xref: /freebsd/sys/dev/ste/if_ste.c (revision 67897cfb90605ac431a8d78beca50602708173a4)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/module.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 #include <net/if_vlan_var.h>
62 
63 #include <machine/bus.h>
64 #include <machine/resource.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/mii_bitbang.h>
68 #include <dev/mii/miivar.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 
73 #include <dev/ste/if_stereg.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 MODULE_DEPEND(ste, pci, 1, 1, 1);
79 MODULE_DEPEND(ste, ether, 1, 1, 1);
80 MODULE_DEPEND(ste, miibus, 1, 1, 1);
81 
82 /* Define to show Tx error status. */
83 #define	STE_SHOW_TXERRORS
84 
85 /*
86  * Various supported device vendors/types and their names.
87  */
88 static const struct ste_type ste_devs[] = {
89 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
90 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
91 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
92 	{ 0, 0, NULL }
93 };
94 
95 static int	ste_attach(device_t);
96 static int	ste_detach(device_t);
97 static int	ste_probe(device_t);
98 static int	ste_resume(device_t);
99 static int	ste_shutdown(device_t);
100 static int	ste_suspend(device_t);
101 
102 static int	ste_dma_alloc(struct ste_softc *);
103 static void	ste_dma_free(struct ste_softc *);
104 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
105 static int 	ste_eeprom_wait(struct ste_softc *);
106 static int	ste_encap(struct ste_softc *, struct mbuf **,
107 		    struct ste_chain *);
108 static int	ste_ifmedia_upd(struct ifnet *);
109 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
110 static void	ste_init(void *);
111 static void	ste_init_locked(struct ste_softc *);
112 static int	ste_init_rx_list(struct ste_softc *);
113 static void	ste_init_tx_list(struct ste_softc *);
114 static void	ste_intr(void *);
115 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
116 static uint32_t ste_mii_bitbang_read(device_t);
117 static void	ste_mii_bitbang_write(device_t, uint32_t);
118 static int	ste_miibus_readreg(device_t, int, int);
119 static void	ste_miibus_statchg(device_t);
120 static int	ste_miibus_writereg(device_t, int, int, int);
121 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
122 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
123 static void	ste_reset(struct ste_softc *);
124 static void	ste_restart_tx(struct ste_softc *);
125 static int	ste_rxeof(struct ste_softc *, int);
126 static void	ste_rxfilter(struct ste_softc *);
127 static void	ste_setwol(struct ste_softc *);
128 static void	ste_start(struct ifnet *);
129 static void	ste_start_locked(struct ifnet *);
130 static void	ste_stats_clear(struct ste_softc *);
131 static void	ste_stats_update(struct ste_softc *);
132 static void	ste_stop(struct ste_softc *);
133 static void	ste_sysctl_node(struct ste_softc *);
134 static void	ste_tick(void *);
135 static void	ste_txeoc(struct ste_softc *);
136 static void	ste_txeof(struct ste_softc *);
137 static void	ste_wait(struct ste_softc *);
138 static void	ste_watchdog(struct ste_softc *);
139 
140 /*
141  * MII bit-bang glue
142  */
143 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
144 	ste_mii_bitbang_read,
145 	ste_mii_bitbang_write,
146 	{
147 		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
148 		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
149 		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
150 		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
151 		0,			/* MII_BIT_DIR_PHY_HOST */
152 	}
153 };
154 
155 static device_method_t ste_methods[] = {
156 	/* Device interface */
157 	DEVMETHOD(device_probe,		ste_probe),
158 	DEVMETHOD(device_attach,	ste_attach),
159 	DEVMETHOD(device_detach,	ste_detach),
160 	DEVMETHOD(device_shutdown,	ste_shutdown),
161 	DEVMETHOD(device_suspend,	ste_suspend),
162 	DEVMETHOD(device_resume,	ste_resume),
163 
164 	/* MII interface */
165 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
166 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
167 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
168 
169 	DEVMETHOD_END
170 };
171 
172 static driver_t ste_driver = {
173 	"ste",
174 	ste_methods,
175 	sizeof(struct ste_softc)
176 };
177 
178 static devclass_t ste_devclass;
179 
180 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
181 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
182 
183 #define STE_SETBIT4(sc, reg, x)				\
184 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
185 
186 #define STE_CLRBIT4(sc, reg, x)				\
187 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
188 
189 #define STE_SETBIT2(sc, reg, x)				\
190 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
191 
192 #define STE_CLRBIT2(sc, reg, x)				\
193 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
194 
195 #define STE_SETBIT1(sc, reg, x)				\
196 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
197 
198 #define STE_CLRBIT1(sc, reg, x)				\
199 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
200 
201 /*
202  * Read the MII serial port for the MII bit-bang module.
203  */
204 static uint32_t
205 ste_mii_bitbang_read(device_t dev)
206 {
207 	struct ste_softc *sc;
208 	uint32_t val;
209 
210 	sc = device_get_softc(dev);
211 
212 	val = CSR_READ_1(sc, STE_PHYCTL);
213 	CSR_BARRIER(sc, STE_PHYCTL, 1,
214 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
215 
216 	return (val);
217 }
218 
219 /*
220  * Write the MII serial port for the MII bit-bang module.
221  */
222 static void
223 ste_mii_bitbang_write(device_t dev, uint32_t val)
224 {
225 	struct ste_softc *sc;
226 
227 	sc = device_get_softc(dev);
228 
229 	CSR_WRITE_1(sc, STE_PHYCTL, val);
230 	CSR_BARRIER(sc, STE_PHYCTL, 1,
231 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
232 }
233 
234 static int
235 ste_miibus_readreg(device_t dev, int phy, int reg)
236 {
237 
238 	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
239 }
240 
241 static int
242 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
243 {
244 
245 	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
246 
247 	return (0);
248 }
249 
250 static void
251 ste_miibus_statchg(device_t dev)
252 {
253 	struct ste_softc *sc;
254 	struct mii_data *mii;
255 	struct ifnet *ifp;
256 	uint16_t cfg;
257 
258 	sc = device_get_softc(dev);
259 
260 	mii = device_get_softc(sc->ste_miibus);
261 	ifp = sc->ste_ifp;
262 	if (mii == NULL || ifp == NULL ||
263 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
264 		return;
265 
266 	sc->ste_flags &= ~STE_FLAG_LINK;
267 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
268 	    (IFM_ACTIVE | IFM_AVALID)) {
269 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
270 		case IFM_10_T:
271 		case IFM_100_TX:
272 		case IFM_100_FX:
273 		case IFM_100_T4:
274 			sc->ste_flags |= STE_FLAG_LINK;
275 		default:
276 			break;
277 		}
278 	}
279 
280 	/* Program MACs with resolved speed/duplex/flow-control. */
281 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
282 		cfg = CSR_READ_2(sc, STE_MACCTL0);
283 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
284 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
285 			/*
286 			 * ST201 data sheet says driver should enable receiving
287 			 * MAC control frames bit of receive mode register to
288 			 * receive flow-control frames but the register has no
289 			 * such bits. In addition the controller has no ability
290 			 * to send pause frames so it should be handled in
291 			 * driver. Implementing pause timer handling in driver
292 			 * layer is not trivial, so don't enable flow-control
293 			 * here.
294 			 */
295 			cfg |= STE_MACCTL0_FULLDUPLEX;
296 		}
297 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
298 	}
299 }
300 
301 static int
302 ste_ifmedia_upd(struct ifnet *ifp)
303 {
304 	struct ste_softc *sc;
305 	struct mii_data	*mii;
306 	struct mii_softc *miisc;
307 	int error;
308 
309 	sc = ifp->if_softc;
310 	STE_LOCK(sc);
311 	mii = device_get_softc(sc->ste_miibus);
312 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313 		PHY_RESET(miisc);
314 	error = mii_mediachg(mii);
315 	STE_UNLOCK(sc);
316 
317 	return (error);
318 }
319 
320 static void
321 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
322 {
323 	struct ste_softc *sc;
324 	struct mii_data *mii;
325 
326 	sc = ifp->if_softc;
327 	mii = device_get_softc(sc->ste_miibus);
328 
329 	STE_LOCK(sc);
330 	if ((ifp->if_flags & IFF_UP) == 0) {
331 		STE_UNLOCK(sc);
332 		return;
333 	}
334 	mii_pollstat(mii);
335 	ifmr->ifm_active = mii->mii_media_active;
336 	ifmr->ifm_status = mii->mii_media_status;
337 	STE_UNLOCK(sc);
338 }
339 
340 static void
341 ste_wait(struct ste_softc *sc)
342 {
343 	int i;
344 
345 	for (i = 0; i < STE_TIMEOUT; i++) {
346 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
347 			break;
348 		DELAY(1);
349 	}
350 
351 	if (i == STE_TIMEOUT)
352 		device_printf(sc->ste_dev, "command never completed!\n");
353 }
354 
355 /*
356  * The EEPROM is slow: give it time to come ready after issuing
357  * it a command.
358  */
359 static int
360 ste_eeprom_wait(struct ste_softc *sc)
361 {
362 	int i;
363 
364 	DELAY(1000);
365 
366 	for (i = 0; i < 100; i++) {
367 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
368 			DELAY(1000);
369 		else
370 			break;
371 	}
372 
373 	if (i == 100) {
374 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
375 		return (1);
376 	}
377 
378 	return (0);
379 }
380 
381 /*
382  * Read a sequence of words from the EEPROM. Note that ethernet address
383  * data is stored in the EEPROM in network byte order.
384  */
385 static int
386 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
387 {
388 	int err = 0, i;
389 
390 	if (ste_eeprom_wait(sc))
391 		return (1);
392 
393 	for (i = 0; i < cnt; i++) {
394 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
395 		err = ste_eeprom_wait(sc);
396 		if (err)
397 			break;
398 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
399 		dest++;
400 	}
401 
402 	return (err ? 1 : 0);
403 }
404 
405 static void
406 ste_rxfilter(struct ste_softc *sc)
407 {
408 	struct ifnet *ifp;
409 	struct ifmultiaddr *ifma;
410 	uint32_t hashes[2] = { 0, 0 };
411 	uint8_t rxcfg;
412 	int h;
413 
414 	STE_LOCK_ASSERT(sc);
415 
416 	ifp = sc->ste_ifp;
417 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
418 	rxcfg |= STE_RXMODE_UNICAST;
419 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
420 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
421 	if (ifp->if_flags & IFF_BROADCAST)
422 		rxcfg |= STE_RXMODE_BROADCAST;
423 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
424 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
425 			rxcfg |= STE_RXMODE_ALLMULTI;
426 		if ((ifp->if_flags & IFF_PROMISC) != 0)
427 			rxcfg |= STE_RXMODE_PROMISC;
428 		goto chipit;
429 	}
430 
431 	rxcfg |= STE_RXMODE_MULTIHASH;
432 	/* Now program new ones. */
433 	if_maddr_rlock(ifp);
434 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
435 		if (ifma->ifma_addr->sa_family != AF_LINK)
436 			continue;
437 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
438 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
439 		if (h < 32)
440 			hashes[0] |= (1 << h);
441 		else
442 			hashes[1] |= (1 << (h - 32));
443 	}
444 	if_maddr_runlock(ifp);
445 
446 chipit:
447 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
448 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
449 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
450 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
451 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
452 	CSR_READ_1(sc, STE_RX_MODE);
453 }
454 
455 #ifdef DEVICE_POLLING
456 static poll_handler_t ste_poll, ste_poll_locked;
457 
458 static int
459 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
460 {
461 	struct ste_softc *sc = ifp->if_softc;
462 	int rx_npkts = 0;
463 
464 	STE_LOCK(sc);
465 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
466 		rx_npkts = ste_poll_locked(ifp, cmd, count);
467 	STE_UNLOCK(sc);
468 	return (rx_npkts);
469 }
470 
471 static int
472 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
473 {
474 	struct ste_softc *sc = ifp->if_softc;
475 	int rx_npkts;
476 
477 	STE_LOCK_ASSERT(sc);
478 
479 	rx_npkts = ste_rxeof(sc, count);
480 	ste_txeof(sc);
481 	ste_txeoc(sc);
482 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
483 		ste_start_locked(ifp);
484 
485 	if (cmd == POLL_AND_CHECK_STATUS) {
486 		uint16_t status;
487 
488 		status = CSR_READ_2(sc, STE_ISR_ACK);
489 
490 		if (status & STE_ISR_STATS_OFLOW)
491 			ste_stats_update(sc);
492 
493 		if (status & STE_ISR_HOSTERR) {
494 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
495 			ste_init_locked(sc);
496 		}
497 	}
498 	return (rx_npkts);
499 }
500 #endif /* DEVICE_POLLING */
501 
502 static void
503 ste_intr(void *xsc)
504 {
505 	struct ste_softc *sc;
506 	struct ifnet *ifp;
507 	uint16_t intrs, status;
508 
509 	sc = xsc;
510 	STE_LOCK(sc);
511 	ifp = sc->ste_ifp;
512 
513 #ifdef DEVICE_POLLING
514 	if (ifp->if_capenable & IFCAP_POLLING) {
515 		STE_UNLOCK(sc);
516 		return;
517 	}
518 #endif
519 	/* Reading STE_ISR_ACK clears STE_IMR register. */
520 	status = CSR_READ_2(sc, STE_ISR_ACK);
521 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
522 		STE_UNLOCK(sc);
523 		return;
524 	}
525 
526 	intrs = STE_INTRS;
527 	if (status == 0xFFFF || (status & intrs) == 0)
528 		goto done;
529 
530 	if (sc->ste_int_rx_act > 0) {
531 		status &= ~STE_ISR_RX_DMADONE;
532 		intrs &= ~STE_IMR_RX_DMADONE;
533 	}
534 
535 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
536 		ste_rxeof(sc, -1);
537 		/*
538 		 * The controller has no ability to Rx interrupt
539 		 * moderation feature. Receiving 64 bytes frames
540 		 * from wire generates too many interrupts which in
541 		 * turn make system useless to process other useful
542 		 * things. Fortunately ST201 supports single shot
543 		 * timer so use the timer to implement Rx interrupt
544 		 * moderation in driver. This adds more register
545 		 * access but it greatly reduces number of Rx
546 		 * interrupts under high network load.
547 		 */
548 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
549 		    (sc->ste_int_rx_mod != 0)) {
550 			if ((status & STE_ISR_RX_DMADONE) != 0) {
551 				CSR_WRITE_2(sc, STE_COUNTDOWN,
552 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
553 				intrs &= ~STE_IMR_RX_DMADONE;
554 				sc->ste_int_rx_act = 1;
555 			} else {
556 				intrs |= STE_IMR_RX_DMADONE;
557 				sc->ste_int_rx_act = 0;
558 			}
559 		}
560 	}
561 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
562 		if ((status & STE_ISR_TX_DMADONE) != 0)
563 			ste_txeof(sc);
564 		if ((status & STE_ISR_TX_DONE) != 0)
565 			ste_txeoc(sc);
566 		if ((status & STE_ISR_STATS_OFLOW) != 0)
567 			ste_stats_update(sc);
568 		if ((status & STE_ISR_HOSTERR) != 0) {
569 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
570 			ste_init_locked(sc);
571 			STE_UNLOCK(sc);
572 			return;
573 		}
574 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
575 			ste_start_locked(ifp);
576 done:
577 		/* Re-enable interrupts */
578 		CSR_WRITE_2(sc, STE_IMR, intrs);
579 	}
580 	STE_UNLOCK(sc);
581 }
582 
583 /*
584  * A frame has been uploaded: pass the resulting mbuf chain up to
585  * the higher level protocols.
586  */
587 static int
588 ste_rxeof(struct ste_softc *sc, int count)
589 {
590         struct mbuf *m;
591         struct ifnet *ifp;
592 	struct ste_chain_onefrag *cur_rx;
593 	uint32_t rxstat;
594 	int total_len, rx_npkts;
595 
596 	ifp = sc->ste_ifp;
597 
598 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
599 	    sc->ste_cdata.ste_rx_list_map,
600 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
601 
602 	cur_rx = sc->ste_cdata.ste_rx_head;
603 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
604 	    cur_rx = cur_rx->ste_next) {
605 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
606 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
607 			break;
608 #ifdef DEVICE_POLLING
609 		if (ifp->if_capenable & IFCAP_POLLING) {
610 			if (count == 0)
611 				break;
612 			count--;
613 		}
614 #endif
615 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
616 			break;
617 		/*
618 		 * If an error occurs, update stats, clear the
619 		 * status word and leave the mbuf cluster in place:
620 		 * it should simply get re-used next time this descriptor
621 	 	 * comes up in the ring.
622 		 */
623 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
624 			ifp->if_ierrors++;
625 			cur_rx->ste_ptr->ste_status = 0;
626 			continue;
627 		}
628 
629 		/* No errors; receive the packet. */
630 		m = cur_rx->ste_mbuf;
631 		total_len = STE_RX_BYTES(rxstat);
632 
633 		/*
634 		 * Try to conjure up a new mbuf cluster. If that
635 		 * fails, it means we have an out of memory condition and
636 		 * should leave the buffer in place and continue. This will
637 		 * result in a lost packet, but there's little else we
638 		 * can do in this situation.
639 		 */
640 		if (ste_newbuf(sc, cur_rx) != 0) {
641 			ifp->if_iqdrops++;
642 			cur_rx->ste_ptr->ste_status = 0;
643 			continue;
644 		}
645 
646 		m->m_pkthdr.rcvif = ifp;
647 		m->m_pkthdr.len = m->m_len = total_len;
648 
649 		ifp->if_ipackets++;
650 		STE_UNLOCK(sc);
651 		(*ifp->if_input)(ifp, m);
652 		STE_LOCK(sc);
653 	}
654 
655 	if (rx_npkts > 0) {
656 		sc->ste_cdata.ste_rx_head = cur_rx;
657 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
658 		    sc->ste_cdata.ste_rx_list_map,
659 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
660 	}
661 
662 	return (rx_npkts);
663 }
664 
665 static void
666 ste_txeoc(struct ste_softc *sc)
667 {
668 	uint16_t txstat;
669 	struct ifnet *ifp;
670 
671 	STE_LOCK_ASSERT(sc);
672 
673 	ifp = sc->ste_ifp;
674 
675 	/*
676 	 * STE_TX_STATUS register implements a queue of up to 31
677 	 * transmit status byte. Writing an arbitrary value to the
678 	 * register will advance the queue to the next transmit
679 	 * status byte. This means if driver does not read
680 	 * STE_TX_STATUS register after completing sending more
681 	 * than 31 frames the controller would be stalled so driver
682 	 * should re-wake the Tx MAC. This is the most severe
683 	 * limitation of ST201 based controller.
684 	 */
685 	for (;;) {
686 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
687 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
688 			break;
689 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
690 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
691 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
692 			ifp->if_oerrors++;
693 #ifdef	STE_SHOW_TXERRORS
694 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
695 			    txstat & 0xFF, STE_ERR_BITS);
696 #endif
697 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
698 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
699 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
700 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
701 					sc->ste_tx_thresh = STE_PACKET_SIZE;
702 				device_printf(sc->ste_dev,
703 				    "TX underrun, increasing TX"
704 				    " start threshold to %d bytes\n",
705 				    sc->ste_tx_thresh);
706 				/* Make sure to disable active DMA cycles. */
707 				STE_SETBIT4(sc, STE_DMACTL,
708 				    STE_DMACTL_TXDMA_STALL);
709 				ste_wait(sc);
710 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
711 				ste_init_locked(sc);
712 				break;
713 			}
714 			/* Restart Tx. */
715 			ste_restart_tx(sc);
716 		}
717 		/*
718 		 * Advance to next status and ACK TxComplete
719 		 * interrupt. ST201 data sheet was wrong here, to
720 		 * get next Tx status, we have to write both
721 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
722 		 * Otherwise controller returns the same status
723 		 * as well as not acknowledge Tx completion
724 		 * interrupt.
725 		 */
726 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
727 	}
728 }
729 
730 static void
731 ste_tick(void *arg)
732 {
733 	struct ste_softc *sc;
734 	struct mii_data *mii;
735 
736 	sc = (struct ste_softc *)arg;
737 
738 	STE_LOCK_ASSERT(sc);
739 
740 	mii = device_get_softc(sc->ste_miibus);
741 	mii_tick(mii);
742 	/*
743 	 * ukphy(4) does not seem to generate CB that reports
744 	 * resolved link state so if we know we lost a link,
745 	 * explicitly check the link state.
746 	 */
747 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
748 		ste_miibus_statchg(sc->ste_dev);
749 	/*
750 	 * Because we are not generating Tx completion
751 	 * interrupt for every frame, reclaim transmitted
752 	 * buffers here.
753 	 */
754 	ste_txeof(sc);
755 	ste_txeoc(sc);
756 	ste_stats_update(sc);
757 	ste_watchdog(sc);
758 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
759 }
760 
761 static void
762 ste_txeof(struct ste_softc *sc)
763 {
764 	struct ifnet *ifp;
765 	struct ste_chain *cur_tx;
766 	uint32_t txstat;
767 	int idx;
768 
769 	STE_LOCK_ASSERT(sc);
770 
771 	ifp = sc->ste_ifp;
772 	idx = sc->ste_cdata.ste_tx_cons;
773 	if (idx == sc->ste_cdata.ste_tx_prod)
774 		return;
775 
776 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
777 	    sc->ste_cdata.ste_tx_list_map,
778 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
779 
780 	while (idx != sc->ste_cdata.ste_tx_prod) {
781 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
782 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
783 		if ((txstat & STE_TXCTL_DMADONE) == 0)
784 			break;
785 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
786 		    BUS_DMASYNC_POSTWRITE);
787 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
788 		KASSERT(cur_tx->ste_mbuf != NULL,
789 		    ("%s: freeing NULL mbuf!\n", __func__));
790 		m_freem(cur_tx->ste_mbuf);
791 		cur_tx->ste_mbuf = NULL;
792 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
793 		ifp->if_opackets++;
794 		sc->ste_cdata.ste_tx_cnt--;
795 		STE_INC(idx, STE_TX_LIST_CNT);
796 	}
797 
798 	sc->ste_cdata.ste_tx_cons = idx;
799 	if (sc->ste_cdata.ste_tx_cnt == 0)
800 		sc->ste_timer = 0;
801 }
802 
803 static void
804 ste_stats_clear(struct ste_softc *sc)
805 {
806 
807 	STE_LOCK_ASSERT(sc);
808 
809 	/* Rx stats. */
810 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
811 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
812 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
813 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
814 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
815 	CSR_READ_1(sc, STE_STAT_RX_LOST);
816 	/* Tx stats. */
817 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
818 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
819 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
820 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
821 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
822 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
823 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
824 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
825 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
826 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
827 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
828 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
829 }
830 
831 static void
832 ste_stats_update(struct ste_softc *sc)
833 {
834 	struct ifnet *ifp;
835 	struct ste_hw_stats *stats;
836 	uint32_t val;
837 
838 	STE_LOCK_ASSERT(sc);
839 
840 	ifp = sc->ste_ifp;
841 	stats = &sc->ste_stats;
842 	/* Rx stats. */
843 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
844 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
845 	val &= 0x000FFFFF;
846 	stats->rx_bytes += val;
847 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
848 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
849 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
850 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
851 	/* Tx stats. */
852 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
853 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
854 	val &= 0x000FFFFF;
855 	stats->tx_bytes += val;
856 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
857 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
858 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
859 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
860 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
861 	stats->tx_single_colls += val;
862 	ifp->if_collisions += val;
863 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
864 	stats->tx_multi_colls += val;
865 	ifp->if_collisions += val;
866 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
867 	stats->tx_late_colls += val;
868 	ifp->if_collisions += val;
869 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
870 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
871 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
872 }
873 
874 /*
875  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
876  * IDs against our list and return a device name if we find a match.
877  */
878 static int
879 ste_probe(device_t dev)
880 {
881 	const struct ste_type *t;
882 
883 	t = ste_devs;
884 
885 	while (t->ste_name != NULL) {
886 		if ((pci_get_vendor(dev) == t->ste_vid) &&
887 		    (pci_get_device(dev) == t->ste_did)) {
888 			device_set_desc(dev, t->ste_name);
889 			return (BUS_PROBE_DEFAULT);
890 		}
891 		t++;
892 	}
893 
894 	return (ENXIO);
895 }
896 
897 /*
898  * Attach the interface. Allocate softc structures, do ifmedia
899  * setup and ethernet/BPF attach.
900  */
901 static int
902 ste_attach(device_t dev)
903 {
904 	struct ste_softc *sc;
905 	struct ifnet *ifp;
906 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
907 	int error = 0, phy, pmc, prefer_iomap, rid;
908 
909 	sc = device_get_softc(dev);
910 	sc->ste_dev = dev;
911 
912 	/*
913 	 * Only use one PHY since this chip reports multiple
914 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
915 	 * it is at 0 & 1.  It is rev 0x12.
916 	 */
917 	if (pci_get_vendor(dev) == DL_VENDORID &&
918 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
919 	    pci_get_revid(dev) == 0x12 )
920 		sc->ste_flags |= STE_FLAG_ONE_PHY;
921 
922 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
923 	    MTX_DEF);
924 	/*
925 	 * Map control/status registers.
926 	 */
927 	pci_enable_busmaster(dev);
928 
929 	/*
930 	 * Prefer memory space register mapping over IO space but use
931 	 * IO space for a device that is known to have issues on memory
932 	 * mapping.
933 	 */
934 	prefer_iomap = 0;
935 	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
936 		prefer_iomap = 1;
937 	else
938 		resource_int_value(device_get_name(sc->ste_dev),
939 		    device_get_unit(sc->ste_dev), "prefer_iomap",
940 		    &prefer_iomap);
941 	if (prefer_iomap == 0) {
942 		sc->ste_res_id = PCIR_BAR(1);
943 		sc->ste_res_type = SYS_RES_MEMORY;
944 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
945 		    &sc->ste_res_id, RF_ACTIVE);
946 	}
947 	if (prefer_iomap || sc->ste_res == NULL) {
948 		sc->ste_res_id = PCIR_BAR(0);
949 		sc->ste_res_type = SYS_RES_IOPORT;
950 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
951 		    &sc->ste_res_id, RF_ACTIVE);
952 	}
953 	if (sc->ste_res == NULL) {
954 		device_printf(dev, "couldn't map ports/memory\n");
955 		error = ENXIO;
956 		goto fail;
957 	}
958 
959 	/* Allocate interrupt */
960 	rid = 0;
961 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
962 	    RF_SHAREABLE | RF_ACTIVE);
963 
964 	if (sc->ste_irq == NULL) {
965 		device_printf(dev, "couldn't map interrupt\n");
966 		error = ENXIO;
967 		goto fail;
968 	}
969 
970 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
971 
972 	/* Reset the adapter. */
973 	ste_reset(sc);
974 
975 	/*
976 	 * Get station address from the EEPROM.
977 	 */
978 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
979 		device_printf(dev, "failed to read station address\n");
980 		error = ENXIO;
981 		goto fail;
982 	}
983 	ste_sysctl_node(sc);
984 
985 	if ((error = ste_dma_alloc(sc)) != 0)
986 		goto fail;
987 
988 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
989 	if (ifp == NULL) {
990 		device_printf(dev, "can not if_alloc()\n");
991 		error = ENOSPC;
992 		goto fail;
993 	}
994 
995 	/* Do MII setup. */
996 	phy = MII_PHY_ANY;
997 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
998 		phy = 0;
999 	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1000 		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1001 	if (error != 0) {
1002 		device_printf(dev, "attaching PHYs failed\n");
1003 		goto fail;
1004 	}
1005 
1006 	ifp->if_softc = sc;
1007 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1008 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1009 	ifp->if_ioctl = ste_ioctl;
1010 	ifp->if_start = ste_start;
1011 	ifp->if_init = ste_init;
1012 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1013 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1014 	IFQ_SET_READY(&ifp->if_snd);
1015 
1016 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1017 
1018 	/*
1019 	 * Call MI attach routine.
1020 	 */
1021 	ether_ifattach(ifp, (uint8_t *)eaddr);
1022 
1023 	/*
1024 	 * Tell the upper layer(s) we support long frames.
1025 	 */
1026 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1027 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1028 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1029 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1030 	ifp->if_capenable = ifp->if_capabilities;
1031 #ifdef DEVICE_POLLING
1032 	ifp->if_capabilities |= IFCAP_POLLING;
1033 #endif
1034 
1035 	/* Hook interrupt last to avoid having to lock softc */
1036 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1037 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1038 
1039 	if (error) {
1040 		device_printf(dev, "couldn't set up irq\n");
1041 		ether_ifdetach(ifp);
1042 		goto fail;
1043 	}
1044 
1045 fail:
1046 	if (error)
1047 		ste_detach(dev);
1048 
1049 	return (error);
1050 }
1051 
1052 /*
1053  * Shutdown hardware and free up resources. This can be called any
1054  * time after the mutex has been initialized. It is called in both
1055  * the error case in attach and the normal detach case so it needs
1056  * to be careful about only freeing resources that have actually been
1057  * allocated.
1058  */
1059 static int
1060 ste_detach(device_t dev)
1061 {
1062 	struct ste_softc *sc;
1063 	struct ifnet *ifp;
1064 
1065 	sc = device_get_softc(dev);
1066 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1067 	ifp = sc->ste_ifp;
1068 
1069 #ifdef DEVICE_POLLING
1070 	if (ifp->if_capenable & IFCAP_POLLING)
1071 		ether_poll_deregister(ifp);
1072 #endif
1073 
1074 	/* These should only be active if attach succeeded */
1075 	if (device_is_attached(dev)) {
1076 		ether_ifdetach(ifp);
1077 		STE_LOCK(sc);
1078 		ste_stop(sc);
1079 		STE_UNLOCK(sc);
1080 		callout_drain(&sc->ste_callout);
1081 	}
1082 	if (sc->ste_miibus)
1083 		device_delete_child(dev, sc->ste_miibus);
1084 	bus_generic_detach(dev);
1085 
1086 	if (sc->ste_intrhand)
1087 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1088 	if (sc->ste_irq)
1089 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1090 	if (sc->ste_res)
1091 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1092 		    sc->ste_res);
1093 
1094 	if (ifp)
1095 		if_free(ifp);
1096 
1097 	ste_dma_free(sc);
1098 	mtx_destroy(&sc->ste_mtx);
1099 
1100 	return (0);
1101 }
1102 
1103 struct ste_dmamap_arg {
1104 	bus_addr_t	ste_busaddr;
1105 };
1106 
1107 static void
1108 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1109 {
1110 	struct ste_dmamap_arg *ctx;
1111 
1112 	if (error != 0)
1113 		return;
1114 
1115 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1116 
1117 	ctx = (struct ste_dmamap_arg *)arg;
1118 	ctx->ste_busaddr = segs[0].ds_addr;
1119 }
1120 
1121 static int
1122 ste_dma_alloc(struct ste_softc *sc)
1123 {
1124 	struct ste_chain *txc;
1125 	struct ste_chain_onefrag *rxc;
1126 	struct ste_dmamap_arg ctx;
1127 	int error, i;
1128 
1129 	/* Create parent DMA tag. */
1130 	error = bus_dma_tag_create(
1131 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1132 	    1, 0,			/* alignment, boundary */
1133 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1134 	    BUS_SPACE_MAXADDR,		/* highaddr */
1135 	    NULL, NULL,			/* filter, filterarg */
1136 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1137 	    0,				/* nsegments */
1138 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1139 	    0,				/* flags */
1140 	    NULL, NULL,			/* lockfunc, lockarg */
1141 	    &sc->ste_cdata.ste_parent_tag);
1142 	if (error != 0) {
1143 		device_printf(sc->ste_dev,
1144 		    "could not create parent DMA tag.\n");
1145 		goto fail;
1146 	}
1147 
1148 	/* Create DMA tag for Tx descriptor list. */
1149 	error = bus_dma_tag_create(
1150 	    sc->ste_cdata.ste_parent_tag, /* parent */
1151 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1152 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1153 	    BUS_SPACE_MAXADDR,		/* highaddr */
1154 	    NULL, NULL,			/* filter, filterarg */
1155 	    STE_TX_LIST_SZ,		/* maxsize */
1156 	    1,				/* nsegments */
1157 	    STE_TX_LIST_SZ,		/* maxsegsize */
1158 	    0,				/* flags */
1159 	    NULL, NULL,			/* lockfunc, lockarg */
1160 	    &sc->ste_cdata.ste_tx_list_tag);
1161 	if (error != 0) {
1162 		device_printf(sc->ste_dev,
1163 		    "could not create Tx list DMA tag.\n");
1164 		goto fail;
1165 	}
1166 
1167 	/* Create DMA tag for Rx descriptor list. */
1168 	error = bus_dma_tag_create(
1169 	    sc->ste_cdata.ste_parent_tag, /* parent */
1170 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1171 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1172 	    BUS_SPACE_MAXADDR,		/* highaddr */
1173 	    NULL, NULL,			/* filter, filterarg */
1174 	    STE_RX_LIST_SZ,		/* maxsize */
1175 	    1,				/* nsegments */
1176 	    STE_RX_LIST_SZ,		/* maxsegsize */
1177 	    0,				/* flags */
1178 	    NULL, NULL,			/* lockfunc, lockarg */
1179 	    &sc->ste_cdata.ste_rx_list_tag);
1180 	if (error != 0) {
1181 		device_printf(sc->ste_dev,
1182 		    "could not create Rx list DMA tag.\n");
1183 		goto fail;
1184 	}
1185 
1186 	/* Create DMA tag for Tx buffers. */
1187 	error = bus_dma_tag_create(
1188 	    sc->ste_cdata.ste_parent_tag, /* parent */
1189 	    1, 0,			/* alignment, boundary */
1190 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1191 	    BUS_SPACE_MAXADDR,		/* highaddr */
1192 	    NULL, NULL,			/* filter, filterarg */
1193 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1194 	    STE_MAXFRAGS,		/* nsegments */
1195 	    MCLBYTES,			/* maxsegsize */
1196 	    0,				/* flags */
1197 	    NULL, NULL,			/* lockfunc, lockarg */
1198 	    &sc->ste_cdata.ste_tx_tag);
1199 	if (error != 0) {
1200 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1201 		goto fail;
1202 	}
1203 
1204 	/* Create DMA tag for Rx buffers. */
1205 	error = bus_dma_tag_create(
1206 	    sc->ste_cdata.ste_parent_tag, /* parent */
1207 	    1, 0,			/* alignment, boundary */
1208 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1209 	    BUS_SPACE_MAXADDR,		/* highaddr */
1210 	    NULL, NULL,			/* filter, filterarg */
1211 	    MCLBYTES,			/* maxsize */
1212 	    1,				/* nsegments */
1213 	    MCLBYTES,			/* maxsegsize */
1214 	    0,				/* flags */
1215 	    NULL, NULL,			/* lockfunc, lockarg */
1216 	    &sc->ste_cdata.ste_rx_tag);
1217 	if (error != 0) {
1218 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1219 		goto fail;
1220 	}
1221 
1222 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1223 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1224 	    (void **)&sc->ste_ldata.ste_tx_list,
1225 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1226 	    &sc->ste_cdata.ste_tx_list_map);
1227 	if (error != 0) {
1228 		device_printf(sc->ste_dev,
1229 		    "could not allocate DMA'able memory for Tx list.\n");
1230 		goto fail;
1231 	}
1232 	ctx.ste_busaddr = 0;
1233 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1234 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1235 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1236 	if (error != 0 || ctx.ste_busaddr == 0) {
1237 		device_printf(sc->ste_dev,
1238 		    "could not load DMA'able memory for Tx list.\n");
1239 		goto fail;
1240 	}
1241 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1242 
1243 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1244 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1245 	    (void **)&sc->ste_ldata.ste_rx_list,
1246 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1247 	    &sc->ste_cdata.ste_rx_list_map);
1248 	if (error != 0) {
1249 		device_printf(sc->ste_dev,
1250 		    "could not allocate DMA'able memory for Rx list.\n");
1251 		goto fail;
1252 	}
1253 	ctx.ste_busaddr = 0;
1254 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1255 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1256 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1257 	if (error != 0 || ctx.ste_busaddr == 0) {
1258 		device_printf(sc->ste_dev,
1259 		    "could not load DMA'able memory for Rx list.\n");
1260 		goto fail;
1261 	}
1262 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1263 
1264 	/* Create DMA maps for Tx buffers. */
1265 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1266 		txc = &sc->ste_cdata.ste_tx_chain[i];
1267 		txc->ste_ptr = NULL;
1268 		txc->ste_mbuf = NULL;
1269 		txc->ste_next = NULL;
1270 		txc->ste_phys = 0;
1271 		txc->ste_map = NULL;
1272 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1273 		    &txc->ste_map);
1274 		if (error != 0) {
1275 			device_printf(sc->ste_dev,
1276 			    "could not create Tx dmamap.\n");
1277 			goto fail;
1278 		}
1279 	}
1280 	/* Create DMA maps for Rx buffers. */
1281 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1282 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1283 		device_printf(sc->ste_dev,
1284 		    "could not create spare Rx dmamap.\n");
1285 		goto fail;
1286 	}
1287 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1288 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1289 		rxc->ste_ptr = NULL;
1290 		rxc->ste_mbuf = NULL;
1291 		rxc->ste_next = NULL;
1292 		rxc->ste_map = NULL;
1293 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1294 		    &rxc->ste_map);
1295 		if (error != 0) {
1296 			device_printf(sc->ste_dev,
1297 			    "could not create Rx dmamap.\n");
1298 			goto fail;
1299 		}
1300 	}
1301 
1302 fail:
1303 	return (error);
1304 }
1305 
1306 static void
1307 ste_dma_free(struct ste_softc *sc)
1308 {
1309 	struct ste_chain *txc;
1310 	struct ste_chain_onefrag *rxc;
1311 	int i;
1312 
1313 	/* Tx buffers. */
1314 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1315 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1316 			txc = &sc->ste_cdata.ste_tx_chain[i];
1317 			if (txc->ste_map != NULL) {
1318 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1319 				    txc->ste_map);
1320 				txc->ste_map = NULL;
1321 			}
1322 		}
1323 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1324 		sc->ste_cdata.ste_tx_tag = NULL;
1325 	}
1326 	/* Rx buffers. */
1327 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1328 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1329 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1330 			if (rxc->ste_map != NULL) {
1331 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1332 				    rxc->ste_map);
1333 				rxc->ste_map = NULL;
1334 			}
1335 		}
1336 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1337 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1338 			    sc->ste_cdata.ste_rx_sparemap);
1339 			sc->ste_cdata.ste_rx_sparemap = NULL;
1340 		}
1341 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1342 		sc->ste_cdata.ste_rx_tag = NULL;
1343 	}
1344 	/* Tx descriptor list. */
1345 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1346 		if (sc->ste_cdata.ste_tx_list_map != NULL)
1347 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1348 			    sc->ste_cdata.ste_tx_list_map);
1349 		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1350 		    sc->ste_ldata.ste_tx_list != NULL)
1351 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1352 			    sc->ste_ldata.ste_tx_list,
1353 			    sc->ste_cdata.ste_tx_list_map);
1354 		sc->ste_ldata.ste_tx_list = NULL;
1355 		sc->ste_cdata.ste_tx_list_map = NULL;
1356 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1357 		sc->ste_cdata.ste_tx_list_tag = NULL;
1358 	}
1359 	/* Rx descriptor list. */
1360 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1361 		if (sc->ste_cdata.ste_rx_list_map != NULL)
1362 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1363 			    sc->ste_cdata.ste_rx_list_map);
1364 		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1365 		    sc->ste_ldata.ste_rx_list != NULL)
1366 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1367 			    sc->ste_ldata.ste_rx_list,
1368 			    sc->ste_cdata.ste_rx_list_map);
1369 		sc->ste_ldata.ste_rx_list = NULL;
1370 		sc->ste_cdata.ste_rx_list_map = NULL;
1371 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1372 		sc->ste_cdata.ste_rx_list_tag = NULL;
1373 	}
1374 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1375 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1376 		sc->ste_cdata.ste_parent_tag = NULL;
1377 	}
1378 }
1379 
1380 static int
1381 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1382 {
1383 	struct mbuf *m;
1384 	bus_dma_segment_t segs[1];
1385 	bus_dmamap_t map;
1386 	int error, nsegs;
1387 
1388 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1389 	if (m == NULL)
1390 		return (ENOBUFS);
1391 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1392 	m_adj(m, ETHER_ALIGN);
1393 
1394 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1395 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1396 		m_freem(m);
1397 		return (error);
1398 	}
1399 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1400 
1401 	if (rxc->ste_mbuf != NULL) {
1402 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1403 		    BUS_DMASYNC_POSTREAD);
1404 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1405 	}
1406 	map = rxc->ste_map;
1407 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1408 	sc->ste_cdata.ste_rx_sparemap = map;
1409 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1410 	    BUS_DMASYNC_PREREAD);
1411 	rxc->ste_mbuf = m;
1412 	rxc->ste_ptr->ste_status = 0;
1413 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1414 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1415 	    STE_FRAG_LAST);
1416 	return (0);
1417 }
1418 
1419 static int
1420 ste_init_rx_list(struct ste_softc *sc)
1421 {
1422 	struct ste_chain_data *cd;
1423 	struct ste_list_data *ld;
1424 	int error, i;
1425 
1426 	sc->ste_int_rx_act = 0;
1427 	cd = &sc->ste_cdata;
1428 	ld = &sc->ste_ldata;
1429 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1430 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1431 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1432 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1433 		if (error != 0)
1434 			return (error);
1435 		if (i == (STE_RX_LIST_CNT - 1)) {
1436 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1437 			ld->ste_rx_list[i].ste_next =
1438 			    htole32(ld->ste_rx_list_paddr +
1439 			    (sizeof(struct ste_desc_onefrag) * 0));
1440 		} else {
1441 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1442 			ld->ste_rx_list[i].ste_next =
1443 			    htole32(ld->ste_rx_list_paddr +
1444 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1445 		}
1446 	}
1447 
1448 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1449 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1450 	    sc->ste_cdata.ste_rx_list_map,
1451 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1452 
1453 	return (0);
1454 }
1455 
1456 static void
1457 ste_init_tx_list(struct ste_softc *sc)
1458 {
1459 	struct ste_chain_data *cd;
1460 	struct ste_list_data *ld;
1461 	int i;
1462 
1463 	cd = &sc->ste_cdata;
1464 	ld = &sc->ste_ldata;
1465 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1466 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1467 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1468 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1469 		if (i == (STE_TX_LIST_CNT - 1)) {
1470 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1471 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1472 			    ld->ste_tx_list_paddr +
1473 			    (sizeof(struct ste_desc) * 0)));
1474 		} else {
1475 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1476 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1477 			    ld->ste_tx_list_paddr +
1478 			    (sizeof(struct ste_desc) * (i + 1))));
1479 		}
1480 	}
1481 
1482 	cd->ste_last_tx = NULL;
1483 	cd->ste_tx_prod = 0;
1484 	cd->ste_tx_cons = 0;
1485 	cd->ste_tx_cnt = 0;
1486 
1487 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1488 	    sc->ste_cdata.ste_tx_list_map,
1489 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1490 }
1491 
1492 static void
1493 ste_init(void *xsc)
1494 {
1495 	struct ste_softc *sc;
1496 
1497 	sc = xsc;
1498 	STE_LOCK(sc);
1499 	ste_init_locked(sc);
1500 	STE_UNLOCK(sc);
1501 }
1502 
1503 static void
1504 ste_init_locked(struct ste_softc *sc)
1505 {
1506 	struct ifnet *ifp;
1507 	struct mii_data *mii;
1508 	uint8_t val;
1509 	int i;
1510 
1511 	STE_LOCK_ASSERT(sc);
1512 	ifp = sc->ste_ifp;
1513 	mii = device_get_softc(sc->ste_miibus);
1514 
1515 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1516 		return;
1517 
1518 	ste_stop(sc);
1519 	/* Reset the chip to a known state. */
1520 	ste_reset(sc);
1521 
1522 	/* Init our MAC address */
1523 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1524 		CSR_WRITE_2(sc, STE_PAR0 + i,
1525 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1526 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1527 	}
1528 
1529 	/* Init RX list */
1530 	if (ste_init_rx_list(sc) != 0) {
1531 		device_printf(sc->ste_dev,
1532 		    "initialization failed: no memory for RX buffers\n");
1533 		ste_stop(sc);
1534 		return;
1535 	}
1536 
1537 	/* Set RX polling interval */
1538 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1539 
1540 	/* Init TX descriptors */
1541 	ste_init_tx_list(sc);
1542 
1543 	/* Clear and disable WOL. */
1544 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1545 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1546 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1547 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1548 
1549 	/* Set the TX freethresh value */
1550 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1551 
1552 	/* Set the TX start threshold for best performance. */
1553 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1554 
1555 	/* Set the TX reclaim threshold. */
1556 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1557 
1558 	/* Accept VLAN length packets */
1559 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1560 
1561 	/* Set up the RX filter. */
1562 	ste_rxfilter(sc);
1563 
1564 	/* Load the address of the RX list. */
1565 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1566 	ste_wait(sc);
1567 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1568 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1569 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1570 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1571 
1572 	/* Set TX polling interval(defer until we TX first packet). */
1573 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1574 
1575 	/* Load address of the TX list */
1576 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1577 	ste_wait(sc);
1578 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1579 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1580 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1581 	ste_wait(sc);
1582 	/* Select 3.2us timer. */
1583 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1584 	    STE_DMACTL_COUNTDOWN_MODE);
1585 
1586 	/* Enable receiver and transmitter */
1587 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1588 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1589 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1590 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1591 
1592 	/* Enable stats counters. */
1593 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1594 	/* Clear stats counters. */
1595 	ste_stats_clear(sc);
1596 
1597 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1598 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1599 #ifdef DEVICE_POLLING
1600 	/* Disable interrupts if we are polling. */
1601 	if (ifp->if_capenable & IFCAP_POLLING)
1602 		CSR_WRITE_2(sc, STE_IMR, 0);
1603 	else
1604 #endif
1605 	/* Enable interrupts. */
1606 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1607 
1608 	sc->ste_flags &= ~STE_FLAG_LINK;
1609 	/* Switch to the current media. */
1610 	mii_mediachg(mii);
1611 
1612 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1613 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1614 
1615 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1616 }
1617 
1618 static void
1619 ste_stop(struct ste_softc *sc)
1620 {
1621 	struct ifnet *ifp;
1622 	struct ste_chain_onefrag *cur_rx;
1623 	struct ste_chain *cur_tx;
1624 	uint32_t val;
1625 	int i;
1626 
1627 	STE_LOCK_ASSERT(sc);
1628 	ifp = sc->ste_ifp;
1629 
1630 	callout_stop(&sc->ste_callout);
1631 	sc->ste_timer = 0;
1632 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1633 
1634 	CSR_WRITE_2(sc, STE_IMR, 0);
1635 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1636 	/* Stop pending DMA. */
1637 	val = CSR_READ_4(sc, STE_DMACTL);
1638 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1639 	CSR_WRITE_4(sc, STE_DMACTL, val);
1640 	ste_wait(sc);
1641 	/* Disable auto-polling. */
1642 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1643 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1644 	/* Nullify DMA address to stop any further DMA. */
1645 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1646 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1647 	/* Stop TX/RX MAC. */
1648 	val = CSR_READ_2(sc, STE_MACCTL1);
1649 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1650 	    STE_MACCTL1_STATS_DISABLE;
1651 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1652 	for (i = 0; i < STE_TIMEOUT; i++) {
1653 		DELAY(10);
1654 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1655 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1656 			break;
1657 	}
1658 	if (i == STE_TIMEOUT)
1659 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1660 	/* Acknowledge any pending interrupts. */
1661 	CSR_READ_2(sc, STE_ISR_ACK);
1662 	ste_stats_update(sc);
1663 
1664 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1665 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1666 		if (cur_rx->ste_mbuf != NULL) {
1667 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1668 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1669 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1670 			    cur_rx->ste_map);
1671 			m_freem(cur_rx->ste_mbuf);
1672 			cur_rx->ste_mbuf = NULL;
1673 		}
1674 	}
1675 
1676 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1677 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1678 		if (cur_tx->ste_mbuf != NULL) {
1679 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1680 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1681 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1682 			    cur_tx->ste_map);
1683 			m_freem(cur_tx->ste_mbuf);
1684 			cur_tx->ste_mbuf = NULL;
1685 		}
1686 	}
1687 }
1688 
1689 static void
1690 ste_reset(struct ste_softc *sc)
1691 {
1692 	uint32_t ctl;
1693 	int i;
1694 
1695 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1696 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1697 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1698 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1699 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1700 	    STE_ASICCTL_EXTRESET_RESET;
1701 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1702 	CSR_READ_4(sc, STE_ASICCTL);
1703 	/*
1704 	 * Due to the need of accessing EEPROM controller can take
1705 	 * up to 1ms to complete the global reset.
1706 	 */
1707 	DELAY(1000);
1708 
1709 	for (i = 0; i < STE_TIMEOUT; i++) {
1710 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1711 			break;
1712 		DELAY(10);
1713 	}
1714 
1715 	if (i == STE_TIMEOUT)
1716 		device_printf(sc->ste_dev, "global reset never completed\n");
1717 }
1718 
1719 static void
1720 ste_restart_tx(struct ste_softc *sc)
1721 {
1722 	uint16_t mac;
1723 	int i;
1724 
1725 	for (i = 0; i < STE_TIMEOUT; i++) {
1726 		mac = CSR_READ_2(sc, STE_MACCTL1);
1727 		mac |= STE_MACCTL1_TX_ENABLE;
1728 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1729 		mac = CSR_READ_2(sc, STE_MACCTL1);
1730 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1731 			break;
1732 		DELAY(10);
1733 	}
1734 
1735 	if (i == STE_TIMEOUT)
1736 		device_printf(sc->ste_dev, "starting Tx failed");
1737 }
1738 
1739 static int
1740 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1741 {
1742 	struct ste_softc *sc;
1743 	struct ifreq *ifr;
1744 	struct mii_data *mii;
1745 	int error = 0, mask;
1746 
1747 	sc = ifp->if_softc;
1748 	ifr = (struct ifreq *)data;
1749 
1750 	switch (command) {
1751 	case SIOCSIFFLAGS:
1752 		STE_LOCK(sc);
1753 		if ((ifp->if_flags & IFF_UP) != 0) {
1754 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1755 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1756 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1757 				ste_rxfilter(sc);
1758 			else
1759 				ste_init_locked(sc);
1760 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1761 			ste_stop(sc);
1762 		sc->ste_if_flags = ifp->if_flags;
1763 		STE_UNLOCK(sc);
1764 		break;
1765 	case SIOCADDMULTI:
1766 	case SIOCDELMULTI:
1767 		STE_LOCK(sc);
1768 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1769 			ste_rxfilter(sc);
1770 		STE_UNLOCK(sc);
1771 		break;
1772 	case SIOCGIFMEDIA:
1773 	case SIOCSIFMEDIA:
1774 		mii = device_get_softc(sc->ste_miibus);
1775 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1776 		break;
1777 	case SIOCSIFCAP:
1778 		STE_LOCK(sc);
1779 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1780 #ifdef DEVICE_POLLING
1781 		if ((mask & IFCAP_POLLING) != 0 &&
1782 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1783 			ifp->if_capenable ^= IFCAP_POLLING;
1784 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1785 				error = ether_poll_register(ste_poll, ifp);
1786 				if (error != 0) {
1787 					STE_UNLOCK(sc);
1788 					break;
1789 				}
1790 				/* Disable interrupts. */
1791 				CSR_WRITE_2(sc, STE_IMR, 0);
1792 			} else {
1793 				error = ether_poll_deregister(ifp);
1794 				/* Enable interrupts. */
1795 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1796 			}
1797 		}
1798 #endif /* DEVICE_POLLING */
1799 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1800 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1801 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1802 		STE_UNLOCK(sc);
1803 		break;
1804 	default:
1805 		error = ether_ioctl(ifp, command, data);
1806 		break;
1807 	}
1808 
1809 	return (error);
1810 }
1811 
1812 static int
1813 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1814 {
1815 	struct ste_frag *frag;
1816 	struct mbuf *m;
1817 	struct ste_desc *desc;
1818 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1819 	int error, i, nsegs;
1820 
1821 	STE_LOCK_ASSERT(sc);
1822 	M_ASSERTPKTHDR((*m_head));
1823 
1824 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1825 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1826 	if (error == EFBIG) {
1827 		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1828 		if (m == NULL) {
1829 			m_freem(*m_head);
1830 			*m_head = NULL;
1831 			return (ENOMEM);
1832 		}
1833 		*m_head = m;
1834 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1835 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1836 		if (error != 0) {
1837 			m_freem(*m_head);
1838 			*m_head = NULL;
1839 			return (error);
1840 		}
1841 	} else if (error != 0)
1842 		return (error);
1843 	if (nsegs == 0) {
1844 		m_freem(*m_head);
1845 		*m_head = NULL;
1846 		return (EIO);
1847 	}
1848 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1849 	    BUS_DMASYNC_PREWRITE);
1850 
1851 	desc = txc->ste_ptr;
1852 	for (i = 0; i < nsegs; i++) {
1853 		frag = &desc->ste_frags[i];
1854 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1855 		frag->ste_len = htole32(txsegs[i].ds_len);
1856 	}
1857 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1858 	/*
1859 	 * Because we use Tx polling we can't chain multiple
1860 	 * Tx descriptors here. Otherwise we race with controller.
1861 	 */
1862 	desc->ste_next = 0;
1863 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1864 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1865 		    STE_TXCTL_DMAINTR);
1866 	else
1867 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1868 	txc->ste_mbuf = *m_head;
1869 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1870 	sc->ste_cdata.ste_tx_cnt++;
1871 
1872 	return (0);
1873 }
1874 
1875 static void
1876 ste_start(struct ifnet *ifp)
1877 {
1878 	struct ste_softc *sc;
1879 
1880 	sc = ifp->if_softc;
1881 	STE_LOCK(sc);
1882 	ste_start_locked(ifp);
1883 	STE_UNLOCK(sc);
1884 }
1885 
1886 static void
1887 ste_start_locked(struct ifnet *ifp)
1888 {
1889 	struct ste_softc *sc;
1890 	struct ste_chain *cur_tx;
1891 	struct mbuf *m_head = NULL;
1892 	int enq;
1893 
1894 	sc = ifp->if_softc;
1895 	STE_LOCK_ASSERT(sc);
1896 
1897 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1898 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1899 		return;
1900 
1901 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1902 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1903 			/*
1904 			 * Controller may have cached copy of the last used
1905 			 * next ptr so we have to reserve one TFD to avoid
1906 			 * TFD overruns.
1907 			 */
1908 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1909 			break;
1910 		}
1911 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1912 		if (m_head == NULL)
1913 			break;
1914 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1915 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1916 			if (m_head == NULL)
1917 				break;
1918 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1919 			break;
1920 		}
1921 		if (sc->ste_cdata.ste_last_tx == NULL) {
1922 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1923 			    sc->ste_cdata.ste_tx_list_map,
1924 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1926 			ste_wait(sc);
1927 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1928 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1929 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1930 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1931 			ste_wait(sc);
1932 		} else {
1933 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1934 			    sc->ste_cdata.ste_last_tx->ste_phys;
1935 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1936 			    sc->ste_cdata.ste_tx_list_map,
1937 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1938 		}
1939 		sc->ste_cdata.ste_last_tx = cur_tx;
1940 
1941 		enq++;
1942 		/*
1943 		 * If there's a BPF listener, bounce a copy of this frame
1944 		 * to him.
1945 	 	 */
1946 		BPF_MTAP(ifp, m_head);
1947 	}
1948 
1949 	if (enq > 0)
1950 		sc->ste_timer = STE_TX_TIMEOUT;
1951 }
1952 
1953 static void
1954 ste_watchdog(struct ste_softc *sc)
1955 {
1956 	struct ifnet *ifp;
1957 
1958 	ifp = sc->ste_ifp;
1959 	STE_LOCK_ASSERT(sc);
1960 
1961 	if (sc->ste_timer == 0 || --sc->ste_timer)
1962 		return;
1963 
1964 	ifp->if_oerrors++;
1965 	if_printf(ifp, "watchdog timeout\n");
1966 
1967 	ste_txeof(sc);
1968 	ste_txeoc(sc);
1969 	ste_rxeof(sc, -1);
1970 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1971 	ste_init_locked(sc);
1972 
1973 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1974 		ste_start_locked(ifp);
1975 }
1976 
1977 static int
1978 ste_shutdown(device_t dev)
1979 {
1980 
1981 	return (ste_suspend(dev));
1982 }
1983 
1984 static int
1985 ste_suspend(device_t dev)
1986 {
1987 	struct ste_softc *sc;
1988 
1989 	sc = device_get_softc(dev);
1990 
1991 	STE_LOCK(sc);
1992 	ste_stop(sc);
1993 	ste_setwol(sc);
1994 	STE_UNLOCK(sc);
1995 
1996 	return (0);
1997 }
1998 
1999 static int
2000 ste_resume(device_t dev)
2001 {
2002 	struct ste_softc *sc;
2003 	struct ifnet *ifp;
2004 	int pmc;
2005 	uint16_t pmstat;
2006 
2007 	sc = device_get_softc(dev);
2008 	STE_LOCK(sc);
2009 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2010 		/* Disable PME and clear PME status. */
2011 		pmstat = pci_read_config(sc->ste_dev,
2012 		    pmc + PCIR_POWER_STATUS, 2);
2013 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2014 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2015 			pci_write_config(sc->ste_dev,
2016 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2017 		}
2018 	}
2019 	ifp = sc->ste_ifp;
2020 	if ((ifp->if_flags & IFF_UP) != 0) {
2021 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2022 		ste_init_locked(sc);
2023 	}
2024 	STE_UNLOCK(sc);
2025 
2026 	return (0);
2027 }
2028 
2029 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2030 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2031 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2032 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2033 
2034 static void
2035 ste_sysctl_node(struct ste_softc *sc)
2036 {
2037 	struct sysctl_ctx_list *ctx;
2038 	struct sysctl_oid_list *child, *parent;
2039 	struct sysctl_oid *tree;
2040 	struct ste_hw_stats *stats;
2041 
2042 	stats = &sc->ste_stats;
2043 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2044 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2045 
2046 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2047 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2048 	/* Pull in device tunables. */
2049 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2050 	resource_int_value(device_get_name(sc->ste_dev),
2051 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2052 
2053 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2054 	    NULL, "STE statistics");
2055 	parent = SYSCTL_CHILDREN(tree);
2056 
2057 	/* Rx statistics. */
2058 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2059 	    NULL, "Rx MAC statistics");
2060 	child = SYSCTL_CHILDREN(tree);
2061 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2062 	    &stats->rx_bytes, "Good octets");
2063 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2064 	    &stats->rx_frames, "Good frames");
2065 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2066 	    &stats->rx_bcast_frames, "Good broadcast frames");
2067 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2068 	    &stats->rx_mcast_frames, "Good multicast frames");
2069 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2070 	    &stats->rx_lost_frames, "Lost frames");
2071 
2072 	/* Tx statistics. */
2073 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2074 	    NULL, "Tx MAC statistics");
2075 	child = SYSCTL_CHILDREN(tree);
2076 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2077 	    &stats->tx_bytes, "Good octets");
2078 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2079 	    &stats->tx_frames, "Good frames");
2080 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2081 	    &stats->tx_bcast_frames, "Good broadcast frames");
2082 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2083 	    &stats->tx_mcast_frames, "Good multicast frames");
2084 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2085 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2086 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2087 	    &stats->tx_single_colls, "Single collisions");
2088 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2089 	    &stats->tx_multi_colls, "Multiple collisions");
2090 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2091 	    &stats->tx_late_colls, "Late collisions");
2092 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2093 	    &stats->tx_frames_defered, "Frames with deferrals");
2094 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2095 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2096 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2097 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2098 }
2099 
2100 #undef STE_SYSCTL_STAT_ADD32
2101 #undef STE_SYSCTL_STAT_ADD64
2102 
2103 static void
2104 ste_setwol(struct ste_softc *sc)
2105 {
2106 	struct ifnet *ifp;
2107 	uint16_t pmstat;
2108 	uint8_t val;
2109 	int pmc;
2110 
2111 	STE_LOCK_ASSERT(sc);
2112 
2113 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2114 		/* Disable WOL. */
2115 		CSR_READ_1(sc, STE_WAKE_EVENT);
2116 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2117 		return;
2118 	}
2119 
2120 	ifp = sc->ste_ifp;
2121 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2122 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2123 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2124 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2125 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2126 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2127 	/* Request PME. */
2128 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2129 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2130 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2131 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2132 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2133 }
2134