ste_miibus);
1663 
1664 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1665 		return;
1666 
1667 	ste_stop(sc);
1668 	/* Reset the chip to a known state. */
1669 	ste_reset(sc);
1670 
1671 	/* Init our MAC address */
1672 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1673 		CSR_WRITE_2(sc, STE_PAR0 + i,
1674 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1675 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1676 	}
1677 
1678 	/* Init RX list */
1679 	if (ste_init_rx_list(sc) != 0) {
1680 		device_printf(sc->ste_dev,
1681 		    "initialization failed: no memory for RX buffers\n");
1682 		ste_stop(sc);
1683 		return;
1684 	}
1685 
1686 	/* Set RX polling interval */
1687 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1688 
1689 	/* Init TX descriptors */
1690 	ste_init_tx_list(sc);
1691 
1692 	/* Clear and disable WOL. */
1693 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1694 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1695 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1696 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1697 
1698 	/* Set the TX freethresh value */
1699 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1700 
1701 	/* Set the TX start threshold for best performance. */
1702 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1703 
1704 	/* Set the TX reclaim threshold. */
1705 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1706 
1707 	/* Accept VLAN length packets */
1708 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1709 
1710 	/* Set up the RX filter. */
1711 	ste_rxfilter(sc);
1712 
1713 	/* Load the address of the RX list. */
1714 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1715 	ste_wait(sc);
1716 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1717 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1718 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1719 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1720 
1721 	/* Set TX polling interval(defer until we TX first packet). */
1722 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1723 
1724 	/* Load address of the TX list */
1725 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1726 	ste_wait(sc);
1727 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1728 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1729 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1730 	ste_wait(sc);
1731 	/* Select 3.2us timer. */
1732 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1733 	    STE_DMACTL_COUNTDOWN_MODE);
1734 
1735 	/* Enable receiver and transmitter */
1736 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1737 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1738 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1739 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1740 
1741 	/* Enable stats counters. */
1742 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1743 	/* Clear stats counters. */
1744 	ste_stats_clear(sc);
1745 
1746 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1747 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1748 #ifdef DEVICE_POLLING
1749 	/* Disable interrupts if we are polling. */
1750 	if (ifp->if_capenable & IFCAP_POLLING)
1751 		CSR_WRITE_2(sc, STE_IMR, 0);
1752 	else
1753 #endif
1754 	/* Enable interrupts. */
1755 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1756 
1757 	sc->ste_flags &= ~STE_FLAG_LINK;
1758 	/* Switch to the current media. */
1759 	mii_mediachg(mii);
1760 
1761 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1762 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1763 
1764 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1765 }
1766 
1767 static void
1768 ste_stop(struct ste_softc *sc)
1769 {
1770 	struct ifnet *ifp;
1771 	struct ste_chain_onefrag *cur_rx;
1772 	struct ste_chain *cur_tx;
1773 	uint32_t val;
1774 	int i;
1775 
1776 	STE_LOCK_ASSERT(sc);
1777 	ifp = sc->ste_ifp;
1778 
1779 	callout_stop(&sc->ste_callout);
1780 	sc->ste_timer = 0;
1781 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1782 
1783 	CSR_WRITE_2(sc, STE_IMR, 0);
1784 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1785 	/* Stop pending DMA. */
1786 	val = CSR_READ_4(sc, STE_DMACTL);
1787 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1788 	CSR_WRITE_4(sc, STE_DMACTL, val);
1789 	ste_wait(sc);
1790 	/* Disable auto-polling. */
1791 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1792 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1793 	/* Nullify DMA address to stop any further DMA. */
1794 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1795 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1796 	/* Stop TX/RX MAC. */
1797 	val = CSR_READ_2(sc, STE_MACCTL1);
1798 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1799 	    STE_MACCTL1_STATS_DISABLE;
1800 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1801 	for (i = 0; i < STE_TIMEOUT; i++) {
1802 		DELAY(10);
1803 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1804 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1805 			break;
1806 	}
1807 	if (i == STE_TIMEOUT)
1808 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1809 	/* Acknowledge any pending interrupts. */
1810 	CSR_READ_2(sc, STE_ISR_ACK);
1811 	ste_stats_update(sc);
1812 
1813 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1814 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1815 		if (cur_rx->ste_mbuf != NULL) {
1816 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1817 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1818 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1819 			    cur_rx->ste_map);
1820 			m_freem(cur_rx->ste_mbuf);
1821 			cur_rx->ste_mbuf = NULL;
1822 		}
1823 	}
1824 
1825 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1826 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1827 		if (cur_tx->ste_mbuf != NULL) {
1828 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1829 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1830 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1831 			    cur_tx->ste_map);
1832 			m_freem(cur_tx->ste_mbuf);
1833 			cur_tx->ste_mbuf = NULL;
1834 		}
1835 	}
1836 }
1837 
1838 static void
1839 ste_reset(struct ste_softc *sc)
1840 {
1841 	uint32_t ctl;
1842 	int i;
1843 
1844 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1845 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1846 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1847 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1848 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1849 	    STE_ASICCTL_EXTRESET_RESET;
1850 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1851 	CSR_READ_4(sc, STE_ASICCTL);
1852 	/*
1853 	 * Due to the need of accessing EEPROM controller can take
1854 	 * up to 1ms to complete the global reset.
1855 	 */
1856 	DELAY(1000);
1857 
1858 	for (i = 0; i < STE_TIMEOUT; i++) {
1859 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1860 			break;
1861 		DELAY(10);
1862 	}
1863 
1864 	if (i == STE_TIMEOUT)
1865 		device_printf(sc->ste_dev, "global reset never completed\n");
1866 }
1867 
1868 static void
1869 ste_restart_tx(struct ste_softc *sc)
1870 {
1871 	uint16_t mac;
1872 	int i;
1873 
1874 	for (i = 0; i < STE_TIMEOUT; i++) {
1875 		mac = CSR_READ_2(sc, STE_MACCTL1);
1876 		mac |= STE_MACCTL1_TX_ENABLE;
1877 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1878 		mac = CSR_READ_2(sc, STE_MACCTL1);
1879 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1880 			break;
1881 		DELAY(10);
1882 	}
1883 
1884 	if (i == STE_TIMEOUT)
1885 		device_printf(sc->ste_dev, "starting Tx failed");
1886 }
1887 
1888 static int
1889 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1890 {
1891 	struct ste_softc *sc;
1892 	struct ifreq *ifr;
1893 	struct mii_data *mii;
1894 	int error = 0, mask;
1895 
1896 	sc = ifp->if_softc;
1897 	ifr = (struct ifreq *)data;
1898 
1899 	switch (command) {
1900 	case SIOCSIFFLAGS:
1901 		STE_LOCK(sc);
1902 		if ((ifp->if_flags & IFF_UP) != 0) {
1903 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1904 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1905 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1906 				ste_rxfilter(sc);
1907 			else
1908 				ste_init_locked(sc);
1909 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1910 			ste_stop(sc);
1911 		sc->ste_if_flags = ifp->if_flags;
1912 		STE_UNLOCK(sc);
1913 		break;
1914 	case SIOCADDMULTI:
1915 	case SIOCDELMULTI:
1916 		STE_LOCK(sc);
1917 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1918 			ste_rxfilter(sc);
1919 		STE_UNLOCK(sc);
1920 		break;
1921 	case SIOCGIFMEDIA:
1922 	case SIOCSIFMEDIA:
1923 		mii = device_get_softc(sc->ste_miibus);
1924 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1925 		break;
1926 	case SIOCSIFCAP:
1927 		STE_LOCK(sc);
1928 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1929 #ifdef DEVICE_POLLING
1930 		if ((mask & IFCAP_POLLING) != 0 &&
1931 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1932 			ifp->if_capenable ^= IFCAP_POLLING;
1933 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1934 				error = ether_poll_register(ste_poll, ifp);
1935 				if (error != 0) {
1936 					STE_UNLOCK(sc);
1937 					break;
1938 				}
1939 				/* Disable interrupts. */
1940 				CSR_WRITE_2(sc, STE_IMR, 0);
1941 			} else {
1942 				error = ether_poll_deregister(ifp);
1943 				/* Enable interrupts. */
1944 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1945 			}
1946 		}
1947 #endif /* DEVICE_POLLING */
1948 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1949 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1950 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1951 		STE_UNLOCK(sc);
1952 		break;
1953 	default:
1954 		error = ether_ioctl(ifp, command, data);
1955 		break;
1956 	}
1957 
1958 	return (error);
1959 }
1960 
1961 static int
1962 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1963 {
1964 	struct ste_frag *frag;
1965 	struct mbuf *m;
1966 	struct ste_desc *desc;
1967 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1968 	int error, i, nsegs;
1969 
1970 	STE_LOCK_ASSERT(sc);
1971 	M_ASSERTPKTHDR((*m_head));
1972 
1973 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1974 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1975 	if (error == EFBIG) {
1976 		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1977 		if (m == NULL) {
1978 			m_freem(*m_head);
1979 			*m_head = NULL;
1980 			return (ENOMEM);
1981 		}
1982 		*m_head = m;
1983 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1984 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1985 		if (error != 0) {
1986 			m_freem(*m_head);
1987 			*m_head = NULL;
1988 			return (error);
1989 		}
1990 	} else if (error != 0)
1991 		return (error);
1992 	if (nsegs == 0) {
1993 		m_freem(*m_head);
1994 		*m_head = NULL;
1995 		return (EIO);
1996 	}
1997 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1998 	    BUS_DMASYNC_PREWRITE);
1999 
2000 	desc = txc->ste_ptr;
2001 	for (i = 0; i < nsegs; i++) {
2002 		frag = &desc->ste_frags[i];
2003 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
2004 		frag->ste_len = htole32(txsegs[i].ds_len);
2005 	}
2006 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
2007 	/*
2008 	 * Because we use Tx polling we can't chain multiple
2009 	 * Tx descriptors here. Otherwise we race with controller.
2010 	 */
2011 	desc->ste_next = 0;
2012 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
2013 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
2014 		    STE_TXCTL_DMAINTR);
2015 	else
2016 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
2017 	txc->ste_mbuf = *m_head;
2018 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
2019 	sc->ste_cdata.ste_tx_cnt++;
2020 
2021 	return (0);
2022 }
2023 
2024 static void
2025 ste_start(struct ifnet *ifp)
2026 {
2027 	struct ste_softc *sc;
2028 
2029 	sc = ifp->if_softc;
2030 	STE_LOCK(sc);
2031 	ste_start_locked(ifp);
2032 	STE_UNLOCK(sc);
2033 }
2034 
2035 static void
2036 ste_start_locked(struct ifnet *ifp)
2037 {
2038 	struct ste_softc *sc;
2039 	struct ste_chain *cur_tx;
2040 	struct mbuf *m_head = NULL;
2041 	int enq;
2042 
2043 	sc = ifp->if_softc;
2044 	STE_LOCK_ASSERT(sc);
2045 
2046 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2047 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
2048 		return;
2049 
2050 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2051 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
2052 			/*
2053 			 * Controller may have cached copy of the last used
2054 			 * next ptr so we have to reserve one TFD to avoid
2055 			 * TFD overruns.
2056 			 */
2057 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2058 			break;
2059 		}
2060 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2061 		if (m_head == NULL)
2062 			break;
2063 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
2064 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
2065 			if (m_head == NULL)
2066 				break;
2067 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2068 			break;
2069 		}
2070 		if (sc->ste_cdata.ste_last_tx == NULL) {
2071 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2072 			    sc->ste_cdata.ste_tx_list_map,
2073 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2074 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
2075 			ste_wait(sc);
2076 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
2077 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
2078 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
2079 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
2080 			ste_wait(sc);
2081 		} else {
2082 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
2083 			    sc->ste_cdata.ste_last_tx->ste_phys;
2084 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2085 			    sc->ste_cdata.ste_tx_list_map,
2086 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2087 		}
2088 		sc->ste_cdata.ste_last_tx = cur_tx;
2089 
2090 		enq++;
2091 		/*
2092 		 * If there's a BPF listener, bounce a copy of this frame
2093 		 * to him.
2094 	 	 */
2095 		BPF_MTAP(ifp, m_head);
2096 	}
2097 
2098 	if (enq > 0)
2099 		sc->ste_timer = STE_TX_TIMEOUT;
2100 }
2101 
2102 static void
2103 ste_watchdog(struct ste_softc *sc)
2104 {
2105 	struct ifnet *ifp;
2106 
2107 	ifp = sc->ste_ifp;
2108 	STE_LOCK_ASSERT(sc);
2109 
2110 	if (sc->ste_timer == 0 || --sc->ste_timer)
2111 		return;
2112 
2113 	ifp->if_oerrors++;
2114 	if_printf(ifp, "watchdog timeout\n");
2115 
2116 	ste_txeof(sc);
2117 	ste_txeoc(sc);
2118 	ste_rxeof(sc, -1);
2119 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2120 	ste_init_locked(sc);
2121 
2122 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2123 		ste_start_locked(ifp);
2124 }
2125 
2126 static int
2127 ste_shutdown(device_t dev)
2128 {
2129 
2130 	return (ste_suspend(dev));
2131 }
2132 
2133 static int
2134 ste_suspend(device_t dev)
2135 {
2136 	struct ste_softc *sc;
2137 
2138 	sc = device_get_softc(dev);
2139 
2140 	STE_LOCK(sc);
2141 	ste_stop(sc);
2142 	ste_setwol(sc);
2143 	STE_UNLOCK(sc);
2144 
2145 	return (0);
2146 }
2147 
2148 static int
2149 ste_resume(device_t dev)
2150 {
2151 	struct ste_softc *sc;
2152 	struct ifnet *ifp;
2153 	int pmc;
2154 	uint16_t pmstat;
2155 
2156 	sc = device_get_softc(dev);
2157 	STE_LOCK(sc);
2158 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2159 		/* Disable PME and clear PME status. */
2160 		pmstat = pci_read_config(sc->ste_dev,
2161 		    pmc + PCIR_POWER_STATUS, 2);
2162 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2163 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2164 			pci_write_config(sc->ste_dev,
2165 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2166 		}
2167 	}
2168 	ifp = sc->ste_ifp;
2169 	if ((ifp->if_flags & IFF_UP) != 0) {
2170 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2171 		ste_init_locked(sc);
2172 	}
2173 	STE_UNLOCK(sc);
2174 
2175 	return (0);
2176 }
2177 
2178 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2179 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2180 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2181 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2182 
2183 static void
2184 ste_sysctl_node(struct ste_softc *sc)
2185 {
2186 	struct sysctl_ctx_list *ctx;
2187 	struct sysctl_oid_list *child, *parent;
2188 	struct sysctl_oid *tree;
2189 	struct ste_hw_stats *stats;
2190 
2191 	stats = &sc->ste_stats;
2192 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2193 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2194 
2195 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2196 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2197 	/* Pull in device tunables. */
2198 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2199 	resource_int_value(device_get_name(sc->ste_dev),
2200 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2201 
2202 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2203 	    NULL, "STE statistics");
2204 	parent = SYSCTL_CHILDREN(tree);
2205 
2206 	/* Rx statistics. */
2207 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2208 	    NULL, "Rx MAC statistics");
2209 	child = SYSCTL_CHILDREN(tree);
2210 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2211 	    &stats->rx_bytes, "Good octets");
2212 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2213 	    &stats->rx_frames, "Good frames");
2214 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2215 	    &stats->rx_bcast_frames, "Good broadcast frames");
2216 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2217 	    &stats->rx_mcast_frames, "Good multicast frames");
2218 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2219 	    &stats->rx_lost_frames, "Lost frames");
2220 
2221 	/* Tx statistics. */
2222 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2223 	    NULL, "Tx MAC statistics");
2224 	child = SYSCTL_CHILDREN(tree);
2225 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2226 	    &stats->tx_bytes, "Good octets");
2227 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2228 	    &stats->tx_frames, "Good frames");
2229 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2230 	    &stats->tx_bcast_frames, "Good broadcast frames");
2231 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2232 	    &stats->tx_mcast_frames, "Good multicast frames");
2233 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2234 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2235 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2236 	    &stats->tx_single_colls, "Single collisions");
2237 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2238 	    &stats->tx_multi_colls, "Multiple collisions");
2239 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2240 	    &stats->tx_late_colls, "Late collisions");
2241 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2242 	    &stats->tx_frames_defered, "Frames with deferrals");
2243 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2244 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2245 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2246 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2247 }
2248 
2249 #undef STE_SYSCTL_STAT_ADD32
2250 #undef STE_SYSCTL_STAT_ADD64
2251 
2252 static void
2253 ste_setwol(struct ste_softc *sc)
2254 {
2255 	struct ifnet *ifp;
2256 	uint16_t pmstat;
2257 	uint8_t val;
2258 	int pmc;
2259 
2260 	STE_LOCK_ASSERT(sc);
2261 
2262 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2263 		/* Disable WOL. */
2264 		CSR_READ_1(sc, STE_WAKE_EVENT);
2265 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2266 		return;
2267 	}
2268 
2269 	ifp = sc->ste_ifp;
2270 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2271 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2272 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2273 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2274 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2275 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2276 	/* Request PME. */
2277 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2278 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2279 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2280 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2281 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2282 }
2283