xref: /freebsd/sys/dev/sound/pcm/feeder_volume.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*-
2  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
28 
29 #ifdef _KERNEL
30 #ifdef HAVE_KERNEL_OPTION_HEADERS
31 #include "opt_snd.h"
32 #endif
33 #include <dev/sound/pcm/sound.h>
34 #include <dev/sound/pcm/pcm.h>
35 #include "feeder_if.h"
36 
37 #define SND_USE_FXDIV
38 #include "snd_fxdiv_gen.h"
39 
40 SND_DECLARE_FILE("$FreeBSD$");
41 #endif
42 
43 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
44 
45 #define FEEDVOLUME_CALC8(s, v)	(SND_VOL_CALC_SAMPLE((intpcm_t)		\
46 				 (s) << 8, v) >> 8)
47 #define FEEDVOLUME_CALC16(s, v)	SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
48 #define FEEDVOLUME_CALC24(s, v)	SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
49 #define FEEDVOLUME_CALC32(s, v)	SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
50 
51 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN)				\
52 static void								\
53 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix,			\
54     uint32_t channels, uint8_t *dst, uint32_t count)			\
55 {									\
56 	intpcm##BIT##_t v;						\
57 	intpcm_t x;							\
58 	uint32_t i;							\
59 									\
60 	dst += count * PCM_##BIT##_BPS * channels;			\
61 	do {								\
62 		i = channels;						\
63 		do {							\
64 			dst -= PCM_##BIT##_BPS;				\
65 			i--;						\
66 			x = PCM_READ_##SIGN##BIT##_##ENDIAN(dst);	\
67 			v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]);	\
68 			x = PCM_CLAMP_##SIGN##BIT(v);			\
69 			_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);	\
70 		} while (i != 0);					\
71 	} while (--count != 0);						\
72 }
73 
74 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
75 FEEDVOLUME_DECLARE(S, 16, LE)
76 FEEDVOLUME_DECLARE(S, 32, LE)
77 #endif
78 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
79 FEEDVOLUME_DECLARE(S, 16, BE)
80 FEEDVOLUME_DECLARE(S, 32, BE)
81 #endif
82 #ifdef SND_FEEDER_MULTIFORMAT
83 FEEDVOLUME_DECLARE(S,  8, NE)
84 FEEDVOLUME_DECLARE(S, 24, LE)
85 FEEDVOLUME_DECLARE(S, 24, BE)
86 FEEDVOLUME_DECLARE(U,  8, NE)
87 FEEDVOLUME_DECLARE(U, 16, LE)
88 FEEDVOLUME_DECLARE(U, 24, LE)
89 FEEDVOLUME_DECLARE(U, 32, LE)
90 FEEDVOLUME_DECLARE(U, 16, BE)
91 FEEDVOLUME_DECLARE(U, 24, BE)
92 FEEDVOLUME_DECLARE(U, 32, BE)
93 #endif
94 
95 struct feed_volume_info {
96 	uint32_t bps, channels;
97 	feed_volume_t apply;
98 	int volume_class;
99 	int state;
100 	int matrix[SND_CHN_MAX];
101 };
102 
103 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN)				\
104 	{								\
105 		AFMT_##SIGN##BIT##_##ENDIAN,				\
106 		feed_volume_##SIGN##BIT##ENDIAN				\
107 	}
108 
109 static const struct {
110 	uint32_t format;
111 	feed_volume_t apply;
112 } feed_volume_info_tab[] = {
113 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
114 	FEEDVOLUME_ENTRY(S, 16, LE),
115 	FEEDVOLUME_ENTRY(S, 32, LE),
116 #endif
117 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
118 	FEEDVOLUME_ENTRY(S, 16, BE),
119 	FEEDVOLUME_ENTRY(S, 32, BE),
120 #endif
121 #ifdef SND_FEEDER_MULTIFORMAT
122 	FEEDVOLUME_ENTRY(S,  8, NE),
123 	FEEDVOLUME_ENTRY(S, 24, LE),
124 	FEEDVOLUME_ENTRY(S, 24, BE),
125 	FEEDVOLUME_ENTRY(U,  8, NE),
126 	FEEDVOLUME_ENTRY(U, 16, LE),
127 	FEEDVOLUME_ENTRY(U, 24, LE),
128 	FEEDVOLUME_ENTRY(U, 32, LE),
129 	FEEDVOLUME_ENTRY(U, 16, BE),
130 	FEEDVOLUME_ENTRY(U, 24, BE),
131 	FEEDVOLUME_ENTRY(U, 32, BE)
132 #endif
133 };
134 
135 #define FEEDVOLUME_TAB_SIZE	((int32_t)				\
136 				 (sizeof(feed_volume_info_tab) /	\
137 				  sizeof(feed_volume_info_tab[0])))
138 
139 static int
140 feed_volume_init(struct pcm_feeder *f)
141 {
142 	struct feed_volume_info *info;
143 	struct pcmchan_matrix *m;
144 	uint32_t i;
145 	int ret;
146 
147 	if (f->desc->in != f->desc->out ||
148 	    AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
149 		return (EINVAL);
150 
151 	for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
152 		if (AFMT_ENCODING(f->desc->in) ==
153 		    feed_volume_info_tab[i].format) {
154 			info = malloc(sizeof(*info), M_DEVBUF,
155 			    M_NOWAIT | M_ZERO);
156 			if (info == NULL)
157 				return (ENOMEM);
158 
159 			info->bps = AFMT_BPS(f->desc->in);
160 			info->channels = AFMT_CHANNEL(f->desc->in);
161 			info->apply = feed_volume_info_tab[i].apply;
162 			info->volume_class = SND_VOL_C_PCM;
163 			info->state = FEEDVOLUME_ENABLE;
164 
165 			f->data = info;
166 			m = feeder_matrix_default_channel_map(info->channels);
167 			if (m == NULL) {
168 				free(info, M_DEVBUF);
169 				return (EINVAL);
170 			}
171 
172 			ret = feeder_volume_apply_matrix(f, m);
173 			if (ret != 0)
174 				free(info, M_DEVBUF);
175 
176 			return (ret);
177 		}
178 	}
179 
180 	return (EINVAL);
181 }
182 
183 static int
184 feed_volume_free(struct pcm_feeder *f)
185 {
186 	struct feed_volume_info *info;
187 
188 	info = f->data;
189 	if (info != NULL)
190 		free(info, M_DEVBUF);
191 
192 	f->data = NULL;
193 
194 	return (0);
195 }
196 
197 static int
198 feed_volume_set(struct pcm_feeder *f, int what, int value)
199 {
200 	struct feed_volume_info *info;
201 	struct pcmchan_matrix *m;
202 	int ret;
203 
204 	info = f->data;
205 	ret = 0;
206 
207 	switch (what) {
208 	case FEEDVOLUME_CLASS:
209 		if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
210 			return (EINVAL);
211 		info->volume_class = value;
212 		break;
213 	case FEEDVOLUME_CHANNELS:
214 		if (value < SND_CHN_MIN || value > SND_CHN_MAX)
215 			return (EINVAL);
216 		m = feeder_matrix_default_channel_map(value);
217 		if (m == NULL)
218 			return (EINVAL);
219 		ret = feeder_volume_apply_matrix(f, m);
220 		break;
221 	case FEEDVOLUME_STATE:
222 		if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
223 			return (EINVAL);
224 		info->state = value;
225 		break;
226 	default:
227 		return (EINVAL);
228 		break;
229 	}
230 
231 	return (ret);
232 }
233 
234 static int
235 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
236     uint32_t count, void *source)
237 {
238 	struct feed_volume_info *info;
239 	uint32_t j, align;
240 	int i, *vol, *matrix;
241 	uint8_t *dst;
242 
243 	/*
244 	 * Fetch filter data operation.
245 	 */
246 	info = f->data;
247 
248 	if (info->state == FEEDVOLUME_BYPASS)
249 		return (FEEDER_FEED(f->source, c, b, count, source));
250 
251 	vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
252 	matrix = info->matrix;
253 
254 	/*
255 	 * First, let see if we really need to apply gain at all.
256 	 */
257 	j = 0;
258 	i = info->channels;
259 	do {
260 		if (vol[matrix[--i]] != SND_VOL_FLAT) {
261 			j = 1;
262 			break;
263 		}
264 	} while (i != 0);
265 
266 	/* Nope, just bypass entirely. */
267 	if (j == 0)
268 		return (FEEDER_FEED(f->source, c, b, count, source));
269 
270 	dst = b;
271 	align = info->bps * info->channels;
272 
273 	do {
274 		if (count < align)
275 			break;
276 
277 		j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
278 		    align);
279 		if (j == 0)
280 			break;
281 
282 		info->apply(vol, matrix, info->channels, dst, j);
283 
284 		j *= align;
285 		dst += j;
286 		count -= j;
287 
288 	} while (count != 0);
289 
290 	return (dst - b);
291 }
292 
293 static struct pcm_feederdesc feeder_volume_desc[] = {
294 	{ FEEDER_VOLUME, 0, 0, 0, 0 },
295 	{ 0, 0, 0, 0, 0 }
296 };
297 
298 static kobj_method_t feeder_volume_methods[] = {
299 	KOBJMETHOD(feeder_init,		feed_volume_init),
300 	KOBJMETHOD(feeder_free,		feed_volume_free),
301 	KOBJMETHOD(feeder_set,		feed_volume_set),
302 	KOBJMETHOD(feeder_feed,		feed_volume_feed),
303 	KOBJMETHOD_END
304 };
305 
306 FEEDER_DECLARE(feeder_volume, NULL);
307 
308 /* Extern */
309 
310 /*
311  * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
312  *                               to feeder_volume matrix structure. There are
313  *                               possibilites that feeder_volume be inserted
314  *                               before or after feeder_matrix, which in this
315  *                               case feeder_volume must be in a good terms
316  *                               with _current_ matrix.
317  */
318 int
319 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
320 {
321 	struct feed_volume_info *info;
322 	uint32_t i;
323 
324 	if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
325 	    f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
326 	    m->channels > SND_CHN_MAX)
327 		return (EINVAL);
328 
329 	info = f->data;
330 
331 	for (i = 0; i < (sizeof(info->matrix) / sizeof(info->matrix[0])); i++) {
332 		if (i < m->channels)
333 			info->matrix[i] = m->map[i].type;
334 		else
335 			info->matrix[i] = SND_CHN_T_FL;
336 	}
337 
338 	info->channels = m->channels;
339 
340 	return (0);
341 }
342