1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * feeder_rate: (Codename: Z Resampler), which means any effort to create 31 * future replacement for this resampler are simply absurd unless 32 * the world decide to add new alphabet after Z. 33 * 34 * FreeBSD bandlimited sinc interpolator, technically based on 35 * "Digital Audio Resampling" by Julius O. Smith III 36 * - http://ccrma.stanford.edu/~jos/resample/ 37 * 38 * The Good: 39 * + all out fixed point integer operations, no soft-float or anything like 40 * that. 41 * + classic polyphase converters with high quality coefficient's polynomial 42 * interpolators. 43 * + fast, faster, or the fastest of its kind. 44 * + compile time configurable. 45 * + etc etc.. 46 * 47 * The Bad: 48 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I 49 * couldn't think of anything simpler than that (feeder_rate_xxx is just 50 * too long). Expect possible clashes with other zitizens (any?). 51 */ 52 53 #ifdef _KERNEL 54 #ifdef HAVE_KERNEL_OPTION_HEADERS 55 #include "opt_snd.h" 56 #endif 57 #include <dev/sound/pcm/sound.h> 58 #include <dev/sound/pcm/pcm.h> 59 #include "feeder_if.h" 60 61 #define SND_USE_FXDIV 62 #include "snd_fxdiv_gen.h" 63 64 SND_DECLARE_FILE("$FreeBSD$"); 65 #endif 66 67 #include "feeder_rate_gen.h" 68 69 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC) 70 #undef Z_DIAGNOSTIC 71 #define Z_DIAGNOSTIC 1 72 #elif defined(_KERNEL) 73 #undef Z_DIAGNOSTIC 74 #endif 75 76 #ifndef Z_QUALITY_DEFAULT 77 #define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR 78 #endif 79 80 #define Z_RESERVOIR 2048 81 #define Z_RESERVOIR_MAX 131072 82 83 #define Z_SINC_MAX 0x3fffff 84 #define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */ 85 86 #ifdef _KERNEL 87 #define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */ 88 #else 89 #define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */ 90 #endif 91 92 #define Z_RATE_DEFAULT 48000 93 94 #define Z_RATE_MIN FEEDRATE_RATEMIN 95 #define Z_RATE_MAX FEEDRATE_RATEMAX 96 #define Z_ROUNDHZ FEEDRATE_ROUNDHZ 97 #define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN 98 #define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX 99 100 #define Z_RATE_SRC FEEDRATE_SRC 101 #define Z_RATE_DST FEEDRATE_DST 102 #define Z_RATE_QUALITY FEEDRATE_QUALITY 103 #define Z_RATE_CHANNELS FEEDRATE_CHANNELS 104 105 #define Z_PARANOID 1 106 107 #define Z_MULTIFORMAT 1 108 109 #ifdef _KERNEL 110 #undef Z_USE_ALPHADRIFT 111 #define Z_USE_ALPHADRIFT 1 112 #endif 113 114 #define Z_FACTOR_MIN 1 115 #define Z_FACTOR_MAX Z_MASK 116 #define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX)) 117 118 struct z_info; 119 120 typedef void (*z_resampler_t)(struct z_info *, uint8_t *); 121 122 struct z_info { 123 int32_t rsrc, rdst; /* original source / destination rates */ 124 int32_t src, dst; /* rounded source / destination rates */ 125 int32_t channels; /* total channels */ 126 int32_t bps; /* bytes-per-sample */ 127 int32_t quality; /* resampling quality */ 128 129 int32_t z_gx, z_gy; /* interpolation / decimation ratio */ 130 int32_t z_alpha; /* output sample time phase / drift */ 131 uint8_t *z_delay; /* FIR delay line / linear buffer */ 132 int32_t *z_coeff; /* FIR coefficients */ 133 int32_t *z_dcoeff; /* FIR coefficients differences */ 134 int32_t *z_pcoeff; /* FIR polyphase coefficients */ 135 int32_t z_scale; /* output scaling */ 136 int32_t z_dx; /* input sample drift increment */ 137 int32_t z_dy; /* output sample drift increment */ 138 #ifdef Z_USE_ALPHADRIFT 139 int32_t z_alphadrift; /* alpha drift rate */ 140 int32_t z_startdrift; /* buffer start position drift rate */ 141 #endif 142 int32_t z_mask; /* delay line full length mask */ 143 int32_t z_size; /* half width of FIR taps */ 144 int32_t z_full; /* full size of delay line */ 145 int32_t z_alloc; /* largest allocated full size of delay line */ 146 int32_t z_start; /* buffer processing start position */ 147 int32_t z_pos; /* current position for the next feed */ 148 #ifdef Z_DIAGNOSTIC 149 uint32_t z_cycle; /* output cycle, purely for statistical */ 150 #endif 151 int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */ 152 153 z_resampler_t z_resample; 154 }; 155 156 int feeder_rate_min = Z_RATE_MIN; 157 int feeder_rate_max = Z_RATE_MAX; 158 int feeder_rate_round = Z_ROUNDHZ; 159 int feeder_rate_quality = Z_QUALITY_DEFAULT; 160 161 static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX; 162 163 #ifdef _KERNEL 164 static char feeder_rate_presets[] = FEEDER_RATE_PRESETS; 165 SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD, 166 &feeder_rate_presets, 0, "compile-time rate presets"); 167 SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN, 168 &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries"); 169 170 static int 171 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS) 172 { 173 int err, val; 174 175 val = feeder_rate_min; 176 err = sysctl_handle_int(oidp, &val, 0, req); 177 178 if (err != 0 || req->newptr == NULL || val == feeder_rate_min) 179 return (err); 180 181 if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max)) 182 return (EINVAL); 183 184 feeder_rate_min = val; 185 186 return (0); 187 } 188 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, 189 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), 190 sysctl_hw_snd_feeder_rate_min, "I", 191 "minimum allowable rate"); 192 193 static int 194 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS) 195 { 196 int err, val; 197 198 val = feeder_rate_max; 199 err = sysctl_handle_int(oidp, &val, 0, req); 200 201 if (err != 0 || req->newptr == NULL || val == feeder_rate_max) 202 return (err); 203 204 if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min)) 205 return (EINVAL); 206 207 feeder_rate_max = val; 208 209 return (0); 210 } 211 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, 212 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), 213 sysctl_hw_snd_feeder_rate_max, "I", 214 "maximum allowable rate"); 215 216 static int 217 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS) 218 { 219 int err, val; 220 221 val = feeder_rate_round; 222 err = sysctl_handle_int(oidp, &val, 0, req); 223 224 if (err != 0 || req->newptr == NULL || val == feeder_rate_round) 225 return (err); 226 227 if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX) 228 return (EINVAL); 229 230 feeder_rate_round = val - (val % Z_ROUNDHZ); 231 232 return (0); 233 } 234 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, 235 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), 236 sysctl_hw_snd_feeder_rate_round, "I", 237 "sample rate converter rounding threshold"); 238 239 static int 240 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS) 241 { 242 struct snddev_info *d; 243 struct pcm_channel *c; 244 struct pcm_feeder *f; 245 int i, err, val; 246 247 val = feeder_rate_quality; 248 err = sysctl_handle_int(oidp, &val, 0, req); 249 250 if (err != 0 || req->newptr == NULL || val == feeder_rate_quality) 251 return (err); 252 253 if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX) 254 return (EINVAL); 255 256 feeder_rate_quality = val; 257 258 /* 259 * Traverse all available channels on each device and try to 260 * set resampler quality if and only if it is exist as 261 * part of feeder chains and the channel is idle. 262 */ 263 for (i = 0; pcm_devclass != NULL && 264 i < devclass_get_maxunit(pcm_devclass); i++) { 265 d = devclass_get_softc(pcm_devclass, i); 266 if (!PCM_REGISTERED(d)) 267 continue; 268 PCM_LOCK(d); 269 PCM_WAIT(d); 270 PCM_ACQUIRE(d); 271 CHN_FOREACH(c, d, channels.pcm) { 272 CHN_LOCK(c); 273 f = chn_findfeeder(c, FEEDER_RATE); 274 if (f == NULL || f->data == NULL || CHN_STARTED(c)) { 275 CHN_UNLOCK(c); 276 continue; 277 } 278 (void)FEEDER_SET(f, FEEDRATE_QUALITY, val); 279 CHN_UNLOCK(c); 280 } 281 PCM_RELEASE(d); 282 PCM_UNLOCK(d); 283 } 284 285 return (0); 286 } 287 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, 288 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), 289 sysctl_hw_snd_feeder_rate_quality, "I", 290 "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. " 291 __XSTRING(Z_QUALITY_MAX)"=high)"); 292 #endif /* _KERNEL */ 293 294 /* 295 * Resampler type. 296 */ 297 #define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH) 298 #define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR) 299 #define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR) 300 301 /* 302 * Macroses for accurate sample time drift calculations. 303 * 304 * gy2gx : given the amount of output, return the _exact_ required amount of 305 * input. 306 * gx2gy : given the amount of input, return the _maximum_ amount of output 307 * that will be generated. 308 * drift : given the amount of input and output, return the elapsed 309 * sample-time. 310 */ 311 #define _Z_GCAST(x) ((uint64_t)(x)) 312 313 #if defined(__GNUCLIKE_ASM) && defined(__i386__) 314 /* 315 * This is where i386 being beaten to a pulp. Fortunately this function is 316 * rarely being called and if it is, it will decide the best (hopefully) 317 * fastest way to do the division. If we can ensure that everything is dword 318 * aligned, letting the compiler to call udivdi3 to do the division can be 319 * faster compared to this. 320 * 321 * amd64 is the clear winner here, no question about it. 322 */ 323 static __inline uint32_t 324 Z_DIV(uint64_t v, uint32_t d) 325 { 326 uint32_t hi, lo, quo, rem; 327 328 hi = v >> 32; 329 lo = v & 0xffffffff; 330 331 /* 332 * As much as we can, try to avoid long division like a plague. 333 */ 334 if (hi == 0) 335 quo = lo / d; 336 else 337 __asm("divl %2" 338 : "=a" (quo), "=d" (rem) 339 : "r" (d), "0" (lo), "1" (hi)); 340 341 return (quo); 342 } 343 #else 344 #define Z_DIV(x, y) ((x) / (y)) 345 #endif 346 347 #define _Z_GY2GX(i, a, v) \ 348 Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \ 349 (i)->z_gy) 350 351 #define _Z_GX2GY(i, a, v) \ 352 Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx) 353 354 #define _Z_DRIFT(i, x, y) \ 355 ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y))) 356 357 #define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v) 358 #define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v) 359 #define z_drift(i, x, y) _Z_DRIFT(i, x, y) 360 361 /* 362 * Macroses for SINC coefficients table manipulations.. whatever. 363 */ 364 #define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1) 365 366 #define Z_SINC_LEN(i) \ 367 ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \ 368 Z_SHIFT) / (i)->z_dy)) 369 370 #define Z_SINC_BASE_LEN(i) \ 371 ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1)) 372 373 /* 374 * Macroses for linear delay buffer operations. Alignment is not 375 * really necessary since we're not using true circular buffer, but it 376 * will help us guard against possible trespasser. To be honest, 377 * the linear block operations does not need guarding at all due to 378 * accurate drifting! 379 */ 380 #define z_align(i, v) ((v) & (i)->z_mask) 381 #define z_next(i, o, v) z_align(i, (o) + (v)) 382 #define z_prev(i, o, v) z_align(i, (o) - (v)) 383 #define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1) 384 #define z_free(i) ((i)->z_full - (i)->z_pos) 385 386 /* 387 * Macroses for Bla Bla .. :) 388 */ 389 #define z_copy(src, dst, sz) (void)memcpy(dst, src, sz) 390 #define z_feed(...) FEEDER_FEED(__VA_ARGS__) 391 392 static __inline uint32_t 393 z_min(uint32_t x, uint32_t y) 394 { 395 396 return ((x < y) ? x : y); 397 } 398 399 static int32_t 400 z_gcd(int32_t x, int32_t y) 401 { 402 int32_t w; 403 404 while (y != 0) { 405 w = x % y; 406 x = y; 407 y = w; 408 } 409 410 return (x); 411 } 412 413 static int32_t 414 z_roundpow2(int32_t v) 415 { 416 int32_t i; 417 418 i = 1; 419 420 /* 421 * Let it overflow at will.. 422 */ 423 while (i > 0 && i < v) 424 i <<= 1; 425 426 return (i); 427 } 428 429 /* 430 * Zero Order Hold, the worst of the worst, an insult against quality, 431 * but super fast. 432 */ 433 static void 434 z_feed_zoh(struct z_info *info, uint8_t *dst) 435 { 436 #if 0 437 z_copy(info->z_delay + 438 (info->z_start * info->channels * info->bps), dst, 439 info->channels * info->bps); 440 #else 441 uint32_t cnt; 442 uint8_t *src; 443 444 cnt = info->channels * info->bps; 445 src = info->z_delay + (info->z_start * cnt); 446 447 /* 448 * This is a bit faster than doing bcopy() since we're dealing 449 * with possible unaligned samples. 450 */ 451 do { 452 *dst++ = *src++; 453 } while (--cnt != 0); 454 #endif 455 } 456 457 /* 458 * Linear Interpolation. This at least sounds better (perceptually) and fast, 459 * but without any proper filtering which means aliasing still exist and 460 * could become worst with a right sample. Interpolation centered within 461 * Z_LINEAR_ONE between the present and previous sample and everything is 462 * done with simple 32bit scaling arithmetic. 463 */ 464 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 465 static void \ 466 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 467 { \ 468 int32_t z; \ 469 intpcm_t x, y; \ 470 uint32_t ch; \ 471 uint8_t *sx, *sy; \ 472 \ 473 z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \ 474 \ 475 sx = info->z_delay + (info->z_start * info->channels * \ 476 PCM_##BIT##_BPS); \ 477 sy = sx - (info->channels * PCM_##BIT##_BPS); \ 478 \ 479 ch = info->channels; \ 480 \ 481 do { \ 482 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \ 483 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \ 484 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \ 485 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \ 486 sx += PCM_##BIT##_BPS; \ 487 sy += PCM_##BIT##_BPS; \ 488 dst += PCM_##BIT##_BPS; \ 489 } while (--ch != 0); \ 490 } 491 492 /* 493 * Userland clipping diagnostic check, not enabled in kernel compilation. 494 * While doing sinc interpolation, unrealistic samples like full scale sine 495 * wav will clip, but for other things this will not make any noise at all. 496 * Everybody should learn how to normalized perceived loudness of their own 497 * music/sounds/samples (hint: ReplayGain). 498 */ 499 #ifdef Z_DIAGNOSTIC 500 #define Z_CLIP_CHECK(v, BIT) do { \ 501 if ((v) > PCM_S##BIT##_MAX) { \ 502 fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \ 503 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \ 504 } else if ((v) < PCM_S##BIT##_MIN) { \ 505 fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \ 506 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \ 507 } \ 508 } while (0) 509 #else 510 #define Z_CLIP_CHECK(...) 511 #endif 512 513 #define Z_CLAMP(v, BIT) \ 514 (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \ 515 (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v))) 516 517 /* 518 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so 519 * there's no point to hold the plate any longer. All samples will be 520 * shifted to a full 32 bit, scaled and restored during write for 521 * maximum dynamic range (only for downsampling). 522 */ 523 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \ 524 c += z >> Z_SHIFT; \ 525 z &= Z_MASK; \ 526 coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \ 527 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 528 v += Z_NORM_##BIT((intpcm64_t)x * coeff); \ 529 z += info->z_dy; \ 530 p adv##= info->channels * PCM_##BIT##_BPS 531 532 /* 533 * XXX GCC4 optimization is such a !@#$%, need manual unrolling. 534 */ 535 #if defined(__GNUC__) && __GNUC__ >= 4 536 #define Z_SINC_ACCUMULATE(...) do { \ 537 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 538 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 539 } while (0) 540 #define Z_SINC_ACCUMULATE_DECR 2 541 #else 542 #define Z_SINC_ACCUMULATE(...) do { \ 543 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 544 } while (0) 545 #define Z_SINC_ACCUMULATE_DECR 1 546 #endif 547 548 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 549 static void \ 550 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 551 { \ 552 intpcm64_t v; \ 553 intpcm_t x; \ 554 uint8_t *p; \ 555 int32_t coeff, z, *z_coeff, *z_dcoeff; \ 556 uint32_t c, center, ch, i; \ 557 \ 558 z_coeff = info->z_coeff; \ 559 z_dcoeff = info->z_dcoeff; \ 560 center = z_prev(info, info->z_start, info->z_size); \ 561 ch = info->channels * PCM_##BIT##_BPS; \ 562 dst += ch; \ 563 \ 564 do { \ 565 dst -= PCM_##BIT##_BPS; \ 566 ch -= PCM_##BIT##_BPS; \ 567 v = 0; \ 568 z = info->z_alpha * info->z_dx; \ 569 c = 0; \ 570 p = info->z_delay + (z_next(info, center, 1) * \ 571 info->channels * PCM_##BIT##_BPS) + ch; \ 572 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 573 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \ 574 z = info->z_dy - (info->z_alpha * info->z_dx); \ 575 c = 0; \ 576 p = info->z_delay + (center * info->channels * \ 577 PCM_##BIT##_BPS) + ch; \ 578 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 579 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \ 580 if (info->z_scale != Z_ONE) \ 581 v = Z_SCALE_##BIT(v, info->z_scale); \ 582 else \ 583 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 584 Z_CLIP_CHECK(v, BIT); \ 585 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ 586 } while (ch != 0); \ 587 } 588 589 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \ 590 static void \ 591 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 592 { \ 593 intpcm64_t v; \ 594 intpcm_t x; \ 595 uint8_t *p; \ 596 int32_t ch, i, start, *z_pcoeff; \ 597 \ 598 ch = info->channels * PCM_##BIT##_BPS; \ 599 dst += ch; \ 600 start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \ 601 \ 602 do { \ 603 dst -= PCM_##BIT##_BPS; \ 604 ch -= PCM_##BIT##_BPS; \ 605 v = 0; \ 606 p = info->z_delay + start + ch; \ 607 z_pcoeff = info->z_pcoeff + \ 608 ((info->z_alpha * info->z_size) << 1); \ 609 for (i = info->z_size; i != 0; i--) { \ 610 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 611 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 612 z_pcoeff++; \ 613 p += info->channels * PCM_##BIT##_BPS; \ 614 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 615 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 616 z_pcoeff++; \ 617 p += info->channels * PCM_##BIT##_BPS; \ 618 } \ 619 if (info->z_scale != Z_ONE) \ 620 v = Z_SCALE_##BIT(v, info->z_scale); \ 621 else \ 622 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 623 Z_CLIP_CHECK(v, BIT); \ 624 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ 625 } while (ch != 0); \ 626 } 627 628 #define Z_DECLARE(SIGN, BIT, ENDIAN) \ 629 Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 630 Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 631 Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) 632 633 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 634 Z_DECLARE(S, 16, LE) 635 Z_DECLARE(S, 32, LE) 636 #endif 637 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 638 Z_DECLARE(S, 16, BE) 639 Z_DECLARE(S, 32, BE) 640 #endif 641 #ifdef SND_FEEDER_MULTIFORMAT 642 Z_DECLARE(S, 8, NE) 643 Z_DECLARE(S, 24, LE) 644 Z_DECLARE(S, 24, BE) 645 Z_DECLARE(U, 8, NE) 646 Z_DECLARE(U, 16, LE) 647 Z_DECLARE(U, 24, LE) 648 Z_DECLARE(U, 32, LE) 649 Z_DECLARE(U, 16, BE) 650 Z_DECLARE(U, 24, BE) 651 Z_DECLARE(U, 32, BE) 652 #endif 653 654 enum { 655 Z_RESAMPLER_ZOH, 656 Z_RESAMPLER_LINEAR, 657 Z_RESAMPLER_SINC, 658 Z_RESAMPLER_SINC_POLYPHASE, 659 Z_RESAMPLER_LAST 660 }; 661 662 #define Z_RESAMPLER_IDX(i) \ 663 (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality) 664 665 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \ 666 { \ 667 AFMT_##SIGN##BIT##_##ENDIAN, \ 668 { \ 669 [Z_RESAMPLER_ZOH] = z_feed_zoh, \ 670 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \ 671 [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \ 672 [Z_RESAMPLER_SINC_POLYPHASE] = \ 673 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \ 674 } \ 675 } 676 677 static const struct { 678 uint32_t format; 679 z_resampler_t resampler[Z_RESAMPLER_LAST]; 680 } z_resampler_tab[] = { 681 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 682 Z_RESAMPLER_ENTRY(S, 16, LE), 683 Z_RESAMPLER_ENTRY(S, 32, LE), 684 #endif 685 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 686 Z_RESAMPLER_ENTRY(S, 16, BE), 687 Z_RESAMPLER_ENTRY(S, 32, BE), 688 #endif 689 #ifdef SND_FEEDER_MULTIFORMAT 690 Z_RESAMPLER_ENTRY(S, 8, NE), 691 Z_RESAMPLER_ENTRY(S, 24, LE), 692 Z_RESAMPLER_ENTRY(S, 24, BE), 693 Z_RESAMPLER_ENTRY(U, 8, NE), 694 Z_RESAMPLER_ENTRY(U, 16, LE), 695 Z_RESAMPLER_ENTRY(U, 24, LE), 696 Z_RESAMPLER_ENTRY(U, 32, LE), 697 Z_RESAMPLER_ENTRY(U, 16, BE), 698 Z_RESAMPLER_ENTRY(U, 24, BE), 699 Z_RESAMPLER_ENTRY(U, 32, BE), 700 #endif 701 }; 702 703 #define Z_RESAMPLER_TAB_SIZE \ 704 ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0]))) 705 706 static void 707 z_resampler_reset(struct z_info *info) 708 { 709 710 info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 && 711 info->rsrc > feeder_rate_round) ? feeder_rate_round : 1)); 712 info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 && 713 info->rdst > feeder_rate_round) ? feeder_rate_round : 1)); 714 info->z_gx = 1; 715 info->z_gy = 1; 716 info->z_alpha = 0; 717 info->z_resample = NULL; 718 info->z_size = 1; 719 info->z_coeff = NULL; 720 info->z_dcoeff = NULL; 721 if (info->z_pcoeff != NULL) { 722 free(info->z_pcoeff, M_DEVBUF); 723 info->z_pcoeff = NULL; 724 } 725 info->z_scale = Z_ONE; 726 info->z_dx = Z_FULL_ONE; 727 info->z_dy = Z_FULL_ONE; 728 #ifdef Z_DIAGNOSTIC 729 info->z_cycle = 0; 730 #endif 731 if (info->quality < Z_QUALITY_MIN) 732 info->quality = Z_QUALITY_MIN; 733 else if (info->quality > Z_QUALITY_MAX) 734 info->quality = Z_QUALITY_MAX; 735 } 736 737 #ifdef Z_PARANOID 738 static int32_t 739 z_resampler_sinc_len(struct z_info *info) 740 { 741 int32_t c, z, len, lmax; 742 743 if (!Z_IS_SINC(info)) 744 return (1); 745 746 /* 747 * A rather careful (or useless) way to calculate filter length. 748 * Z_SINC_LEN() itself is accurate enough to do its job. Extra 749 * sanity checking is not going to hurt though.. 750 */ 751 c = 0; 752 z = info->z_dy; 753 len = 0; 754 lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len; 755 756 do { 757 c += z >> Z_SHIFT; 758 z &= Z_MASK; 759 z += info->z_dy; 760 } while (c < lmax && ++len > 0); 761 762 if (len != Z_SINC_LEN(info)) { 763 #ifdef _KERNEL 764 printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n", 765 __func__, len, Z_SINC_LEN(info)); 766 #else 767 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n", 768 __func__, len, Z_SINC_LEN(info)); 769 return (-1); 770 #endif 771 } 772 773 return (len); 774 } 775 #else 776 #define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1) 777 #endif 778 779 #define Z_POLYPHASE_COEFF_SHIFT 0 780 781 /* 782 * Pick suitable polynomial interpolators based on filter oversampled ratio 783 * (2 ^ Z_DRIFT_SHIFT). 784 */ 785 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \ 786 defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \ 787 defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \ 788 defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \ 789 defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X)) 790 #if Z_DRIFT_SHIFT >= 6 791 #define Z_COEFF_INTERP_BSPLINE 1 792 #elif Z_DRIFT_SHIFT >= 5 793 #define Z_COEFF_INTERP_OPT32X 1 794 #elif Z_DRIFT_SHIFT == 4 795 #define Z_COEFF_INTERP_OPT16X 1 796 #elif Z_DRIFT_SHIFT == 3 797 #define Z_COEFF_INTERP_OPT8X 1 798 #elif Z_DRIFT_SHIFT == 2 799 #define Z_COEFF_INTERP_OPT4X 1 800 #elif Z_DRIFT_SHIFT == 1 801 #define Z_COEFF_INTERP_OPT2X 1 802 #else 803 #error "Z_DRIFT_SHIFT screwed!" 804 #endif 805 #endif 806 807 /* 808 * In classic polyphase mode, the actual coefficients for each phases need to 809 * be calculated based on default prototype filters. For highly oversampled 810 * filter, linear or quadradatic interpolator should be enough. Anything less 811 * than that require 'special' interpolators to reduce interpolation errors. 812 * 813 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio" 814 * by Olli Niemitalo 815 * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf 816 * 817 */ 818 static int32_t 819 z_coeff_interpolate(int32_t z, int32_t *z_coeff) 820 { 821 int32_t coeff; 822 #if defined(Z_COEFF_INTERP_ZOH) 823 824 /* 1-point, 0th-order (Zero Order Hold) */ 825 z = z; 826 coeff = z_coeff[0]; 827 #elif defined(Z_COEFF_INTERP_LINEAR) 828 int32_t zl0, zl1; 829 830 /* 2-point, 1st-order Linear */ 831 zl0 = z_coeff[0]; 832 zl1 = z_coeff[1] - z_coeff[0]; 833 834 coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0; 835 #elif defined(Z_COEFF_INTERP_QUADRATIC) 836 int32_t zq0, zq1, zq2; 837 838 /* 3-point, 2nd-order Quadratic */ 839 zq0 = z_coeff[0]; 840 zq1 = z_coeff[1] - z_coeff[-1]; 841 zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1); 842 843 coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) + 844 zq1) * z, Z_SHIFT + 1) + zq0; 845 #elif defined(Z_COEFF_INTERP_HERMITE) 846 int32_t zh0, zh1, zh2, zh3; 847 848 /* 4-point, 3rd-order Hermite */ 849 zh0 = z_coeff[0]; 850 zh1 = z_coeff[1] - z_coeff[-1]; 851 zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) - 852 z_coeff[2]; 853 zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3); 854 855 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) + 856 zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0; 857 #elif defined(Z_COEFF_INTERP_BSPLINE) 858 int32_t zb0, zb1, zb2, zb3; 859 860 /* 4-point, 3rd-order B-Spline */ 861 zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) + 862 z_coeff[-1] + z_coeff[1]), 30); 863 zb1 = z_coeff[1] - z_coeff[-1]; 864 zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1); 865 zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) + 866 z_coeff[2] - z_coeff[-1]), 30); 867 868 coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) + 869 zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1; 870 #elif defined(Z_COEFF_INTERP_OPT32X) 871 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 872 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 873 874 /* 6-point, 5th-order Optimal 32x */ 875 zoz = z - (Z_ONE >> 1); 876 zoe1 = z_coeff[1] + z_coeff[0]; 877 zoe2 = z_coeff[2] + z_coeff[-1]; 878 zoe3 = z_coeff[3] + z_coeff[-2]; 879 zoo1 = z_coeff[1] - z_coeff[0]; 880 zoo2 = z_coeff[2] - z_coeff[-1]; 881 zoo3 = z_coeff[3] - z_coeff[-2]; 882 883 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 884 (0x00170c29LL * zoe3), 30); 885 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 886 (0x008cd4dcLL * zoo3), 30); 887 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 888 (0x0160b5d0LL * zoe3), 30); 889 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 890 (0x01cfe914LL * zoo3), 30); 891 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 892 (0x015508ddLL * zoe3), 30); 893 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 894 (0x0082d81aLL * zoo3), 30); 895 896 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 897 (int64_t)zoc5 * zoz, Z_SHIFT) + 898 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 899 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 900 #elif defined(Z_COEFF_INTERP_OPT16X) 901 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 902 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 903 904 /* 6-point, 5th-order Optimal 16x */ 905 zoz = z - (Z_ONE >> 1); 906 zoe1 = z_coeff[1] + z_coeff[0]; 907 zoe2 = z_coeff[2] + z_coeff[-1]; 908 zoe3 = z_coeff[3] + z_coeff[-2]; 909 zoo1 = z_coeff[1] - z_coeff[0]; 910 zoo2 = z_coeff[2] - z_coeff[-1]; 911 zoo3 = z_coeff[3] - z_coeff[-2]; 912 913 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 914 (0x00170c29LL * zoe3), 30); 915 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 916 (0x008cd4dcLL * zoo3), 30); 917 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 918 (0x0160b5d0LL * zoe3), 30); 919 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 920 (0x01cfe914LL * zoo3), 30); 921 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 922 (0x015508ddLL * zoe3), 30); 923 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 924 (0x0082d81aLL * zoo3), 30); 925 926 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 927 (int64_t)zoc5 * zoz, Z_SHIFT) + 928 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 929 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 930 #elif defined(Z_COEFF_INTERP_OPT8X) 931 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 932 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 933 934 /* 6-point, 5th-order Optimal 8x */ 935 zoz = z - (Z_ONE >> 1); 936 zoe1 = z_coeff[1] + z_coeff[0]; 937 zoe2 = z_coeff[2] + z_coeff[-1]; 938 zoe3 = z_coeff[3] + z_coeff[-2]; 939 zoo1 = z_coeff[1] - z_coeff[0]; 940 zoo2 = z_coeff[2] - z_coeff[-1]; 941 zoo3 = z_coeff[3] - z_coeff[-2]; 942 943 zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) + 944 (0x0018b23fLL * zoe3), 30); 945 zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) + 946 (0x0094b599LL * zoo3), 30); 947 zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) + 948 (0x016ed8e0LL * zoe3), 30); 949 zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) + 950 (0x01dae93aLL * zoo3), 30); 951 zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) + 952 (0x0153ed07LL * zoe3), 30); 953 zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) + 954 (0x007a7c26LL * zoo3), 30); 955 956 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 957 (int64_t)zoc5 * zoz, Z_SHIFT) + 958 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 959 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 960 #elif defined(Z_COEFF_INTERP_OPT4X) 961 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 962 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 963 964 /* 6-point, 5th-order Optimal 4x */ 965 zoz = z - (Z_ONE >> 1); 966 zoe1 = z_coeff[1] + z_coeff[0]; 967 zoe2 = z_coeff[2] + z_coeff[-1]; 968 zoe3 = z_coeff[3] + z_coeff[-2]; 969 zoo1 = z_coeff[1] - z_coeff[0]; 970 zoo2 = z_coeff[2] - z_coeff[-1]; 971 zoo3 = z_coeff[3] - z_coeff[-2]; 972 973 zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) + 974 (0x001a3784LL * zoe3), 30); 975 zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) + 976 (0x009ca889LL * zoo3), 30); 977 zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) + 978 (0x017ef0c6LL * zoe3), 30); 979 zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) + 980 (0x01e936dbLL * zoo3), 30); 981 zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) + 982 (0x014f5923LL * zoe3), 30); 983 zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) + 984 (0x00670dbdLL * zoo3), 30); 985 986 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 987 (int64_t)zoc5 * zoz, Z_SHIFT) + 988 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 989 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 990 #elif defined(Z_COEFF_INTERP_OPT2X) 991 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 992 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 993 994 /* 6-point, 5th-order Optimal 2x */ 995 zoz = z - (Z_ONE >> 1); 996 zoe1 = z_coeff[1] + z_coeff[0]; 997 zoe2 = z_coeff[2] + z_coeff[-1]; 998 zoe3 = z_coeff[3] + z_coeff[-2]; 999 zoo1 = z_coeff[1] - z_coeff[0]; 1000 zoo2 = z_coeff[2] - z_coeff[-1]; 1001 zoo3 = z_coeff[3] - z_coeff[-2]; 1002 1003 zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) + 1004 (0x00267881LL * zoe3), 30); 1005 zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) + 1006 (0x00d683cdLL * zoo3), 30); 1007 zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) + 1008 (0x01e2aceaLL * zoe3), 30); 1009 zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) + 1010 (0x022cefc7LL * zoo3), 30); 1011 zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) + 1012 (0x0131d935LL * zoe3), 30); 1013 zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) + 1014 (0x0018ee79LL * zoo3), 30); 1015 1016 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 1017 (int64_t)zoc5 * zoz, Z_SHIFT) + 1018 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 1019 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 1020 #else 1021 #error "Interpolation type screwed!" 1022 #endif 1023 1024 #if Z_POLYPHASE_COEFF_SHIFT > 0 1025 coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT); 1026 #endif 1027 return (coeff); 1028 } 1029 1030 static int 1031 z_resampler_build_polyphase(struct z_info *info) 1032 { 1033 int32_t alpha, c, i, z, idx; 1034 1035 /* Let this be here first. */ 1036 if (info->z_pcoeff != NULL) { 1037 free(info->z_pcoeff, M_DEVBUF); 1038 info->z_pcoeff = NULL; 1039 } 1040 1041 if (feeder_rate_polyphase_max < 1) 1042 return (ENOTSUP); 1043 1044 if (((int64_t)info->z_size * info->z_gy * 2) > 1045 feeder_rate_polyphase_max) { 1046 #ifndef _KERNEL 1047 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n", 1048 info->z_gx, info->z_gy, 1049 (intmax_t)info->z_size * info->z_gy * 2, 1050 feeder_rate_polyphase_max); 1051 #endif 1052 return (E2BIG); 1053 } 1054 1055 info->z_pcoeff = malloc(sizeof(int32_t) * 1056 info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO); 1057 if (info->z_pcoeff == NULL) 1058 return (ENOMEM); 1059 1060 for (alpha = 0; alpha < info->z_gy; alpha++) { 1061 z = alpha * info->z_dx; 1062 c = 0; 1063 for (i = info->z_size; i != 0; i--) { 1064 c += z >> Z_SHIFT; 1065 z &= Z_MASK; 1066 idx = (alpha * info->z_size * 2) + 1067 (info->z_size * 2) - i; 1068 info->z_pcoeff[idx] = 1069 z_coeff_interpolate(z, info->z_coeff + c); 1070 z += info->z_dy; 1071 } 1072 z = info->z_dy - (alpha * info->z_dx); 1073 c = 0; 1074 for (i = info->z_size; i != 0; i--) { 1075 c += z >> Z_SHIFT; 1076 z &= Z_MASK; 1077 idx = (alpha * info->z_size * 2) + i - 1; 1078 info->z_pcoeff[idx] = 1079 z_coeff_interpolate(z, info->z_coeff + c); 1080 z += info->z_dy; 1081 } 1082 } 1083 1084 #ifndef _KERNEL 1085 fprintf(stderr, "Polyphase: [%d/%d] %d entries\n", 1086 info->z_gx, info->z_gy, info->z_size * info->z_gy * 2); 1087 #endif 1088 1089 return (0); 1090 } 1091 1092 static int 1093 z_resampler_setup(struct pcm_feeder *f) 1094 { 1095 struct z_info *info; 1096 int64_t gy2gx_max, gx2gy_max; 1097 uint32_t format; 1098 int32_t align, i, z_scale; 1099 int adaptive; 1100 1101 info = f->data; 1102 z_resampler_reset(info); 1103 1104 if (info->src == info->dst) 1105 return (0); 1106 1107 /* Shrink by greatest common divisor. */ 1108 i = z_gcd(info->src, info->dst); 1109 info->z_gx = info->src / i; 1110 info->z_gy = info->dst / i; 1111 1112 /* Too big, or too small. Bail out. */ 1113 if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy))) 1114 return (EINVAL); 1115 1116 format = f->desc->in; 1117 adaptive = 0; 1118 z_scale = 0; 1119 1120 /* 1121 * Setup everything: filter length, conversion factor, etc. 1122 */ 1123 if (Z_IS_SINC(info)) { 1124 /* 1125 * Downsampling, or upsampling scaling factor. As long as the 1126 * factor can be represented by a fraction of 1 << Z_SHIFT, 1127 * we're pretty much in business. Scaling is not needed for 1128 * upsampling, so we just slap Z_ONE there. 1129 */ 1130 if (info->z_gx > info->z_gy) 1131 /* 1132 * If the downsampling ratio is beyond sanity, 1133 * enable semi-adaptive mode. Although handling 1134 * extreme ratio is possible, the result of the 1135 * conversion is just pointless, unworthy, 1136 * nonsensical noises, etc. 1137 */ 1138 if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX) 1139 z_scale = Z_ONE / Z_SINC_DOWNMAX; 1140 else 1141 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) / 1142 info->z_gx; 1143 else 1144 z_scale = Z_ONE; 1145 1146 /* 1147 * This is actually impossible, unless anything above 1148 * overflow. 1149 */ 1150 if (z_scale < 1) 1151 return (E2BIG); 1152 1153 /* 1154 * Calculate sample time/coefficients index drift. It is 1155 * a constant for upsampling, but downsampling require 1156 * heavy duty filtering with possible too long filters. 1157 * If anything goes wrong, revisit again and enable 1158 * adaptive mode. 1159 */ 1160 z_setup_adaptive_sinc: 1161 if (info->z_pcoeff != NULL) { 1162 free(info->z_pcoeff, M_DEVBUF); 1163 info->z_pcoeff = NULL; 1164 } 1165 1166 if (adaptive == 0) { 1167 info->z_dy = z_scale << Z_DRIFT_SHIFT; 1168 if (info->z_dy < 1) 1169 return (E2BIG); 1170 info->z_scale = z_scale; 1171 } else { 1172 info->z_dy = Z_FULL_ONE; 1173 info->z_scale = Z_ONE; 1174 } 1175 1176 #if 0 1177 #define Z_SCALE_DIV 10000 1178 #define Z_SCALE_LIMIT(s, v) \ 1179 ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV) 1180 1181 info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780); 1182 #endif 1183 1184 /* Smallest drift increment. */ 1185 info->z_dx = info->z_dy / info->z_gy; 1186 1187 /* 1188 * Overflow or underflow. Try adaptive, let it continue and 1189 * retry. 1190 */ 1191 if (info->z_dx < 1) { 1192 if (adaptive == 0) { 1193 adaptive = 1; 1194 goto z_setup_adaptive_sinc; 1195 } 1196 return (E2BIG); 1197 } 1198 1199 /* 1200 * Round back output drift. 1201 */ 1202 info->z_dy = info->z_dx * info->z_gy; 1203 1204 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) { 1205 if (Z_SINC_COEFF_IDX(info) != i) 1206 continue; 1207 /* 1208 * Calculate required filter length and guard 1209 * against possible abusive result. Note that 1210 * this represents only 1/2 of the entire filter 1211 * length. 1212 */ 1213 info->z_size = z_resampler_sinc_len(info); 1214 1215 /* 1216 * Multiple of 2 rounding, for better accumulator 1217 * performance. 1218 */ 1219 info->z_size &= ~1; 1220 1221 if (info->z_size < 2 || info->z_size > Z_SINC_MAX) { 1222 if (adaptive == 0) { 1223 adaptive = 1; 1224 goto z_setup_adaptive_sinc; 1225 } 1226 return (E2BIG); 1227 } 1228 info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET; 1229 info->z_dcoeff = z_coeff_tab[i].dcoeff; 1230 break; 1231 } 1232 1233 if (info->z_coeff == NULL || info->z_dcoeff == NULL) 1234 return (EINVAL); 1235 } else if (Z_IS_LINEAR(info)) { 1236 /* 1237 * Don't put much effort if we're doing linear interpolation. 1238 * Just center the interpolation distance within Z_LINEAR_ONE, 1239 * and be happy about it. 1240 */ 1241 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy; 1242 } 1243 1244 /* 1245 * We're safe for now, lets continue.. Look for our resampler 1246 * depending on configured format and quality. 1247 */ 1248 for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) { 1249 int ridx; 1250 1251 if (AFMT_ENCODING(format) != z_resampler_tab[i].format) 1252 continue; 1253 if (Z_IS_SINC(info) && adaptive == 0 && 1254 z_resampler_build_polyphase(info) == 0) 1255 ridx = Z_RESAMPLER_SINC_POLYPHASE; 1256 else 1257 ridx = Z_RESAMPLER_IDX(info); 1258 info->z_resample = z_resampler_tab[i].resampler[ridx]; 1259 break; 1260 } 1261 1262 if (info->z_resample == NULL) 1263 return (EINVAL); 1264 1265 info->bps = AFMT_BPS(format); 1266 align = info->channels * info->bps; 1267 1268 /* 1269 * Calculate largest value that can be fed into z_gy2gx() and 1270 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will 1271 * be called early during feeding process to determine how much input 1272 * samples that is required to generate requested output, while 1273 * z_gx2gy() will be called just before samples filtering / 1274 * accumulation process based on available samples that has been 1275 * calculated using z_gx2gy(). 1276 * 1277 * Now that is damn confusing, I guess ;-) . 1278 */ 1279 gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) / 1280 info->z_gx; 1281 1282 if ((gy2gx_max * align) > SND_FXDIV_MAX) 1283 gy2gx_max = SND_FXDIV_MAX / align; 1284 1285 if (gy2gx_max < 1) 1286 return (E2BIG); 1287 1288 gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) / 1289 info->z_gy; 1290 1291 if (gx2gy_max > INT32_MAX) 1292 gx2gy_max = INT32_MAX; 1293 1294 if (gx2gy_max < 1) 1295 return (E2BIG); 1296 1297 /* 1298 * Ensure that z_gy2gx() at its largest possible calculated value 1299 * (alpha = 0) will not cause overflow further late during z_gx2gy() 1300 * stage. 1301 */ 1302 if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max)) 1303 return (E2BIG); 1304 1305 info->z_maxfeed = gy2gx_max * align; 1306 1307 #ifdef Z_USE_ALPHADRIFT 1308 info->z_startdrift = z_gy2gx(info, 1); 1309 info->z_alphadrift = z_drift(info, info->z_startdrift, 1); 1310 #endif 1311 1312 i = z_gy2gx(info, 1); 1313 info->z_full = z_roundpow2((info->z_size << 1) + i); 1314 1315 /* 1316 * Too big to be true, and overflowing left and right like mad .. 1317 */ 1318 if ((info->z_full * align) < 1) { 1319 if (adaptive == 0 && Z_IS_SINC(info)) { 1320 adaptive = 1; 1321 goto z_setup_adaptive_sinc; 1322 } 1323 return (E2BIG); 1324 } 1325 1326 /* 1327 * Increase full buffer size if its too small to reduce cyclic 1328 * buffer shifting in main conversion/feeder loop. 1329 */ 1330 while (info->z_full < Z_RESERVOIR_MAX && 1331 (info->z_full - (info->z_size << 1)) < Z_RESERVOIR) 1332 info->z_full <<= 1; 1333 1334 /* Initialize buffer position. */ 1335 info->z_mask = info->z_full - 1; 1336 info->z_start = z_prev(info, info->z_size << 1, 1); 1337 info->z_pos = z_next(info, info->z_start, 1); 1338 1339 /* 1340 * Allocate or reuse delay line buffer, whichever makes sense. 1341 */ 1342 i = info->z_full * align; 1343 if (i < 1) 1344 return (E2BIG); 1345 1346 if (info->z_delay == NULL || info->z_alloc < i || 1347 i <= (info->z_alloc >> 1)) { 1348 if (info->z_delay != NULL) 1349 free(info->z_delay, M_DEVBUF); 1350 info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO); 1351 if (info->z_delay == NULL) 1352 return (ENOMEM); 1353 info->z_alloc = i; 1354 } 1355 1356 /* 1357 * Zero out head of buffer to avoid pops and clicks. 1358 */ 1359 memset(info->z_delay, sndbuf_zerodata(f->desc->out), 1360 info->z_pos * align); 1361 1362 #ifdef Z_DIAGNOSTIC 1363 /* 1364 * XXX Debuging mess !@#$%^ 1365 */ 1366 #define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \ 1367 "z_"__STRING(x), (uint32_t)info->z_##x, \ 1368 (int32_t)info->z_##x) 1369 fprintf(stderr, "\n%s():\n", __func__); 1370 fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n", 1371 info->channels, info->bps, format, info->quality); 1372 fprintf(stderr, "\t%d (%d) -> %d (%d), ", 1373 info->src, info->rsrc, info->dst, info->rdst); 1374 fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy); 1375 fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1)); 1376 if (adaptive != 0) 1377 z_scale = Z_ONE; 1378 fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n", 1379 z_scale, Z_ONE, (double)z_scale / Z_ONE); 1380 fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info)); 1381 fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO"); 1382 dumpz(size); 1383 dumpz(alloc); 1384 if (info->z_alloc < 1024) 1385 fprintf(stderr, "\t%15s%10d Bytes\n", 1386 "", info->z_alloc); 1387 else if (info->z_alloc < (1024 << 10)) 1388 fprintf(stderr, "\t%15s%10d KBytes\n", 1389 "", info->z_alloc >> 10); 1390 else if (info->z_alloc < (1024 << 20)) 1391 fprintf(stderr, "\t%15s%10d MBytes\n", 1392 "", info->z_alloc >> 20); 1393 else 1394 fprintf(stderr, "\t%15s%10d GBytes\n", 1395 "", info->z_alloc >> 30); 1396 fprintf(stderr, "\t%12s %10d (min output samples)\n", 1397 "", 1398 (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1))); 1399 fprintf(stderr, "\t%12s %10d (min allocated output samples)\n", 1400 "", 1401 (int32_t)z_gx2gy(info, (info->z_alloc / align) - 1402 (info->z_size << 1))); 1403 fprintf(stderr, "\t%12s = %10d\n", 1404 "z_gy2gx()", (int32_t)z_gy2gx(info, 1)); 1405 fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n", 1406 "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max)); 1407 fprintf(stderr, "\t%12s = %10d\n", 1408 "z_gx2gy()", (int32_t)z_gx2gy(info, 1)); 1409 fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n", 1410 "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max)); 1411 dumpz(maxfeed); 1412 dumpz(full); 1413 dumpz(start); 1414 dumpz(pos); 1415 dumpz(scale); 1416 fprintf(stderr, "\t%12s %10f\n", "", 1417 (double)info->z_scale / Z_ONE); 1418 dumpz(dx); 1419 fprintf(stderr, "\t%12s %10f\n", "", 1420 (double)info->z_dx / info->z_dy); 1421 dumpz(dy); 1422 fprintf(stderr, "\t%12s %10d (drift step)\n", "", 1423 info->z_dy >> Z_SHIFT); 1424 fprintf(stderr, "\t%12s %10d (scaling differences)\n", "", 1425 (z_scale << Z_DRIFT_SHIFT) - info->z_dy); 1426 fprintf(stderr, "\t%12s = %u bytes\n", 1427 "intpcm32_t", sizeof(intpcm32_t)); 1428 fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n", 1429 "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE); 1430 #endif 1431 1432 return (0); 1433 } 1434 1435 static int 1436 z_resampler_set(struct pcm_feeder *f, int what, int32_t value) 1437 { 1438 struct z_info *info; 1439 int32_t oquality; 1440 1441 info = f->data; 1442 1443 switch (what) { 1444 case Z_RATE_SRC: 1445 if (value < feeder_rate_min || value > feeder_rate_max) 1446 return (E2BIG); 1447 if (value == info->rsrc) 1448 return (0); 1449 info->rsrc = value; 1450 break; 1451 case Z_RATE_DST: 1452 if (value < feeder_rate_min || value > feeder_rate_max) 1453 return (E2BIG); 1454 if (value == info->rdst) 1455 return (0); 1456 info->rdst = value; 1457 break; 1458 case Z_RATE_QUALITY: 1459 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX) 1460 return (EINVAL); 1461 if (value == info->quality) 1462 return (0); 1463 /* 1464 * If we failed to set the requested quality, restore 1465 * the old one. We cannot afford leaving it broken since 1466 * passive feeder chains like vchans never reinitialize 1467 * itself. 1468 */ 1469 oquality = info->quality; 1470 info->quality = value; 1471 if (z_resampler_setup(f) == 0) 1472 return (0); 1473 info->quality = oquality; 1474 break; 1475 case Z_RATE_CHANNELS: 1476 if (value < SND_CHN_MIN || value > SND_CHN_MAX) 1477 return (EINVAL); 1478 if (value == info->channels) 1479 return (0); 1480 info->channels = value; 1481 break; 1482 default: 1483 return (EINVAL); 1484 break; 1485 } 1486 1487 return (z_resampler_setup(f)); 1488 } 1489 1490 static int 1491 z_resampler_get(struct pcm_feeder *f, int what) 1492 { 1493 struct z_info *info; 1494 1495 info = f->data; 1496 1497 switch (what) { 1498 case Z_RATE_SRC: 1499 return (info->rsrc); 1500 break; 1501 case Z_RATE_DST: 1502 return (info->rdst); 1503 break; 1504 case Z_RATE_QUALITY: 1505 return (info->quality); 1506 break; 1507 case Z_RATE_CHANNELS: 1508 return (info->channels); 1509 break; 1510 default: 1511 break; 1512 } 1513 1514 return (-1); 1515 } 1516 1517 static int 1518 z_resampler_init(struct pcm_feeder *f) 1519 { 1520 struct z_info *info; 1521 int ret; 1522 1523 if (f->desc->in != f->desc->out) 1524 return (EINVAL); 1525 1526 info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO); 1527 if (info == NULL) 1528 return (ENOMEM); 1529 1530 info->rsrc = Z_RATE_DEFAULT; 1531 info->rdst = Z_RATE_DEFAULT; 1532 info->quality = feeder_rate_quality; 1533 info->channels = AFMT_CHANNEL(f->desc->in); 1534 1535 f->data = info; 1536 1537 ret = z_resampler_setup(f); 1538 if (ret != 0) { 1539 if (info->z_pcoeff != NULL) 1540 free(info->z_pcoeff, M_DEVBUF); 1541 if (info->z_delay != NULL) 1542 free(info->z_delay, M_DEVBUF); 1543 free(info, M_DEVBUF); 1544 f->data = NULL; 1545 } 1546 1547 return (ret); 1548 } 1549 1550 static int 1551 z_resampler_free(struct pcm_feeder *f) 1552 { 1553 struct z_info *info; 1554 1555 info = f->data; 1556 if (info != NULL) { 1557 if (info->z_pcoeff != NULL) 1558 free(info->z_pcoeff, M_DEVBUF); 1559 if (info->z_delay != NULL) 1560 free(info->z_delay, M_DEVBUF); 1561 free(info, M_DEVBUF); 1562 } 1563 1564 f->data = NULL; 1565 1566 return (0); 1567 } 1568 1569 static uint32_t 1570 z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c, 1571 uint8_t *b, uint32_t count, void *source) 1572 { 1573 struct z_info *info; 1574 int32_t alphadrift, startdrift, reqout, ocount, reqin, align; 1575 int32_t fetch, fetched, start, cp; 1576 uint8_t *dst; 1577 1578 info = f->data; 1579 if (info->z_resample == NULL) 1580 return (z_feed(f->source, c, b, count, source)); 1581 1582 /* 1583 * Calculate sample size alignment and amount of sample output. 1584 * We will do everything in sample domain, but at the end we 1585 * will jump back to byte domain. 1586 */ 1587 align = info->channels * info->bps; 1588 ocount = SND_FXDIV(count, align); 1589 if (ocount == 0) 1590 return (0); 1591 1592 /* 1593 * Calculate amount of input samples that is needed to generate 1594 * exact amount of output. 1595 */ 1596 reqin = z_gy2gx(info, ocount) - z_fetched(info); 1597 1598 #ifdef Z_USE_ALPHADRIFT 1599 startdrift = info->z_startdrift; 1600 alphadrift = info->z_alphadrift; 1601 #else 1602 startdrift = _Z_GY2GX(info, 0, 1); 1603 alphadrift = z_drift(info, startdrift, 1); 1604 #endif 1605 1606 dst = b; 1607 1608 do { 1609 if (reqin != 0) { 1610 fetch = z_min(z_free(info), reqin); 1611 if (fetch == 0) { 1612 /* 1613 * No more free spaces, so wind enough 1614 * samples back to the head of delay line 1615 * in byte domain. 1616 */ 1617 fetched = z_fetched(info); 1618 start = z_prev(info, info->z_start, 1619 (info->z_size << 1) - 1); 1620 cp = (info->z_size << 1) + fetched; 1621 z_copy(info->z_delay + (start * align), 1622 info->z_delay, cp * align); 1623 info->z_start = 1624 z_prev(info, info->z_size << 1, 1); 1625 info->z_pos = 1626 z_next(info, info->z_start, fetched + 1); 1627 fetch = z_min(z_free(info), reqin); 1628 #ifdef Z_DIAGNOSTIC 1629 if (1) { 1630 static uint32_t kk = 0; 1631 fprintf(stderr, 1632 "Buffer Move: " 1633 "start=%d fetched=%d cp=%d " 1634 "cycle=%u [%u]\r", 1635 start, fetched, cp, info->z_cycle, 1636 ++kk); 1637 } 1638 info->z_cycle = 0; 1639 #endif 1640 } 1641 if (fetch != 0) { 1642 /* 1643 * Fetch in byte domain and jump back 1644 * to sample domain. 1645 */ 1646 fetched = SND_FXDIV(z_feed(f->source, c, 1647 info->z_delay + (info->z_pos * align), 1648 fetch * align, source), align); 1649 /* 1650 * Prepare to convert fetched buffer, 1651 * or mark us done if we cannot fulfill 1652 * the request. 1653 */ 1654 reqin -= fetched; 1655 info->z_pos += fetched; 1656 if (fetched != fetch) 1657 reqin = 0; 1658 } 1659 } 1660 1661 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount); 1662 if (reqout != 0) { 1663 ocount -= reqout; 1664 1665 /* 1666 * Drift.. drift.. drift.. 1667 * 1668 * Notice that there are 2 methods of doing the drift 1669 * operations: The former is much cleaner (in a sense 1670 * of mathematical readings of my eyes), but slower 1671 * due to integer division in z_gy2gx(). Nevertheless, 1672 * both should give the same exact accurate drifting 1673 * results, so the later is favourable. 1674 */ 1675 do { 1676 info->z_resample(info, dst); 1677 #if 0 1678 startdrift = z_gy2gx(info, 1); 1679 alphadrift = z_drift(info, startdrift, 1); 1680 info->z_start += startdrift; 1681 info->z_alpha += alphadrift; 1682 #else 1683 info->z_alpha += alphadrift; 1684 if (info->z_alpha < info->z_gy) 1685 info->z_start += startdrift; 1686 else { 1687 info->z_start += startdrift - 1; 1688 info->z_alpha -= info->z_gy; 1689 } 1690 #endif 1691 dst += align; 1692 #ifdef Z_DIAGNOSTIC 1693 info->z_cycle++; 1694 #endif 1695 } while (--reqout != 0); 1696 } 1697 } while (reqin != 0 && ocount != 0); 1698 1699 /* 1700 * Back to byte domain.. 1701 */ 1702 return (dst - b); 1703 } 1704 1705 static int 1706 z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, 1707 uint32_t count, void *source) 1708 { 1709 uint32_t feed, maxfeed, left; 1710 1711 /* 1712 * Split count to smaller chunks to avoid possible 32bit overflow. 1713 */ 1714 maxfeed = ((struct z_info *)(f->data))->z_maxfeed; 1715 left = count; 1716 1717 do { 1718 feed = z_resampler_feed_internal(f, c, b, 1719 z_min(maxfeed, left), source); 1720 b += feed; 1721 left -= feed; 1722 } while (left != 0 && feed != 0); 1723 1724 return (count - left); 1725 } 1726 1727 static struct pcm_feederdesc feeder_rate_desc[] = { 1728 { FEEDER_RATE, 0, 0, 0, 0 }, 1729 { 0, 0, 0, 0, 0 }, 1730 }; 1731 1732 static kobj_method_t feeder_rate_methods[] = { 1733 KOBJMETHOD(feeder_init, z_resampler_init), 1734 KOBJMETHOD(feeder_free, z_resampler_free), 1735 KOBJMETHOD(feeder_set, z_resampler_set), 1736 KOBJMETHOD(feeder_get, z_resampler_get), 1737 KOBJMETHOD(feeder_feed, z_resampler_feed), 1738 KOBJMETHOD_END 1739 }; 1740 1741 FEEDER_DECLARE(feeder_rate, NULL); 1742