xref: /freebsd/sys/dev/ste/if_ste.c (revision 0f454b93f8502e85e8d2b26a383e40b5dc50cd27)
1 /*-
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/module.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 #include <net/if_vlan_var.h>
62 
63 #include <machine/bus.h>
64 #include <machine/resource.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 
72 #include <dev/ste/if_stereg.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 MODULE_DEPEND(ste, pci, 1, 1, 1);
78 MODULE_DEPEND(ste, ether, 1, 1, 1);
79 MODULE_DEPEND(ste, miibus, 1, 1, 1);
80 
81 /* Define to show Tx error status. */
82 #define	STE_SHOW_TXERRORS
83 
84 /*
85  * Various supported device vendors/types and their names.
86  */
87 static struct ste_type ste_devs[] = {
88 	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
89 	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
90 	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
91 	{ 0, 0, NULL }
92 };
93 
94 static int	ste_attach(device_t);
95 static int	ste_detach(device_t);
96 static int	ste_probe(device_t);
97 static int	ste_resume(device_t);
98 static int	ste_shutdown(device_t);
99 static int	ste_suspend(device_t);
100 
101 static int	ste_dma_alloc(struct ste_softc *);
102 static void	ste_dma_free(struct ste_softc *);
103 static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
104 static int 	ste_eeprom_wait(struct ste_softc *);
105 static int	ste_encap(struct ste_softc *, struct mbuf **,
106 		    struct ste_chain *);
107 static int	ste_ifmedia_upd(struct ifnet *);
108 static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 static void	ste_init(void *);
110 static void	ste_init_locked(struct ste_softc *);
111 static int	ste_init_rx_list(struct ste_softc *);
112 static void	ste_init_tx_list(struct ste_softc *);
113 static void	ste_intr(void *);
114 static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
115 static int	ste_mii_readreg(struct ste_softc *, struct ste_mii_frame *);
116 static void	ste_mii_send(struct ste_softc *, uint32_t, int);
117 static void	ste_mii_sync(struct ste_softc *);
118 static int	ste_mii_writereg(struct ste_softc *, struct ste_mii_frame *);
119 static int	ste_miibus_readreg(device_t, int, int);
120 static void	ste_miibus_statchg(device_t);
121 static int	ste_miibus_writereg(device_t, int, int, int);
122 static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123 static int	ste_read_eeprom(struct ste_softc *, caddr_t, int, int, int);
124 static void	ste_reset(struct ste_softc *);
125 static void	ste_restart_tx(struct ste_softc *);
126 static int	ste_rxeof(struct ste_softc *, int);
127 static void	ste_rxfilter(struct ste_softc *);
128 static void	ste_setwol(struct ste_softc *);
129 static void	ste_start(struct ifnet *);
130 static void	ste_start_locked(struct ifnet *);
131 static void	ste_stats_clear(struct ste_softc *);
132 static void	ste_stats_update(struct ste_softc *);
133 static void	ste_stop(struct ste_softc *);
134 static void	ste_sysctl_node(struct ste_softc *);
135 static void	ste_tick(void *);
136 static void	ste_txeoc(struct ste_softc *);
137 static void	ste_txeof(struct ste_softc *);
138 static void	ste_wait(struct ste_softc *);
139 static void	ste_watchdog(struct ste_softc *);
140 
141 static device_method_t ste_methods[] = {
142 	/* Device interface */
143 	DEVMETHOD(device_probe,		ste_probe),
144 	DEVMETHOD(device_attach,	ste_attach),
145 	DEVMETHOD(device_detach,	ste_detach),
146 	DEVMETHOD(device_shutdown,	ste_shutdown),
147 	DEVMETHOD(device_suspend,	ste_suspend),
148 	DEVMETHOD(device_resume,	ste_resume),
149 
150 	/* bus interface */
151 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
152 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
153 
154 	/* MII interface */
155 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
156 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
157 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
158 
159 	{ 0, 0 }
160 };
161 
162 static driver_t ste_driver = {
163 	"ste",
164 	ste_methods,
165 	sizeof(struct ste_softc)
166 };
167 
168 static devclass_t ste_devclass;
169 
170 DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
171 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
172 
173 #define STE_SETBIT4(sc, reg, x)				\
174 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
175 
176 #define STE_CLRBIT4(sc, reg, x)				\
177 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
178 
179 #define STE_SETBIT2(sc, reg, x)				\
180 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
181 
182 #define STE_CLRBIT2(sc, reg, x)				\
183 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
184 
185 #define STE_SETBIT1(sc, reg, x)				\
186 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
187 
188 #define STE_CLRBIT1(sc, reg, x)				\
189 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
190 
191 
192 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
193 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
194 
195 /*
196  * Sync the PHYs by setting data bit and strobing the clock 32 times.
197  */
198 static void
199 ste_mii_sync(struct ste_softc *sc)
200 {
201 	int i;
202 
203 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
204 
205 	for (i = 0; i < 32; i++) {
206 		MII_SET(STE_PHYCTL_MCLK);
207 		DELAY(1);
208 		MII_CLR(STE_PHYCTL_MCLK);
209 		DELAY(1);
210 	}
211 }
212 
213 /*
214  * Clock a series of bits through the MII.
215  */
216 static void
217 ste_mii_send(struct ste_softc *sc, uint32_t bits, int cnt)
218 {
219 	int i;
220 
221 	MII_CLR(STE_PHYCTL_MCLK);
222 
223 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224 		if (bits & i) {
225 			MII_SET(STE_PHYCTL_MDATA);
226                 } else {
227 			MII_CLR(STE_PHYCTL_MDATA);
228                 }
229 		DELAY(1);
230 		MII_CLR(STE_PHYCTL_MCLK);
231 		DELAY(1);
232 		MII_SET(STE_PHYCTL_MCLK);
233 	}
234 }
235 
236 /*
237  * Read an PHY register through the MII.
238  */
239 static int
240 ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
241 {
242 	int i, ack;
243 
244 	/*
245 	 * Set up frame for RX.
246 	 */
247 	frame->mii_stdelim = STE_MII_STARTDELIM;
248 	frame->mii_opcode = STE_MII_READOP;
249 	frame->mii_turnaround = 0;
250 	frame->mii_data = 0;
251 
252 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
253 	/*
254  	 * Turn on data xmit.
255 	 */
256 	MII_SET(STE_PHYCTL_MDIR);
257 
258 	ste_mii_sync(sc);
259 
260 	/*
261 	 * Send command/address info.
262 	 */
263 	ste_mii_send(sc, frame->mii_stdelim, 2);
264 	ste_mii_send(sc, frame->mii_opcode, 2);
265 	ste_mii_send(sc, frame->mii_phyaddr, 5);
266 	ste_mii_send(sc, frame->mii_regaddr, 5);
267 
268 	/* Turn off xmit. */
269 	MII_CLR(STE_PHYCTL_MDIR);
270 
271 	/* Idle bit */
272 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
273 	DELAY(1);
274 	MII_SET(STE_PHYCTL_MCLK);
275 	DELAY(1);
276 
277 	/* Check for ack */
278 	MII_CLR(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
281 	MII_SET(STE_PHYCTL_MCLK);
282 	DELAY(1);
283 
284 	/*
285 	 * Now try reading data bits. If the ack failed, we still
286 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
287 	 */
288 	if (ack) {
289 		for (i = 0; i < 16; i++) {
290 			MII_CLR(STE_PHYCTL_MCLK);
291 			DELAY(1);
292 			MII_SET(STE_PHYCTL_MCLK);
293 			DELAY(1);
294 		}
295 		goto fail;
296 	}
297 
298 	for (i = 0x8000; i; i >>= 1) {
299 		MII_CLR(STE_PHYCTL_MCLK);
300 		DELAY(1);
301 		if (!ack) {
302 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
303 				frame->mii_data |= i;
304 			DELAY(1);
305 		}
306 		MII_SET(STE_PHYCTL_MCLK);
307 		DELAY(1);
308 	}
309 
310 fail:
311 
312 	MII_CLR(STE_PHYCTL_MCLK);
313 	DELAY(1);
314 	MII_SET(STE_PHYCTL_MCLK);
315 	DELAY(1);
316 
317 	if (ack)
318 		return (1);
319 	return (0);
320 }
321 
322 /*
323  * Write to a PHY register through the MII.
324  */
325 static int
326 ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
327 {
328 
329 	/*
330 	 * Set up frame for TX.
331 	 */
332 
333 	frame->mii_stdelim = STE_MII_STARTDELIM;
334 	frame->mii_opcode = STE_MII_WRITEOP;
335 	frame->mii_turnaround = STE_MII_TURNAROUND;
336 
337 	/*
338  	 * Turn on data output.
339 	 */
340 	MII_SET(STE_PHYCTL_MDIR);
341 
342 	ste_mii_sync(sc);
343 
344 	ste_mii_send(sc, frame->mii_stdelim, 2);
345 	ste_mii_send(sc, frame->mii_opcode, 2);
346 	ste_mii_send(sc, frame->mii_phyaddr, 5);
347 	ste_mii_send(sc, frame->mii_regaddr, 5);
348 	ste_mii_send(sc, frame->mii_turnaround, 2);
349 	ste_mii_send(sc, frame->mii_data, 16);
350 
351 	/* Idle bit. */
352 	MII_SET(STE_PHYCTL_MCLK);
353 	DELAY(1);
354 	MII_CLR(STE_PHYCTL_MCLK);
355 	DELAY(1);
356 
357 	/*
358 	 * Turn off xmit.
359 	 */
360 	MII_CLR(STE_PHYCTL_MDIR);
361 
362 	return (0);
363 }
364 
365 static int
366 ste_miibus_readreg(device_t dev, int phy, int reg)
367 {
368 	struct ste_softc *sc;
369 	struct ste_mii_frame frame;
370 
371 	sc = device_get_softc(dev);
372 
373 	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0 && phy != 0)
374 		return (0);
375 
376 	bzero((char *)&frame, sizeof(frame));
377 
378 	frame.mii_phyaddr = phy;
379 	frame.mii_regaddr = reg;
380 	ste_mii_readreg(sc, &frame);
381 
382 	return (frame.mii_data);
383 }
384 
385 static int
386 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
387 {
388 	struct ste_softc *sc;
389 	struct ste_mii_frame frame;
390 
391 	sc = device_get_softc(dev);
392 	bzero((char *)&frame, sizeof(frame));
393 
394 	frame.mii_phyaddr = phy;
395 	frame.mii_regaddr = reg;
396 	frame.mii_data = data;
397 
398 	ste_mii_writereg(sc, &frame);
399 
400 	return (0);
401 }
402 
403 static void
404 ste_miibus_statchg(device_t dev)
405 {
406 	struct ste_softc *sc;
407 	struct mii_data *mii;
408 	struct ifnet *ifp;
409 	uint16_t cfg;
410 
411 	sc = device_get_softc(dev);
412 
413 	mii = device_get_softc(sc->ste_miibus);
414 	ifp = sc->ste_ifp;
415 	if (mii == NULL || ifp == NULL ||
416 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
417 		return;
418 
419 	sc->ste_flags &= ~STE_FLAG_LINK;
420 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
421 	    (IFM_ACTIVE | IFM_AVALID)) {
422 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
423 		case IFM_10_T:
424 		case IFM_100_TX:
425 		case IFM_100_FX:
426 		case IFM_100_T4:
427 			sc->ste_flags |= STE_FLAG_LINK;
428 		default:
429 			break;
430 		}
431 	}
432 
433 	/* Program MACs with resolved speed/duplex/flow-control. */
434 	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
435 		cfg = CSR_READ_2(sc, STE_MACCTL0);
436 		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
437 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
438 			/*
439 			 * ST201 data sheet says driver should enable receiving
440 			 * MAC control frames bit of receive mode register to
441 			 * receive flow-control frames but the register has no
442 			 * such bits. In addition the controller has no ability
443 			 * to send pause frames so it should be handled in
444 			 * driver. Implementing pause timer handling in driver
445 			 * layer is not trivial, so don't enable flow-control
446 			 * here.
447 			 */
448 			cfg |= STE_MACCTL0_FULLDUPLEX;
449 		}
450 		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
451 	}
452 }
453 
454 static int
455 ste_ifmedia_upd(struct ifnet *ifp)
456 {
457 	struct ste_softc *sc;
458 	struct mii_data	*mii;
459 	struct mii_softc *miisc;
460 	int error;
461 
462 	sc = ifp->if_softc;
463 	STE_LOCK(sc);
464 	mii = device_get_softc(sc->ste_miibus);
465 	if (mii->mii_instance) {
466 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
467 			mii_phy_reset(miisc);
468 	}
469 	error = mii_mediachg(mii);
470 	STE_UNLOCK(sc);
471 
472 	return (error);
473 }
474 
475 static void
476 ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
477 {
478 	struct ste_softc *sc;
479 	struct mii_data *mii;
480 
481 	sc = ifp->if_softc;
482 	mii = device_get_softc(sc->ste_miibus);
483 
484 	STE_LOCK(sc);
485 	if ((ifp->if_flags & IFF_UP) == 0) {
486 		STE_UNLOCK(sc);
487 		return;
488 	}
489 	mii_pollstat(mii);
490 	ifmr->ifm_active = mii->mii_media_active;
491 	ifmr->ifm_status = mii->mii_media_status;
492 	STE_UNLOCK(sc);
493 }
494 
495 static void
496 ste_wait(struct ste_softc *sc)
497 {
498 	int i;
499 
500 	for (i = 0; i < STE_TIMEOUT; i++) {
501 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
502 			break;
503 		DELAY(1);
504 	}
505 
506 	if (i == STE_TIMEOUT)
507 		device_printf(sc->ste_dev, "command never completed!\n");
508 }
509 
510 /*
511  * The EEPROM is slow: give it time to come ready after issuing
512  * it a command.
513  */
514 static int
515 ste_eeprom_wait(struct ste_softc *sc)
516 {
517 	int i;
518 
519 	DELAY(1000);
520 
521 	for (i = 0; i < 100; i++) {
522 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
523 			DELAY(1000);
524 		else
525 			break;
526 	}
527 
528 	if (i == 100) {
529 		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
530 		return (1);
531 	}
532 
533 	return (0);
534 }
535 
536 /*
537  * Read a sequence of words from the EEPROM. Note that ethernet address
538  * data is stored in the EEPROM in network byte order.
539  */
540 static int
541 ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
542 {
543 	uint16_t word, *ptr;
544 	int err = 0, i;
545 
546 	if (ste_eeprom_wait(sc))
547 		return (1);
548 
549 	for (i = 0; i < cnt; i++) {
550 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
551 		err = ste_eeprom_wait(sc);
552 		if (err)
553 			break;
554 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
555 		ptr = (uint16_t *)(dest + (i * 2));
556 		if (swap)
557 			*ptr = ntohs(word);
558 		else
559 			*ptr = word;
560 	}
561 
562 	return (err ? 1 : 0);
563 }
564 
565 static void
566 ste_rxfilter(struct ste_softc *sc)
567 {
568 	struct ifnet *ifp;
569 	struct ifmultiaddr *ifma;
570 	uint32_t hashes[2] = { 0, 0 };
571 	uint8_t rxcfg;
572 	int h;
573 
574 	STE_LOCK_ASSERT(sc);
575 
576 	ifp = sc->ste_ifp;
577 	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
578 	rxcfg |= STE_RXMODE_UNICAST;
579 	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
580 	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
581 	if (ifp->if_flags & IFF_BROADCAST)
582 		rxcfg |= STE_RXMODE_BROADCAST;
583 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
584 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
585 			rxcfg |= STE_RXMODE_ALLMULTI;
586 		if ((ifp->if_flags & IFF_PROMISC) != 0)
587 			rxcfg |= STE_RXMODE_PROMISC;
588 		goto chipit;
589 	}
590 
591 	rxcfg |= STE_RXMODE_MULTIHASH;
592 	/* Now program new ones. */
593 	if_maddr_rlock(ifp);
594 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
595 		if (ifma->ifma_addr->sa_family != AF_LINK)
596 			continue;
597 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
598 		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
599 		if (h < 32)
600 			hashes[0] |= (1 << h);
601 		else
602 			hashes[1] |= (1 << (h - 32));
603 	}
604 	if_maddr_runlock(ifp);
605 
606 chipit:
607 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
608 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
609 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
610 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
611 	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
612 	CSR_READ_1(sc, STE_RX_MODE);
613 }
614 
615 #ifdef DEVICE_POLLING
616 static poll_handler_t ste_poll, ste_poll_locked;
617 
618 static int
619 ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
620 {
621 	struct ste_softc *sc = ifp->if_softc;
622 	int rx_npkts = 0;
623 
624 	STE_LOCK(sc);
625 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
626 		rx_npkts = ste_poll_locked(ifp, cmd, count);
627 	STE_UNLOCK(sc);
628 	return (rx_npkts);
629 }
630 
631 static int
632 ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
633 {
634 	struct ste_softc *sc = ifp->if_softc;
635 	int rx_npkts;
636 
637 	STE_LOCK_ASSERT(sc);
638 
639 	rx_npkts = ste_rxeof(sc, count);
640 	ste_txeof(sc);
641 	ste_txeoc(sc);
642 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
643 		ste_start_locked(ifp);
644 
645 	if (cmd == POLL_AND_CHECK_STATUS) {
646 		uint16_t status;
647 
648 		status = CSR_READ_2(sc, STE_ISR_ACK);
649 
650 		if (status & STE_ISR_STATS_OFLOW)
651 			ste_stats_update(sc);
652 
653 		if (status & STE_ISR_HOSTERR) {
654 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
655 			ste_init_locked(sc);
656 		}
657 	}
658 	return (rx_npkts);
659 }
660 #endif /* DEVICE_POLLING */
661 
662 static void
663 ste_intr(void *xsc)
664 {
665 	struct ste_softc *sc;
666 	struct ifnet *ifp;
667 	uint16_t intrs, status;
668 
669 	sc = xsc;
670 	STE_LOCK(sc);
671 	ifp = sc->ste_ifp;
672 
673 #ifdef DEVICE_POLLING
674 	if (ifp->if_capenable & IFCAP_POLLING) {
675 		STE_UNLOCK(sc);
676 		return;
677 	}
678 #endif
679 	/* Reading STE_ISR_ACK clears STE_IMR register. */
680 	status = CSR_READ_2(sc, STE_ISR_ACK);
681 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
682 		STE_UNLOCK(sc);
683 		return;
684 	}
685 
686 	intrs = STE_INTRS;
687 	if (status == 0xFFFF || (status & intrs) == 0)
688 		goto done;
689 
690 	if (sc->ste_int_rx_act > 0) {
691 		status &= ~STE_ISR_RX_DMADONE;
692 		intrs &= ~STE_IMR_RX_DMADONE;
693 	}
694 
695 	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
696 		ste_rxeof(sc, -1);
697 		/*
698 		 * The controller has no ability to Rx interrupt
699 		 * moderation feature. Receiving 64 bytes frames
700 		 * from wire generates too many interrupts which in
701 		 * turn make system useless to process other useful
702 		 * things. Fortunately ST201 supports single shot
703 		 * timer so use the timer to implement Rx interrupt
704 		 * moderation in driver. This adds more register
705 		 * access but it greatly reduces number of Rx
706 		 * interrupts under high network load.
707 		 */
708 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
709 		    (sc->ste_int_rx_mod != 0)) {
710 			if ((status & STE_ISR_RX_DMADONE) != 0) {
711 				CSR_WRITE_2(sc, STE_COUNTDOWN,
712 				    STE_TIMER_USECS(sc->ste_int_rx_mod));
713 				intrs &= ~STE_IMR_RX_DMADONE;
714 				sc->ste_int_rx_act = 1;
715 			} else {
716 				intrs |= STE_IMR_RX_DMADONE;
717 				sc->ste_int_rx_act = 0;
718 			}
719 		}
720 	}
721 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
722 		if ((status & STE_ISR_TX_DMADONE) != 0)
723 			ste_txeof(sc);
724 		if ((status & STE_ISR_TX_DONE) != 0)
725 			ste_txeoc(sc);
726 		if ((status & STE_ISR_STATS_OFLOW) != 0)
727 			ste_stats_update(sc);
728 		if ((status & STE_ISR_HOSTERR) != 0) {
729 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
730 			ste_init_locked(sc);
731 			STE_UNLOCK(sc);
732 			return;
733 		}
734 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
735 			ste_start_locked(ifp);
736 done:
737 		/* Re-enable interrupts */
738 		CSR_WRITE_2(sc, STE_IMR, intrs);
739 	}
740 	STE_UNLOCK(sc);
741 }
742 
743 /*
744  * A frame has been uploaded: pass the resulting mbuf chain up to
745  * the higher level protocols.
746  */
747 static int
748 ste_rxeof(struct ste_softc *sc, int count)
749 {
750         struct mbuf *m;
751         struct ifnet *ifp;
752 	struct ste_chain_onefrag *cur_rx;
753 	uint32_t rxstat;
754 	int total_len, rx_npkts;
755 
756 	ifp = sc->ste_ifp;
757 
758 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
759 	    sc->ste_cdata.ste_rx_list_map,
760 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
761 
762 	cur_rx = sc->ste_cdata.ste_rx_head;
763 	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
764 	    cur_rx = cur_rx->ste_next) {
765 		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
766 		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
767 			break;
768 #ifdef DEVICE_POLLING
769 		if (ifp->if_capenable & IFCAP_POLLING) {
770 			if (count == 0)
771 				break;
772 			count--;
773 		}
774 #endif
775 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
776 			break;
777 		/*
778 		 * If an error occurs, update stats, clear the
779 		 * status word and leave the mbuf cluster in place:
780 		 * it should simply get re-used next time this descriptor
781 	 	 * comes up in the ring.
782 		 */
783 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
784 			ifp->if_ierrors++;
785 			cur_rx->ste_ptr->ste_status = 0;
786 			continue;
787 		}
788 
789 		/* No errors; receive the packet. */
790 		m = cur_rx->ste_mbuf;
791 		total_len = STE_RX_BYTES(rxstat);
792 
793 		/*
794 		 * Try to conjure up a new mbuf cluster. If that
795 		 * fails, it means we have an out of memory condition and
796 		 * should leave the buffer in place and continue. This will
797 		 * result in a lost packet, but there's little else we
798 		 * can do in this situation.
799 		 */
800 		if (ste_newbuf(sc, cur_rx) != 0) {
801 			ifp->if_iqdrops++;
802 			cur_rx->ste_ptr->ste_status = 0;
803 			continue;
804 		}
805 
806 		m->m_pkthdr.rcvif = ifp;
807 		m->m_pkthdr.len = m->m_len = total_len;
808 
809 		ifp->if_ipackets++;
810 		STE_UNLOCK(sc);
811 		(*ifp->if_input)(ifp, m);
812 		STE_LOCK(sc);
813 	}
814 
815 	if (rx_npkts > 0) {
816 		sc->ste_cdata.ste_rx_head = cur_rx;
817 		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
818 		    sc->ste_cdata.ste_rx_list_map,
819 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
820 	}
821 
822 	return (rx_npkts);
823 }
824 
825 static void
826 ste_txeoc(struct ste_softc *sc)
827 {
828 	uint16_t txstat;
829 	struct ifnet *ifp;
830 
831 	STE_LOCK_ASSERT(sc);
832 
833 	ifp = sc->ste_ifp;
834 
835 	/*
836 	 * STE_TX_STATUS register implements a queue of up to 31
837 	 * transmit status byte. Writing an arbitrary value to the
838 	 * register will advance the queue to the next transmit
839 	 * status byte. This means if driver does not read
840 	 * STE_TX_STATUS register after completing sending more
841 	 * than 31 frames the controller would be stalled so driver
842 	 * should re-wake the Tx MAC. This is the most severe
843 	 * limitation of ST201 based controller.
844 	 */
845 	for (;;) {
846 		txstat = CSR_READ_2(sc, STE_TX_STATUS);
847 		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
848 			break;
849 		if ((txstat & (STE_TXSTATUS_UNDERRUN |
850 		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
851 		    STE_TXSTATUS_STATSOFLOW)) != 0) {
852 			ifp->if_oerrors++;
853 #ifdef	STE_SHOW_TXERRORS
854 			device_printf(sc->ste_dev, "TX error : 0x%b\n",
855 			    txstat & 0xFF, STE_ERR_BITS);
856 #endif
857 			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
858 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
859 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
860 				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
861 					sc->ste_tx_thresh = STE_PACKET_SIZE;
862 				device_printf(sc->ste_dev,
863 				    "TX underrun, increasing TX"
864 				    " start threshold to %d bytes\n",
865 				    sc->ste_tx_thresh);
866 				/* Make sure to disable active DMA cycles. */
867 				STE_SETBIT4(sc, STE_DMACTL,
868 				    STE_DMACTL_TXDMA_STALL);
869 				ste_wait(sc);
870 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
871 				ste_init_locked(sc);
872 				break;
873 			}
874 			/* Restart Tx. */
875 			ste_restart_tx(sc);
876 		}
877 		/*
878 		 * Advance to next status and ACK TxComplete
879 		 * interrupt. ST201 data sheet was wrong here, to
880 		 * get next Tx status, we have to write both
881 		 * STE_TX_STATUS and STE_TX_FRAMEID register.
882 		 * Otherwise controller returns the same status
883 		 * as well as not acknowledge Tx completion
884 		 * interrupt.
885 		 */
886 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
887 	}
888 }
889 
890 static void
891 ste_tick(void *arg)
892 {
893 	struct ste_softc *sc;
894 	struct mii_data *mii;
895 
896 	sc = (struct ste_softc *)arg;
897 
898 	STE_LOCK_ASSERT(sc);
899 
900 	mii = device_get_softc(sc->ste_miibus);
901 	mii_tick(mii);
902 	/*
903 	 * ukphy(4) does not seem to generate CB that reports
904 	 * resolved link state so if we know we lost a link,
905 	 * explicitly check the link state.
906 	 */
907 	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
908 		ste_miibus_statchg(sc->ste_dev);
909 	/*
910 	 * Because we are not generating Tx completion
911 	 * interrupt for every frame, reclaim transmitted
912 	 * buffers here.
913 	 */
914 	ste_txeof(sc);
915 	ste_txeoc(sc);
916 	ste_stats_update(sc);
917 	ste_watchdog(sc);
918 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
919 }
920 
921 static void
922 ste_txeof(struct ste_softc *sc)
923 {
924 	struct ifnet *ifp;
925 	struct ste_chain *cur_tx;
926 	uint32_t txstat;
927 	int idx;
928 
929 	STE_LOCK_ASSERT(sc);
930 
931 	ifp = sc->ste_ifp;
932 	idx = sc->ste_cdata.ste_tx_cons;
933 	if (idx == sc->ste_cdata.ste_tx_prod)
934 		return;
935 
936 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
937 	    sc->ste_cdata.ste_tx_list_map,
938 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
939 
940 	while (idx != sc->ste_cdata.ste_tx_prod) {
941 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
942 		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
943 		if ((txstat & STE_TXCTL_DMADONE) == 0)
944 			break;
945 		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
946 		    BUS_DMASYNC_POSTWRITE);
947 		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
948 		KASSERT(cur_tx->ste_mbuf != NULL,
949 		    ("%s: freeing NULL mbuf!\n", __func__));
950 		m_freem(cur_tx->ste_mbuf);
951 		cur_tx->ste_mbuf = NULL;
952 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
953 		ifp->if_opackets++;
954 		sc->ste_cdata.ste_tx_cnt--;
955 		STE_INC(idx, STE_TX_LIST_CNT);
956 	}
957 
958 	sc->ste_cdata.ste_tx_cons = idx;
959 	if (sc->ste_cdata.ste_tx_cnt == 0)
960 		sc->ste_timer = 0;
961 }
962 
963 static void
964 ste_stats_clear(struct ste_softc *sc)
965 {
966 
967 	STE_LOCK_ASSERT(sc);
968 
969 	/* Rx stats. */
970 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
971 	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
972 	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
973 	CSR_READ_1(sc, STE_STAT_RX_BCAST);
974 	CSR_READ_1(sc, STE_STAT_RX_MCAST);
975 	CSR_READ_1(sc, STE_STAT_RX_LOST);
976 	/* Tx stats. */
977 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
978 	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
979 	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
980 	CSR_READ_1(sc, STE_STAT_TX_BCAST);
981 	CSR_READ_1(sc, STE_STAT_TX_MCAST);
982 	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
983 	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
984 	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
985 	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
986 	CSR_READ_1(sc, STE_STAT_TX_DEFER);
987 	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
988 	CSR_READ_1(sc, STE_STAT_TX_ABORT);
989 }
990 
991 static void
992 ste_stats_update(struct ste_softc *sc)
993 {
994 	struct ifnet *ifp;
995 	struct ste_hw_stats *stats;
996 	uint32_t val;
997 
998 	STE_LOCK_ASSERT(sc);
999 
1000 	ifp = sc->ste_ifp;
1001 	stats = &sc->ste_stats;
1002 	/* Rx stats. */
1003 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
1004 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
1005 	val &= 0x000FFFFF;
1006 	stats->rx_bytes += val;
1007 	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
1008 	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
1009 	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
1010 	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
1011 	/* Tx stats. */
1012 	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
1013 	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
1014 	val &= 0x000FFFFF;
1015 	stats->tx_bytes += val;
1016 	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
1017 	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
1018 	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
1019 	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
1020 	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
1021 	stats->tx_single_colls += val;
1022 	ifp->if_collisions += val;
1023 	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
1024 	stats->tx_multi_colls += val;
1025 	ifp->if_collisions += val;
1026 	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
1027 	stats->tx_late_colls += val;
1028 	ifp->if_collisions += val;
1029 	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
1030 	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
1031 	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
1032 }
1033 
1034 /*
1035  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
1036  * IDs against our list and return a device name if we find a match.
1037  */
1038 static int
1039 ste_probe(device_t dev)
1040 {
1041 	struct ste_type *t;
1042 
1043 	t = ste_devs;
1044 
1045 	while (t->ste_name != NULL) {
1046 		if ((pci_get_vendor(dev) == t->ste_vid) &&
1047 		    (pci_get_device(dev) == t->ste_did)) {
1048 			device_set_desc(dev, t->ste_name);
1049 			return (BUS_PROBE_DEFAULT);
1050 		}
1051 		t++;
1052 	}
1053 
1054 	return (ENXIO);
1055 }
1056 
1057 /*
1058  * Attach the interface. Allocate softc structures, do ifmedia
1059  * setup and ethernet/BPF attach.
1060  */
1061 static int
1062 ste_attach(device_t dev)
1063 {
1064 	struct ste_softc *sc;
1065 	struct ifnet *ifp;
1066 	u_char eaddr[6];
1067 	int error = 0, pmc, rid;
1068 
1069 	sc = device_get_softc(dev);
1070 	sc->ste_dev = dev;
1071 
1072 	/*
1073 	 * Only use one PHY since this chip reports multiple
1074 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
1075 	 * it is at 0 & 1.  It is rev 0x12.
1076 	 */
1077 	if (pci_get_vendor(dev) == DL_VENDORID &&
1078 	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
1079 	    pci_get_revid(dev) == 0x12 )
1080 		sc->ste_flags |= STE_FLAG_ONE_PHY;
1081 
1082 	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1083 	    MTX_DEF);
1084 	/*
1085 	 * Map control/status registers.
1086 	 */
1087 	pci_enable_busmaster(dev);
1088 
1089 	/* Prefer memory space register mapping over IO space. */
1090 	sc->ste_res_id = PCIR_BAR(1);
1091 	sc->ste_res_type = SYS_RES_MEMORY;
1092 	sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1093 	    &sc->ste_res_id, RF_ACTIVE);
1094 	if (sc->ste_res == NULL) {
1095 		sc->ste_res_id = PCIR_BAR(0);
1096 		sc->ste_res_type = SYS_RES_IOPORT;
1097 		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
1098 		    &sc->ste_res_id, RF_ACTIVE);
1099 	}
1100 	if (sc->ste_res == NULL) {
1101 		device_printf(dev, "couldn't map ports/memory\n");
1102 		error = ENXIO;
1103 		goto fail;
1104 	}
1105 
1106 	/* Allocate interrupt */
1107 	rid = 0;
1108 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1109 	    RF_SHAREABLE | RF_ACTIVE);
1110 
1111 	if (sc->ste_irq == NULL) {
1112 		device_printf(dev, "couldn't map interrupt\n");
1113 		error = ENXIO;
1114 		goto fail;
1115 	}
1116 
1117 	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
1118 
1119 	/* Reset the adapter. */
1120 	ste_reset(sc);
1121 
1122 	/*
1123 	 * Get station address from the EEPROM.
1124 	 */
1125 	if (ste_read_eeprom(sc, eaddr,
1126 	    STE_EEADDR_NODE0, 3, 0)) {
1127 		device_printf(dev, "failed to read station address\n");
1128 		error = ENXIO;;
1129 		goto fail;
1130 	}
1131 	ste_sysctl_node(sc);
1132 
1133 	if ((error = ste_dma_alloc(sc)) != 0)
1134 		goto fail;
1135 
1136 	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
1137 	if (ifp == NULL) {
1138 		device_printf(dev, "can not if_alloc()\n");
1139 		error = ENOSPC;
1140 		goto fail;
1141 	}
1142 
1143 	/* Do MII setup. */
1144 	if (mii_phy_probe(dev, &sc->ste_miibus,
1145 	    ste_ifmedia_upd, ste_ifmedia_sts)) {
1146 		device_printf(dev, "MII without any phy!\n");
1147 		error = ENXIO;
1148 		goto fail;
1149 	}
1150 
1151 	ifp->if_softc = sc;
1152 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1153 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1154 	ifp->if_ioctl = ste_ioctl;
1155 	ifp->if_start = ste_start;
1156 	ifp->if_init = ste_init;
1157 	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1158 	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1159 	IFQ_SET_READY(&ifp->if_snd);
1160 
1161 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1162 
1163 	/*
1164 	 * Call MI attach routine.
1165 	 */
1166 	ether_ifattach(ifp, eaddr);
1167 
1168 	/*
1169 	 * Tell the upper layer(s) we support long frames.
1170 	 */
1171 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1172 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1173 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
1174 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1175 	ifp->if_capenable = ifp->if_capabilities;
1176 #ifdef DEVICE_POLLING
1177 	ifp->if_capabilities |= IFCAP_POLLING;
1178 #endif
1179 
1180 	/* Hook interrupt last to avoid having to lock softc */
1181 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1182 	    NULL, ste_intr, sc, &sc->ste_intrhand);
1183 
1184 	if (error) {
1185 		device_printf(dev, "couldn't set up irq\n");
1186 		ether_ifdetach(ifp);
1187 		goto fail;
1188 	}
1189 
1190 fail:
1191 	if (error)
1192 		ste_detach(dev);
1193 
1194 	return (error);
1195 }
1196 
1197 /*
1198  * Shutdown hardware and free up resources. This can be called any
1199  * time after the mutex has been initialized. It is called in both
1200  * the error case in attach and the normal detach case so it needs
1201  * to be careful about only freeing resources that have actually been
1202  * allocated.
1203  */
1204 static int
1205 ste_detach(device_t dev)
1206 {
1207 	struct ste_softc *sc;
1208 	struct ifnet *ifp;
1209 
1210 	sc = device_get_softc(dev);
1211 	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1212 	ifp = sc->ste_ifp;
1213 
1214 #ifdef DEVICE_POLLING
1215 	if (ifp->if_capenable & IFCAP_POLLING)
1216 		ether_poll_deregister(ifp);
1217 #endif
1218 
1219 	/* These should only be active if attach succeeded */
1220 	if (device_is_attached(dev)) {
1221 		ether_ifdetach(ifp);
1222 		STE_LOCK(sc);
1223 		ste_stop(sc);
1224 		STE_UNLOCK(sc);
1225 		callout_drain(&sc->ste_callout);
1226 	}
1227 	if (sc->ste_miibus)
1228 		device_delete_child(dev, sc->ste_miibus);
1229 	bus_generic_detach(dev);
1230 
1231 	if (sc->ste_intrhand)
1232 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1233 	if (sc->ste_irq)
1234 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1235 	if (sc->ste_res)
1236 		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1237 		    sc->ste_res);
1238 
1239 	if (ifp)
1240 		if_free(ifp);
1241 
1242 	ste_dma_free(sc);
1243 	mtx_destroy(&sc->ste_mtx);
1244 
1245 	return (0);
1246 }
1247 
1248 struct ste_dmamap_arg {
1249 	bus_addr_t	ste_busaddr;
1250 };
1251 
1252 static void
1253 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1254 {
1255 	struct ste_dmamap_arg *ctx;
1256 
1257 	if (error != 0)
1258 		return;
1259 
1260 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1261 
1262 	ctx = (struct ste_dmamap_arg *)arg;
1263 	ctx->ste_busaddr = segs[0].ds_addr;
1264 }
1265 
1266 static int
1267 ste_dma_alloc(struct ste_softc *sc)
1268 {
1269 	struct ste_chain *txc;
1270 	struct ste_chain_onefrag *rxc;
1271 	struct ste_dmamap_arg ctx;
1272 	int error, i;
1273 
1274 	/* Create parent DMA tag. */
1275 	error = bus_dma_tag_create(
1276 	    bus_get_dma_tag(sc->ste_dev), /* parent */
1277 	    1, 0,			/* alignment, boundary */
1278 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1279 	    BUS_SPACE_MAXADDR,		/* highaddr */
1280 	    NULL, NULL,			/* filter, filterarg */
1281 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1282 	    0,				/* nsegments */
1283 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1284 	    0,				/* flags */
1285 	    NULL, NULL,			/* lockfunc, lockarg */
1286 	    &sc->ste_cdata.ste_parent_tag);
1287 	if (error != 0) {
1288 		device_printf(sc->ste_dev,
1289 		    "could not create parent DMA tag.\n");
1290 		goto fail;
1291 	}
1292 
1293 	/* Create DMA tag for Tx descriptor list. */
1294 	error = bus_dma_tag_create(
1295 	    sc->ste_cdata.ste_parent_tag, /* parent */
1296 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1297 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1298 	    BUS_SPACE_MAXADDR,		/* highaddr */
1299 	    NULL, NULL,			/* filter, filterarg */
1300 	    STE_TX_LIST_SZ,		/* maxsize */
1301 	    1,				/* nsegments */
1302 	    STE_TX_LIST_SZ,		/* maxsegsize */
1303 	    0,				/* flags */
1304 	    NULL, NULL,			/* lockfunc, lockarg */
1305 	    &sc->ste_cdata.ste_tx_list_tag);
1306 	if (error != 0) {
1307 		device_printf(sc->ste_dev,
1308 		    "could not create Tx list DMA tag.\n");
1309 		goto fail;
1310 	}
1311 
1312 	/* Create DMA tag for Rx descriptor list. */
1313 	error = bus_dma_tag_create(
1314 	    sc->ste_cdata.ste_parent_tag, /* parent */
1315 	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1316 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1317 	    BUS_SPACE_MAXADDR,		/* highaddr */
1318 	    NULL, NULL,			/* filter, filterarg */
1319 	    STE_RX_LIST_SZ,		/* maxsize */
1320 	    1,				/* nsegments */
1321 	    STE_RX_LIST_SZ,		/* maxsegsize */
1322 	    0,				/* flags */
1323 	    NULL, NULL,			/* lockfunc, lockarg */
1324 	    &sc->ste_cdata.ste_rx_list_tag);
1325 	if (error != 0) {
1326 		device_printf(sc->ste_dev,
1327 		    "could not create Rx list DMA tag.\n");
1328 		goto fail;
1329 	}
1330 
1331 	/* Create DMA tag for Tx buffers. */
1332 	error = bus_dma_tag_create(
1333 	    sc->ste_cdata.ste_parent_tag, /* parent */
1334 	    1, 0,			/* alignment, boundary */
1335 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1336 	    BUS_SPACE_MAXADDR,		/* highaddr */
1337 	    NULL, NULL,			/* filter, filterarg */
1338 	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1339 	    STE_MAXFRAGS,		/* nsegments */
1340 	    MCLBYTES,			/* maxsegsize */
1341 	    0,				/* flags */
1342 	    NULL, NULL,			/* lockfunc, lockarg */
1343 	    &sc->ste_cdata.ste_tx_tag);
1344 	if (error != 0) {
1345 		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1346 		goto fail;
1347 	}
1348 
1349 	/* Create DMA tag for Rx buffers. */
1350 	error = bus_dma_tag_create(
1351 	    sc->ste_cdata.ste_parent_tag, /* parent */
1352 	    1, 0,			/* alignment, boundary */
1353 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1354 	    BUS_SPACE_MAXADDR,		/* highaddr */
1355 	    NULL, NULL,			/* filter, filterarg */
1356 	    MCLBYTES,			/* maxsize */
1357 	    1,				/* nsegments */
1358 	    MCLBYTES,			/* maxsegsize */
1359 	    0,				/* flags */
1360 	    NULL, NULL,			/* lockfunc, lockarg */
1361 	    &sc->ste_cdata.ste_rx_tag);
1362 	if (error != 0) {
1363 		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1364 		goto fail;
1365 	}
1366 
1367 	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1368 	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1369 	    (void **)&sc->ste_ldata.ste_tx_list,
1370 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1371 	    &sc->ste_cdata.ste_tx_list_map);
1372 	if (error != 0) {
1373 		device_printf(sc->ste_dev,
1374 		    "could not allocate DMA'able memory for Tx list.\n");
1375 		goto fail;
1376 	}
1377 	ctx.ste_busaddr = 0;
1378 	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1379 	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1380 	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1381 	if (error != 0 || ctx.ste_busaddr == 0) {
1382 		device_printf(sc->ste_dev,
1383 		    "could not load DMA'able memory for Tx list.\n");
1384 		goto fail;
1385 	}
1386 	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1387 
1388 	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1389 	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1390 	    (void **)&sc->ste_ldata.ste_rx_list,
1391 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1392 	    &sc->ste_cdata.ste_rx_list_map);
1393 	if (error != 0) {
1394 		device_printf(sc->ste_dev,
1395 		    "could not allocate DMA'able memory for Rx list.\n");
1396 		goto fail;
1397 	}
1398 	ctx.ste_busaddr = 0;
1399 	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1400 	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1401 	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1402 	if (error != 0 || ctx.ste_busaddr == 0) {
1403 		device_printf(sc->ste_dev,
1404 		    "could not load DMA'able memory for Rx list.\n");
1405 		goto fail;
1406 	}
1407 	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1408 
1409 	/* Create DMA maps for Tx buffers. */
1410 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1411 		txc = &sc->ste_cdata.ste_tx_chain[i];
1412 		txc->ste_ptr = NULL;
1413 		txc->ste_mbuf = NULL;
1414 		txc->ste_next = NULL;
1415 		txc->ste_phys = 0;
1416 		txc->ste_map = NULL;
1417 		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1418 		    &txc->ste_map);
1419 		if (error != 0) {
1420 			device_printf(sc->ste_dev,
1421 			    "could not create Tx dmamap.\n");
1422 			goto fail;
1423 		}
1424 	}
1425 	/* Create DMA maps for Rx buffers. */
1426 	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1427 	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1428 		device_printf(sc->ste_dev,
1429 		    "could not create spare Rx dmamap.\n");
1430 		goto fail;
1431 	}
1432 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1433 		rxc = &sc->ste_cdata.ste_rx_chain[i];
1434 		rxc->ste_ptr = NULL;
1435 		rxc->ste_mbuf = NULL;
1436 		rxc->ste_next = NULL;
1437 		rxc->ste_map = NULL;
1438 		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1439 		    &rxc->ste_map);
1440 		if (error != 0) {
1441 			device_printf(sc->ste_dev,
1442 			    "could not create Rx dmamap.\n");
1443 			goto fail;
1444 		}
1445 	}
1446 
1447 fail:
1448 	return (error);
1449 }
1450 
1451 static void
1452 ste_dma_free(struct ste_softc *sc)
1453 {
1454 	struct ste_chain *txc;
1455 	struct ste_chain_onefrag *rxc;
1456 	int i;
1457 
1458 	/* Tx buffers. */
1459 	if (sc->ste_cdata.ste_tx_tag != NULL) {
1460 		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1461 			txc = &sc->ste_cdata.ste_tx_chain[i];
1462 			if (txc->ste_map != NULL) {
1463 				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1464 				    txc->ste_map);
1465 				txc->ste_map = NULL;
1466 			}
1467 		}
1468 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1469 		sc->ste_cdata.ste_tx_tag = NULL;
1470 	}
1471 	/* Rx buffers. */
1472 	if (sc->ste_cdata.ste_rx_tag != NULL) {
1473 		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1474 			rxc = &sc->ste_cdata.ste_rx_chain[i];
1475 			if (rxc->ste_map != NULL) {
1476 				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1477 				    rxc->ste_map);
1478 				rxc->ste_map = NULL;
1479 			}
1480 		}
1481 		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1482 			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1483 			    sc->ste_cdata.ste_rx_sparemap);
1484 			sc->ste_cdata.ste_rx_sparemap = NULL;
1485 		}
1486 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1487 		sc->ste_cdata.ste_rx_tag = NULL;
1488 	}
1489 	/* Tx descriptor list. */
1490 	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1491 		if (sc->ste_cdata.ste_tx_list_map != NULL)
1492 			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1493 			    sc->ste_cdata.ste_tx_list_map);
1494 		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1495 		    sc->ste_ldata.ste_tx_list != NULL)
1496 			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1497 			    sc->ste_ldata.ste_tx_list,
1498 			    sc->ste_cdata.ste_tx_list_map);
1499 		sc->ste_ldata.ste_tx_list = NULL;
1500 		sc->ste_cdata.ste_tx_list_map = NULL;
1501 		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1502 		sc->ste_cdata.ste_tx_list_tag = NULL;
1503 	}
1504 	/* Rx descriptor list. */
1505 	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1506 		if (sc->ste_cdata.ste_rx_list_map != NULL)
1507 			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1508 			    sc->ste_cdata.ste_rx_list_map);
1509 		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1510 		    sc->ste_ldata.ste_rx_list != NULL)
1511 			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1512 			    sc->ste_ldata.ste_rx_list,
1513 			    sc->ste_cdata.ste_rx_list_map);
1514 		sc->ste_ldata.ste_rx_list = NULL;
1515 		sc->ste_cdata.ste_rx_list_map = NULL;
1516 		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1517 		sc->ste_cdata.ste_rx_list_tag = NULL;
1518 	}
1519 	if (sc->ste_cdata.ste_parent_tag != NULL) {
1520 		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1521 		sc->ste_cdata.ste_parent_tag = NULL;
1522 	}
1523 }
1524 
1525 static int
1526 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1527 {
1528 	struct mbuf *m;
1529 	bus_dma_segment_t segs[1];
1530 	bus_dmamap_t map;
1531 	int error, nsegs;
1532 
1533 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1534 	if (m == NULL)
1535 		return (ENOBUFS);
1536 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1537 	m_adj(m, ETHER_ALIGN);
1538 
1539 	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1540 	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1541 		m_freem(m);
1542 		return (error);
1543 	}
1544 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1545 
1546 	if (rxc->ste_mbuf != NULL) {
1547 		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1548 		    BUS_DMASYNC_POSTREAD);
1549 		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1550 	}
1551 	map = rxc->ste_map;
1552 	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1553 	sc->ste_cdata.ste_rx_sparemap = map;
1554 	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1555 	    BUS_DMASYNC_PREREAD);
1556 	rxc->ste_mbuf = m;
1557 	rxc->ste_ptr->ste_status = 0;
1558 	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1559 	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1560 	    STE_FRAG_LAST);
1561 	return (0);
1562 }
1563 
1564 static int
1565 ste_init_rx_list(struct ste_softc *sc)
1566 {
1567 	struct ste_chain_data *cd;
1568 	struct ste_list_data *ld;
1569 	int error, i;
1570 
1571 	sc->ste_int_rx_act = 0;
1572 	cd = &sc->ste_cdata;
1573 	ld = &sc->ste_ldata;
1574 	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1575 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1576 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1577 		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1578 		if (error != 0)
1579 			return (error);
1580 		if (i == (STE_RX_LIST_CNT - 1)) {
1581 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1582 			ld->ste_rx_list[i].ste_next = ld->ste_rx_list_paddr +
1583 			    (sizeof(struct ste_desc_onefrag) * 0);
1584 		} else {
1585 			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1586 			ld->ste_rx_list[i].ste_next = ld->ste_rx_list_paddr +
1587 			    (sizeof(struct ste_desc_onefrag) * (i + 1));
1588 		}
1589 	}
1590 
1591 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1592 	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1593 	    sc->ste_cdata.ste_rx_list_map,
1594 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595 
1596 	return (0);
1597 }
1598 
1599 static void
1600 ste_init_tx_list(struct ste_softc *sc)
1601 {
1602 	struct ste_chain_data *cd;
1603 	struct ste_list_data *ld;
1604 	int i;
1605 
1606 	cd = &sc->ste_cdata;
1607 	ld = &sc->ste_ldata;
1608 	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1609 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1610 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1611 		cd->ste_tx_chain[i].ste_mbuf = NULL;
1612 		if (i == (STE_TX_LIST_CNT - 1)) {
1613 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1614 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1615 			    ld->ste_tx_list_paddr +
1616 			    (sizeof(struct ste_desc) * 0)));
1617 		} else {
1618 			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1619 			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1620 			    ld->ste_tx_list_paddr +
1621 			    (sizeof(struct ste_desc) * (i + 1))));
1622 		}
1623 	}
1624 
1625 	cd->ste_last_tx = NULL;
1626 	cd->ste_tx_prod = 0;
1627 	cd->ste_tx_cons = 0;
1628 	cd->ste_tx_cnt = 0;
1629 
1630 	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1631 	    sc->ste_cdata.ste_tx_list_map,
1632 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1633 }
1634 
1635 static void
1636 ste_init(void *xsc)
1637 {
1638 	struct ste_softc *sc;
1639 
1640 	sc = xsc;
1641 	STE_LOCK(sc);
1642 	ste_init_locked(sc);
1643 	STE_UNLOCK(sc);
1644 }
1645 
1646 static void
1647 ste_init_locked(struct ste_softc *sc)
1648 {
1649 	struct ifnet *ifp;
1650 	struct mii_data *mii;
1651 	uint8_t val;
1652 	int i;
1653 
1654 	STE_LOCK_ASSERT(sc);
1655 	ifp = sc->ste_ifp;
1656 	mii = device_get_softc(sc->ste_miibus);
1657 
1658 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1659 		return;
1660 
1661 	ste_stop(sc);
1662 	/* Reset the chip to a known state. */
1663 	ste_reset(sc);
1664 
1665 	/* Init our MAC address */
1666 	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1667 		CSR_WRITE_2(sc, STE_PAR0 + i,
1668 		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1669 		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1670 	}
1671 
1672 	/* Init RX list */
1673 	if (ste_init_rx_list(sc) != 0) {
1674 		device_printf(sc->ste_dev,
1675 		    "initialization failed: no memory for RX buffers\n");
1676 		ste_stop(sc);
1677 		return;
1678 	}
1679 
1680 	/* Set RX polling interval */
1681 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1682 
1683 	/* Init TX descriptors */
1684 	ste_init_tx_list(sc);
1685 
1686 	/* Clear and disable WOL. */
1687 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1688 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1689 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1690 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1691 
1692 	/* Set the TX freethresh value */
1693 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1694 
1695 	/* Set the TX start threshold for best performance. */
1696 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1697 
1698 	/* Set the TX reclaim threshold. */
1699 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1700 
1701 	/* Accept VLAN length packets */
1702 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1703 
1704 	/* Set up the RX filter. */
1705 	ste_rxfilter(sc);
1706 
1707 	/* Load the address of the RX list. */
1708 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1709 	ste_wait(sc);
1710 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1711 	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1712 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1713 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1714 
1715 	/* Set TX polling interval(defer until we TX first packet). */
1716 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1717 
1718 	/* Load address of the TX list */
1719 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1720 	ste_wait(sc);
1721 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1722 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1723 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1724 	ste_wait(sc);
1725 	/* Select 3.2us timer. */
1726 	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1727 	    STE_DMACTL_COUNTDOWN_MODE);
1728 
1729 	/* Enable receiver and transmitter */
1730 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1731 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1732 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1733 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1734 
1735 	/* Enable stats counters. */
1736 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1737 	/* Clear stats counters. */
1738 	ste_stats_clear(sc);
1739 
1740 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1741 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1742 #ifdef DEVICE_POLLING
1743 	/* Disable interrupts if we are polling. */
1744 	if (ifp->if_capenable & IFCAP_POLLING)
1745 		CSR_WRITE_2(sc, STE_IMR, 0);
1746 	else
1747 #endif
1748 	/* Enable interrupts. */
1749 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1750 
1751 	sc->ste_flags &= ~STE_FLAG_LINK;
1752 	/* Switch to the current media. */
1753 	mii_mediachg(mii);
1754 
1755 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1756 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1757 
1758 	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1759 }
1760 
1761 static void
1762 ste_stop(struct ste_softc *sc)
1763 {
1764 	struct ifnet *ifp;
1765 	struct ste_chain_onefrag *cur_rx;
1766 	struct ste_chain *cur_tx;
1767 	uint32_t val;
1768 	int i;
1769 
1770 	STE_LOCK_ASSERT(sc);
1771 	ifp = sc->ste_ifp;
1772 
1773 	callout_stop(&sc->ste_callout);
1774 	sc->ste_timer = 0;
1775 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1776 
1777 	CSR_WRITE_2(sc, STE_IMR, 0);
1778 	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1779 	/* Stop pending DMA. */
1780 	val = CSR_READ_4(sc, STE_DMACTL);
1781 	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1782 	CSR_WRITE_4(sc, STE_DMACTL, val);
1783 	ste_wait(sc);
1784 	/* Disable auto-polling. */
1785 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1786 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1787 	/* Nullify DMA address to stop any further DMA. */
1788 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1789 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1790 	/* Stop TX/RX MAC. */
1791 	val = CSR_READ_2(sc, STE_MACCTL1);
1792 	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1793 	    STE_MACCTL1_STATS_DISABLE;
1794 	CSR_WRITE_2(sc, STE_MACCTL1, val);
1795 	for (i = 0; i < STE_TIMEOUT; i++) {
1796 		DELAY(10);
1797 		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1798 		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1799 			break;
1800 	}
1801 	if (i == STE_TIMEOUT)
1802 		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1803 	/* Acknowledge any pending interrupts. */
1804 	CSR_READ_2(sc, STE_ISR_ACK);
1805 	ste_stats_update(sc);
1806 
1807 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1808 		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1809 		if (cur_rx->ste_mbuf != NULL) {
1810 			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1811 			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1812 			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1813 			    cur_rx->ste_map);
1814 			m_freem(cur_rx->ste_mbuf);
1815 			cur_rx->ste_mbuf = NULL;
1816 		}
1817 	}
1818 
1819 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1820 		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1821 		if (cur_tx->ste_mbuf != NULL) {
1822 			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1823 			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1824 			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1825 			    cur_tx->ste_map);
1826 			m_freem(cur_tx->ste_mbuf);
1827 			cur_tx->ste_mbuf = NULL;
1828 		}
1829 	}
1830 }
1831 
1832 static void
1833 ste_reset(struct ste_softc *sc)
1834 {
1835 	uint32_t ctl;
1836 	int i;
1837 
1838 	ctl = CSR_READ_4(sc, STE_ASICCTL);
1839 	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1840 	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1841 	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1842 	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1843 	    STE_ASICCTL_EXTRESET_RESET;
1844 	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1845 	CSR_READ_4(sc, STE_ASICCTL);
1846 	/*
1847 	 * Due to the need of accessing EEPROM controller can take
1848 	 * up to 1ms to complete the global reset.
1849 	 */
1850 	DELAY(1000);
1851 
1852 	for (i = 0; i < STE_TIMEOUT; i++) {
1853 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1854 			break;
1855 		DELAY(10);
1856 	}
1857 
1858 	if (i == STE_TIMEOUT)
1859 		device_printf(sc->ste_dev, "global reset never completed\n");
1860 }
1861 
1862 static void
1863 ste_restart_tx(struct ste_softc *sc)
1864 {
1865 	uint16_t mac;
1866 	int i;
1867 
1868 	for (i = 0; i < STE_TIMEOUT; i++) {
1869 		mac = CSR_READ_2(sc, STE_MACCTL1);
1870 		mac |= STE_MACCTL1_TX_ENABLE;
1871 		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1872 		mac = CSR_READ_2(sc, STE_MACCTL1);
1873 		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1874 			break;
1875 		DELAY(10);
1876 	}
1877 
1878 	if (i == STE_TIMEOUT)
1879 		device_printf(sc->ste_dev, "starting Tx failed");
1880 }
1881 
1882 static int
1883 ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1884 {
1885 	struct ste_softc *sc;
1886 	struct ifreq *ifr;
1887 	struct mii_data *mii;
1888 	int error = 0, mask;
1889 
1890 	sc = ifp->if_softc;
1891 	ifr = (struct ifreq *)data;
1892 
1893 	switch (command) {
1894 	case SIOCSIFFLAGS:
1895 		STE_LOCK(sc);
1896 		if ((ifp->if_flags & IFF_UP) != 0) {
1897 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1898 			    ((ifp->if_flags ^ sc->ste_if_flags) &
1899 			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1900 				ste_rxfilter(sc);
1901 			else
1902 				ste_init_locked(sc);
1903 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1904 			ste_stop(sc);
1905 		sc->ste_if_flags = ifp->if_flags;
1906 		STE_UNLOCK(sc);
1907 		break;
1908 	case SIOCADDMULTI:
1909 	case SIOCDELMULTI:
1910 		STE_LOCK(sc);
1911 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1912 			ste_rxfilter(sc);
1913 		STE_UNLOCK(sc);
1914 		break;
1915 	case SIOCGIFMEDIA:
1916 	case SIOCSIFMEDIA:
1917 		mii = device_get_softc(sc->ste_miibus);
1918 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1919 		break;
1920 	case SIOCSIFCAP:
1921 		STE_LOCK(sc);
1922 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1923 #ifdef DEVICE_POLLING
1924 		if ((mask & IFCAP_POLLING) != 0 &&
1925 		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1926 			ifp->if_capenable ^= IFCAP_POLLING;
1927 			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1928 				error = ether_poll_register(ste_poll, ifp);
1929 				if (error != 0) {
1930 					STE_UNLOCK(sc);
1931 					break;
1932 				}
1933 				/* Disable interrupts. */
1934 				CSR_WRITE_2(sc, STE_IMR, 0);
1935 			} else {
1936 				error = ether_poll_deregister(ifp);
1937 				/* Enable interrupts. */
1938 				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1939 			}
1940 		}
1941 #endif /* DEVICE_POLLING */
1942 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1943 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1944 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1945 		STE_UNLOCK(sc);
1946 		break;
1947 	default:
1948 		error = ether_ioctl(ifp, command, data);
1949 		break;
1950 	}
1951 
1952 	return (error);
1953 }
1954 
1955 static int
1956 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1957 {
1958 	struct ste_frag *frag;
1959 	struct mbuf *m;
1960 	struct ste_desc *desc;
1961 	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1962 	int error, i, nsegs;
1963 
1964 	STE_LOCK_ASSERT(sc);
1965 	M_ASSERTPKTHDR((*m_head));
1966 
1967 	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1968 	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1969 	if (error == EFBIG) {
1970 		m = m_collapse(*m_head, M_DONTWAIT, STE_MAXFRAGS);
1971 		if (m == NULL) {
1972 			m_freem(*m_head);
1973 			*m_head = NULL;
1974 			return (ENOMEM);
1975 		}
1976 		*m_head = m;
1977 		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1978 		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1979 		if (error != 0) {
1980 			m_freem(*m_head);
1981 			*m_head = NULL;
1982 			return (error);
1983 		}
1984 	} else if (error != 0)
1985 		return (error);
1986 	if (nsegs == 0) {
1987 		m_freem(*m_head);
1988 		*m_head = NULL;
1989 		return (EIO);
1990 	}
1991 	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1992 	    BUS_DMASYNC_PREWRITE);
1993 
1994 	desc = txc->ste_ptr;
1995 	for (i = 0; i < nsegs; i++) {
1996 		frag = &desc->ste_frags[i];
1997 		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1998 		frag->ste_len = htole32(txsegs[i].ds_len);
1999 	}
2000 	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
2001 	/*
2002 	 * Because we use Tx polling we can't chain multiple
2003 	 * Tx descriptors here. Otherwise we race with controller.
2004 	 */
2005 	desc->ste_next = 0;
2006 	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
2007 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
2008 		    STE_TXCTL_DMAINTR);
2009 	else
2010 		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
2011 	txc->ste_mbuf = *m_head;
2012 	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
2013 	sc->ste_cdata.ste_tx_cnt++;
2014 
2015 	return (0);
2016 }
2017 
2018 static void
2019 ste_start(struct ifnet *ifp)
2020 {
2021 	struct ste_softc *sc;
2022 
2023 	sc = ifp->if_softc;
2024 	STE_LOCK(sc);
2025 	ste_start_locked(ifp);
2026 	STE_UNLOCK(sc);
2027 }
2028 
2029 static void
2030 ste_start_locked(struct ifnet *ifp)
2031 {
2032 	struct ste_softc *sc;
2033 	struct ste_chain *cur_tx;
2034 	struct mbuf *m_head = NULL;
2035 	int enq;
2036 
2037 	sc = ifp->if_softc;
2038 	STE_LOCK_ASSERT(sc);
2039 
2040 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2041 	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
2042 		return;
2043 
2044 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
2045 		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
2046 			/*
2047 			 * Controller may have cached copy of the last used
2048 			 * next ptr so we have to reserve one TFD to avoid
2049 			 * TFD overruns.
2050 			 */
2051 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2052 			break;
2053 		}
2054 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2055 		if (m_head == NULL)
2056 			break;
2057 		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
2058 		if (ste_encap(sc, &m_head, cur_tx) != 0) {
2059 			if (m_head == NULL)
2060 				break;
2061 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2062 			break;
2063 		}
2064 		if (sc->ste_cdata.ste_last_tx == NULL) {
2065 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2066 			    sc->ste_cdata.ste_tx_list_map,
2067 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2068 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
2069 			ste_wait(sc);
2070 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
2071 	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
2072 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
2073 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
2074 			ste_wait(sc);
2075 		} else {
2076 			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
2077 			    sc->ste_cdata.ste_last_tx->ste_phys;
2078 			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
2079 			    sc->ste_cdata.ste_tx_list_map,
2080 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2081 		}
2082 		sc->ste_cdata.ste_last_tx = cur_tx;
2083 
2084 		enq++;
2085 		/*
2086 		 * If there's a BPF listener, bounce a copy of this frame
2087 		 * to him.
2088 	 	 */
2089 		BPF_MTAP(ifp, m_head);
2090 	}
2091 
2092 	if (enq > 0)
2093 		sc->ste_timer = STE_TX_TIMEOUT;
2094 }
2095 
2096 static void
2097 ste_watchdog(struct ste_softc *sc)
2098 {
2099 	struct ifnet *ifp;
2100 
2101 	ifp = sc->ste_ifp;
2102 	STE_LOCK_ASSERT(sc);
2103 
2104 	if (sc->ste_timer == 0 || --sc->ste_timer)
2105 		return;
2106 
2107 	ifp->if_oerrors++;
2108 	if_printf(ifp, "watchdog timeout\n");
2109 
2110 	ste_txeof(sc);
2111 	ste_txeoc(sc);
2112 	ste_rxeof(sc, -1);
2113 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2114 	ste_init_locked(sc);
2115 
2116 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2117 		ste_start_locked(ifp);
2118 }
2119 
2120 static int
2121 ste_shutdown(device_t dev)
2122 {
2123 
2124 	return (ste_suspend(dev));
2125 }
2126 
2127 static int
2128 ste_suspend(device_t dev)
2129 {
2130 	struct ste_softc *sc;
2131 
2132 	sc = device_get_softc(dev);
2133 
2134 	STE_LOCK(sc);
2135 	ste_stop(sc);
2136 	ste_setwol(sc);
2137 	STE_UNLOCK(sc);
2138 
2139 	return (0);
2140 }
2141 
2142 static int
2143 ste_resume(device_t dev)
2144 {
2145 	struct ste_softc *sc;
2146 	struct ifnet *ifp;
2147 	int pmc;
2148 	uint16_t pmstat;
2149 
2150 	sc = device_get_softc(dev);
2151 	STE_LOCK(sc);
2152 	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2153 		/* Disable PME and clear PME status. */
2154 		pmstat = pci_read_config(sc->ste_dev,
2155 		    pmc + PCIR_POWER_STATUS, 2);
2156 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2157 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2158 			pci_write_config(sc->ste_dev,
2159 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2160 		}
2161 	}
2162 	ifp = sc->ste_ifp;
2163 	if ((ifp->if_flags & IFF_UP) != 0) {
2164 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2165 		ste_init_locked(sc);
2166 	}
2167 	STE_UNLOCK(sc);
2168 
2169 	return (0);
2170 }
2171 
2172 #define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2173 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2174 #define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2175 	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2176 
2177 static void
2178 ste_sysctl_node(struct ste_softc *sc)
2179 {
2180 	struct sysctl_ctx_list *ctx;
2181 	struct sysctl_oid_list *child, *parent;
2182 	struct sysctl_oid *tree;
2183 	struct ste_hw_stats *stats;
2184 
2185 	stats = &sc->ste_stats;
2186 	ctx = device_get_sysctl_ctx(sc->ste_dev);
2187 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2188 
2189 	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2190 	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2191 	/* Pull in device tunables. */
2192 	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2193 	resource_int_value(device_get_name(sc->ste_dev),
2194 	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2195 
2196 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2197 	    NULL, "STE statistics");
2198 	parent = SYSCTL_CHILDREN(tree);
2199 
2200 	/* Rx statistics. */
2201 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2202 	    NULL, "Rx MAC statistics");
2203 	child = SYSCTL_CHILDREN(tree);
2204 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2205 	    &stats->rx_bytes, "Good octets");
2206 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2207 	    &stats->rx_frames, "Good frames");
2208 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2209 	    &stats->rx_bcast_frames, "Good broadcast frames");
2210 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2211 	    &stats->rx_mcast_frames, "Good multicast frames");
2212 	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2213 	    &stats->rx_lost_frames, "Lost frames");
2214 
2215 	/* Tx statistics. */
2216 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2217 	    NULL, "Tx MAC statistics");
2218 	child = SYSCTL_CHILDREN(tree);
2219 	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2220 	    &stats->tx_bytes, "Good octets");
2221 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2222 	    &stats->tx_frames, "Good frames");
2223 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2224 	    &stats->tx_bcast_frames, "Good broadcast frames");
2225 	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2226 	    &stats->tx_mcast_frames, "Good multicast frames");
2227 	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2228 	    &stats->tx_carrsense_errs, "Carrier sense errors");
2229 	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2230 	    &stats->tx_single_colls, "Single collisions");
2231 	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2232 	    &stats->tx_multi_colls, "Multiple collisions");
2233 	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2234 	    &stats->tx_late_colls, "Late collisions");
2235 	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2236 	    &stats->tx_frames_defered, "Frames with deferrals");
2237 	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2238 	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2239 	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2240 	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2241 }
2242 
2243 #undef STE_SYSCTL_STAT_ADD32
2244 #undef STE_SYSCTL_STAT_ADD64
2245 
2246 static void
2247 ste_setwol(struct ste_softc *sc)
2248 {
2249 	struct ifnet *ifp;
2250 	uint16_t pmstat;
2251 	uint8_t val;
2252 	int pmc;
2253 
2254 	STE_LOCK_ASSERT(sc);
2255 
2256 	if (pci_find_extcap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2257 		/* Disable WOL. */
2258 		CSR_READ_1(sc, STE_WAKE_EVENT);
2259 		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2260 		return;
2261 	}
2262 
2263 	ifp = sc->ste_ifp;
2264 	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2265 	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2266 	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2267 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2268 		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2269 	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2270 	/* Request PME. */
2271 	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2272 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2273 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2274 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2275 	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2276 }
2277