xref: /freebsd/sys/dev/sound/pcm/feeder_volume.c (revision 29fc4075e69fd27de0cded313ac6000165d99f8b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
30 
31 #ifdef _KERNEL
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_snd.h"
34 #endif
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pcm/pcm.h>
37 #include "feeder_if.h"
38 
39 #define SND_USE_FXDIV
40 #include "snd_fxdiv_gen.h"
41 
42 SND_DECLARE_FILE("$FreeBSD$");
43 #endif
44 
45 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
46 
47 #define FEEDVOLUME_CALC8(s, v)	(SND_VOL_CALC_SAMPLE((intpcm_t)		\
48 				 (s) << 8, v) >> 8)
49 #define FEEDVOLUME_CALC16(s, v)	SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
50 #define FEEDVOLUME_CALC24(s, v)	SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
51 #define FEEDVOLUME_CALC32(s, v)	SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
52 
53 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN)				\
54 static void								\
55 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix,			\
56     uint32_t channels, uint8_t *dst, uint32_t count)			\
57 {									\
58 	intpcm##BIT##_t v;						\
59 	intpcm_t x;							\
60 	uint32_t i;							\
61 									\
62 	dst += count * PCM_##BIT##_BPS * channels;			\
63 	do {								\
64 		i = channels;						\
65 		do {							\
66 			dst -= PCM_##BIT##_BPS;				\
67 			i--;						\
68 			x = PCM_READ_##SIGN##BIT##_##ENDIAN(dst);	\
69 			v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]);	\
70 			x = PCM_CLAMP_##SIGN##BIT(v);			\
71 			_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);	\
72 		} while (i != 0);					\
73 	} while (--count != 0);						\
74 }
75 
76 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
77 FEEDVOLUME_DECLARE(S, 16, LE)
78 FEEDVOLUME_DECLARE(S, 32, LE)
79 #endif
80 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
81 FEEDVOLUME_DECLARE(S, 16, BE)
82 FEEDVOLUME_DECLARE(S, 32, BE)
83 #endif
84 #ifdef SND_FEEDER_MULTIFORMAT
85 FEEDVOLUME_DECLARE(S,  8, NE)
86 FEEDVOLUME_DECLARE(S, 24, LE)
87 FEEDVOLUME_DECLARE(S, 24, BE)
88 FEEDVOLUME_DECLARE(U,  8, NE)
89 FEEDVOLUME_DECLARE(U, 16, LE)
90 FEEDVOLUME_DECLARE(U, 24, LE)
91 FEEDVOLUME_DECLARE(U, 32, LE)
92 FEEDVOLUME_DECLARE(U, 16, BE)
93 FEEDVOLUME_DECLARE(U, 24, BE)
94 FEEDVOLUME_DECLARE(U, 32, BE)
95 #endif
96 
97 struct feed_volume_info {
98 	uint32_t bps, channels;
99 	feed_volume_t apply;
100 	int volume_class;
101 	int state;
102 	int matrix[SND_CHN_MAX];
103 };
104 
105 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN)				\
106 	{								\
107 		AFMT_##SIGN##BIT##_##ENDIAN,				\
108 		feed_volume_##SIGN##BIT##ENDIAN				\
109 	}
110 
111 static const struct {
112 	uint32_t format;
113 	feed_volume_t apply;
114 } feed_volume_info_tab[] = {
115 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
116 	FEEDVOLUME_ENTRY(S, 16, LE),
117 	FEEDVOLUME_ENTRY(S, 32, LE),
118 #endif
119 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
120 	FEEDVOLUME_ENTRY(S, 16, BE),
121 	FEEDVOLUME_ENTRY(S, 32, BE),
122 #endif
123 #ifdef SND_FEEDER_MULTIFORMAT
124 	FEEDVOLUME_ENTRY(S,  8, NE),
125 	FEEDVOLUME_ENTRY(S, 24, LE),
126 	FEEDVOLUME_ENTRY(S, 24, BE),
127 	FEEDVOLUME_ENTRY(U,  8, NE),
128 	FEEDVOLUME_ENTRY(U, 16, LE),
129 	FEEDVOLUME_ENTRY(U, 24, LE),
130 	FEEDVOLUME_ENTRY(U, 32, LE),
131 	FEEDVOLUME_ENTRY(U, 16, BE),
132 	FEEDVOLUME_ENTRY(U, 24, BE),
133 	FEEDVOLUME_ENTRY(U, 32, BE)
134 #endif
135 };
136 
137 #define FEEDVOLUME_TAB_SIZE	((int32_t)				\
138 				 (sizeof(feed_volume_info_tab) /	\
139 				  sizeof(feed_volume_info_tab[0])))
140 
141 static int
142 feed_volume_init(struct pcm_feeder *f)
143 {
144 	struct feed_volume_info *info;
145 	struct pcmchan_matrix *m;
146 	uint32_t i;
147 	int ret;
148 
149 	if (f->desc->in != f->desc->out ||
150 	    AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
151 		return (EINVAL);
152 
153 	for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
154 		if (AFMT_ENCODING(f->desc->in) ==
155 		    feed_volume_info_tab[i].format) {
156 			info = malloc(sizeof(*info), M_DEVBUF,
157 			    M_NOWAIT | M_ZERO);
158 			if (info == NULL)
159 				return (ENOMEM);
160 
161 			info->bps = AFMT_BPS(f->desc->in);
162 			info->channels = AFMT_CHANNEL(f->desc->in);
163 			info->apply = feed_volume_info_tab[i].apply;
164 			info->volume_class = SND_VOL_C_PCM;
165 			info->state = FEEDVOLUME_ENABLE;
166 
167 			f->data = info;
168 			m = feeder_matrix_default_channel_map(info->channels);
169 			if (m == NULL) {
170 				free(info, M_DEVBUF);
171 				return (EINVAL);
172 			}
173 
174 			ret = feeder_volume_apply_matrix(f, m);
175 			if (ret != 0)
176 				free(info, M_DEVBUF);
177 
178 			return (ret);
179 		}
180 	}
181 
182 	return (EINVAL);
183 }
184 
185 static int
186 feed_volume_free(struct pcm_feeder *f)
187 {
188 	struct feed_volume_info *info;
189 
190 	info = f->data;
191 	if (info != NULL)
192 		free(info, M_DEVBUF);
193 
194 	f->data = NULL;
195 
196 	return (0);
197 }
198 
199 static int
200 feed_volume_set(struct pcm_feeder *f, int what, int value)
201 {
202 	struct feed_volume_info *info;
203 	struct pcmchan_matrix *m;
204 	int ret;
205 
206 	info = f->data;
207 	ret = 0;
208 
209 	switch (what) {
210 	case FEEDVOLUME_CLASS:
211 		if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
212 			return (EINVAL);
213 		info->volume_class = value;
214 		break;
215 	case FEEDVOLUME_CHANNELS:
216 		if (value < SND_CHN_MIN || value > SND_CHN_MAX)
217 			return (EINVAL);
218 		m = feeder_matrix_default_channel_map(value);
219 		if (m == NULL)
220 			return (EINVAL);
221 		ret = feeder_volume_apply_matrix(f, m);
222 		break;
223 	case FEEDVOLUME_STATE:
224 		if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
225 			return (EINVAL);
226 		info->state = value;
227 		break;
228 	default:
229 		return (EINVAL);
230 		break;
231 	}
232 
233 	return (ret);
234 }
235 
236 static int
237 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
238     uint32_t count, void *source)
239 {
240 	int temp_vol[SND_CHN_T_VOL_MAX];
241 	struct feed_volume_info *info;
242 	uint32_t j, align;
243 	int i, *matrix;
244 	uint8_t *dst;
245 	const int16_t *vol;
246 	const int8_t *muted;
247 
248 	/*
249 	 * Fetch filter data operation.
250 	 */
251 	info = f->data;
252 
253 	if (info->state == FEEDVOLUME_BYPASS)
254 		return (FEEDER_FEED(f->source, c, b, count, source));
255 
256 	vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
257 	muted = c->muted[SND_VOL_C_VAL(info->volume_class)];
258 	matrix = info->matrix;
259 
260 	/*
261 	 * First, let see if we really need to apply gain at all.
262 	 */
263 	j = 0;
264 	i = info->channels;
265 	while (i--) {
266 		if (vol[matrix[i]] != SND_VOL_FLAT ||
267 		    muted[matrix[i]] != 0) {
268 			j = 1;
269 			break;
270 		}
271 	}
272 
273 	/* Nope, just bypass entirely. */
274 	if (j == 0)
275 		return (FEEDER_FEED(f->source, c, b, count, source));
276 
277 	/* Check if any controls are muted. */
278 	for (j = 0; j != SND_CHN_T_VOL_MAX; j++)
279 		temp_vol[j] = muted[j] ? 0 : vol[j];
280 
281 	dst = b;
282 	align = info->bps * info->channels;
283 
284 	do {
285 		if (count < align)
286 			break;
287 
288 		j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
289 		    align);
290 		if (j == 0)
291 			break;
292 
293 		info->apply(temp_vol, matrix, info->channels, dst, j);
294 
295 		j *= align;
296 		dst += j;
297 		count -= j;
298 
299 	} while (count != 0);
300 
301 	return (dst - b);
302 }
303 
304 static struct pcm_feederdesc feeder_volume_desc[] = {
305 	{ FEEDER_VOLUME, 0, 0, 0, 0 },
306 	{ 0, 0, 0, 0, 0 }
307 };
308 
309 static kobj_method_t feeder_volume_methods[] = {
310 	KOBJMETHOD(feeder_init,		feed_volume_init),
311 	KOBJMETHOD(feeder_free,		feed_volume_free),
312 	KOBJMETHOD(feeder_set,		feed_volume_set),
313 	KOBJMETHOD(feeder_feed,		feed_volume_feed),
314 	KOBJMETHOD_END
315 };
316 
317 FEEDER_DECLARE(feeder_volume, NULL);
318 
319 /* Extern */
320 
321 /*
322  * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
323  *                               to feeder_volume matrix structure. There are
324  *                               possibilites that feeder_volume be inserted
325  *                               before or after feeder_matrix, which in this
326  *                               case feeder_volume must be in a good terms
327  *                               with _current_ matrix.
328  */
329 int
330 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
331 {
332 	struct feed_volume_info *info;
333 	uint32_t i;
334 
335 	if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
336 	    f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
337 	    m->channels > SND_CHN_MAX)
338 		return (EINVAL);
339 
340 	info = f->data;
341 
342 	for (i = 0; i < (sizeof(info->matrix) / sizeof(info->matrix[0])); i++) {
343 		if (i < m->channels)
344 			info->matrix[i] = m->map[i].type;
345 		else
346 			info->matrix[i] = SND_CHN_T_FL;
347 	}
348 
349 	info->channels = m->channels;
350 
351 	return (0);
352 }
353