xref: /freebsd/sys/dev/ste/if_ste.c (revision 10b59a9b4add0320d52c15ce057dd697261e7dfc)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/module.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 #include <net/if_vlan_var.h>
62 
63 #include <machine/bus.h>
64 #include <machine/resource.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/mii_bitbang.h>
68 #include <dev/mii/miivar.h>
69 
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 
73 #include <dev/ste/if_stereg.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 MODULE_DEPEND(ste, pci, 1, 1, 1);
79 MODULE_DEPEND(ste, ether, 1, 1, 1);
80 MODULE_DEPEND(ste, miibus, 1, 1, 1);
81 
82 /* Define to show Tx error status. */
83 #define	STE_SHOW_TXERRORS
84 
85 /*
86  * Various supported device vendors/types and their names.
87  */
88 static const struct ste_type const ste_devs[] = {
89 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
90 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
91 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
92 	{ 0, 0, NULL }
93 };
94 
95 static int	ste_attach(device_t);
96 static int	ste_detach(device_t);
97 static int	ste_probe(device_t);
98 static int	ste_resume(device_t);
99 static int	ste_shutdown(device_t);
100 static int	ste_suspend(device_t);
101 
102 static int	ste_dma_alloc(struct ste_softc *);
103 static void	ste_dma_free(struct ste_softc *);
104 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
105 static int 	ste_eeprom_wait(struct ste_softc *);
106 static int	ste_encap(struct ste_softc *, struct mbuf **,
107 		    struct ste_chain *);
108 static int	ste_ifmedia_upd(struct ifnet *);
109 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
110 static void	ste_init(void *);
111 static void	ste_init_locked(struct ste_softc *);
112 static int	ste_init_rx_list(struct ste_softc *);
113 static void	ste_init_tx_list(struct ste_softc *);
114 static void	ste_intr(void *);
115 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
116 static uint32_t ste_mii_bitbang_read(device_t);
117 static void	ste_mii_bitbang_write(device_t, uint32_t);
118 static int	ste_miibus_readreg(device_t, int, int);
119 static void	ste_miibus_statchg(device_t);
120 static int	ste_miibus_writereg(device_t, int, int, int);
121 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
122 static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
123 static void	ste_reset(struct ste_softc *);
124 static void	ste_restart_tx(struct ste_softc *);
125 static int	ste_rxeof(struct ste_softc *, int);
126 static void	ste_rxfilter(struct ste_softc *);
127 static void	ste_setwol(struct ste_softc *);
128 static void	ste_start(struct ifnet *);
129 static void	ste_start_locked(struct ifnet *);
130 static void	ste_stats_clear(struct ste_softc *);
131 static void	ste_stats_update(struct ste_softc *);
132 static void	ste_stop(struct ste_softc *);
133 static void	ste_sysctl_node(struct ste_softc *);
134 static void	ste_tick(void *);
135 static void	ste_txeoc(struct ste_softc *);
136 static void	ste_txeof(struct ste_softc *);
137 static void	ste_wait(struct ste_softc *);
138 static void	ste_watchdog(struct ste_softc *);
139 
140 /*
141  * MII bit-bang glue
142  */
143 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
144 	ste_mii_bitbang_read,
145 	ste_mii_bitbang_write,
146 	{
147 		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
148 		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
149 		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
150 		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
151 		0,			/* MII_BIT_DIR_PHY_HOST */
152 	}
153 };
154 
155 static device_method_t ste_methods[] = {
156 	/* Device interface */
157 	DEVMETHOD(device_probe,		ste_probe),
158 	DEVMETHOD(device_attach,	ste_attach),
159 	DEVMETHOD(device_detach,	ste_detach),
160 	DEVMETHOD(device_shutdown,	ste_shutdown),
161 	DEVMETHOD(device_suspend,	ste_suspend),
162 	DEVMETHOD(device_resume,	ste_resume),
163 
164 	/* bus interface */
165 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
166 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
167 
168 	/* MII interface */
169 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
170 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
171 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
172 
173 	{ 0, 0 }
174 };
175 
176 static driver_t ste_driver = {
177 	"ste",
178 	ste_methods,
179 	sizeof(struct ste_softc)
180 };
181 
182 static devclass_t ste_devclass;
183 
184 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
185 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
186 
187 #define STE_SETBIT4(sc, reg, x)				\
188 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
189 
190 #define STE_CLRBIT4(sc, reg, x)				\
191 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
192 
193 #define STE_SETBIT2(sc, reg, x)				\
194 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
195 
196 #define STE_CLRBIT2(sc, reg, x)				\
197 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
198 
199 #define STE_SETBIT1(sc, reg, x)				\
200 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
201 
202 #define STE_CLRBIT1(sc, reg, x)				\
203 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
204 
205 /*
206  * Read the MII serial port for the MII bit-bang module.
207  */
208 static uint32_t
209 ste_mii_bitbang_read(device_t dev)
210 {
211 	struct ste_softc *sc;
212 	uint32_t val;
213 
214 	sc = device_get_softc(dev);
215 
216 	val = CSR_READ_1(sc, STE_PHYCTL);
217 	CSR_BARRIER(sc, STE_PHYCTL, 1,
218 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
219 
220 	return (val);
221 }
222 
223 /*
224  * Write the MII serial port for the MII bit-bang module.
225  */
226 static void
227 ste_mii_bitbang_write(device_t dev, uint32_t val)
228 {
229 	struct ste_softc *sc;
230 
231 	sc = device_get_softc(dev);
232 
233 	CSR_WRITE_1(sc, STE_PHYCTL, val);
234 	CSR_BARRIER(sc, STE_PHYCTL, 1,
235 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
236 }
237 
238 static int
239 ste_miibus_readreg(device_t dev, int phy, int reg)
240 {
241 
242 	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
243 }
244 
245 static int
246 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
247 {
248 
249 	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
250 
251 	return (0);
252 }
253 
254 static void
255 ste_miibus_statchg(device_t dev)
256 {
257 	struct ste_softc *sc;
258 	struct mii_data *mii;
259 	struct ifnet *ifp;
260 	uint16_t cfg;
261 
262 	sc = device_get_softc(dev);
263 
264 	mii = device_get_softc(sc->ste_miibus);
265 	ifp = sc->ste_ifp;
266 	if (mii == NULL || ifp == NULL ||
267 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
268 		return;
269 
270 	sc->ste_flags &= ~STE_FLAG_LINK;
271 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
272 	    (IFM_ACTIVE | IFM_AVALID)) {
273 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
274 		case IFM_10_T:
275 		case IFM_100_TX:
276 		case IFM_100_FX:
277 		case IFM_100_T4:
278 			sc->ste_flags |= STE_FLAG_LINK;
279 		default:
280 			break;
281 		}
282 	}
283 
284 	/* Program MACs with resolved speed/duplex/flow-control. */
285 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
286 		cfg = CSR_READ_2(sc, STE_MACCTL0);
287 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
288 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
289 			/*
290 			 * ST201 data sheet says driver should enable receiving
291 			 * MAC control frames bit of receive mode register to
292 			 * receive flow-control frames but the register has no
293 			 * such bits. In addition the controller has no ability
294 			 * to send pause frames so it should be handled in
295 			 * driver. Implementing pause timer handling in driver
296 			 * layer is not trivial, so don't enable flow-control
297 			 * here.
298 			 */
299 			cfg |= STE_MACCTL0_FULLDUPLEX;
300 		}
301 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
302 	}
303 }
304 
305 static int
306 ste_ifmedia_upd(struct ifnet *ifp)
307 {
308 	struct ste_softc *sc;
309 	struct mii_data	*mii;
310 	struct mii_softc *miisc;
311 	int error;
312 
313 	sc = ifp->if_softc;
314 	STE_LOCK(sc);
315 	mii = device_get_softc(sc->ste_miibus);
316 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
317 		PHY_RESET(miisc);
318 	error = mii_mediachg(mii);
319 	STE_UNLOCK(sc);
320 
321 	return (error);
322 }
323 
324 static void
325 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
326 {
327 	struct ste_softc *sc;
328 	struct mii_data *mii;
329 
330 	sc = ifp->if_softc;
331 	mii = device_get_softc(sc->ste_miibus);
332 
333 	STE_LOCK(sc);
334 	if ((ifp->if_flags & IFF_UP) == 0) {
335 		STE_UNLOCK(sc);
336 		return;
337 	}
338 	mii_pollstat(mii);
339 	ifmr->ifm_active = mii->mii_media_active;
340 	ifmr->ifm_status = mii->mii_media_status;
341 	STE_UNLOCK(sc);
342 }
343 
344 static void
345 ste_wait(struct ste_softc *sc)
346 {
347 	int i;
348 
349 	for (i = 0; i < STE_TIMEOUT; i++) {
350 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
351 			break;
352 		DELAY(1);
353 	}
354 
355 	if (i == STE_TIMEOUT)
356 		device_printf(sc->ste_dev, "command never completed!\n");
357 }
358 
359 /*
360  * The EEPROM is slow: give it time to come ready after issuing
361  * it a command.
362  */
363 static int
364 ste_eeprom_wait(struct ste_softc *sc)
365 {
366 	int i;
367 
368 	DELAY(1000);
369 
370 	for (i = 0; i < 100; i++) {
371 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
372 			DELAY(1000);
373 		else
374 			break;
375 	}
376 
377 	if (i == 100) {
378 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
379 		return (1);
380 	}
381 
382 	return (0);
383 }
384 
385 /*
386  * Read a sequence of words from the EEPROM. Note that ethernet address
387  * data is stored in the EEPROM in network byte order.
388  */
389 static int
390 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
391 {
392 	int err = 0, i;
393 
394 	if (ste_eeprom_wait(sc))
395 		return (1);
396 
397 	for (i = 0; i < cnt; i++) {
398 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
399 		err = ste_eeprom_wait(sc);
400 		if (err)
401 			break;
402 		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
403 		dest++;
404 	}
405 
406 	return (err ? 1 : 0);
407 }
408 
409 static void
410 ste_rxfilter(struct ste_softc *sc)
411 {
412 	struct ifnet *ifp;
413 	struct ifmultiaddr *ifma;
414 	uint32_t hashes[2] = { 0, 0 };
415 	uint8_t rxcfg;
416 	int h;
417 
418 	STE_LOCK_ASSERT(sc);
419 
420 	ifp = sc->ste_ifp;
421 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
422 	rxcfg |= STE_RXMODE_UNICAST;
423 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
424 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
425 	if (ifp->if_flags & IFF_BROADCAST)
426 		rxcfg |= STE_RXMODE_BROADCAST;
427 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
428 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
429 			rxcfg |= STE_RXMODE_ALLMULTI;
430 		if ((ifp->if_flags & IFF_PROMISC) != 0)
431 			rxcfg |= STE_RXMODE_PROMISC;
432 		goto chipit;
433 	}
434 
435 	rxcfg |= STE_RXMODE_MULTIHASH;
436 	/* Now program new ones. */
437 	if_maddr_rlock(ifp);
438 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
439 		if (ifma->ifma_addr->sa_family != AF_LINK)
440 			continue;
441 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
442 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
443 		if (h < 32)
444 			hashes[0] |= (1 << h);
445 		else
446 			hashes[1] |= (1 << (h - 32));
447 	}
448 	if_maddr_runlock(ifp);
449 
450 chipit:
451 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
452 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
453 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
454 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
455 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
456 	CSR_READ_1(sc, STE_RX_MODE);
457 }
458 
459 #ifdef DEVICE_POLLING
460 static poll_handler_t ste_poll, ste_poll_locked;
461 
462 static int
463 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
464 {
465 	struct ste_softc *sc = ifp->if_softc;
466 	int rx_npkts = 0;
467 
468 	STE_LOCK(sc);
469 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
470 		rx_npkts = ste_poll_locked(ifp, cmd, count);
471 	STE_UNLOCK(sc);
472 	return (rx_npkts);
473 }
474 
475 static int
476 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
477 {
478 	struct ste_softc *sc = ifp->if_softc;
479 	int rx_npkts;
480 
481 	STE_LOCK_ASSERT(sc);
482 
483 	rx_npkts = ste_rxeof(sc, count);
484 	ste_txeof(sc);
485 	ste_txeoc(sc);
486 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
487 		ste_start_locked(ifp);
488 
489 	if (cmd == POLL_AND_CHECK_STATUS) {
490 		uint16_t status;
491 
492 		status = CSR_READ_2(sc, STE_ISR_ACK);
493 
494 		if (status & STE_ISR_STATS_OFLOW)
495 			ste_stats_update(sc);
496 
497 		if (status & STE_ISR_HOSTERR) {
498 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
499 			ste_init_locked(sc);
500 		}
501 	}
502 	return (rx_npkts);
503 }
504 #endif /* DEVICE_POLLING */
505 
506 static void
507 ste_intr(void *xsc)
508 {
509 	struct ste_softc *sc;
510 	struct ifnet *ifp;
511 	uint16_t intrs, status;
512 
513 	sc = xsc;
514 	STE_LOCK(sc);
515 	ifp = sc->ste_ifp;
516 
517 #ifdef DEVICE_POLLING
518 	if (ifp->if_capenable & IFCAP_POLLING) {
519 		STE_UNLOCK(sc);
520 		return;
521 	}
522 #endif
523 	/* Reading STE_ISR_ACK clears STE_IMR register. */
524 	status = CSR_READ_2(sc, STE_ISR_ACK);
525 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
526 		STE_UNLOCK(sc);
527 		return;
528 	}
529 
530 	intrs = STE_INTRS;
531 	if (status == 0xFFFF || (status & intrs) == 0)
532 		goto done;
533 
534 	if (sc->ste_int_rx_act > 0) {
535 		status &= ~STE_ISR_RX_DMADONE;
536 		intrs &= ~STE_IMR_RX_DMADONE;
537 	}
538 
539 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
540 		ste_rxeof(sc, -1);
541 		/*
542 		 * The controller has no ability to Rx interrupt
543 		 * moderation feature. Receiving 64 bytes frames
544 		 * from wire generates too many interrupts which in
545 		 * turn make system useless to process other useful
546 		 * things. Fortunately ST201 supports single shot
547 		 * timer so use the timer to implement Rx interrupt
548 		 * moderation in driver. This adds more register
549 		 * access but it greatly reduces number of Rx
550 		 * interrupts under high network load.
551 		 */
552 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
553 		    (sc->ste_int_rx_mod != 0)) {
554 			if ((status & STE_ISR_RX_DMADONE) != 0) {
555 				CSR_WRITE_2(sc, STE_COUNTDOWN,
556 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
557 				intrs &= ~STE_IMR_RX_DMADONE;
558 				sc->ste_int_rx_act = 1;
559 			} else {
560 				intrs |= STE_IMR_RX_DMADONE;
561 				sc->ste_int_rx_act = 0;
562 			}
563 		}
564 	}
565 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
566 		if ((status & STE_ISR_TX_DMADONE) != 0)
567 			ste_txeof(sc);
568 		if ((status & STE_ISR_TX_DONE) != 0)
569 			ste_txeoc(sc);
570 		if ((status & STE_ISR_STATS_OFLOW) != 0)
571 			ste_stats_update(sc);
572 		if ((status & STE_ISR_HOSTERR) != 0) {
573 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
574 			ste_init_locked(sc);
575 			STE_UNLOCK(sc);
576 			return;
577 		}
578 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
579 			ste_start_locked(ifp);
580 done:
581 		/* Re-enable interrupts */
582 		CSR_WRITE_2(sc, STE_IMR, intrs);
583 	}
584 	STE_UNLOCK(sc);
585 }
586 
587 /*
588  * A frame has been uploaded: pass the resulting mbuf chain up to
589  * the higher level protocols.
590  */
591 static int
592 ste_rxeof(struct ste_softc *sc, int count)
593 {
594         struct mbuf *m;
595         struct ifnet *ifp;
596 	struct ste_chain_onefrag *cur_rx;
597 	uint32_t rxstat;
598 	int total_len, rx_npkts;
599 
600 	ifp = sc->ste_ifp;
601 
602 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
603 	    sc->ste_cdata.ste_rx_list_map,
604 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
605 
606 	cur_rx = sc->ste_cdata.ste_rx_head;
607 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
608 	    cur_rx = cur_rx->ste_next) {
609 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
610 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
611 			break;
612 #ifdef DEVICE_POLLING
613 		if (ifp->if_capenable & IFCAP_POLLING) {
614 			if (count == 0)
615 				break;
616 			count--;
617 		}
618 #endif
619 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
620 			break;
621 		/*
622 		 * If an error occurs, update stats, clear the
623 		 * status word and leave the mbuf cluster in place:
624 		 * it should simply get re-used next time this descriptor
625 	 	 * comes up in the ring.
626 		 */
627 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
628 			ifp->if_ierrors++;
629 			cur_rx->ste_ptr->ste_status = 0;
630 			continue;
631 		}
632 
633 		/* No errors; receive the packet. */
634 		m = cur_rx->ste_mbuf;
635 		total_len = STE_RX_BYTES(rxstat);
636 
637 		/*
638 		 * Try to conjure up a new mbuf cluster. If that
639 		 * fails, it means we have an out of memory condition and
640 		 * should leave the buffer in place and continue. This will
641 		 * result in a lost packet, but there's little else we
642 		 * can do in this situation.
643 		 */
644 		if (ste_newbuf(sc, cur_rx) != 0) {
645 			ifp->if_iqdrops++;
646 			cur_rx->ste_ptr->ste_status = 0;
647 			continue;
648 		}
649 
650 		m->m_pkthdr.rcvif = ifp;
651 		m->m_pkthdr.len = m->m_len = total_len;
652 
653 		ifp->if_ipackets++;
654 		STE_UNLOCK(sc);
655 		(*ifp->if_input)(ifp, m);
656 		STE_LOCK(sc);
657 	}
658 
659 	if (rx_npkts > 0) {
660 		sc->ste_cdata.ste_rx_head = cur_rx;
661 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
662 		    sc->ste_cdata.ste_rx_list_map,
663 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
664 	}
665 
666 	return (rx_npkts);
667 }
668 
669 static void
670 ste_txeoc(struct ste_softc *sc)
671 {
672 	uint16_t txstat;
673 	struct ifnet *ifp;
674 
675 	STE_LOCK_ASSERT(sc);
676 
677 	ifp = sc->ste_ifp;
678 
679 	/*
680 	 * STE_TX_STATUS register implements a queue of up to 31
681 	 * transmit status byte. Writing an arbitrary value to the
682 	 * register will advance the queue to the next transmit
683 	 * status byte. This means if driver does not read
684 	 * STE_TX_STATUS register after completing sending more
685 	 * than 31 frames the controller would be stalled so driver
686 	 * should re-wake the Tx MAC. This is the most severe
687 	 * limitation of ST201 based controller.
688 	 */
689 	for (;;) {
690 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
691 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
692 			break;
693 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
694 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
695 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
696 			ifp->if_oerrors++;
697 #ifdef	STE_SHOW_TXERRORS
698 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
699 			    txstat & 0xFF, STE_ERR_BITS);
700 #endif
701 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
702 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
703 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
704 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
705 					sc->ste_tx_thresh = STE_PACKET_SIZE;
706 				device_printf(sc->ste_dev,
707 				    "TX underrun, increasing TX"
708 				    " start threshold to %d bytes\n",
709 				    sc->ste_tx_thresh);
710 				/* Make sure to disable active DMA cycles. */
711 				STE_SETBIT4(sc, STE_DMACTL,
712 				    STE_DMACTL_TXDMA_STALL);
713 				ste_wait(sc);
714 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
715 				ste_init_locked(sc);
716 				break;
717 			}
718 			/* Restart Tx. */
719 			ste_restart_tx(sc);
720 		}
721 		/*
722 		 * Advance to next status and ACK TxComplete
723 		 * interrupt. ST201 data sheet was wrong here, to
724 		 * get next Tx status, we have to write both
725 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
726 		 * Otherwise controller returns the same status
727 		 * as well as not acknowledge Tx completion
728 		 * interrupt.
729 		 */
730 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
731 	}
732 }
733 
734 static void
735 ste_tick(void *arg)
736 {
737 	struct ste_softc *sc;
738 	struct mii_data *mii;
739 
740 	sc = (struct ste_softc *)arg;
741 
742 	STE_LOCK_ASSERT(sc);
743 
744 	mii = device_get_softc(sc->ste_miibus);
745 	mii_tick(mii);
746 	/*
747 	 * ukphy(4) does not seem to generate CB that reports
748 	 * resolved link state so if we know we lost a link,
749 	 * explicitly check the link state.
750 	 */
751 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
752 		ste_miibus_statchg(sc->ste_dev);
753 	/*
754 	 * Because we are not generating Tx completion
755 	 * interrupt for every frame, reclaim transmitted
756 	 * buffers here.
757 	 */
758 	ste_txeof(sc);
759 	ste_txeoc(sc);
760 	ste_stats_update(sc);
761 	ste_watchdog(sc);
762 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
763 }
764 
765 static void
766 ste_txeof(struct ste_softc *sc)
767 {
768 	struct ifnet *ifp;
769 	struct ste_chain *cur_tx;
770 	uint32_t txstat;
771 	int idx;
772 
773 	STE_LOCK_ASSERT(sc);
774 
775 	ifp = sc->ste_ifp;
776 	idx = sc->ste_cdata.ste_tx_cons;
777 	if (idx == sc->ste_cdata.ste_tx_prod)
778 		return;
779 
780 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
781 	    sc->ste_cdata.ste_tx_list_map,
782 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
783 
784 	while (idx != sc->ste_cdata.ste_tx_prod) {
785 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
786 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
787 		if ((txstat & STE_TXCTL_DMADONE) == 0)
788 			break;
789 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
790 		    BUS_DMASYNC_POSTWRITE);
791 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
792 		KASSERT(cur_tx->ste_mbuf != NULL,
793 		    ("%s: freeing NULL mbuf!\n", __func__));
794 		m_freem(cur_tx->ste_mbuf);
795 		cur_tx->ste_mbuf = NULL;
796 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
797 		ifp->if_opackets++;
798 		sc->ste_cdata.ste_tx_cnt--;
799 		STE_INC(idx, STE_TX_LIST_CNT);
800 	}
801 
802 	sc->ste_cdata.ste_tx_cons = idx;
803 	if (sc->ste_cdata.ste_tx_cnt == 0)
804 		sc->ste_timer = 0;
805 }
806 
807 static void
808 ste_stats_clear(struct ste_softc *sc)
809 {
810 
811 	STE_LOCK_ASSERT(sc);
812 
813 	/* Rx stats. */
814 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
815 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
816 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
817 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
818 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
819 	CSR_READ_1(sc, STE_STAT_RX_LOST);
820 	/* Tx stats. */
821 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
822 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
823 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
824 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
825 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
826 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
827 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
828 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
829 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
830 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
831 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
832 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
833 }
834 
835 static void
836 ste_stats_update(struct ste_softc *sc)
837 {
838 	struct ifnet *ifp;
839 	struct ste_hw_stats *stats;
840 	uint32_t val;
841 
842 	STE_LOCK_ASSERT(sc);
843 
844 	ifp = sc->ste_ifp;
845 	stats = &sc->ste_stats;
846 	/* Rx stats. */
847 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
848 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
849 	val &= 0x000FFFFF;
850 	stats->rx_bytes += val;
851 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
852 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
853 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
854 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
855 	/* Tx stats. */
856 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
857 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
858 	val &= 0x000FFFFF;
859 	stats->tx_bytes += val;
860 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
861 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
862 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
863 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
864 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
865 	stats->tx_single_colls += val;
866 	ifp->if_collisions += val;
867 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
868 	stats->tx_multi_colls += val;
869 	ifp->if_collisions += val;
870 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
871 	stats->tx_late_colls += val;
872 	ifp->if_collisions += val;
873 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
874 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
875 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
876 }
877 
878 /*
879  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
880  * IDs against our list and return a device name if we find a match.
881  */
882 static int
883 ste_probe(device_t dev)
884 {
885 	const struct ste_type *t;
886 
887 	t = ste_devs;
888 
889 	while (t->ste_name != NULL) {
890 		if ((pci_get_vendor(dev) == t->ste_vid) &&
891 		    (pci_get_device(dev) == t->ste_did)) {
892 			device_set_desc(dev, t->ste_name);
893 			return (BUS_PROBE_DEFAULT);
894 		}
895 		t++;
896 	}
897 
898 	return (ENXIO);
899 }
900 
901 /*
902  * Attach the interface. Allocate softc structures, do ifmedia
903  * setup and ethernet/BPF attach.
904  */
905 static int
906 ste_attach(device_t dev)
907 {
908 	struct ste_softc *sc;
909 	struct ifnet *ifp;
910 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
911 	int error = 0, phy, pmc, prefer_iomap, rid;
912 
913 	sc = device_get_softc(dev);
914 	sc->ste_dev = dev;
915 
916 	/*
917 	 * Only use one PHY since this chip reports multiple
918 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
919 	 * it is at 0 & 1.  It is rev 0x12.
920 	 */
921 	if (pci_get_vendor(dev) == DL_VENDORID &&
922 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
923 	    pci_get_revid(dev) == 0x12 )
924 		sc->ste_flags |= STE_FLAG_ONE_PHY;
925 
926 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
927 	    MTX_DEF);
928 	/*
929 	 * Map control/status registers.
930 	 */
931 	pci_enable_busmaster(dev);
932 
933 	/*
934 	 * Prefer memory space register mapping over IO space but use
935 	 * IO space for a device that is known to have issues on memory
936 	 * mapping.
937 	 */
938 	prefer_iomap = 0;
939 	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
940 		prefer_iomap = 1;
941 	else
942 		resource_int_value(device_get_name(sc->ste_dev),
943 		    device_get_unit(sc->ste_dev), "prefer_iomap",
944 		    &prefer_iomap);
945 	if (prefer_iomap == 0) {
946 		sc->ste_res_id = PCIR_BAR(1);
947 		sc->ste_res_type = SYS_RES_MEMORY;
948 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
949 		    &sc->ste_res_id, RF_ACTIVE);
950 	}
951 	if (prefer_iomap || sc->ste_res == NULL) {
952 		sc->ste_res_id = PCIR_BAR(0);
953 		sc->ste_res_type = SYS_RES_IOPORT;
954 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
955 		    &sc->ste_res_id, RF_ACTIVE);
956 	}
957 	if (sc->ste_res == NULL) {
958 		device_printf(dev, "couldn't map ports/memory\n");
959 		error = ENXIO;
960 		goto fail;
961 	}
962 
963 	/* Allocate interrupt */
964 	rid = 0;
965 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
966 	    RF_SHAREABLE | RF_ACTIVE);
967 
968 	if (sc->ste_irq == NULL) {
969 		device_printf(dev, "couldn't map interrupt\n");
970 		error = ENXIO;
971 		goto fail;
972 	}
973 
974 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
975 
976 	/* Reset the adapter. */
977 	ste_reset(sc);
978 
979 	/*
980 	 * Get station address from the EEPROM.
981 	 */
982 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
983 		device_printf(dev, "failed to read station address\n");
984 		error = ENXIO;
985 		goto fail;
986 	}
987 	ste_sysctl_node(sc);
988 
989 	if ((error = ste_dma_alloc(sc)) != 0)
990 		goto fail;
991 
992 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
993 	if (ifp == NULL) {
994 		device_printf(dev, "can not if_alloc()\n");
995 		error = ENOSPC;
996 		goto fail;
997 	}
998 
999 	/* Do MII setup. */
1000 	phy = MII_PHY_ANY;
1001 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
1002 		phy = 0;
1003 	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1004 		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1005 	if (error != 0) {
1006 		device_printf(dev, "attaching PHYs failed\n");
1007 		goto fail;
1008 	}
1009 
1010 	ifp->if_softc = sc;
1011 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1012 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1013 	ifp->if_ioctl = ste_ioctl;
1014 	ifp->if_start = ste_start;
1015 	ifp->if_init = ste_init;
1016 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1017 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1018 	IFQ_SET_READY(&ifp->if_snd);
1019 
1020 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1021 
1022 	/*
1023 	 * Call MI attach routine.
1024 	 */
1025 	ether_ifattach(ifp, (uint8_t *)eaddr);
1026 
1027 	/*
1028 	 * Tell the upper layer(s) we support long frames.
1029 	 */
1030 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1031 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1032 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1033 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1034 	ifp->if_capenable = ifp->if_capabilities;
1035 #ifdef DEVICE_POLLING
1036 	ifp->if_capabilities |= IFCAP_POLLING;
1037 #endif
1038 
1039 	/* Hook interrupt last to avoid having to lock softc */
1040 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1041 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1042 
1043 	if (error) {
1044 		device_printf(dev, "couldn't set up irq\n");
1045 		ether_ifdetach(ifp);
1046 		goto fail;
1047 	}
1048 
1049 fail:
1050 	if (error)
1051 		ste_detach(dev);
1052 
1053 	return (error);
1054 }
1055 
1056 /*
1057  * Shutdown hardware and free up resources. This can be called any
1058  * time after the mutex has been initialized. It is called in both
1059  * the error case in attach and the normal detach case so it needs
1060  * to be careful about only freeing resources that have actually been
1061  * allocated.
1062  */
1063 static int
1064 ste_detach(device_t dev)
1065 {
1066 	struct ste_softc *sc;
1067 	struct ifnet *ifp;
1068 
1069 	sc = device_get_softc(dev);
1070 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1071 	ifp = sc->ste_ifp;
1072 
1073 #ifdef DEVICE_POLLING
1074 	if (ifp->if_capenable & IFCAP_POLLING)
1075 		ether_poll_deregister(ifp);
1076 #endif
1077 
1078 	/* These should only be active if attach succeeded */
1079 	if (device_is_attached(dev)) {
1080 		ether_ifdetach(ifp);
1081 		STE_LOCK(sc);
1082 		ste_stop(sc);
1083 		STE_UNLOCK(sc);
1084 		callout_drain(&sc->ste_callout);
1085 	}
1086 	if (sc->ste_miibus)
1087 		device_delete_child(dev, sc->ste_miibus);
1088 	bus_generic_detach(dev);
1089 
1090 	if (sc->ste_intrhand)
1091 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1092 	if (sc->ste_irq)
1093 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1094 	if (sc->ste_res)
1095 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1096 		    sc->ste_res);
1097 
1098 	if (ifp)
1099 		if_free(ifp);
1100 
1101 	ste_dma_free(sc);
1102 	mtx_destroy(&sc->ste_mtx);
1103 
1104 	return (0);
1105 }
1106 
1107 struct ste_dmamap_arg {
1108 	bus_addr_t	ste_busaddr;
1109 };
1110 
1111 static void
1112 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1113 {
1114 	struct ste_dmamap_arg *ctx;
1115 
1116 	if (error != 0)
1117 		return;
1118 
1119 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1120 
1121 	ctx = (struct ste_dmamap_arg *)arg;
1122 	ctx->ste_busaddr = segs[0].ds_addr;
1123 }
1124 
1125 static int
1126 ste_dma_alloc(struct ste_softc *sc)
1127 {
1128 	struct ste_chain *txc;
1129 	struct ste_chain_onefrag *rxc;
1130 	struct ste_dmamap_arg ctx;
1131 	int error, i;
1132 
1133 	/* Create parent DMA tag. */
1134 	error = bus_dma_tag_create(
1135 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1136 	    1, 0,			/* alignment, boundary */
1137 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1138 	    BUS_SPACE_MAXADDR,		/* highaddr */
1139 	    NULL, NULL,			/* filter, filterarg */
1140 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1141 	    0,				/* nsegments */
1142 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1143 	    0,				/* flags */
1144 	    NULL, NULL,			/* lockfunc, lockarg */
1145 	    &sc->ste_cdata.ste_parent_tag);
1146 	if (error != 0) {
1147 		device_printf(sc->ste_dev,
1148 		    "could not create parent DMA tag.\n");
1149 		goto fail;
1150 	}
1151 
1152 	/* Create DMA tag for Tx descriptor list. */
1153 	error = bus_dma_tag_create(
1154 	    sc->ste_cdata.ste_parent_tag, /* parent */
1155 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1156 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1157 	    BUS_SPACE_MAXADDR,		/* highaddr */
1158 	    NULL, NULL,			/* filter, filterarg */
1159 	    STE_TX_LIST_SZ,		/* maxsize */
1160 	    1,				/* nsegments */
1161 	    STE_TX_LIST_SZ,		/* maxsegsize */
1162 	    0,				/* flags */
1163 	    NULL, NULL,			/* lockfunc, lockarg */
1164 	    &sc->ste_cdata.ste_tx_list_tag);
1165 	if (error != 0) {
1166 		device_printf(sc->ste_dev,
1167 		    "could not create Tx list DMA tag.\n");
1168 		goto fail;
1169 	}
1170 
1171 	/* Create DMA tag for Rx descriptor list. */
1172 	error = bus_dma_tag_create(
1173 	    sc->ste_cdata.ste_parent_tag, /* parent */
1174 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1175 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1176 	    BUS_SPACE_MAXADDR,		/* highaddr */
1177 	    NULL, NULL,			/* filter, filterarg */
1178 	    STE_RX_LIST_SZ,		/* maxsize */
1179 	    1,				/* nsegments */
1180 	    STE_RX_LIST_SZ,		/* maxsegsize */
1181 	    0,				/* flags */
1182 	    NULL, NULL,			/* lockfunc, lockarg */
1183 	    &sc->ste_cdata.ste_rx_list_tag);
1184 	if (error != 0) {
1185 		device_printf(sc->ste_dev,
1186 		    "could not create Rx list DMA tag.\n");
1187 		goto fail;
1188 	}
1189 
1190 	/* Create DMA tag for Tx buffers. */
1191 	error = bus_dma_tag_create(
1192 	    sc->ste_cdata.ste_parent_tag, /* parent */
1193 	    1, 0,			/* alignment, boundary */
1194 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1195 	    BUS_SPACE_MAXADDR,		/* highaddr */
1196 	    NULL, NULL,			/* filter, filterarg */
1197 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1198 	    STE_MAXFRAGS,		/* nsegments */
1199 	    MCLBYTES,			/* maxsegsize */
1200 	    0,				/* flags */
1201 	    NULL, NULL,			/* lockfunc, lockarg */
1202 	    &sc->ste_cdata.ste_tx_tag);
1203 	if (error != 0) {
1204 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1205 		goto fail;
1206 	}
1207 
1208 	/* Create DMA tag for Rx buffers. */
1209 	error = bus_dma_tag_create(
1210 	    sc->ste_cdata.ste_parent_tag, /* parent */
1211 	    1, 0,			/* alignment, boundary */
1212 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1213 	    BUS_SPACE_MAXADDR,		/* highaddr */
1214 	    NULL, NULL,			/* filter, filterarg */
1215 	    MCLBYTES,			/* maxsize */
1216 	    1,				/* nsegments */
1217 	    MCLBYTES,			/* maxsegsize */
1218 	    0,				/* flags */
1219 	    NULL, NULL,			/* lockfunc, lockarg */
1220 	    &sc->ste_cdata.ste_rx_tag);
1221 	if (error != 0) {
1222 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1223 		goto fail;
1224 	}
1225 
1226 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1227 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1228 	    (void **)&sc->ste_ldata.ste_tx_list,
1229 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1230 	    &sc->ste_cdata.ste_tx_list_map);
1231 	if (error != 0) {
1232 		device_printf(sc->ste_dev,
1233 		    "could not allocate DMA'able memory for Tx list.\n");
1234 		goto fail;
1235 	}
1236 	ctx.ste_busaddr = 0;
1237 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1238 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1239 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1240 	if (error != 0 || ctx.ste_busaddr == 0) {
1241 		device_printf(sc->ste_dev,
1242 		    "could not load DMA'able memory for Tx list.\n");
1243 		goto fail;
1244 	}
1245 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1246 
1247 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1248 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1249 	    (void **)&sc->ste_ldata.ste_rx_list,
1250 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1251 	    &sc->ste_cdata.ste_rx_list_map);
1252 	if (error != 0) {
1253 		device_printf(sc->ste_dev,
1254 		    "could not allocate DMA'able memory for Rx list.\n");
1255 		goto fail;
1256 	}
1257 	ctx.ste_busaddr = 0;
1258 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1259 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1260 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1261 	if (error != 0 || ctx.ste_busaddr == 0) {
1262 		device_printf(sc->ste_dev,
1263 		    "could not load DMA'able memory for Rx list.\n");
1264 		goto fail;
1265 	}
1266 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1267 
1268 	/* Create DMA maps for Tx buffers. */
1269 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1270 		txc = &sc->ste_cdata.ste_tx_chain[i];
1271 		txc->ste_ptr = NULL;
1272 		txc->ste_mbuf = NULL;
1273 		txc->ste_next = NULL;
1274 		txc->ste_phys = 0;
1275 		txc->ste_map = NULL;
1276 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1277 		    &txc->ste_map);
1278 		if (error != 0) {
1279 			device_printf(sc->ste_dev,
1280 			    "could not create Tx dmamap.\n");
1281 			goto fail;
1282 		}
1283 	}
1284 	/* Create DMA maps for Rx buffers. */
1285 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1286 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1287 		device_printf(sc->ste_dev,
1288 		    "could not create spare Rx dmamap.\n");
1289 		goto fail;
1290 	}
1291 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1292 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1293 		rxc->ste_ptr = NULL;
1294 		rxc->ste_mbuf = NULL;
1295 		rxc->ste_next = NULL;
1296 		rxc->ste_map = NULL;
1297 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1298 		    &rxc->ste_map);
1299 		if (error != 0) {
1300 			device_printf(sc->ste_dev,
1301 			    "could not create Rx dmamap.\n");
1302 			goto fail;
1303 		}
1304 	}
1305 
1306 fail:
1307 	return (error);
1308 }
1309 
1310 static void
1311 ste_dma_free(struct ste_softc *sc)
1312 {
1313 	struct ste_chain *txc;
1314 	struct ste_chain_onefrag *rxc;
1315 	int i;
1316 
1317 	/* Tx buffers. */
1318 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1319 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1320 			txc = &sc->ste_cdata.ste_tx_chain[i];
1321 			if (txc->ste_map != NULL) {
1322 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1323 				    txc->ste_map);
1324 				txc->ste_map = NULL;
1325 			}
1326 		}
1327 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1328 		sc->ste_cdata.ste_tx_tag = NULL;
1329 	}
1330 	/* Rx buffers. */
1331 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1332 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1333 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1334 			if (rxc->ste_map != NULL) {
1335 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1336 				    rxc->ste_map);
1337 				rxc->ste_map = NULL;
1338 			}
1339 		}
1340 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1341 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1342 			    sc->ste_cdata.ste_rx_sparemap);
1343 			sc->ste_cdata.ste_rx_sparemap = NULL;
1344 		}
1345 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1346 		sc->ste_cdata.ste_rx_tag = NULL;
1347 	}
1348 	/* Tx descriptor list. */
1349 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1350 		if (sc->ste_cdata.ste_tx_list_map != NULL)
1351 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1352 			    sc->ste_cdata.ste_tx_list_map);
1353 		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1354 		    sc->ste_ldata.ste_tx_list != NULL)
1355 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1356 			    sc->ste_ldata.ste_tx_list,
1357 			    sc->ste_cdata.ste_tx_list_map);
1358 		sc->ste_ldata.ste_tx_list = NULL;
1359 		sc->ste_cdata.ste_tx_list_map = NULL;
1360 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1361 		sc->ste_cdata.ste_tx_list_tag = NULL;
1362 	}
1363 	/* Rx descriptor list. */
1364 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1365 		if (sc->ste_cdata.ste_rx_list_map != NULL)
1366 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1367 			    sc->ste_cdata.ste_rx_list_map);
1368 		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1369 		    sc->ste_ldata.ste_rx_list != NULL)
1370 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1371 			    sc->ste_ldata.ste_rx_list,
1372 			    sc->ste_cdata.ste_rx_list_map);
1373 		sc->ste_ldata.ste_rx_list = NULL;
1374 		sc->ste_cdata.ste_rx_list_map = NULL;
1375 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1376 		sc->ste_cdata.ste_rx_list_tag = NULL;
1377 	}
1378 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1379 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1380 		sc->ste_cdata.ste_parent_tag = NULL;
1381 	}
1382 }
1383 
1384 static int
1385 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1386 {
1387 	struct mbuf *m;
1388 	bus_dma_segment_t segs[1];
1389 	bus_dmamap_t map;
1390 	int error, nsegs;
1391 
1392 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1393 	if (m == NULL)
1394 		return (ENOBUFS);
1395 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1396 	m_adj(m, ETHER_ALIGN);
1397 
1398 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1399 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1400 		m_freem(m);
1401 		return (error);
1402 	}
1403 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1404 
1405 	if (rxc->ste_mbuf != NULL) {
1406 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1407 		    BUS_DMASYNC_POSTREAD);
1408 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1409 	}
1410 	map = rxc->ste_map;
1411 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1412 	sc->ste_cdata.ste_rx_sparemap = map;
1413 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1414 	    BUS_DMASYNC_PREREAD);
1415 	rxc->ste_mbuf = m;
1416 	rxc->ste_ptr->ste_status = 0;
1417 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1418 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1419 	    STE_FRAG_LAST);
1420 	return (0);
1421 }
1422 
1423 static int
1424 ste_init_rx_list(struct ste_softc *sc)
1425 {
1426 	struct ste_chain_data *cd;
1427 	struct ste_list_data *ld;
1428 	int error, i;
1429 
1430 	sc->ste_int_rx_act = 0;
1431 	cd = &sc->ste_cdata;
1432 	ld = &sc->ste_ldata;
1433 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1434 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1435 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1436 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1437 		if (error != 0)
1438 			return (error);
1439 		if (i == (STE_RX_LIST_CNT - 1)) {
1440 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1441 			ld->ste_rx_list[i].ste_next =
1442 			    htole32(ld->ste_rx_list_paddr +
1443 			    (sizeof(struct ste_desc_onefrag) * 0));
1444 		} else {
1445 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1446 			ld->ste_rx_list[i].ste_next =
1447 			    htole32(ld->ste_rx_list_paddr +
1448 			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1449 		}
1450 	}
1451 
1452 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1453 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1454 	    sc->ste_cdata.ste_rx_list_map,
1455 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1456 
1457 	return (0);
1458 }
1459 
1460 static void
1461 ste_init_tx_list(struct ste_softc *sc)
1462 {
1463 	struct ste_chain_data *cd;
1464 	struct ste_list_data *ld;
1465 	int i;
1466 
1467 	cd = &sc->ste_cdata;
1468 	ld = &sc->ste_ldata;
1469 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1470 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1471 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1472 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1473 		if (i == (STE_TX_LIST_CNT - 1)) {
1474 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1475 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1476 			    ld->ste_tx_list_paddr +
1477 			    (sizeof(struct ste_desc) * 0)));
1478 		} else {
1479 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1480 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1481 			    ld->ste_tx_list_paddr +
1482 			    (sizeof(struct ste_desc) * (i + 1))));
1483 		}
1484 	}
1485 
1486 	cd->ste_last_tx = NULL;
1487 	cd->ste_tx_prod = 0;
1488 	cd->ste_tx_cons = 0;
1489 	cd->ste_tx_cnt = 0;
1490 
1491 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1492 	    sc->ste_cdata.ste_tx_list_map,
1493 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1494 }
1495 
1496 static void
1497 ste_init(void *xsc)
1498 {
1499 	struct ste_softc *sc;
1500 
1501 	sc = xsc;
1502 	STE_LOCK(sc);
1503 	ste_init_locked(sc);
1504 	STE_UNLOCK(sc);
1505 }
1506 
1507 static void
1508 ste_init_locked(struct ste_softc *sc)
1509 {
1510 	struct ifnet *ifp;
1511 	struct mii_data *mii;
1512 	uint8_t val;
1513 	int i;
1514 
1515 	STE_LOCK_ASSERT(sc);
1516 	ifp = sc->ste_ifp;
1517 	mii = device_get_softc(sc->ste_miibus);
1518 
1519 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1520 		return;
1521 
1522 	ste_stop(sc);
1523 	/* Reset the chip to a known state. */
1524 	ste_reset(sc);
1525 
1526 	/* Init our MAC address */
1527 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1528 		CSR_WRITE_2(sc, STE_PAR0 + i,
1529 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1530 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1531 	}
1532 
1533 	/* Init RX list */
1534 	if (ste_init_rx_list(sc) != 0) {
1535 		device_printf(sc->ste_dev,
1536 		    "initialization failed: no memory for RX buffers\n");
1537 		ste_stop(sc);
1538 		return;
1539 	}
1540 
1541 	/* Set RX polling interval */
1542 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1543 
1544 	/* Init TX descriptors */
1545 	ste_init_tx_list(sc);
1546 
1547 	/* Clear and disable WOL. */
1548 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1549 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1550 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1551 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1552 
1553 	/* Set the TX freethresh value */
1554 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1555 
1556 	/* Set the TX start threshold for best performance. */
1557 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1558 
1559 	/* Set the TX reclaim threshold. */
1560 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1561 
1562 	/* Accept VLAN length packets */
1563 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1564 
1565 	/* Set up the RX filter. */
1566 	ste_rxfilter(sc);
1567 
1568 	/* Load the address of the RX list. */
1569 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1570 	ste_wait(sc);
1571 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1572 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1573 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1574 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1575 
1576 	/* Set TX polling interval(defer until we TX first packet). */
1577 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1578 
1579 	/* Load address of the TX list */
1580 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1581 	ste_wait(sc);
1582 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1583 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1584 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1585 	ste_wait(sc);
1586 	/* Select 3.2us timer. */
1587 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1588 	    STE_DMACTL_COUNTDOWN_MODE);
1589 
1590 	/* Enable receiver and transmitter */
1591 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1592 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1593 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1594 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1595 
1596 	/* Enable stats counters. */
1597 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1598 	/* Clear stats counters. */
1599 	ste_stats_clear(sc);
1600 
1601 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1602 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1603 #ifdef DEVICE_POLLING
1604 	/* Disable interrupts if we are polling. */
1605 	if (ifp->if_capenable & IFCAP_POLLING)
1606 		CSR_WRITE_2(sc, STE_IMR, 0);
1607 	else
1608 #endif
1609 	/* Enable interrupts. */
1610 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1611 
1612 	sc->ste_flags &= ~STE_FLAG_LINK;
1613 	/* Switch to the current media. */
1614 	mii_mediachg(mii);
1615 
1616 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1617 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1618 
1619 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1620 }
1621 
1622 static void
1623 ste_stop(struct ste_softc *sc)
1624 {
1625 	struct ifnet *ifp;
1626 	struct ste_chain_onefrag *cur_rx;
1627 	struct ste_chain *cur_tx;
1628 	uint32_t val;
1629 	int i;
1630 
1631 	STE_LOCK_ASSERT(sc);
1632 	ifp = sc->ste_ifp;
1633 
1634 	callout_stop(&sc->ste_callout);
1635 	sc->ste_timer = 0;
1636 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1637 
1638 	CSR_WRITE_2(sc, STE_IMR, 0);
1639 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1640 	/* Stop pending DMA. */
1641 	val = CSR_READ_4(sc, STE_DMACTL);
1642 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1643 	CSR_WRITE_4(sc, STE_DMACTL, val);
1644 	ste_wait(sc);
1645 	/* Disable auto-polling. */
1646 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1647 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1648 	/* Nullify DMA address to stop any further DMA. */
1649 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1650 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1651 	/* Stop TX/RX MAC. */
1652 	val = CSR_READ_2(sc, STE_MACCTL1);
1653 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1654 	    STE_MACCTL1_STATS_DISABLE;
1655 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1656 	for (i = 0; i < STE_TIMEOUT; i++) {
1657 		DELAY(10);
1658 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1659 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1660 			break;
1661 	}
1662 	if (i == STE_TIMEOUT)
1663 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1664 	/* Acknowledge any pending interrupts. */
1665 	CSR_READ_2(sc, STE_ISR_ACK);
1666 	ste_stats_update(sc);
1667 
1668 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1669 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1670 		if (cur_rx->ste_mbuf != NULL) {
1671 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1672 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1673 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1674 			    cur_rx->ste_map);
1675 			m_freem(cur_rx->ste_mbuf);
1676 			cur_rx->ste_mbuf = NULL;
1677 		}
1678 	}
1679 
1680 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1681 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1682 		if (cur_tx->ste_mbuf != NULL) {
1683 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1684 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1685 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1686 			    cur_tx->ste_map);
1687 			m_freem(cur_tx->ste_mbuf);
1688 			cur_tx->ste_mbuf = NULL;
1689 		}
1690 	}
1691 }
1692 
1693 static void
1694 ste_reset(struct ste_softc *sc)
1695 {
1696 	uint32_t ctl;
1697 	int i;
1698 
1699 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1700 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1701 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1702 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1703 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1704 	    STE_ASICCTL_EXTRESET_RESET;
1705 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1706 	CSR_READ_4(sc, STE_ASICCTL);
1707 	/*
1708 	 * Due to the need of accessing EEPROM controller can take
1709 	 * up to 1ms to complete the global reset.
1710 	 */
1711 	DELAY(1000);
1712 
1713 	for (i = 0; i < STE_TIMEOUT; i++) {
1714 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1715 			break;
1716 		DELAY(10);
1717 	}
1718 
1719 	if (i == STE_TIMEOUT)
1720 		device_printf(sc->ste_dev, "global reset never completed\n");
1721 }
1722 
1723 static void
1724 ste_restart_tx(struct ste_softc *sc)
1725 {
1726 	uint16_t mac;
1727 	int i;
1728 
1729 	for (i = 0; i < STE_TIMEOUT; i++) {
1730 		mac = CSR_READ_2(sc, STE_MACCTL1);
1731 		mac |= STE_MACCTL1_TX_ENABLE;
1732 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1733 		mac = CSR_READ_2(sc, STE_MACCTL1);
1734 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1735 			break;
1736 		DELAY(10);
1737 	}
1738 
1739 	if (i == STE_TIMEOUT)
1740 		device_printf(sc->ste_dev, "starting Tx failed");
1741 }
1742 
1743 static int
1744 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1745 {
1746 	struct ste_softc *sc;
1747 	struct ifreq *ifr;
1748 	struct mii_data *mii;
1749 	int error = 0, mask;
1750 
1751 	sc = ifp->if_softc;
1752 	ifr = (struct ifreq *)data;
1753 
1754 	switch (command) {
1755 	case SIOCSIFFLAGS:
1756 		STE_LOCK(sc);
1757 		if ((ifp->if_flags & IFF_UP) != 0) {
1758 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1759 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1760 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1761 				ste_rxfilter(sc);
1762 			else
1763 				ste_init_locked(sc);
1764 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1765 			ste_stop(sc);
1766 		sc->ste_if_flags = ifp->if_flags;
1767 		STE_UNLOCK(sc);
1768 		break;
1769 	case SIOCADDMULTI:
1770 	case SIOCDELMULTI:
1771 		STE_LOCK(sc);
1772 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1773 			ste_rxfilter(sc);
1774 		STE_UNLOCK(sc);
1775 		break;
1776 	case SIOCGIFMEDIA:
1777 	case SIOCSIFMEDIA:
1778 		mii = device_get_softc(sc->ste_miibus);
1779 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1780 		break;
1781 	case SIOCSIFCAP:
1782 		STE_LOCK(sc);
1783 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1784 #ifdef DEVICE_POLLING
1785 		if ((mask & IFCAP_POLLING) != 0 &&
1786 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1787 			ifp->if_capenable ^= IFCAP_POLLING;
1788 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1789 				error = ether_poll_register(ste_poll, ifp);
1790 				if (error != 0) {
1791 					STE_UNLOCK(sc);
1792 					break;
1793 				}
1794 				/* Disable interrupts. */
1795 				CSR_WRITE_2(sc, STE_IMR, 0);
1796 			} else {
1797 				error = ether_poll_deregister(ifp);
1798 				/* Enable interrupts. */
1799 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1800 			}
1801 		}
1802 #endif /* DEVICE_POLLING */
1803 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1804 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1805 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1806 		STE_UNLOCK(sc);
1807 		break;
1808 	default:
1809 		error = ether_ioctl(ifp, command, data);
1810 		break;
1811 	}
1812 
1813 	return (error);
1814 }
1815 
1816 static int
1817 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1818 {
1819 	struct ste_frag *frag;
1820 	struct mbuf *m;
1821 	struct ste_desc *desc;
1822 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1823 	int error, i, nsegs;
1824 
1825 	STE_LOCK_ASSERT(sc);
1826 	M_ASSERTPKTHDR((*m_head));
1827 
1828 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1829 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1830 	if (error == EFBIG) {
1831 		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1832 		if (m == NULL) {
1833 			m_freem(*m_head);
1834 			*m_head = NULL;
1835 			return (ENOMEM);
1836 		}
1837 		*m_head = m;
1838 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1839 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1840 		if (error != 0) {
1841 			m_freem(*m_head);
1842 			*m_head = NULL;
1843 			return (error);
1844 		}
1845 	} else if (error != 0)
1846 		return (error);
1847 	if (nsegs == 0) {
1848 		m_freem(*m_head);
1849 		*m_head = NULL;
1850 		return (EIO);
1851 	}
1852 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1853 	    BUS_DMASYNC_PREWRITE);
1854 
1855 	desc = txc->ste_ptr;
1856 	for (i = 0; i < nsegs; i++) {
1857 		frag = &desc->ste_frags[i];
1858 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1859 		frag->ste_len = htole32(txsegs[i].ds_len);
1860 	}
1861 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1862 	/*
1863 	 * Because we use Tx polling we can't chain multiple
1864 	 * Tx descriptors here. Otherwise we race with controller.
1865 	 */
1866 	desc->ste_next = 0;
1867 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1868 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1869 		    STE_TXCTL_DMAINTR);
1870 	else
1871 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1872 	txc->ste_mbuf = *m_head;
1873 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1874 	sc->ste_cdata.ste_tx_cnt++;
1875 
1876 	return (0);
1877 }
1878 
1879 static void
1880 ste_start(struct ifnet *ifp)
1881 {
1882 	struct ste_softc *sc;
1883 
1884 	sc = ifp->if_softc;
1885 	STE_LOCK(sc);
1886 	ste_start_locked(ifp);
1887 	STE_UNLOCK(sc);
1888 }
1889 
1890 static void
1891 ste_start_locked(struct ifnet *ifp)
1892 {
1893 	struct ste_softc *sc;
1894 	struct ste_chain *cur_tx;
1895 	struct mbuf *m_head = NULL;
1896 	int enq;
1897 
1898 	sc = ifp->if_softc;
1899 	STE_LOCK_ASSERT(sc);
1900 
1901 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1902 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1903 		return;
1904 
1905 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1906 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1907 			/*
1908 			 * Controller may have cached copy of the last used
1909 			 * next ptr so we have to reserve one TFD to avoid
1910 			 * TFD overruns.
1911 			 */
1912 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1913 			break;
1914 		}
1915 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1916 		if (m_head == NULL)
1917 			break;
1918 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1919 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1920 			if (m_head == NULL)
1921 				break;
1922 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1923 			break;
1924 		}
1925 		if (sc->ste_cdata.ste_last_tx == NULL) {
1926 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1927 			    sc->ste_cdata.ste_tx_list_map,
1928 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1929 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1930 			ste_wait(sc);
1931 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1932 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1933 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1934 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1935 			ste_wait(sc);
1936 		} else {
1937 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1938 			    sc->ste_cdata.ste_last_tx->ste_phys;
1939 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1940 			    sc->ste_cdata.ste_tx_list_map,
1941 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1942 		}
1943 		sc->ste_cdata.ste_last_tx = cur_tx;
1944 
1945 		enq++;
1946 		/*
1947 		 * If there's a BPF listener, bounce a copy of this frame
1948 		 * to him.
1949 	 	 */
1950 		BPF_MTAP(ifp, m_head);
1951 	}
1952 
1953 	if (enq > 0)
1954 		sc->ste_timer = STE_TX_TIMEOUT;
1955 }
1956 
1957 static void
1958 ste_watchdog(struct ste_softc *sc)
1959 {
1960 	struct ifnet *ifp;
1961 
1962 	ifp = sc->ste_ifp;
1963 	STE_LOCK_ASSERT(sc);
1964 
1965 	if (sc->ste_timer == 0 || --sc->ste_timer)
1966 		return;
1967 
1968 	ifp->if_oerrors++;
1969 	if_printf(ifp, "watchdog timeout\n");
1970 
1971 	ste_txeof(sc);
1972 	ste_txeoc(sc);
1973 	ste_rxeof(sc, -1);
1974 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1975 	ste_init_locked(sc);
1976 
1977 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1978 		ste_start_locked(ifp);
1979 }
1980 
1981 static int
1982 ste_shutdown(device_t dev)
1983 {
1984 
1985 	return (ste_suspend(dev));
1986 }
1987 
1988 static int
1989 ste_suspend(device_t dev)
1990 {
1991 	struct ste_softc *sc;
1992 
1993 	sc = device_get_softc(dev);
1994 
1995 	STE_LOCK(sc);
1996 	ste_stop(sc);
1997 	ste_setwol(sc);
1998 	STE_UNLOCK(sc);
1999 
2000 	return (0);
2001 }
2002 
2003 static int
2004 ste_resume(device_t dev)
2005 {
2006 	struct ste_softc *sc;
2007 	struct ifnet *ifp;
2008 	int pmc;
2009 	uint16_t pmstat;
2010 
2011 	sc = device_get_softc(dev);
2012 	STE_LOCK(sc);
2013 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2014 		/* Disable PME and clear PME status. */
2015 		pmstat = pci_read_config(sc->ste_dev,
2016 		    pmc + PCIR_POWER_STATUS, 2);
2017 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2018 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2019 			pci_write_config(sc->ste_dev,
2020 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2021 		}
2022 	}
2023 	ifp = sc->ste_ifp;
2024 	if ((ifp->if_flags & IFF_UP) != 0) {
2025 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2026 		ste_init_locked(sc);
2027 	}
2028 	STE_UNLOCK(sc);
2029 
2030 	return (0);
2031 }
2032 
2033 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2034 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2035 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2036 	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2037 
2038 static void
2039 ste_sysctl_node(struct ste_softc *sc)
2040 {
2041 	struct sysctl_ctx_list *ctx;
2042 	struct sysctl_oid_list *child, *parent;
2043 	struct sysctl_oid *tree;
2044 	struct ste_hw_stats *stats;
2045 
2046 	stats = &sc->ste_stats;
2047 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2048 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2049 
2050 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2051 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2052 	/* Pull in device tunables. */
2053 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2054 	resource_int_value(device_get_name(sc->ste_dev),
2055 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2056 
2057 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2058 	    NULL, "STE statistics");
2059 	parent = SYSCTL_CHILDREN(tree);
2060 
2061 	/* Rx statistics. */
2062 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2063 	    NULL, "Rx MAC statistics");
2064 	child = SYSCTL_CHILDREN(tree);
2065 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2066 	    &stats->rx_bytes, "Good octets");
2067 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2068 	    &stats->rx_frames, "Good frames");
2069 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2070 	    &stats->rx_bcast_frames, "Good broadcast frames");
2071 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2072 	    &stats->rx_mcast_frames, "Good multicast frames");
2073 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2074 	    &stats->rx_lost_frames, "Lost frames");
2075 
2076 	/* Tx statistics. */
2077 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2078 	    NULL, "Tx MAC statistics");
2079 	child = SYSCTL_CHILDREN(tree);
2080 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2081 	    &stats->tx_bytes, "Good octets");
2082 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2083 	    &stats->tx_frames, "Good frames");
2084 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2085 	    &stats->tx_bcast_frames, "Good broadcast frames");
2086 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2087 	    &stats->tx_mcast_frames, "Good multicast frames");
2088 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2089 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2090 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2091 	    &stats->tx_single_colls, "Single collisions");
2092 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2093 	    &stats->tx_multi_colls, "Multiple collisions");
2094 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2095 	    &stats->tx_late_colls, "Late collisions");
2096 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2097 	    &stats->tx_frames_defered, "Frames with deferrals");
2098 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2099 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2100 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2101 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2102 }
2103 
2104 #undef STE_SYSCTL_STAT_ADD32
2105 #undef STE_SYSCTL_STAT_ADD64
2106 
2107 static void
2108 ste_setwol(struct ste_softc *sc)
2109 {
2110 	struct ifnet *ifp;
2111 	uint16_t pmstat;
2112 	uint8_t val;
2113 	int pmc;
2114 
2115 	STE_LOCK_ASSERT(sc);
2116 
2117 	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2118 		/* Disable WOL. */
2119 		CSR_READ_1(sc, STE_WAKE_EVENT);
2120 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2121 		return;
2122 	}
2123 
2124 	ifp = sc->ste_ifp;
2125 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2126 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2127 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2128 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2129 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2130 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2131 	/* Request PME. */
2132 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2133 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2134 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2135 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2136 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2137 }
2138