1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */ 30 31 #ifdef _KERNEL 32 #ifdef HAVE_KERNEL_OPTION_HEADERS 33 #include "opt_snd.h" 34 #endif 35 #include <dev/sound/pcm/sound.h> 36 #include <dev/sound/pcm/pcm.h> 37 #include "feeder_if.h" 38 39 #define SND_USE_FXDIV 40 #include "snd_fxdiv_gen.h" 41 #endif 42 43 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t); 44 45 #define FEEDVOLUME_CALC8(s, v) (SND_VOL_CALC_SAMPLE((intpcm_t) \ 46 (s) << 8, v) >> 8) 47 #define FEEDVOLUME_CALC16(s, v) SND_VOL_CALC_SAMPLE((intpcm_t)(s), v) 48 #define FEEDVOLUME_CALC24(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v) 49 #define FEEDVOLUME_CALC32(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v) 50 51 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN) \ 52 static void \ 53 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix, \ 54 uint32_t channels, uint8_t *dst, uint32_t count) \ 55 { \ 56 intpcm##BIT##_t v; \ 57 intpcm_t x; \ 58 uint32_t i; \ 59 \ 60 dst += count * PCM_##BIT##_BPS * channels; \ 61 do { \ 62 i = channels; \ 63 do { \ 64 dst -= PCM_##BIT##_BPS; \ 65 i--; \ 66 x = pcm_sample_read_calc(dst, \ 67 AFMT_##SIGN##BIT##_##ENDIAN); \ 68 v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]); \ 69 x = pcm_clamp_calc(v, \ 70 AFMT_##SIGN##BIT##_##ENDIAN); \ 71 pcm_sample_write(dst, x, \ 72 AFMT_##SIGN##BIT##_##ENDIAN); \ 73 } while (i != 0); \ 74 } while (--count != 0); \ 75 } 76 77 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 78 FEEDVOLUME_DECLARE(S, 16, LE) 79 FEEDVOLUME_DECLARE(S, 32, LE) 80 #endif 81 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 82 FEEDVOLUME_DECLARE(S, 16, BE) 83 FEEDVOLUME_DECLARE(S, 32, BE) 84 #endif 85 #ifdef SND_FEEDER_MULTIFORMAT 86 FEEDVOLUME_DECLARE(S, 8, NE) 87 FEEDVOLUME_DECLARE(S, 24, LE) 88 FEEDVOLUME_DECLARE(S, 24, BE) 89 FEEDVOLUME_DECLARE(U, 8, NE) 90 FEEDVOLUME_DECLARE(U, 16, LE) 91 FEEDVOLUME_DECLARE(U, 24, LE) 92 FEEDVOLUME_DECLARE(U, 32, LE) 93 FEEDVOLUME_DECLARE(U, 16, BE) 94 FEEDVOLUME_DECLARE(U, 24, BE) 95 FEEDVOLUME_DECLARE(U, 32, BE) 96 #endif 97 98 struct feed_volume_info { 99 uint32_t bps, channels; 100 feed_volume_t apply; 101 int volume_class; 102 int state; 103 int matrix[SND_CHN_MAX]; 104 }; 105 106 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN) \ 107 { \ 108 AFMT_##SIGN##BIT##_##ENDIAN, \ 109 feed_volume_##SIGN##BIT##ENDIAN \ 110 } 111 112 static const struct { 113 uint32_t format; 114 feed_volume_t apply; 115 } feed_volume_info_tab[] = { 116 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 117 FEEDVOLUME_ENTRY(S, 16, LE), 118 FEEDVOLUME_ENTRY(S, 32, LE), 119 #endif 120 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 121 FEEDVOLUME_ENTRY(S, 16, BE), 122 FEEDVOLUME_ENTRY(S, 32, BE), 123 #endif 124 #ifdef SND_FEEDER_MULTIFORMAT 125 FEEDVOLUME_ENTRY(S, 8, NE), 126 FEEDVOLUME_ENTRY(S, 24, LE), 127 FEEDVOLUME_ENTRY(S, 24, BE), 128 FEEDVOLUME_ENTRY(U, 8, NE), 129 FEEDVOLUME_ENTRY(U, 16, LE), 130 FEEDVOLUME_ENTRY(U, 24, LE), 131 FEEDVOLUME_ENTRY(U, 32, LE), 132 FEEDVOLUME_ENTRY(U, 16, BE), 133 FEEDVOLUME_ENTRY(U, 24, BE), 134 FEEDVOLUME_ENTRY(U, 32, BE) 135 #endif 136 }; 137 138 #define FEEDVOLUME_TAB_SIZE ((int32_t) \ 139 (sizeof(feed_volume_info_tab) / \ 140 sizeof(feed_volume_info_tab[0]))) 141 142 static int 143 feed_volume_init(struct pcm_feeder *f) 144 { 145 struct feed_volume_info *info; 146 struct pcmchan_matrix *m; 147 uint32_t i; 148 int ret; 149 150 if (f->desc->in != f->desc->out || 151 AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX) 152 return (EINVAL); 153 154 for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) { 155 if (AFMT_ENCODING(f->desc->in) == 156 feed_volume_info_tab[i].format) { 157 info = malloc(sizeof(*info), M_DEVBUF, 158 M_NOWAIT | M_ZERO); 159 if (info == NULL) 160 return (ENOMEM); 161 162 info->bps = AFMT_BPS(f->desc->in); 163 info->channels = AFMT_CHANNEL(f->desc->in); 164 info->apply = feed_volume_info_tab[i].apply; 165 info->volume_class = SND_VOL_C_PCM; 166 info->state = FEEDVOLUME_ENABLE; 167 168 f->data = info; 169 m = feeder_matrix_default_channel_map(info->channels); 170 if (m == NULL) { 171 free(info, M_DEVBUF); 172 return (EINVAL); 173 } 174 175 ret = feeder_volume_apply_matrix(f, m); 176 if (ret != 0) 177 free(info, M_DEVBUF); 178 179 return (ret); 180 } 181 } 182 183 return (EINVAL); 184 } 185 186 static int 187 feed_volume_free(struct pcm_feeder *f) 188 { 189 struct feed_volume_info *info; 190 191 info = f->data; 192 if (info != NULL) 193 free(info, M_DEVBUF); 194 195 f->data = NULL; 196 197 return (0); 198 } 199 200 static int 201 feed_volume_set(struct pcm_feeder *f, int what, int value) 202 { 203 struct feed_volume_info *info; 204 struct pcmchan_matrix *m; 205 int ret; 206 207 info = f->data; 208 ret = 0; 209 210 switch (what) { 211 case FEEDVOLUME_CLASS: 212 if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END) 213 return (EINVAL); 214 info->volume_class = value; 215 break; 216 case FEEDVOLUME_CHANNELS: 217 if (value < SND_CHN_MIN || value > SND_CHN_MAX) 218 return (EINVAL); 219 m = feeder_matrix_default_channel_map(value); 220 if (m == NULL) 221 return (EINVAL); 222 ret = feeder_volume_apply_matrix(f, m); 223 break; 224 case FEEDVOLUME_STATE: 225 if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS)) 226 return (EINVAL); 227 info->state = value; 228 break; 229 default: 230 return (EINVAL); 231 break; 232 } 233 234 return (ret); 235 } 236 237 static int 238 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, 239 uint32_t count, void *source) 240 { 241 int temp_vol[SND_CHN_T_VOL_MAX]; 242 struct feed_volume_info *info; 243 uint32_t j, align; 244 int i, *matrix; 245 uint8_t *dst; 246 const int16_t *vol; 247 const int8_t *muted; 248 249 /* 250 * Fetch filter data operation. 251 */ 252 info = f->data; 253 254 if (info->state == FEEDVOLUME_BYPASS) 255 return (FEEDER_FEED(f->source, c, b, count, source)); 256 257 vol = c->volume[SND_VOL_C_VAL(info->volume_class)]; 258 muted = c->muted[SND_VOL_C_VAL(info->volume_class)]; 259 matrix = info->matrix; 260 261 /* 262 * First, let see if we really need to apply gain at all. 263 */ 264 j = 0; 265 i = info->channels; 266 while (i--) { 267 if (vol[matrix[i]] != SND_VOL_FLAT || 268 muted[matrix[i]] != 0) { 269 j = 1; 270 break; 271 } 272 } 273 274 /* Nope, just bypass entirely. */ 275 if (j == 0) 276 return (FEEDER_FEED(f->source, c, b, count, source)); 277 278 /* Check if any controls are muted. */ 279 for (j = 0; j != SND_CHN_T_VOL_MAX; j++) 280 temp_vol[j] = muted[j] ? 0 : vol[j]; 281 282 dst = b; 283 align = info->bps * info->channels; 284 285 do { 286 if (count < align) 287 break; 288 289 j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source), 290 align); 291 if (j == 0) 292 break; 293 294 info->apply(temp_vol, matrix, info->channels, dst, j); 295 296 j *= align; 297 dst += j; 298 count -= j; 299 300 } while (count != 0); 301 302 return (dst - b); 303 } 304 305 static struct pcm_feederdesc feeder_volume_desc[] = { 306 { FEEDER_VOLUME, 0, 0, 0, 0 }, 307 { 0, 0, 0, 0, 0 } 308 }; 309 310 static kobj_method_t feeder_volume_methods[] = { 311 KOBJMETHOD(feeder_init, feed_volume_init), 312 KOBJMETHOD(feeder_free, feed_volume_free), 313 KOBJMETHOD(feeder_set, feed_volume_set), 314 KOBJMETHOD(feeder_feed, feed_volume_feed), 315 KOBJMETHOD_END 316 }; 317 318 FEEDER_DECLARE(feeder_volume, NULL); 319 320 /* Extern */ 321 322 /* 323 * feeder_volume_apply_matrix(): For given matrix map, apply its configuration 324 * to feeder_volume matrix structure. There are 325 * possibilites that feeder_volume be inserted 326 * before or after feeder_matrix, which in this 327 * case feeder_volume must be in a good terms 328 * with _current_ matrix. 329 */ 330 int 331 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m) 332 { 333 struct feed_volume_info *info; 334 uint32_t i; 335 336 if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME || 337 f->data == NULL || m == NULL || m->channels < SND_CHN_MIN || 338 m->channels > SND_CHN_MAX) 339 return (EINVAL); 340 341 info = f->data; 342 343 for (i = 0; i < nitems(info->matrix); i++) { 344 if (i < m->channels) 345 info->matrix[i] = m->map[i].type; 346 else 347 info->matrix[i] = SND_CHN_T_FL; 348 } 349 350 info->channels = m->channels; 351 352 return (0); 353 } 354