xref: /freebsd/sys/dev/ste/if_ste.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sockio.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/module.h>
47 #include <sys/socket.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <net/bpf.h>
59 
60 #include <vm/vm.h>              /* for vtophys */
61 #include <vm/pmap.h>            /* for vtophys */
62 #include <machine/bus.h>
63 #include <machine/resource.h>
64 #include <sys/bus.h>
65 #include <sys/rman.h>
66 
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 
73 /* "device miibus" required.  See GENERIC if you get errors here. */
74 #include "miibus_if.h"
75 
76 #define STE_USEIOSPACE
77 
78 #include <dev/ste/if_stereg.h>
79 
80 MODULE_DEPEND(ste, pci, 1, 1, 1);
81 MODULE_DEPEND(ste, ether, 1, 1, 1);
82 MODULE_DEPEND(ste, miibus, 1, 1, 1);
83 
84 /*
85  * Various supported device vendors/types and their names.
86  */
87 static struct ste_type ste_devs[] = {
88 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91 	{ 0, 0, NULL }
92 };
93 
94 static int ste_probe(device_t);
95 static int ste_attach(device_t);
96 static int ste_detach(device_t);
97 static void ste_init(void *);
98 static void ste_init_locked(struct ste_softc *);
99 static void ste_intr(void *);
100 static void ste_rxeoc(struct ste_softc *);
101 static int ste_rxeof(struct ste_softc *);
102 static void ste_txeoc(struct ste_softc *);
103 static void ste_txeof(struct ste_softc *);
104 static void ste_stats_update(void *);
105 static void ste_stop(struct ste_softc *);
106 static void ste_reset(struct ste_softc *);
107 static int ste_ioctl(struct ifnet *, u_long, caddr_t);
108 static int ste_encap(struct ste_softc *, struct ste_chain *, struct mbuf *);
109 static void ste_start(struct ifnet *);
110 static void ste_start_locked(struct ifnet *);
111 static void ste_watchdog(struct ifnet *);
112 static int ste_shutdown(device_t);
113 static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *,
114 		struct mbuf *);
115 static int ste_ifmedia_upd(struct ifnet *);
116 static void ste_ifmedia_upd_locked(struct ifnet *);
117 static void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
118 
119 static void ste_mii_sync(struct ste_softc *);
120 static void ste_mii_send(struct ste_softc *, u_int32_t, int);
121 static int ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
122 static int ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
123 static int ste_miibus_readreg(device_t, int, int);
124 static int ste_miibus_writereg(device_t, int, int, int);
125 static void ste_miibus_statchg(device_t);
126 
127 static int ste_eeprom_wait(struct ste_softc *);
128 static int ste_read_eeprom(struct ste_softc *, caddr_t, int, int, int);
129 static void ste_wait(struct ste_softc *);
130 static void ste_setmulti(struct ste_softc *);
131 static int ste_init_rx_list(struct ste_softc *);
132 static void ste_init_tx_list(struct ste_softc *);
133 
134 #ifdef STE_USEIOSPACE
135 #define STE_RES			SYS_RES_IOPORT
136 #define STE_RID			STE_PCI_LOIO
137 #else
138 #define STE_RES			SYS_RES_MEMORY
139 #define STE_RID			STE_PCI_LOMEM
140 #endif
141 
142 static device_method_t ste_methods[] = {
143 	/* Device interface */
144 	DEVMETHOD(device_probe,		ste_probe),
145 	DEVMETHOD(device_attach,	ste_attach),
146 	DEVMETHOD(device_detach,	ste_detach),
147 	DEVMETHOD(device_shutdown,	ste_shutdown),
148 
149 	/* bus interface */
150 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
151 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
152 
153 	/* MII interface */
154 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
155 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
156 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
157 
158 	{ 0, 0 }
159 };
160 
161 static driver_t ste_driver = {
162 	"ste",
163 	ste_methods,
164 	sizeof(struct ste_softc)
165 };
166 
167 static devclass_t ste_devclass;
168 
169 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
170 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
171 
172 SYSCTL_NODE(_hw, OID_AUTO, ste, CTLFLAG_RD, 0, "if_ste parameters");
173 
174 static int ste_rxsyncs;
175 SYSCTL_INT(_hw_ste, OID_AUTO, rxsyncs, CTLFLAG_RW, &ste_rxsyncs, 0, "");
176 
177 #define STE_SETBIT4(sc, reg, x)				\
178 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
179 
180 #define STE_CLRBIT4(sc, reg, x)				\
181 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
182 
183 #define STE_SETBIT2(sc, reg, x)				\
184 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
185 
186 #define STE_CLRBIT2(sc, reg, x)				\
187 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
188 
189 #define STE_SETBIT1(sc, reg, x)				\
190 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
191 
192 #define STE_CLRBIT1(sc, reg, x)				\
193 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
194 
195 
196 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
197 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
198 
199 /*
200  * Sync the PHYs by setting data bit and strobing the clock 32 times.
201  */
202 static void
203 ste_mii_sync(sc)
204 	struct ste_softc		*sc;
205 {
206 	register int		i;
207 
208 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
209 
210 	for (i = 0; i < 32; i++) {
211 		MII_SET(STE_PHYCTL_MCLK);
212 		DELAY(1);
213 		MII_CLR(STE_PHYCTL_MCLK);
214 		DELAY(1);
215 	}
216 
217 	return;
218 }
219 
220 /*
221  * Clock a series of bits through the MII.
222  */
223 static void
224 ste_mii_send(sc, bits, cnt)
225 	struct ste_softc		*sc;
226 	u_int32_t		bits;
227 	int			cnt;
228 {
229 	int			i;
230 
231 	MII_CLR(STE_PHYCTL_MCLK);
232 
233 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
234 		if (bits & i) {
235 			MII_SET(STE_PHYCTL_MDATA);
236                 } else {
237 			MII_CLR(STE_PHYCTL_MDATA);
238                 }
239 		DELAY(1);
240 		MII_CLR(STE_PHYCTL_MCLK);
241 		DELAY(1);
242 		MII_SET(STE_PHYCTL_MCLK);
243 	}
244 }
245 
246 /*
247  * Read an PHY register through the MII.
248  */
249 static int
250 ste_mii_readreg(sc, frame)
251 	struct ste_softc		*sc;
252 	struct ste_mii_frame	*frame;
253 
254 {
255 	int			i, ack;
256 
257 	/*
258 	 * Set up frame for RX.
259 	 */
260 	frame->mii_stdelim = STE_MII_STARTDELIM;
261 	frame->mii_opcode = STE_MII_READOP;
262 	frame->mii_turnaround = 0;
263 	frame->mii_data = 0;
264 
265 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
266 	/*
267  	 * Turn on data xmit.
268 	 */
269 	MII_SET(STE_PHYCTL_MDIR);
270 
271 	ste_mii_sync(sc);
272 
273 	/*
274 	 * Send command/address info.
275 	 */
276 	ste_mii_send(sc, frame->mii_stdelim, 2);
277 	ste_mii_send(sc, frame->mii_opcode, 2);
278 	ste_mii_send(sc, frame->mii_phyaddr, 5);
279 	ste_mii_send(sc, frame->mii_regaddr, 5);
280 
281 	/* Turn off xmit. */
282 	MII_CLR(STE_PHYCTL_MDIR);
283 
284 	/* Idle bit */
285 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
286 	DELAY(1);
287 	MII_SET(STE_PHYCTL_MCLK);
288 	DELAY(1);
289 
290 	/* Check for ack */
291 	MII_CLR(STE_PHYCTL_MCLK);
292 	DELAY(1);
293 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
294 	MII_SET(STE_PHYCTL_MCLK);
295 	DELAY(1);
296 
297 	/*
298 	 * Now try reading data bits. If the ack failed, we still
299 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
300 	 */
301 	if (ack) {
302 		for(i = 0; i < 16; i++) {
303 			MII_CLR(STE_PHYCTL_MCLK);
304 			DELAY(1);
305 			MII_SET(STE_PHYCTL_MCLK);
306 			DELAY(1);
307 		}
308 		goto fail;
309 	}
310 
311 	for (i = 0x8000; i; i >>= 1) {
312 		MII_CLR(STE_PHYCTL_MCLK);
313 		DELAY(1);
314 		if (!ack) {
315 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
316 				frame->mii_data |= i;
317 			DELAY(1);
318 		}
319 		MII_SET(STE_PHYCTL_MCLK);
320 		DELAY(1);
321 	}
322 
323 fail:
324 
325 	MII_CLR(STE_PHYCTL_MCLK);
326 	DELAY(1);
327 	MII_SET(STE_PHYCTL_MCLK);
328 	DELAY(1);
329 
330 	if (ack)
331 		return(1);
332 	return(0);
333 }
334 
335 /*
336  * Write to a PHY register through the MII.
337  */
338 static int
339 ste_mii_writereg(sc, frame)
340 	struct ste_softc		*sc;
341 	struct ste_mii_frame	*frame;
342 
343 {
344 
345 	/*
346 	 * Set up frame for TX.
347 	 */
348 
349 	frame->mii_stdelim = STE_MII_STARTDELIM;
350 	frame->mii_opcode = STE_MII_WRITEOP;
351 	frame->mii_turnaround = STE_MII_TURNAROUND;
352 
353 	/*
354  	 * Turn on data output.
355 	 */
356 	MII_SET(STE_PHYCTL_MDIR);
357 
358 	ste_mii_sync(sc);
359 
360 	ste_mii_send(sc, frame->mii_stdelim, 2);
361 	ste_mii_send(sc, frame->mii_opcode, 2);
362 	ste_mii_send(sc, frame->mii_phyaddr, 5);
363 	ste_mii_send(sc, frame->mii_regaddr, 5);
364 	ste_mii_send(sc, frame->mii_turnaround, 2);
365 	ste_mii_send(sc, frame->mii_data, 16);
366 
367 	/* Idle bit. */
368 	MII_SET(STE_PHYCTL_MCLK);
369 	DELAY(1);
370 	MII_CLR(STE_PHYCTL_MCLK);
371 	DELAY(1);
372 
373 	/*
374 	 * Turn off xmit.
375 	 */
376 	MII_CLR(STE_PHYCTL_MDIR);
377 
378 	return(0);
379 }
380 
381 static int
382 ste_miibus_readreg(dev, phy, reg)
383 	device_t		dev;
384 	int			phy, reg;
385 {
386 	struct ste_softc	*sc;
387 	struct ste_mii_frame	frame;
388 
389 	sc = device_get_softc(dev);
390 
391 	if ( sc->ste_one_phy && phy != 0 )
392 		return (0);
393 
394 	bzero((char *)&frame, sizeof(frame));
395 
396 	frame.mii_phyaddr = phy;
397 	frame.mii_regaddr = reg;
398 	ste_mii_readreg(sc, &frame);
399 
400 	return(frame.mii_data);
401 }
402 
403 static int
404 ste_miibus_writereg(dev, phy, reg, data)
405 	device_t		dev;
406 	int			phy, reg, data;
407 {
408 	struct ste_softc	*sc;
409 	struct ste_mii_frame	frame;
410 
411 	sc = device_get_softc(dev);
412 	bzero((char *)&frame, sizeof(frame));
413 
414 	frame.mii_phyaddr = phy;
415 	frame.mii_regaddr = reg;
416 	frame.mii_data = data;
417 
418 	ste_mii_writereg(sc, &frame);
419 
420 	return(0);
421 }
422 
423 static void
424 ste_miibus_statchg(dev)
425 	device_t		dev;
426 {
427 	struct ste_softc	*sc;
428 	struct mii_data		*mii;
429 
430 	sc = device_get_softc(dev);
431 
432 	mii = device_get_softc(sc->ste_miibus);
433 
434 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
435 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
436 	} else {
437 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
438 	}
439 
440 	return;
441 }
442 
443 static int
444 ste_ifmedia_upd(ifp)
445 	struct ifnet		*ifp;
446 {
447 	struct ste_softc	*sc;
448 
449 	sc = ifp->if_softc;
450 	STE_LOCK(sc);
451 	ste_ifmedia_upd_locked(ifp);
452 	STE_UNLOCK(sc);
453 
454 	return(0);
455 }
456 
457 static void
458 ste_ifmedia_upd_locked(ifp)
459 	struct ifnet		*ifp;
460 {
461 	struct ste_softc	*sc;
462 	struct mii_data		*mii;
463 
464 	sc = ifp->if_softc;
465 	STE_LOCK_ASSERT(sc);
466 	mii = device_get_softc(sc->ste_miibus);
467 	sc->ste_link = 0;
468 	if (mii->mii_instance) {
469 		struct mii_softc	*miisc;
470 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
471 			mii_phy_reset(miisc);
472 	}
473 	mii_mediachg(mii);
474 }
475 
476 static void
477 ste_ifmedia_sts(ifp, ifmr)
478 	struct ifnet		*ifp;
479 	struct ifmediareq	*ifmr;
480 {
481 	struct ste_softc	*sc;
482 	struct mii_data		*mii;
483 
484 	sc = ifp->if_softc;
485 	mii = device_get_softc(sc->ste_miibus);
486 
487 	STE_LOCK(sc);
488 	mii_pollstat(mii);
489 	ifmr->ifm_active = mii->mii_media_active;
490 	ifmr->ifm_status = mii->mii_media_status;
491 	STE_UNLOCK(sc);
492 
493 	return;
494 }
495 
496 static void
497 ste_wait(sc)
498 	struct ste_softc		*sc;
499 {
500 	register int		i;
501 
502 	for (i = 0; i < STE_TIMEOUT; i++) {
503 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
504 			break;
505 	}
506 
507 	if (i == STE_TIMEOUT)
508 		device_printf(sc->ste_dev, "command never completed!\n");
509 
510 	return;
511 }
512 
513 /*
514  * The EEPROM is slow: give it time to come ready after issuing
515  * it a command.
516  */
517 static int
518 ste_eeprom_wait(sc)
519 	struct ste_softc		*sc;
520 {
521 	int			i;
522 
523 	DELAY(1000);
524 
525 	for (i = 0; i < 100; i++) {
526 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
527 			DELAY(1000);
528 		else
529 			break;
530 	}
531 
532 	if (i == 100) {
533 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
534 		return(1);
535 	}
536 
537 	return(0);
538 }
539 
540 /*
541  * Read a sequence of words from the EEPROM. Note that ethernet address
542  * data is stored in the EEPROM in network byte order.
543  */
544 static int
545 ste_read_eeprom(sc, dest, off, cnt, swap)
546 	struct ste_softc		*sc;
547 	caddr_t			dest;
548 	int			off;
549 	int			cnt;
550 	int			swap;
551 {
552 	int			err = 0, i;
553 	u_int16_t		word = 0, *ptr;
554 
555 	if (ste_eeprom_wait(sc))
556 		return(1);
557 
558 	for (i = 0; i < cnt; i++) {
559 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
560 		err = ste_eeprom_wait(sc);
561 		if (err)
562 			break;
563 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
564 		ptr = (u_int16_t *)(dest + (i * 2));
565 		if (swap)
566 			*ptr = ntohs(word);
567 		else
568 			*ptr = word;
569 	}
570 
571 	return(err ? 1 : 0);
572 }
573 
574 static void
575 ste_setmulti(sc)
576 	struct ste_softc	*sc;
577 {
578 	struct ifnet		*ifp;
579 	int			h = 0;
580 	u_int32_t		hashes[2] = { 0, 0 };
581 	struct ifmultiaddr	*ifma;
582 
583 	ifp = sc->ste_ifp;
584 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
585 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
586 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
587 		return;
588 	}
589 
590 	/* first, zot all the existing hash bits */
591 	CSR_WRITE_2(sc, STE_MAR0, 0);
592 	CSR_WRITE_2(sc, STE_MAR1, 0);
593 	CSR_WRITE_2(sc, STE_MAR2, 0);
594 	CSR_WRITE_2(sc, STE_MAR3, 0);
595 
596 	/* now program new ones */
597 	if_maddr_rlock(ifp);
598 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
599 		if (ifma->ifma_addr->sa_family != AF_LINK)
600 			continue;
601 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
602 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
603 		if (h < 32)
604 			hashes[0] |= (1 << h);
605 		else
606 			hashes[1] |= (1 << (h - 32));
607 	}
608 	if_maddr_runlock(ifp);
609 
610 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
611 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
612 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
613 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
614 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
615 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
616 
617 	return;
618 }
619 
620 #ifdef DEVICE_POLLING
621 static poll_handler_t ste_poll, ste_poll_locked;
622 
623 static int
624 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
625 {
626 	struct ste_softc *sc = ifp->if_softc;
627 	int rx_npkts = 0;
628 
629 	STE_LOCK(sc);
630 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
631 		rx_npkts = ste_poll_locked(ifp, cmd, count);
632 	STE_UNLOCK(sc);
633 	return (rx_npkts);
634 }
635 
636 static int
637 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
638 {
639 	struct ste_softc *sc = ifp->if_softc;
640 	int rx_npkts;
641 
642 	STE_LOCK_ASSERT(sc);
643 
644 	sc->rxcycles = count;
645 	if (cmd == POLL_AND_CHECK_STATUS)
646 		ste_rxeoc(sc);
647 	rx_npkts = ste_rxeof(sc);
648 	ste_txeof(sc);
649 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
650 		ste_start_locked(ifp);
651 
652 	if (cmd == POLL_AND_CHECK_STATUS) {
653 		u_int16_t status;
654 
655 		status = CSR_READ_2(sc, STE_ISR_ACK);
656 
657 		if (status & STE_ISR_TX_DONE)
658 			ste_txeoc(sc);
659 
660 		if (status & STE_ISR_STATS_OFLOW) {
661 			callout_stop(&sc->ste_stat_callout);
662 			ste_stats_update(sc);
663 		}
664 
665 		if (status & STE_ISR_LINKEVENT)
666 			mii_pollstat(device_get_softc(sc->ste_miibus));
667 
668 		if (status & STE_ISR_HOSTERR) {
669 			ste_reset(sc);
670 			ste_init_locked(sc);
671 		}
672 	}
673 	return (rx_npkts);
674 }
675 #endif /* DEVICE_POLLING */
676 
677 static void
678 ste_intr(xsc)
679 	void			*xsc;
680 {
681 	struct ste_softc	*sc;
682 	struct ifnet		*ifp;
683 	u_int16_t		status;
684 
685 	sc = xsc;
686 	STE_LOCK(sc);
687 	ifp = sc->ste_ifp;
688 
689 #ifdef DEVICE_POLLING
690 	if (ifp->if_capenable & IFCAP_POLLING) {
691 		STE_UNLOCK(sc);
692 		return;
693 	}
694 #endif
695 
696 	/* See if this is really our interrupt. */
697 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) {
698 		STE_UNLOCK(sc);
699 		return;
700 	}
701 
702 	for (;;) {
703 		status = CSR_READ_2(sc, STE_ISR_ACK);
704 
705 		if (!(status & STE_INTRS))
706 			break;
707 
708 		if (status & STE_ISR_RX_DMADONE) {
709 			ste_rxeoc(sc);
710 			ste_rxeof(sc);
711 		}
712 
713 		if (status & STE_ISR_TX_DMADONE)
714 			ste_txeof(sc);
715 
716 		if (status & STE_ISR_TX_DONE)
717 			ste_txeoc(sc);
718 
719 		if (status & STE_ISR_STATS_OFLOW) {
720 			callout_stop(&sc->ste_stat_callout);
721 			ste_stats_update(sc);
722 		}
723 
724 		if (status & STE_ISR_LINKEVENT)
725 			mii_pollstat(device_get_softc(sc->ste_miibus));
726 
727 
728 		if (status & STE_ISR_HOSTERR) {
729 			ste_reset(sc);
730 			ste_init_locked(sc);
731 		}
732 	}
733 
734 	/* Re-enable interrupts */
735 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
736 
737 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
738 		ste_start_locked(ifp);
739 
740 	STE_UNLOCK(sc);
741 
742 	return;
743 }
744 
745 static void
746 ste_rxeoc(struct ste_softc *sc)
747 {
748 	struct ste_chain_onefrag *cur_rx;
749 
750 	STE_LOCK_ASSERT(sc);
751 
752 	if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
753 		cur_rx = sc->ste_cdata.ste_rx_head;
754 		do {
755 			cur_rx = cur_rx->ste_next;
756 			/* If the ring is empty, just return. */
757 			if (cur_rx == sc->ste_cdata.ste_rx_head)
758 				return;
759 		} while (cur_rx->ste_ptr->ste_status == 0);
760 		if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
761 			/* We've fallen behind the chip: catch it. */
762 			sc->ste_cdata.ste_rx_head = cur_rx;
763 			++ste_rxsyncs;
764 		}
765 	}
766 }
767 
768 /*
769  * A frame has been uploaded: pass the resulting mbuf chain up to
770  * the higher level protocols.
771  */
772 static int
773 ste_rxeof(sc)
774 	struct ste_softc		*sc;
775 {
776         struct mbuf		*m;
777         struct ifnet		*ifp;
778 	struct ste_chain_onefrag	*cur_rx;
779 	int			total_len = 0, count=0, rx_npkts = 0;
780 	u_int32_t		rxstat;
781 
782 	STE_LOCK_ASSERT(sc);
783 
784 	ifp = sc->ste_ifp;
785 
786 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
787 	      & STE_RXSTAT_DMADONE) {
788 #ifdef DEVICE_POLLING
789 		if (ifp->if_capenable & IFCAP_POLLING) {
790 			if (sc->rxcycles <= 0)
791 				break;
792 			sc->rxcycles--;
793 		}
794 #endif
795 		if ((STE_RX_LIST_CNT - count) < 3) {
796 			break;
797 		}
798 
799 		cur_rx = sc->ste_cdata.ste_rx_head;
800 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
801 
802 		/*
803 		 * If an error occurs, update stats, clear the
804 		 * status word and leave the mbuf cluster in place:
805 		 * it should simply get re-used next time this descriptor
806 	 	 * comes up in the ring.
807 		 */
808 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
809 			ifp->if_ierrors++;
810 			cur_rx->ste_ptr->ste_status = 0;
811 			continue;
812 		}
813 
814 		/*
815 		 * If there error bit was not set, the upload complete
816 		 * bit should be set which means we have a valid packet.
817 		 * If not, something truly strange has happened.
818 		 */
819 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
820 			device_printf(sc->ste_dev,
821 			    "bad receive status -- packet dropped\n");
822 			ifp->if_ierrors++;
823 			cur_rx->ste_ptr->ste_status = 0;
824 			continue;
825 		}
826 
827 		/* No errors; receive the packet. */
828 		m = cur_rx->ste_mbuf;
829 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
830 
831 		/*
832 		 * Try to conjure up a new mbuf cluster. If that
833 		 * fails, it means we have an out of memory condition and
834 		 * should leave the buffer in place and continue. This will
835 		 * result in a lost packet, but there's little else we
836 		 * can do in this situation.
837 		 */
838 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
839 			ifp->if_ierrors++;
840 			cur_rx->ste_ptr->ste_status = 0;
841 			continue;
842 		}
843 
844 		m->m_pkthdr.rcvif = ifp;
845 		m->m_pkthdr.len = m->m_len = total_len;
846 
847 		ifp->if_ipackets++;
848 		STE_UNLOCK(sc);
849 		(*ifp->if_input)(ifp, m);
850 		STE_LOCK(sc);
851 
852 		cur_rx->ste_ptr->ste_status = 0;
853 		count++;
854 		rx_npkts++;
855 	}
856 
857 	return (rx_npkts);
858 }
859 
860 static void
861 ste_txeoc(sc)
862 	struct ste_softc	*sc;
863 {
864 	u_int8_t		txstat;
865 	struct ifnet		*ifp;
866 
867 	ifp = sc->ste_ifp;
868 
869 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
870 	    STE_TXSTATUS_TXDONE) {
871 		if (txstat & STE_TXSTATUS_UNDERRUN ||
872 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
873 		    txstat & STE_TXSTATUS_RECLAIMERR) {
874 			ifp->if_oerrors++;
875 			device_printf(sc->ste_dev,
876 			    "transmission error: %x\n", txstat);
877 
878 			ste_reset(sc);
879 			ste_init_locked(sc);
880 
881 			if (txstat & STE_TXSTATUS_UNDERRUN &&
882 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
883 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
884 				device_printf(sc->ste_dev,
885 				    "tx underrun, increasing tx"
886 				    " start threshold to %d bytes\n",
887 				    sc->ste_tx_thresh);
888 			}
889 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
890 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
891 			    (STE_PACKET_SIZE >> 4));
892 		}
893 		ste_init_locked(sc);
894 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
895 	}
896 
897 	return;
898 }
899 
900 static void
901 ste_txeof(sc)
902 	struct ste_softc	*sc;
903 {
904 	struct ste_chain	*cur_tx;
905 	struct ifnet		*ifp;
906 	int			idx;
907 
908 	ifp = sc->ste_ifp;
909 
910 	idx = sc->ste_cdata.ste_tx_cons;
911 	while(idx != sc->ste_cdata.ste_tx_prod) {
912 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
913 
914 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
915 			break;
916 
917 		m_freem(cur_tx->ste_mbuf);
918 		cur_tx->ste_mbuf = NULL;
919 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
920 		ifp->if_opackets++;
921 
922 		STE_INC(idx, STE_TX_LIST_CNT);
923 	}
924 
925 	sc->ste_cdata.ste_tx_cons = idx;
926 	if (idx == sc->ste_cdata.ste_tx_prod)
927 		ifp->if_timer = 0;
928 }
929 
930 static void
931 ste_stats_update(xsc)
932 	void			*xsc;
933 {
934 	struct ste_softc	*sc;
935 	struct ifnet		*ifp;
936 	struct mii_data		*mii;
937 
938 	sc = xsc;
939 	STE_LOCK_ASSERT(sc);
940 
941 	ifp = sc->ste_ifp;
942 	mii = device_get_softc(sc->ste_miibus);
943 
944 	ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
945 	    + CSR_READ_1(sc, STE_MULTI_COLLS)
946 	    + CSR_READ_1(sc, STE_SINGLE_COLLS);
947 
948 	if (!sc->ste_link) {
949 		mii_pollstat(mii);
950 		if (mii->mii_media_status & IFM_ACTIVE &&
951 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
952 			sc->ste_link++;
953 			/*
954 			* we don't get a call-back on re-init so do it
955 			* otherwise we get stuck in the wrong link state
956 			*/
957 			ste_miibus_statchg(sc->ste_dev);
958 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
959 				ste_start_locked(ifp);
960 		}
961 	}
962 
963 	callout_reset(&sc->ste_stat_callout, hz, ste_stats_update, sc);
964 
965 	return;
966 }
967 
968 
969 /*
970  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
971  * IDs against our list and return a device name if we find a match.
972  */
973 static int
974 ste_probe(dev)
975 	device_t		dev;
976 {
977 	struct ste_type		*t;
978 
979 	t = ste_devs;
980 
981 	while(t->ste_name != NULL) {
982 		if ((pci_get_vendor(dev) == t->ste_vid) &&
983 		    (pci_get_device(dev) == t->ste_did)) {
984 			device_set_desc(dev, t->ste_name);
985 			return (BUS_PROBE_DEFAULT);
986 		}
987 		t++;
988 	}
989 
990 	return(ENXIO);
991 }
992 
993 /*
994  * Attach the interface. Allocate softc structures, do ifmedia
995  * setup and ethernet/BPF attach.
996  */
997 static int
998 ste_attach(dev)
999 	device_t		dev;
1000 {
1001 	struct ste_softc	*sc;
1002 	struct ifnet		*ifp;
1003 	int			error = 0, rid;
1004 	u_char			eaddr[6];
1005 
1006 	sc = device_get_softc(dev);
1007 	sc->ste_dev = dev;
1008 
1009 	/*
1010 	 * Only use one PHY since this chip reports multiple
1011 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1012 	 * it is at 0 & 1.  It is rev 0x12.
1013 	 */
1014 	if (pci_get_vendor(dev) == DL_VENDORID &&
1015 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1016 	    pci_get_revid(dev) == 0x12 )
1017 		sc->ste_one_phy = 1;
1018 
1019 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1020 	    MTX_DEF);
1021 	/*
1022 	 * Map control/status registers.
1023 	 */
1024 	pci_enable_busmaster(dev);
1025 
1026 	rid = STE_RID;
1027 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
1028 
1029 	if (sc->ste_res == NULL) {
1030 		device_printf(dev, "couldn't map ports/memory\n");
1031 		error = ENXIO;
1032 		goto fail;
1033 	}
1034 
1035 	sc->ste_btag = rman_get_bustag(sc->ste_res);
1036 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
1037 
1038 	/* Allocate interrupt */
1039 	rid = 0;
1040 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1041 	    RF_SHAREABLE | RF_ACTIVE);
1042 
1043 	if (sc->ste_irq == NULL) {
1044 		device_printf(dev, "couldn't map interrupt\n");
1045 		error = ENXIO;
1046 		goto fail;
1047 	}
1048 
1049 	callout_init_mtx(&sc->ste_stat_callout, &sc->ste_mtx, 0);
1050 
1051 	/* Reset the adapter. */
1052 	ste_reset(sc);
1053 
1054 	/*
1055 	 * Get station address from the EEPROM.
1056 	 */
1057 	if (ste_read_eeprom(sc, eaddr,
1058 	    STE_EEADDR_NODE0, 3, 0)) {
1059 		device_printf(dev, "failed to read station address\n");
1060 		error = ENXIO;;
1061 		goto fail;
1062 	}
1063 
1064 	/* Allocate the descriptor queues. */
1065 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1066 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1067 
1068 	if (sc->ste_ldata == NULL) {
1069 		device_printf(dev, "no memory for list buffers!\n");
1070 		error = ENXIO;
1071 		goto fail;
1072 	}
1073 
1074 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1075 
1076 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1077 	if (ifp == NULL) {
1078 		device_printf(dev, "can not if_alloc()\n");
1079 		error = ENOSPC;
1080 		goto fail;
1081 	}
1082 
1083 	/* Do MII setup. */
1084 	if (mii_phy_probe(dev, &sc->ste_miibus,
1085 	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1086 		device_printf(dev, "MII without any phy!\n");
1087 		error = ENXIO;
1088 		goto fail;
1089 	}
1090 
1091 	ifp->if_softc = sc;
1092 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1093 	ifp->if_mtu = ETHERMTU;
1094 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1095 	ifp->if_ioctl = ste_ioctl;
1096 	ifp->if_start = ste_start;
1097 	ifp->if_watchdog = ste_watchdog;
1098 	ifp->if_init = ste_init;
1099 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1100 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1101 	IFQ_SET_READY(&ifp->if_snd);
1102 
1103 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1104 
1105 	/*
1106 	 * Call MI attach routine.
1107 	 */
1108 	ether_ifattach(ifp, eaddr);
1109 
1110 	/*
1111 	 * Tell the upper layer(s) we support long frames.
1112 	 */
1113 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1114 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1115 	ifp->if_capenable = ifp->if_capabilities;
1116 #ifdef DEVICE_POLLING
1117 	ifp->if_capabilities |= IFCAP_POLLING;
1118 #endif
1119 
1120 	/* Hook interrupt last to avoid having to lock softc */
1121 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1122 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1123 
1124 	if (error) {
1125 		device_printf(dev, "couldn't set up irq\n");
1126 		ether_ifdetach(ifp);
1127 		goto fail;
1128 	}
1129 
1130 fail:
1131 	if (error)
1132 		ste_detach(dev);
1133 
1134 	return(error);
1135 }
1136 
1137 /*
1138  * Shutdown hardware and free up resources. This can be called any
1139  * time after the mutex has been initialized. It is called in both
1140  * the error case in attach and the normal detach case so it needs
1141  * to be careful about only freeing resources that have actually been
1142  * allocated.
1143  */
1144 static int
1145 ste_detach(dev)
1146 	device_t		dev;
1147 {
1148 	struct ste_softc	*sc;
1149 	struct ifnet		*ifp;
1150 
1151 	sc = device_get_softc(dev);
1152 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1153 	ifp = sc->ste_ifp;
1154 
1155 #ifdef DEVICE_POLLING
1156 	if (ifp->if_capenable & IFCAP_POLLING)
1157 		ether_poll_deregister(ifp);
1158 #endif
1159 
1160 	/* These should only be active if attach succeeded */
1161 	if (device_is_attached(dev)) {
1162 		STE_LOCK(sc);
1163 		ste_stop(sc);
1164 		STE_UNLOCK(sc);
1165 		callout_drain(&sc->ste_stat_callout);
1166 		ether_ifdetach(ifp);
1167 	}
1168 	if (sc->ste_miibus)
1169 		device_delete_child(dev, sc->ste_miibus);
1170 	bus_generic_detach(dev);
1171 
1172 	if (sc->ste_intrhand)
1173 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1174 	if (sc->ste_irq)
1175 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1176 	if (sc->ste_res)
1177 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1178 
1179 	if (ifp)
1180 		if_free(ifp);
1181 
1182 	if (sc->ste_ldata) {
1183 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1184 		    M_DEVBUF);
1185 	}
1186 
1187 	mtx_destroy(&sc->ste_mtx);
1188 
1189 	return(0);
1190 }
1191 
1192 static int
1193 ste_newbuf(sc, c, m)
1194 	struct ste_softc	*sc;
1195 	struct ste_chain_onefrag	*c;
1196 	struct mbuf		*m;
1197 {
1198 	struct mbuf		*m_new = NULL;
1199 
1200 	if (m == NULL) {
1201 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1202 		if (m_new == NULL)
1203 			return(ENOBUFS);
1204 		MCLGET(m_new, M_DONTWAIT);
1205 		if (!(m_new->m_flags & M_EXT)) {
1206 			m_freem(m_new);
1207 			return(ENOBUFS);
1208 		}
1209 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1210 	} else {
1211 		m_new = m;
1212 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1213 		m_new->m_data = m_new->m_ext.ext_buf;
1214 	}
1215 
1216 	m_adj(m_new, ETHER_ALIGN);
1217 
1218 	c->ste_mbuf = m_new;
1219 	c->ste_ptr->ste_status = 0;
1220 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1221 	c->ste_ptr->ste_frag.ste_len = (1536 + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
1222 
1223 	return(0);
1224 }
1225 
1226 static int
1227 ste_init_rx_list(sc)
1228 	struct ste_softc	*sc;
1229 {
1230 	struct ste_chain_data	*cd;
1231 	struct ste_list_data	*ld;
1232 	int			i;
1233 
1234 	cd = &sc->ste_cdata;
1235 	ld = sc->ste_ldata;
1236 
1237 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1238 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1239 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1240 			return(ENOBUFS);
1241 		if (i == (STE_RX_LIST_CNT - 1)) {
1242 			cd->ste_rx_chain[i].ste_next =
1243 			    &cd->ste_rx_chain[0];
1244 			ld->ste_rx_list[i].ste_next =
1245 			    vtophys(&ld->ste_rx_list[0]);
1246 		} else {
1247 			cd->ste_rx_chain[i].ste_next =
1248 			    &cd->ste_rx_chain[i + 1];
1249 			ld->ste_rx_list[i].ste_next =
1250 			    vtophys(&ld->ste_rx_list[i + 1]);
1251 		}
1252 		ld->ste_rx_list[i].ste_status = 0;
1253 	}
1254 
1255 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1256 
1257 	return(0);
1258 }
1259 
1260 static void
1261 ste_init_tx_list(sc)
1262 	struct ste_softc	*sc;
1263 {
1264 	struct ste_chain_data	*cd;
1265 	struct ste_list_data	*ld;
1266 	int			i;
1267 
1268 	cd = &sc->ste_cdata;
1269 	ld = sc->ste_ldata;
1270 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1271 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1272 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1273 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1274 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1275 		if (i == (STE_TX_LIST_CNT - 1))
1276 			cd->ste_tx_chain[i].ste_next =
1277 			    &cd->ste_tx_chain[0];
1278 		else
1279 			cd->ste_tx_chain[i].ste_next =
1280 			    &cd->ste_tx_chain[i + 1];
1281 	}
1282 
1283 	cd->ste_tx_prod = 0;
1284 	cd->ste_tx_cons = 0;
1285 
1286 	return;
1287 }
1288 
1289 static void
1290 ste_init(xsc)
1291 	void			*xsc;
1292 {
1293 	struct ste_softc	*sc;
1294 
1295 	sc = xsc;
1296 	STE_LOCK(sc);
1297 	ste_init_locked(sc);
1298 	STE_UNLOCK(sc);
1299 }
1300 
1301 static void
1302 ste_init_locked(sc)
1303 	struct ste_softc	*sc;
1304 {
1305 	int			i;
1306 	struct ifnet		*ifp;
1307 
1308 	STE_LOCK_ASSERT(sc);
1309 	ifp = sc->ste_ifp;
1310 
1311 	ste_stop(sc);
1312 
1313 	/* Init our MAC address */
1314 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1315 		CSR_WRITE_2(sc, STE_PAR0 + i,
1316 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1317 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1318 	}
1319 
1320 	/* Init RX list */
1321 	if (ste_init_rx_list(sc) == ENOBUFS) {
1322 		device_printf(sc->ste_dev,
1323 		    "initialization failed: no memory for RX buffers\n");
1324 		ste_stop(sc);
1325 		return;
1326 	}
1327 
1328 	/* Set RX polling interval */
1329 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1330 
1331 	/* Init TX descriptors */
1332 	ste_init_tx_list(sc);
1333 
1334 	/* Set the TX freethresh value */
1335 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1336 
1337 	/* Set the TX start threshold for best performance. */
1338 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1339 
1340 	/* Set the TX reclaim threshold. */
1341 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1342 
1343 	/* Set up the RX filter. */
1344 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1345 
1346 	/* If we want promiscuous mode, set the allframes bit. */
1347 	if (ifp->if_flags & IFF_PROMISC) {
1348 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1349 	} else {
1350 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1351 	}
1352 
1353 	/* Set capture broadcast bit to accept broadcast frames. */
1354 	if (ifp->if_flags & IFF_BROADCAST) {
1355 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1356 	} else {
1357 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1358 	}
1359 
1360 	ste_setmulti(sc);
1361 
1362 	/* Load the address of the RX list. */
1363 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1364 	ste_wait(sc);
1365 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1366 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1367 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1368 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1369 
1370 	/* Set TX polling interval (defer until we TX first packet */
1371 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1372 
1373 	/* Load address of the TX list */
1374 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1375 	ste_wait(sc);
1376 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1377 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1378 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1379 	ste_wait(sc);
1380 	sc->ste_tx_prev = NULL;
1381 
1382 	/* Enable receiver and transmitter */
1383 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1384 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1385 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1386 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1387 
1388 	/* Enable stats counters. */
1389 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1390 
1391 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1392 #ifdef DEVICE_POLLING
1393 	/* Disable interrupts if we are polling. */
1394 	if (ifp->if_capenable & IFCAP_POLLING)
1395 		CSR_WRITE_2(sc, STE_IMR, 0);
1396 	else
1397 #endif
1398 	/* Enable interrupts. */
1399 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1400 
1401 	/* Accept VLAN length packets */
1402 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1403 
1404 	ste_ifmedia_upd_locked(ifp);
1405 
1406 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1407 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1408 
1409 	callout_reset(&sc->ste_stat_callout, hz, ste_stats_update, sc);
1410 
1411 	return;
1412 }
1413 
1414 static void
1415 ste_stop(sc)
1416 	struct ste_softc	*sc;
1417 {
1418 	int			i;
1419 	struct ifnet		*ifp;
1420 
1421 	STE_LOCK_ASSERT(sc);
1422 	ifp = sc->ste_ifp;
1423 
1424 	callout_stop(&sc->ste_stat_callout);
1425 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1426 
1427 	CSR_WRITE_2(sc, STE_IMR, 0);
1428 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1429 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1430 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1431 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1432 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1433 	ste_wait(sc);
1434 	/*
1435 	 * Try really hard to stop the RX engine or under heavy RX
1436 	 * data chip will write into de-allocated memory.
1437 	 */
1438 	ste_reset(sc);
1439 
1440 	sc->ste_link = 0;
1441 
1442 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1443 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1444 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1445 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1446 		}
1447 	}
1448 
1449 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1450 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1451 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1452 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1453 		}
1454 	}
1455 
1456 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1457 
1458 	return;
1459 }
1460 
1461 static void
1462 ste_reset(sc)
1463 	struct ste_softc	*sc;
1464 {
1465 	int			i;
1466 
1467 	STE_SETBIT4(sc, STE_ASICCTL,
1468 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1469 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1470 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1471 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1472 	    STE_ASICCTL_EXTRESET_RESET);
1473 
1474 	DELAY(100000);
1475 
1476 	for (i = 0; i < STE_TIMEOUT; i++) {
1477 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1478 			break;
1479 	}
1480 
1481 	if (i == STE_TIMEOUT)
1482 		device_printf(sc->ste_dev, "global reset never completed\n");
1483 
1484 	return;
1485 }
1486 
1487 static int
1488 ste_ioctl(ifp, command, data)
1489 	struct ifnet		*ifp;
1490 	u_long			command;
1491 	caddr_t			data;
1492 {
1493 	struct ste_softc	*sc;
1494 	struct ifreq		*ifr;
1495 	struct mii_data		*mii;
1496 	int			error = 0;
1497 
1498 	sc = ifp->if_softc;
1499 	ifr = (struct ifreq *)data;
1500 
1501 	switch(command) {
1502 	case SIOCSIFFLAGS:
1503 		STE_LOCK(sc);
1504 		if (ifp->if_flags & IFF_UP) {
1505 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1506 			    ifp->if_flags & IFF_PROMISC &&
1507 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1508 				STE_SETBIT1(sc, STE_RX_MODE,
1509 				    STE_RXMODE_PROMISC);
1510 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1511 			    !(ifp->if_flags & IFF_PROMISC) &&
1512 			    sc->ste_if_flags & IFF_PROMISC) {
1513 				STE_CLRBIT1(sc, STE_RX_MODE,
1514 				    STE_RXMODE_PROMISC);
1515 			}
1516 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1517 			    (ifp->if_flags ^ sc->ste_if_flags) & IFF_ALLMULTI)
1518 				ste_setmulti(sc);
1519 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1520 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1521 				ste_init_locked(sc);
1522 			}
1523 		} else {
1524 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1525 				ste_stop(sc);
1526 		}
1527 		sc->ste_if_flags = ifp->if_flags;
1528 		STE_UNLOCK(sc);
1529 		error = 0;
1530 		break;
1531 	case SIOCADDMULTI:
1532 	case SIOCDELMULTI:
1533 		STE_LOCK(sc);
1534 		ste_setmulti(sc);
1535 		STE_UNLOCK(sc);
1536 		error = 0;
1537 		break;
1538 	case SIOCGIFMEDIA:
1539 	case SIOCSIFMEDIA:
1540 		mii = device_get_softc(sc->ste_miibus);
1541 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1542 		break;
1543 	case SIOCSIFCAP:
1544 #ifdef DEVICE_POLLING
1545 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1546 		    !(ifp->if_capenable & IFCAP_POLLING)) {
1547 			error = ether_poll_register(ste_poll, ifp);
1548 			if (error)
1549 				return(error);
1550 			STE_LOCK(sc);
1551 			/* Disable interrupts */
1552 			CSR_WRITE_2(sc, STE_IMR, 0);
1553 			ifp->if_capenable |= IFCAP_POLLING;
1554 			STE_UNLOCK(sc);
1555 			return (error);
1556 
1557 		}
1558 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1559 		    ifp->if_capenable & IFCAP_POLLING) {
1560 			error = ether_poll_deregister(ifp);
1561 			/* Enable interrupts. */
1562 			STE_LOCK(sc);
1563 			CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1564 			ifp->if_capenable &= ~IFCAP_POLLING;
1565 			STE_UNLOCK(sc);
1566 			return (error);
1567 		}
1568 #endif /* DEVICE_POLLING */
1569 		break;
1570 	default:
1571 		error = ether_ioctl(ifp, command, data);
1572 		break;
1573 	}
1574 
1575 	return(error);
1576 }
1577 
1578 static int
1579 ste_encap(sc, c, m_head)
1580 	struct ste_softc	*sc;
1581 	struct ste_chain	*c;
1582 	struct mbuf		*m_head;
1583 {
1584 	int			frag = 0;
1585 	struct ste_frag		*f = NULL;
1586 	struct mbuf		*m;
1587 	struct ste_desc		*d;
1588 
1589 	d = c->ste_ptr;
1590 	d->ste_ctl = 0;
1591 
1592 encap_retry:
1593 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1594 		if (m->m_len != 0) {
1595 			if (frag == STE_MAXFRAGS)
1596 				break;
1597 			f = &d->ste_frags[frag];
1598 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1599 			f->ste_len = m->m_len;
1600 			frag++;
1601 		}
1602 	}
1603 
1604 	if (m != NULL) {
1605 		struct mbuf *mn;
1606 
1607 		/*
1608 		 * We ran out of segments. We have to recopy this
1609 		 * mbuf chain first. Bail out if we can't get the
1610 		 * new buffers.
1611 		 */
1612 		mn = m_defrag(m_head, M_DONTWAIT);
1613 		if (mn == NULL) {
1614 			m_freem(m_head);
1615 			return ENOMEM;
1616 		}
1617 		m_head = mn;
1618 		goto encap_retry;
1619 	}
1620 
1621 	c->ste_mbuf = m_head;
1622 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1623 	d->ste_ctl = 1;
1624 
1625 	return(0);
1626 }
1627 
1628 static void
1629 ste_start(ifp)
1630 	struct ifnet		*ifp;
1631 {
1632 	struct ste_softc	*sc;
1633 
1634 	sc = ifp->if_softc;
1635 	STE_LOCK(sc);
1636 	ste_start_locked(ifp);
1637 	STE_UNLOCK(sc);
1638 }
1639 
1640 static void
1641 ste_start_locked(ifp)
1642 	struct ifnet		*ifp;
1643 {
1644 	struct ste_softc	*sc;
1645 	struct mbuf		*m_head = NULL;
1646 	struct ste_chain	*cur_tx;
1647 	int			idx;
1648 
1649 	sc = ifp->if_softc;
1650 	STE_LOCK_ASSERT(sc);
1651 
1652 	if (!sc->ste_link)
1653 		return;
1654 
1655 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1656 		return;
1657 
1658 	idx = sc->ste_cdata.ste_tx_prod;
1659 
1660 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1661 		/*
1662 		 * We cannot re-use the last (free) descriptor;
1663 		 * the chip may not have read its ste_next yet.
1664 		 */
1665 		if (STE_NEXT(idx, STE_TX_LIST_CNT) ==
1666 		    sc->ste_cdata.ste_tx_cons) {
1667 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1668 			break;
1669 		}
1670 
1671 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1672 		if (m_head == NULL)
1673 			break;
1674 
1675 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1676 
1677 		if (ste_encap(sc, cur_tx, m_head) != 0)
1678 			break;
1679 
1680 		cur_tx->ste_ptr->ste_next = 0;
1681 
1682 		if (sc->ste_tx_prev == NULL) {
1683 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1684 			/* Load address of the TX list */
1685 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1686 			ste_wait(sc);
1687 
1688 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1689 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1690 
1691 			/* Set TX polling interval to start TX engine */
1692 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1693 
1694 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1695 			ste_wait(sc);
1696 		}else{
1697 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1698 			sc->ste_tx_prev->ste_ptr->ste_next
1699 				= cur_tx->ste_phys;
1700 		}
1701 
1702 		sc->ste_tx_prev = cur_tx;
1703 
1704 		/*
1705 		 * If there's a BPF listener, bounce a copy of this frame
1706 		 * to him.
1707 	 	 */
1708 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1709 
1710 		STE_INC(idx, STE_TX_LIST_CNT);
1711 		ifp->if_timer = 5;
1712 	}
1713 	sc->ste_cdata.ste_tx_prod = idx;
1714 
1715 	return;
1716 }
1717 
1718 static void
1719 ste_watchdog(ifp)
1720 	struct ifnet		*ifp;
1721 {
1722 	struct ste_softc	*sc;
1723 
1724 	sc = ifp->if_softc;
1725 	STE_LOCK(sc);
1726 
1727 	ifp->if_oerrors++;
1728 	if_printf(ifp, "watchdog timeout\n");
1729 
1730 	ste_txeoc(sc);
1731 	ste_txeof(sc);
1732 	ste_rxeoc(sc);
1733 	ste_rxeof(sc);
1734 	ste_reset(sc);
1735 	ste_init_locked(sc);
1736 
1737 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1738 		ste_start_locked(ifp);
1739 	STE_UNLOCK(sc);
1740 
1741 	return;
1742 }
1743 
1744 static int
1745 ste_shutdown(dev)
1746 	device_t		dev;
1747 {
1748 	struct ste_softc	*sc;
1749 
1750 	sc = device_get_softc(dev);
1751 
1752 	STE_LOCK(sc);
1753 	ste_stop(sc);
1754 	STE_UNLOCK(sc);
1755 
1756 	return (0);
1757 }
1758