1 /*- 2 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * feeder_rate: (Codename: Z Resampler), which means any effort to create 29 * future replacement for this resampler are simply absurd unless 30 * the world decide to add new alphabet after Z. 31 * 32 * FreeBSD bandlimited sinc interpolator, technically based on 33 * "Digital Audio Resampling" by Julius O. Smith III 34 * - http://ccrma.stanford.edu/~jos/resample/ 35 * 36 * The Good: 37 * + all out fixed point integer operations, no soft-float or anything like 38 * that. 39 * + classic polyphase converters with high quality coefficient's polynomial 40 * interpolators. 41 * + fast, faster, or the fastest of its kind. 42 * + compile time configurable. 43 * + etc etc.. 44 * 45 * The Bad: 46 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I 47 * couldn't think of anything simpler than that (feeder_rate_xxx is just 48 * too long). Expect possible clashes with other zitizens (any?). 49 */ 50 51 #ifdef _KERNEL 52 #ifdef HAVE_KERNEL_OPTION_HEADERS 53 #include "opt_snd.h" 54 #endif 55 #include <dev/sound/pcm/sound.h> 56 #include <dev/sound/pcm/pcm.h> 57 #include "feeder_if.h" 58 59 #define SND_USE_FXDIV 60 #include "snd_fxdiv_gen.h" 61 62 SND_DECLARE_FILE("$FreeBSD$"); 63 #endif 64 65 #include "feeder_rate_gen.h" 66 67 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC) 68 #undef Z_DIAGNOSTIC 69 #define Z_DIAGNOSTIC 1 70 #elif defined(_KERNEL) 71 #undef Z_DIAGNOSTIC 72 #endif 73 74 #ifndef Z_QUALITY_DEFAULT 75 #define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR 76 #endif 77 78 #define Z_RESERVOIR 2048 79 #define Z_RESERVOIR_MAX 131072 80 81 #define Z_SINC_MAX 0x3fffff 82 #define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */ 83 84 #ifdef _KERNEL 85 #define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */ 86 #else 87 #define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */ 88 #endif 89 90 #define Z_RATE_DEFAULT 48000 91 92 #define Z_RATE_MIN FEEDRATE_RATEMIN 93 #define Z_RATE_MAX FEEDRATE_RATEMAX 94 #define Z_ROUNDHZ FEEDRATE_ROUNDHZ 95 #define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN 96 #define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX 97 98 #define Z_RATE_SRC FEEDRATE_SRC 99 #define Z_RATE_DST FEEDRATE_DST 100 #define Z_RATE_QUALITY FEEDRATE_QUALITY 101 #define Z_RATE_CHANNELS FEEDRATE_CHANNELS 102 103 #define Z_PARANOID 1 104 105 #define Z_MULTIFORMAT 1 106 107 #ifdef _KERNEL 108 #undef Z_USE_ALPHADRIFT 109 #define Z_USE_ALPHADRIFT 1 110 #endif 111 112 #define Z_FACTOR_MIN 1 113 #define Z_FACTOR_MAX Z_MASK 114 #define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX)) 115 116 struct z_info; 117 118 typedef void (*z_resampler_t)(struct z_info *, uint8_t *); 119 120 struct z_info { 121 int32_t rsrc, rdst; /* original source / destination rates */ 122 int32_t src, dst; /* rounded source / destination rates */ 123 int32_t channels; /* total channels */ 124 int32_t bps; /* bytes-per-sample */ 125 int32_t quality; /* resampling quality */ 126 127 int32_t z_gx, z_gy; /* interpolation / decimation ratio */ 128 int32_t z_alpha; /* output sample time phase / drift */ 129 uint8_t *z_delay; /* FIR delay line / linear buffer */ 130 int32_t *z_coeff; /* FIR coefficients */ 131 int32_t *z_dcoeff; /* FIR coefficients differences */ 132 int32_t *z_pcoeff; /* FIR polyphase coefficients */ 133 int32_t z_scale; /* output scaling */ 134 int32_t z_dx; /* input sample drift increment */ 135 int32_t z_dy; /* output sample drift increment */ 136 #ifdef Z_USE_ALPHADRIFT 137 int32_t z_alphadrift; /* alpha drift rate */ 138 int32_t z_startdrift; /* buffer start position drift rate */ 139 #endif 140 int32_t z_mask; /* delay line full length mask */ 141 int32_t z_size; /* half width of FIR taps */ 142 int32_t z_full; /* full size of delay line */ 143 int32_t z_alloc; /* largest allocated full size of delay line */ 144 int32_t z_start; /* buffer processing start position */ 145 int32_t z_pos; /* current position for the next feed */ 146 #ifdef Z_DIAGNOSTIC 147 uint32_t z_cycle; /* output cycle, purely for statistical */ 148 #endif 149 int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */ 150 151 z_resampler_t z_resample; 152 }; 153 154 int feeder_rate_min = Z_RATE_MIN; 155 int feeder_rate_max = Z_RATE_MAX; 156 int feeder_rate_round = Z_ROUNDHZ; 157 int feeder_rate_quality = Z_QUALITY_DEFAULT; 158 159 static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX; 160 161 #ifdef _KERNEL 162 static char feeder_rate_presets[] = FEEDER_RATE_PRESETS; 163 SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD, 164 &feeder_rate_presets, 0, "compile-time rate presets"); 165 166 TUNABLE_INT("hw.snd.feeder_rate_min", &feeder_rate_min); 167 TUNABLE_INT("hw.snd.feeder_rate_max", &feeder_rate_max); 168 TUNABLE_INT("hw.snd.feeder_rate_round", &feeder_rate_round); 169 TUNABLE_INT("hw.snd.feeder_rate_quality", &feeder_rate_quality); 170 171 TUNABLE_INT("hw.snd.feeder_rate_polyphase_max", &feeder_rate_polyphase_max); 172 SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RW, 173 &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries"); 174 175 static int 176 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS) 177 { 178 int err, val; 179 180 val = feeder_rate_min; 181 err = sysctl_handle_int(oidp, &val, 0, req); 182 183 if (err != 0 || req->newptr == NULL || val == feeder_rate_min) 184 return (err); 185 186 if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max)) 187 return (EINVAL); 188 189 feeder_rate_min = val; 190 191 return (0); 192 } 193 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RW, 194 0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I", 195 "minimum allowable rate"); 196 197 static int 198 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS) 199 { 200 int err, val; 201 202 val = feeder_rate_max; 203 err = sysctl_handle_int(oidp, &val, 0, req); 204 205 if (err != 0 || req->newptr == NULL || val == feeder_rate_max) 206 return (err); 207 208 if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min)) 209 return (EINVAL); 210 211 feeder_rate_max = val; 212 213 return (0); 214 } 215 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RW, 216 0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I", 217 "maximum allowable rate"); 218 219 static int 220 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS) 221 { 222 int err, val; 223 224 val = feeder_rate_round; 225 err = sysctl_handle_int(oidp, &val, 0, req); 226 227 if (err != 0 || req->newptr == NULL || val == feeder_rate_round) 228 return (err); 229 230 if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX) 231 return (EINVAL); 232 233 feeder_rate_round = val - (val % Z_ROUNDHZ); 234 235 return (0); 236 } 237 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RW, 238 0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I", 239 "sample rate converter rounding threshold"); 240 241 static int 242 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS) 243 { 244 struct snddev_info *d; 245 struct pcm_channel *c; 246 struct pcm_feeder *f; 247 int i, err, val; 248 249 val = feeder_rate_quality; 250 err = sysctl_handle_int(oidp, &val, 0, req); 251 252 if (err != 0 || req->newptr == NULL || val == feeder_rate_quality) 253 return (err); 254 255 if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX) 256 return (EINVAL); 257 258 feeder_rate_quality = val; 259 260 /* 261 * Traverse all available channels on each device and try to 262 * set resampler quality if and only if it is exist as 263 * part of feeder chains and the channel is idle. 264 */ 265 for (i = 0; pcm_devclass != NULL && 266 i < devclass_get_maxunit(pcm_devclass); i++) { 267 d = devclass_get_softc(pcm_devclass, i); 268 if (!PCM_REGISTERED(d)) 269 continue; 270 PCM_LOCK(d); 271 PCM_WAIT(d); 272 PCM_ACQUIRE(d); 273 CHN_FOREACH(c, d, channels.pcm) { 274 CHN_LOCK(c); 275 f = chn_findfeeder(c, FEEDER_RATE); 276 if (f == NULL || f->data == NULL || CHN_STARTED(c)) { 277 CHN_UNLOCK(c); 278 continue; 279 } 280 (void)FEEDER_SET(f, FEEDRATE_QUALITY, val); 281 CHN_UNLOCK(c); 282 } 283 PCM_RELEASE(d); 284 PCM_UNLOCK(d); 285 } 286 287 return (0); 288 } 289 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RW, 290 0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I", 291 "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. " 292 __XSTRING(Z_QUALITY_MAX)"=high)"); 293 #endif /* _KERNEL */ 294 295 296 /* 297 * Resampler type. 298 */ 299 #define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH) 300 #define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR) 301 #define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR) 302 303 /* 304 * Macroses for accurate sample time drift calculations. 305 * 306 * gy2gx : given the amount of output, return the _exact_ required amount of 307 * input. 308 * gx2gy : given the amount of input, return the _maximum_ amount of output 309 * that will be generated. 310 * drift : given the amount of input and output, return the elapsed 311 * sample-time. 312 */ 313 #define _Z_GCAST(x) ((uint64_t)(x)) 314 315 #if defined(__GNUCLIKE_ASM) && defined(__i386__) 316 /* 317 * This is where i386 being beaten to a pulp. Fortunately this function is 318 * rarely being called and if it is, it will decide the best (hopefully) 319 * fastest way to do the division. If we can ensure that everything is dword 320 * aligned, letting the compiler to call udivdi3 to do the division can be 321 * faster compared to this. 322 * 323 * amd64 is the clear winner here, no question about it. 324 */ 325 static __inline uint32_t 326 Z_DIV(uint64_t v, uint32_t d) 327 { 328 uint32_t hi, lo, quo, rem; 329 330 hi = v >> 32; 331 lo = v & 0xffffffff; 332 333 /* 334 * As much as we can, try to avoid long division like a plague. 335 */ 336 if (hi == 0) 337 quo = lo / d; 338 else 339 __asm("divl %2" 340 : "=a" (quo), "=d" (rem) 341 : "r" (d), "0" (lo), "1" (hi)); 342 343 return (quo); 344 } 345 #else 346 #define Z_DIV(x, y) ((x) / (y)) 347 #endif 348 349 #define _Z_GY2GX(i, a, v) \ 350 Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \ 351 (i)->z_gy) 352 353 #define _Z_GX2GY(i, a, v) \ 354 Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx) 355 356 #define _Z_DRIFT(i, x, y) \ 357 ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y))) 358 359 #define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v) 360 #define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v) 361 #define z_drift(i, x, y) _Z_DRIFT(i, x, y) 362 363 /* 364 * Macroses for SINC coefficients table manipulations.. whatever. 365 */ 366 #define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1) 367 368 #define Z_SINC_LEN(i) \ 369 ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \ 370 Z_SHIFT) / (i)->z_dy)) 371 372 #define Z_SINC_BASE_LEN(i) \ 373 ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1)) 374 375 /* 376 * Macroses for linear delay buffer operations. Alignment is not 377 * really necessary since we're not using true circular buffer, but it 378 * will help us guard against possible trespasser. To be honest, 379 * the linear block operations does not need guarding at all due to 380 * accurate drifting! 381 */ 382 #define z_align(i, v) ((v) & (i)->z_mask) 383 #define z_next(i, o, v) z_align(i, (o) + (v)) 384 #define z_prev(i, o, v) z_align(i, (o) - (v)) 385 #define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1) 386 #define z_free(i) ((i)->z_full - (i)->z_pos) 387 388 /* 389 * Macroses for Bla Bla .. :) 390 */ 391 #define z_copy(src, dst, sz) (void)memcpy(dst, src, sz) 392 #define z_feed(...) FEEDER_FEED(__VA_ARGS__) 393 394 static __inline uint32_t 395 z_min(uint32_t x, uint32_t y) 396 { 397 398 return ((x < y) ? x : y); 399 } 400 401 static int32_t 402 z_gcd(int32_t x, int32_t y) 403 { 404 int32_t w; 405 406 while (y != 0) { 407 w = x % y; 408 x = y; 409 y = w; 410 } 411 412 return (x); 413 } 414 415 static int32_t 416 z_roundpow2(int32_t v) 417 { 418 int32_t i; 419 420 i = 1; 421 422 /* 423 * Let it overflow at will.. 424 */ 425 while (i > 0 && i < v) 426 i <<= 1; 427 428 return (i); 429 } 430 431 /* 432 * Zero Order Hold, the worst of the worst, an insult against quality, 433 * but super fast. 434 */ 435 static void 436 z_feed_zoh(struct z_info *info, uint8_t *dst) 437 { 438 #if 0 439 z_copy(info->z_delay + 440 (info->z_start * info->channels * info->bps), dst, 441 info->channels * info->bps); 442 #else 443 uint32_t cnt; 444 uint8_t *src; 445 446 cnt = info->channels * info->bps; 447 src = info->z_delay + (info->z_start * cnt); 448 449 /* 450 * This is a bit faster than doing bcopy() since we're dealing 451 * with possible unaligned samples. 452 */ 453 do { 454 *dst++ = *src++; 455 } while (--cnt != 0); 456 #endif 457 } 458 459 /* 460 * Linear Interpolation. This at least sounds better (perceptually) and fast, 461 * but without any proper filtering which means aliasing still exist and 462 * could become worst with a right sample. Interpolation centered within 463 * Z_LINEAR_ONE between the present and previous sample and everything is 464 * done with simple 32bit scaling arithmetic. 465 */ 466 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 467 static void \ 468 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 469 { \ 470 int32_t z; \ 471 intpcm_t x, y; \ 472 uint32_t ch; \ 473 uint8_t *sx, *sy; \ 474 \ 475 z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \ 476 \ 477 sx = info->z_delay + (info->z_start * info->channels * \ 478 PCM_##BIT##_BPS); \ 479 sy = sx - (info->channels * PCM_##BIT##_BPS); \ 480 \ 481 ch = info->channels; \ 482 \ 483 do { \ 484 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \ 485 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \ 486 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \ 487 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \ 488 sx += PCM_##BIT##_BPS; \ 489 sy += PCM_##BIT##_BPS; \ 490 dst += PCM_##BIT##_BPS; \ 491 } while (--ch != 0); \ 492 } 493 494 /* 495 * Userland clipping diagnostic check, not enabled in kernel compilation. 496 * While doing sinc interpolation, unrealistic samples like full scale sine 497 * wav will clip, but for other things this will not make any noise at all. 498 * Everybody should learn how to normalized perceived loudness of their own 499 * music/sounds/samples (hint: ReplayGain). 500 */ 501 #ifdef Z_DIAGNOSTIC 502 #define Z_CLIP_CHECK(v, BIT) do { \ 503 if ((v) > PCM_S##BIT##_MAX) { \ 504 fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \ 505 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \ 506 } else if ((v) < PCM_S##BIT##_MIN) { \ 507 fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \ 508 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \ 509 } \ 510 } while (0) 511 #else 512 #define Z_CLIP_CHECK(...) 513 #endif 514 515 #define Z_CLAMP(v, BIT) \ 516 (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \ 517 (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v))) 518 519 /* 520 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so 521 * there's no point to hold the plate any longer. All samples will be 522 * shifted to a full 32 bit, scaled and restored during write for 523 * maximum dynamic range (only for downsampling). 524 */ 525 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \ 526 c += z >> Z_SHIFT; \ 527 z &= Z_MASK; \ 528 coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \ 529 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 530 v += Z_NORM_##BIT((intpcm64_t)x * coeff); \ 531 z += info->z_dy; \ 532 p adv##= info->channels * PCM_##BIT##_BPS 533 534 /* 535 * XXX GCC4 optimization is such a !@#$%, need manual unrolling. 536 */ 537 #if defined(__GNUC__) && __GNUC__ >= 4 538 #define Z_SINC_ACCUMULATE(...) do { \ 539 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 540 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 541 } while (0) 542 #define Z_SINC_ACCUMULATE_DECR 2 543 #else 544 #define Z_SINC_ACCUMULATE(...) do { \ 545 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 546 } while (0) 547 #define Z_SINC_ACCUMULATE_DECR 1 548 #endif 549 550 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 551 static void \ 552 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 553 { \ 554 intpcm64_t v; \ 555 intpcm_t x; \ 556 uint8_t *p; \ 557 int32_t coeff, z, *z_coeff, *z_dcoeff; \ 558 uint32_t c, center, ch, i; \ 559 \ 560 z_coeff = info->z_coeff; \ 561 z_dcoeff = info->z_dcoeff; \ 562 center = z_prev(info, info->z_start, info->z_size); \ 563 ch = info->channels * PCM_##BIT##_BPS; \ 564 dst += ch; \ 565 \ 566 do { \ 567 dst -= PCM_##BIT##_BPS; \ 568 ch -= PCM_##BIT##_BPS; \ 569 v = 0; \ 570 z = info->z_alpha * info->z_dx; \ 571 c = 0; \ 572 p = info->z_delay + (z_next(info, center, 1) * \ 573 info->channels * PCM_##BIT##_BPS) + ch; \ 574 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 575 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \ 576 z = info->z_dy - (info->z_alpha * info->z_dx); \ 577 c = 0; \ 578 p = info->z_delay + (center * info->channels * \ 579 PCM_##BIT##_BPS) + ch; \ 580 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 581 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \ 582 if (info->z_scale != Z_ONE) \ 583 v = Z_SCALE_##BIT(v, info->z_scale); \ 584 else \ 585 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 586 Z_CLIP_CHECK(v, BIT); \ 587 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ 588 } while (ch != 0); \ 589 } 590 591 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \ 592 static void \ 593 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 594 { \ 595 intpcm64_t v; \ 596 intpcm_t x; \ 597 uint8_t *p; \ 598 int32_t ch, i, start, *z_pcoeff; \ 599 \ 600 ch = info->channels * PCM_##BIT##_BPS; \ 601 dst += ch; \ 602 start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \ 603 \ 604 do { \ 605 dst -= PCM_##BIT##_BPS; \ 606 ch -= PCM_##BIT##_BPS; \ 607 v = 0; \ 608 p = info->z_delay + start + ch; \ 609 z_pcoeff = info->z_pcoeff + \ 610 ((info->z_alpha * info->z_size) << 1); \ 611 for (i = info->z_size; i != 0; i--) { \ 612 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 613 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 614 z_pcoeff++; \ 615 p += info->channels * PCM_##BIT##_BPS; \ 616 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 617 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 618 z_pcoeff++; \ 619 p += info->channels * PCM_##BIT##_BPS; \ 620 } \ 621 if (info->z_scale != Z_ONE) \ 622 v = Z_SCALE_##BIT(v, info->z_scale); \ 623 else \ 624 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 625 Z_CLIP_CHECK(v, BIT); \ 626 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ 627 } while (ch != 0); \ 628 } 629 630 #define Z_DECLARE(SIGN, BIT, ENDIAN) \ 631 Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 632 Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 633 Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) 634 635 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 636 Z_DECLARE(S, 16, LE) 637 Z_DECLARE(S, 32, LE) 638 #endif 639 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 640 Z_DECLARE(S, 16, BE) 641 Z_DECLARE(S, 32, BE) 642 #endif 643 #ifdef SND_FEEDER_MULTIFORMAT 644 Z_DECLARE(S, 8, NE) 645 Z_DECLARE(S, 24, LE) 646 Z_DECLARE(S, 24, BE) 647 Z_DECLARE(U, 8, NE) 648 Z_DECLARE(U, 16, LE) 649 Z_DECLARE(U, 24, LE) 650 Z_DECLARE(U, 32, LE) 651 Z_DECLARE(U, 16, BE) 652 Z_DECLARE(U, 24, BE) 653 Z_DECLARE(U, 32, BE) 654 #endif 655 656 enum { 657 Z_RESAMPLER_ZOH, 658 Z_RESAMPLER_LINEAR, 659 Z_RESAMPLER_SINC, 660 Z_RESAMPLER_SINC_POLYPHASE, 661 Z_RESAMPLER_LAST 662 }; 663 664 #define Z_RESAMPLER_IDX(i) \ 665 (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality) 666 667 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \ 668 { \ 669 AFMT_##SIGN##BIT##_##ENDIAN, \ 670 { \ 671 [Z_RESAMPLER_ZOH] = z_feed_zoh, \ 672 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \ 673 [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \ 674 [Z_RESAMPLER_SINC_POLYPHASE] = \ 675 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \ 676 } \ 677 } 678 679 static const struct { 680 uint32_t format; 681 z_resampler_t resampler[Z_RESAMPLER_LAST]; 682 } z_resampler_tab[] = { 683 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 684 Z_RESAMPLER_ENTRY(S, 16, LE), 685 Z_RESAMPLER_ENTRY(S, 32, LE), 686 #endif 687 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 688 Z_RESAMPLER_ENTRY(S, 16, BE), 689 Z_RESAMPLER_ENTRY(S, 32, BE), 690 #endif 691 #ifdef SND_FEEDER_MULTIFORMAT 692 Z_RESAMPLER_ENTRY(S, 8, NE), 693 Z_RESAMPLER_ENTRY(S, 24, LE), 694 Z_RESAMPLER_ENTRY(S, 24, BE), 695 Z_RESAMPLER_ENTRY(U, 8, NE), 696 Z_RESAMPLER_ENTRY(U, 16, LE), 697 Z_RESAMPLER_ENTRY(U, 24, LE), 698 Z_RESAMPLER_ENTRY(U, 32, LE), 699 Z_RESAMPLER_ENTRY(U, 16, BE), 700 Z_RESAMPLER_ENTRY(U, 24, BE), 701 Z_RESAMPLER_ENTRY(U, 32, BE), 702 #endif 703 }; 704 705 #define Z_RESAMPLER_TAB_SIZE \ 706 ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0]))) 707 708 static void 709 z_resampler_reset(struct z_info *info) 710 { 711 712 info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 && 713 info->rsrc > feeder_rate_round) ? feeder_rate_round : 1)); 714 info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 && 715 info->rdst > feeder_rate_round) ? feeder_rate_round : 1)); 716 info->z_gx = 1; 717 info->z_gy = 1; 718 info->z_alpha = 0; 719 info->z_resample = NULL; 720 info->z_size = 1; 721 info->z_coeff = NULL; 722 info->z_dcoeff = NULL; 723 if (info->z_pcoeff != NULL) { 724 free(info->z_pcoeff, M_DEVBUF); 725 info->z_pcoeff = NULL; 726 } 727 info->z_scale = Z_ONE; 728 info->z_dx = Z_FULL_ONE; 729 info->z_dy = Z_FULL_ONE; 730 #ifdef Z_DIAGNOSTIC 731 info->z_cycle = 0; 732 #endif 733 if (info->quality < Z_QUALITY_MIN) 734 info->quality = Z_QUALITY_MIN; 735 else if (info->quality > Z_QUALITY_MAX) 736 info->quality = Z_QUALITY_MAX; 737 } 738 739 #ifdef Z_PARANOID 740 static int32_t 741 z_resampler_sinc_len(struct z_info *info) 742 { 743 int32_t c, z, len, lmax; 744 745 if (!Z_IS_SINC(info)) 746 return (1); 747 748 /* 749 * A rather careful (or useless) way to calculate filter length. 750 * Z_SINC_LEN() itself is accurate enough to do its job. Extra 751 * sanity checking is not going to hurt though.. 752 */ 753 c = 0; 754 z = info->z_dy; 755 len = 0; 756 lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len; 757 758 do { 759 c += z >> Z_SHIFT; 760 z &= Z_MASK; 761 z += info->z_dy; 762 } while (c < lmax && ++len > 0); 763 764 if (len != Z_SINC_LEN(info)) { 765 #ifdef _KERNEL 766 printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n", 767 __func__, len, Z_SINC_LEN(info)); 768 #else 769 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n", 770 __func__, len, Z_SINC_LEN(info)); 771 return (-1); 772 #endif 773 } 774 775 return (len); 776 } 777 #else 778 #define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1) 779 #endif 780 781 #define Z_POLYPHASE_COEFF_SHIFT 0 782 783 /* 784 * Pick suitable polynomial interpolators based on filter oversampled ratio 785 * (2 ^ Z_DRIFT_SHIFT). 786 */ 787 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \ 788 defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \ 789 defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \ 790 defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \ 791 defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X)) 792 #if Z_DRIFT_SHIFT >= 6 793 #define Z_COEFF_INTERP_BSPLINE 1 794 #elif Z_DRIFT_SHIFT >= 5 795 #define Z_COEFF_INTERP_OPT32X 1 796 #elif Z_DRIFT_SHIFT == 4 797 #define Z_COEFF_INTERP_OPT16X 1 798 #elif Z_DRIFT_SHIFT == 3 799 #define Z_COEFF_INTERP_OPT8X 1 800 #elif Z_DRIFT_SHIFT == 2 801 #define Z_COEFF_INTERP_OPT4X 1 802 #elif Z_DRIFT_SHIFT == 1 803 #define Z_COEFF_INTERP_OPT2X 1 804 #else 805 #error "Z_DRIFT_SHIFT screwed!" 806 #endif 807 #endif 808 809 /* 810 * In classic polyphase mode, the actual coefficients for each phases need to 811 * be calculated based on default prototype filters. For highly oversampled 812 * filter, linear or quadradatic interpolator should be enough. Anything less 813 * than that require 'special' interpolators to reduce interpolation errors. 814 * 815 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio" 816 * by Olli Niemitalo 817 * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf 818 * 819 */ 820 static int32_t 821 z_coeff_interpolate(int32_t z, int32_t *z_coeff) 822 { 823 int32_t coeff; 824 #if defined(Z_COEFF_INTERP_ZOH) 825 826 /* 1-point, 0th-order (Zero Order Hold) */ 827 z = z; 828 coeff = z_coeff[0]; 829 #elif defined(Z_COEFF_INTERP_LINEAR) 830 int32_t zl0, zl1; 831 832 /* 2-point, 1st-order Linear */ 833 zl0 = z_coeff[0]; 834 zl1 = z_coeff[1] - z_coeff[0]; 835 836 coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0; 837 #elif defined(Z_COEFF_INTERP_QUADRATIC) 838 int32_t zq0, zq1, zq2; 839 840 /* 3-point, 2nd-order Quadratic */ 841 zq0 = z_coeff[0]; 842 zq1 = z_coeff[1] - z_coeff[-1]; 843 zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1); 844 845 coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) + 846 zq1) * z, Z_SHIFT + 1) + zq0; 847 #elif defined(Z_COEFF_INTERP_HERMITE) 848 int32_t zh0, zh1, zh2, zh3; 849 850 /* 4-point, 3rd-order Hermite */ 851 zh0 = z_coeff[0]; 852 zh1 = z_coeff[1] - z_coeff[-1]; 853 zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) - 854 z_coeff[2]; 855 zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3); 856 857 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) + 858 zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0; 859 #elif defined(Z_COEFF_INTERP_BSPLINE) 860 int32_t zb0, zb1, zb2, zb3; 861 862 /* 4-point, 3rd-order B-Spline */ 863 zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) + 864 z_coeff[-1] + z_coeff[1]), 30); 865 zb1 = z_coeff[1] - z_coeff[-1]; 866 zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1); 867 zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) + 868 z_coeff[2] - z_coeff[-1]), 30); 869 870 coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) + 871 zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1; 872 #elif defined(Z_COEFF_INTERP_OPT32X) 873 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 874 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 875 876 /* 6-point, 5th-order Optimal 32x */ 877 zoz = z - (Z_ONE >> 1); 878 zoe1 = z_coeff[1] + z_coeff[0]; 879 zoe2 = z_coeff[2] + z_coeff[-1]; 880 zoe3 = z_coeff[3] + z_coeff[-2]; 881 zoo1 = z_coeff[1] - z_coeff[0]; 882 zoo2 = z_coeff[2] - z_coeff[-1]; 883 zoo3 = z_coeff[3] - z_coeff[-2]; 884 885 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 886 (0x00170c29LL * zoe3), 30); 887 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 888 (0x008cd4dcLL * zoo3), 30); 889 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 890 (0x0160b5d0LL * zoe3), 30); 891 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 892 (0x01cfe914LL * zoo3), 30); 893 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 894 (0x015508ddLL * zoe3), 30); 895 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 896 (0x0082d81aLL * zoo3), 30); 897 898 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 899 (int64_t)zoc5 * zoz, Z_SHIFT) + 900 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 901 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 902 #elif defined(Z_COEFF_INTERP_OPT16X) 903 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 904 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 905 906 /* 6-point, 5th-order Optimal 16x */ 907 zoz = z - (Z_ONE >> 1); 908 zoe1 = z_coeff[1] + z_coeff[0]; 909 zoe2 = z_coeff[2] + z_coeff[-1]; 910 zoe3 = z_coeff[3] + z_coeff[-2]; 911 zoo1 = z_coeff[1] - z_coeff[0]; 912 zoo2 = z_coeff[2] - z_coeff[-1]; 913 zoo3 = z_coeff[3] - z_coeff[-2]; 914 915 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 916 (0x00170c29LL * zoe3), 30); 917 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 918 (0x008cd4dcLL * zoo3), 30); 919 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 920 (0x0160b5d0LL * zoe3), 30); 921 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 922 (0x01cfe914LL * zoo3), 30); 923 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 924 (0x015508ddLL * zoe3), 30); 925 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 926 (0x0082d81aLL * zoo3), 30); 927 928 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 929 (int64_t)zoc5 * zoz, Z_SHIFT) + 930 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 931 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 932 #elif defined(Z_COEFF_INTERP_OPT8X) 933 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 934 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 935 936 /* 6-point, 5th-order Optimal 8x */ 937 zoz = z - (Z_ONE >> 1); 938 zoe1 = z_coeff[1] + z_coeff[0]; 939 zoe2 = z_coeff[2] + z_coeff[-1]; 940 zoe3 = z_coeff[3] + z_coeff[-2]; 941 zoo1 = z_coeff[1] - z_coeff[0]; 942 zoo2 = z_coeff[2] - z_coeff[-1]; 943 zoo3 = z_coeff[3] - z_coeff[-2]; 944 945 zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) + 946 (0x0018b23fLL * zoe3), 30); 947 zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) + 948 (0x0094b599LL * zoo3), 30); 949 zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) + 950 (0x016ed8e0LL * zoe3), 30); 951 zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) + 952 (0x01dae93aLL * zoo3), 30); 953 zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) + 954 (0x0153ed07LL * zoe3), 30); 955 zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) + 956 (0x007a7c26LL * zoo3), 30); 957 958 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 959 (int64_t)zoc5 * zoz, Z_SHIFT) + 960 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 961 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 962 #elif defined(Z_COEFF_INTERP_OPT4X) 963 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 964 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 965 966 /* 6-point, 5th-order Optimal 4x */ 967 zoz = z - (Z_ONE >> 1); 968 zoe1 = z_coeff[1] + z_coeff[0]; 969 zoe2 = z_coeff[2] + z_coeff[-1]; 970 zoe3 = z_coeff[3] + z_coeff[-2]; 971 zoo1 = z_coeff[1] - z_coeff[0]; 972 zoo2 = z_coeff[2] - z_coeff[-1]; 973 zoo3 = z_coeff[3] - z_coeff[-2]; 974 975 zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) + 976 (0x001a3784LL * zoe3), 30); 977 zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) + 978 (0x009ca889LL * zoo3), 30); 979 zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) + 980 (0x017ef0c6LL * zoe3), 30); 981 zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) + 982 (0x01e936dbLL * zoo3), 30); 983 zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) + 984 (0x014f5923LL * zoe3), 30); 985 zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) + 986 (0x00670dbdLL * zoo3), 30); 987 988 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 989 (int64_t)zoc5 * zoz, Z_SHIFT) + 990 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 991 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 992 #elif defined(Z_COEFF_INTERP_OPT2X) 993 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 994 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 995 996 /* 6-point, 5th-order Optimal 2x */ 997 zoz = z - (Z_ONE >> 1); 998 zoe1 = z_coeff[1] + z_coeff[0]; 999 zoe2 = z_coeff[2] + z_coeff[-1]; 1000 zoe3 = z_coeff[3] + z_coeff[-2]; 1001 zoo1 = z_coeff[1] - z_coeff[0]; 1002 zoo2 = z_coeff[2] - z_coeff[-1]; 1003 zoo3 = z_coeff[3] - z_coeff[-2]; 1004 1005 zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) + 1006 (0x00267881LL * zoe3), 30); 1007 zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) + 1008 (0x00d683cdLL * zoo3), 30); 1009 zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) + 1010 (0x01e2aceaLL * zoe3), 30); 1011 zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) + 1012 (0x022cefc7LL * zoo3), 30); 1013 zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) + 1014 (0x0131d935LL * zoe3), 30); 1015 zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) + 1016 (0x0018ee79LL * zoo3), 30); 1017 1018 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 1019 (int64_t)zoc5 * zoz, Z_SHIFT) + 1020 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 1021 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 1022 #else 1023 #error "Interpolation type screwed!" 1024 #endif 1025 1026 #if Z_POLYPHASE_COEFF_SHIFT > 0 1027 coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT); 1028 #endif 1029 return (coeff); 1030 } 1031 1032 static int 1033 z_resampler_build_polyphase(struct z_info *info) 1034 { 1035 int32_t alpha, c, i, z, idx; 1036 1037 /* Let this be here first. */ 1038 if (info->z_pcoeff != NULL) { 1039 free(info->z_pcoeff, M_DEVBUF); 1040 info->z_pcoeff = NULL; 1041 } 1042 1043 if (feeder_rate_polyphase_max < 1) 1044 return (ENOTSUP); 1045 1046 if (((int64_t)info->z_size * info->z_gy * 2) > 1047 feeder_rate_polyphase_max) { 1048 #ifndef _KERNEL 1049 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n", 1050 info->z_gx, info->z_gy, 1051 (intmax_t)info->z_size * info->z_gy * 2, 1052 feeder_rate_polyphase_max); 1053 #endif 1054 return (E2BIG); 1055 } 1056 1057 info->z_pcoeff = malloc(sizeof(int32_t) * 1058 info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO); 1059 if (info->z_pcoeff == NULL) 1060 return (ENOMEM); 1061 1062 for (alpha = 0; alpha < info->z_gy; alpha++) { 1063 z = alpha * info->z_dx; 1064 c = 0; 1065 for (i = info->z_size; i != 0; i--) { 1066 c += z >> Z_SHIFT; 1067 z &= Z_MASK; 1068 idx = (alpha * info->z_size * 2) + 1069 (info->z_size * 2) - i; 1070 info->z_pcoeff[idx] = 1071 z_coeff_interpolate(z, info->z_coeff + c); 1072 z += info->z_dy; 1073 } 1074 z = info->z_dy - (alpha * info->z_dx); 1075 c = 0; 1076 for (i = info->z_size; i != 0; i--) { 1077 c += z >> Z_SHIFT; 1078 z &= Z_MASK; 1079 idx = (alpha * info->z_size * 2) + i - 1; 1080 info->z_pcoeff[idx] = 1081 z_coeff_interpolate(z, info->z_coeff + c); 1082 z += info->z_dy; 1083 } 1084 } 1085 1086 #ifndef _KERNEL 1087 fprintf(stderr, "Polyphase: [%d/%d] %d entries\n", 1088 info->z_gx, info->z_gy, info->z_size * info->z_gy * 2); 1089 #endif 1090 1091 return (0); 1092 } 1093 1094 static int 1095 z_resampler_setup(struct pcm_feeder *f) 1096 { 1097 struct z_info *info; 1098 int64_t gy2gx_max, gx2gy_max; 1099 uint32_t format; 1100 int32_t align, i, z_scale; 1101 int adaptive; 1102 1103 info = f->data; 1104 z_resampler_reset(info); 1105 1106 if (info->src == info->dst) 1107 return (0); 1108 1109 /* Shrink by greatest common divisor. */ 1110 i = z_gcd(info->src, info->dst); 1111 info->z_gx = info->src / i; 1112 info->z_gy = info->dst / i; 1113 1114 /* Too big, or too small. Bail out. */ 1115 if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy))) 1116 return (EINVAL); 1117 1118 format = f->desc->in; 1119 adaptive = 0; 1120 z_scale = 0; 1121 1122 /* 1123 * Setup everything: filter length, conversion factor, etc. 1124 */ 1125 if (Z_IS_SINC(info)) { 1126 /* 1127 * Downsampling, or upsampling scaling factor. As long as the 1128 * factor can be represented by a fraction of 1 << Z_SHIFT, 1129 * we're pretty much in business. Scaling is not needed for 1130 * upsampling, so we just slap Z_ONE there. 1131 */ 1132 if (info->z_gx > info->z_gy) 1133 /* 1134 * If the downsampling ratio is beyond sanity, 1135 * enable semi-adaptive mode. Although handling 1136 * extreme ratio is possible, the result of the 1137 * conversion is just pointless, unworthy, 1138 * nonsensical noises, etc. 1139 */ 1140 if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX) 1141 z_scale = Z_ONE / Z_SINC_DOWNMAX; 1142 else 1143 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) / 1144 info->z_gx; 1145 else 1146 z_scale = Z_ONE; 1147 1148 /* 1149 * This is actually impossible, unless anything above 1150 * overflow. 1151 */ 1152 if (z_scale < 1) 1153 return (E2BIG); 1154 1155 /* 1156 * Calculate sample time/coefficients index drift. It is 1157 * a constant for upsampling, but downsampling require 1158 * heavy duty filtering with possible too long filters. 1159 * If anything goes wrong, revisit again and enable 1160 * adaptive mode. 1161 */ 1162 z_setup_adaptive_sinc: 1163 if (info->z_pcoeff != NULL) { 1164 free(info->z_pcoeff, M_DEVBUF); 1165 info->z_pcoeff = NULL; 1166 } 1167 1168 if (adaptive == 0) { 1169 info->z_dy = z_scale << Z_DRIFT_SHIFT; 1170 if (info->z_dy < 1) 1171 return (E2BIG); 1172 info->z_scale = z_scale; 1173 } else { 1174 info->z_dy = Z_FULL_ONE; 1175 info->z_scale = Z_ONE; 1176 } 1177 1178 #if 0 1179 #define Z_SCALE_DIV 10000 1180 #define Z_SCALE_LIMIT(s, v) \ 1181 ((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV) 1182 1183 info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780); 1184 #endif 1185 1186 /* Smallest drift increment. */ 1187 info->z_dx = info->z_dy / info->z_gy; 1188 1189 /* 1190 * Overflow or underflow. Try adaptive, let it continue and 1191 * retry. 1192 */ 1193 if (info->z_dx < 1) { 1194 if (adaptive == 0) { 1195 adaptive = 1; 1196 goto z_setup_adaptive_sinc; 1197 } 1198 return (E2BIG); 1199 } 1200 1201 /* 1202 * Round back output drift. 1203 */ 1204 info->z_dy = info->z_dx * info->z_gy; 1205 1206 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) { 1207 if (Z_SINC_COEFF_IDX(info) != i) 1208 continue; 1209 /* 1210 * Calculate required filter length and guard 1211 * against possible abusive result. Note that 1212 * this represents only 1/2 of the entire filter 1213 * length. 1214 */ 1215 info->z_size = z_resampler_sinc_len(info); 1216 1217 /* 1218 * Multiple of 2 rounding, for better accumulator 1219 * performance. 1220 */ 1221 info->z_size &= ~1; 1222 1223 if (info->z_size < 2 || info->z_size > Z_SINC_MAX) { 1224 if (adaptive == 0) { 1225 adaptive = 1; 1226 goto z_setup_adaptive_sinc; 1227 } 1228 return (E2BIG); 1229 } 1230 info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET; 1231 info->z_dcoeff = z_coeff_tab[i].dcoeff; 1232 break; 1233 } 1234 1235 if (info->z_coeff == NULL || info->z_dcoeff == NULL) 1236 return (EINVAL); 1237 } else if (Z_IS_LINEAR(info)) { 1238 /* 1239 * Don't put much effort if we're doing linear interpolation. 1240 * Just center the interpolation distance within Z_LINEAR_ONE, 1241 * and be happy about it. 1242 */ 1243 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy; 1244 } 1245 1246 /* 1247 * We're safe for now, lets continue.. Look for our resampler 1248 * depending on configured format and quality. 1249 */ 1250 for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) { 1251 int ridx; 1252 1253 if (AFMT_ENCODING(format) != z_resampler_tab[i].format) 1254 continue; 1255 if (Z_IS_SINC(info) && adaptive == 0 && 1256 z_resampler_build_polyphase(info) == 0) 1257 ridx = Z_RESAMPLER_SINC_POLYPHASE; 1258 else 1259 ridx = Z_RESAMPLER_IDX(info); 1260 info->z_resample = z_resampler_tab[i].resampler[ridx]; 1261 break; 1262 } 1263 1264 if (info->z_resample == NULL) 1265 return (EINVAL); 1266 1267 info->bps = AFMT_BPS(format); 1268 align = info->channels * info->bps; 1269 1270 /* 1271 * Calculate largest value that can be fed into z_gy2gx() and 1272 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will 1273 * be called early during feeding process to determine how much input 1274 * samples that is required to generate requested output, while 1275 * z_gx2gy() will be called just before samples filtering / 1276 * accumulation process based on available samples that has been 1277 * calculated using z_gx2gy(). 1278 * 1279 * Now that is damn confusing, I guess ;-) . 1280 */ 1281 gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) / 1282 info->z_gx; 1283 1284 if ((gy2gx_max * align) > SND_FXDIV_MAX) 1285 gy2gx_max = SND_FXDIV_MAX / align; 1286 1287 if (gy2gx_max < 1) 1288 return (E2BIG); 1289 1290 gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) / 1291 info->z_gy; 1292 1293 if (gx2gy_max > INT32_MAX) 1294 gx2gy_max = INT32_MAX; 1295 1296 if (gx2gy_max < 1) 1297 return (E2BIG); 1298 1299 /* 1300 * Ensure that z_gy2gx() at its largest possible calculated value 1301 * (alpha = 0) will not cause overflow further late during z_gx2gy() 1302 * stage. 1303 */ 1304 if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max)) 1305 return (E2BIG); 1306 1307 info->z_maxfeed = gy2gx_max * align; 1308 1309 #ifdef Z_USE_ALPHADRIFT 1310 info->z_startdrift = z_gy2gx(info, 1); 1311 info->z_alphadrift = z_drift(info, info->z_startdrift, 1); 1312 #endif 1313 1314 i = z_gy2gx(info, 1); 1315 info->z_full = z_roundpow2((info->z_size << 1) + i); 1316 1317 /* 1318 * Too big to be true, and overflowing left and right like mad .. 1319 */ 1320 if ((info->z_full * align) < 1) { 1321 if (adaptive == 0 && Z_IS_SINC(info)) { 1322 adaptive = 1; 1323 goto z_setup_adaptive_sinc; 1324 } 1325 return (E2BIG); 1326 } 1327 1328 /* 1329 * Increase full buffer size if its too small to reduce cyclic 1330 * buffer shifting in main conversion/feeder loop. 1331 */ 1332 while (info->z_full < Z_RESERVOIR_MAX && 1333 (info->z_full - (info->z_size << 1)) < Z_RESERVOIR) 1334 info->z_full <<= 1; 1335 1336 /* Initialize buffer position. */ 1337 info->z_mask = info->z_full - 1; 1338 info->z_start = z_prev(info, info->z_size << 1, 1); 1339 info->z_pos = z_next(info, info->z_start, 1); 1340 1341 /* 1342 * Allocate or reuse delay line buffer, whichever makes sense. 1343 */ 1344 i = info->z_full * align; 1345 if (i < 1) 1346 return (E2BIG); 1347 1348 if (info->z_delay == NULL || info->z_alloc < i || 1349 i <= (info->z_alloc >> 1)) { 1350 if (info->z_delay != NULL) 1351 free(info->z_delay, M_DEVBUF); 1352 info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO); 1353 if (info->z_delay == NULL) 1354 return (ENOMEM); 1355 info->z_alloc = i; 1356 } 1357 1358 /* 1359 * Zero out head of buffer to avoid pops and clicks. 1360 */ 1361 memset(info->z_delay, sndbuf_zerodata(f->desc->out), 1362 info->z_pos * align); 1363 1364 #ifdef Z_DIAGNOSTIC 1365 /* 1366 * XXX Debuging mess !@#$%^ 1367 */ 1368 #define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \ 1369 "z_"__STRING(x), (uint32_t)info->z_##x, \ 1370 (int32_t)info->z_##x) 1371 fprintf(stderr, "\n%s():\n", __func__); 1372 fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n", 1373 info->channels, info->bps, format, info->quality); 1374 fprintf(stderr, "\t%d (%d) -> %d (%d), ", 1375 info->src, info->rsrc, info->dst, info->rdst); 1376 fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy); 1377 fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1)); 1378 if (adaptive != 0) 1379 z_scale = Z_ONE; 1380 fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n", 1381 z_scale, Z_ONE, (double)z_scale / Z_ONE); 1382 fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info)); 1383 fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO"); 1384 dumpz(size); 1385 dumpz(alloc); 1386 if (info->z_alloc < 1024) 1387 fprintf(stderr, "\t%15s%10d Bytes\n", 1388 "", info->z_alloc); 1389 else if (info->z_alloc < (1024 << 10)) 1390 fprintf(stderr, "\t%15s%10d KBytes\n", 1391 "", info->z_alloc >> 10); 1392 else if (info->z_alloc < (1024 << 20)) 1393 fprintf(stderr, "\t%15s%10d MBytes\n", 1394 "", info->z_alloc >> 20); 1395 else 1396 fprintf(stderr, "\t%15s%10d GBytes\n", 1397 "", info->z_alloc >> 30); 1398 fprintf(stderr, "\t%12s %10d (min output samples)\n", 1399 "", 1400 (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1))); 1401 fprintf(stderr, "\t%12s %10d (min allocated output samples)\n", 1402 "", 1403 (int32_t)z_gx2gy(info, (info->z_alloc / align) - 1404 (info->z_size << 1))); 1405 fprintf(stderr, "\t%12s = %10d\n", 1406 "z_gy2gx()", (int32_t)z_gy2gx(info, 1)); 1407 fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n", 1408 "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max)); 1409 fprintf(stderr, "\t%12s = %10d\n", 1410 "z_gx2gy()", (int32_t)z_gx2gy(info, 1)); 1411 fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n", 1412 "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max)); 1413 dumpz(maxfeed); 1414 dumpz(full); 1415 dumpz(start); 1416 dumpz(pos); 1417 dumpz(scale); 1418 fprintf(stderr, "\t%12s %10f\n", "", 1419 (double)info->z_scale / Z_ONE); 1420 dumpz(dx); 1421 fprintf(stderr, "\t%12s %10f\n", "", 1422 (double)info->z_dx / info->z_dy); 1423 dumpz(dy); 1424 fprintf(stderr, "\t%12s %10d (drift step)\n", "", 1425 info->z_dy >> Z_SHIFT); 1426 fprintf(stderr, "\t%12s %10d (scaling differences)\n", "", 1427 (z_scale << Z_DRIFT_SHIFT) - info->z_dy); 1428 fprintf(stderr, "\t%12s = %u bytes\n", 1429 "intpcm32_t", sizeof(intpcm32_t)); 1430 fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n", 1431 "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE); 1432 #endif 1433 1434 return (0); 1435 } 1436 1437 static int 1438 z_resampler_set(struct pcm_feeder *f, int what, int32_t value) 1439 { 1440 struct z_info *info; 1441 int32_t oquality; 1442 1443 info = f->data; 1444 1445 switch (what) { 1446 case Z_RATE_SRC: 1447 if (value < feeder_rate_min || value > feeder_rate_max) 1448 return (E2BIG); 1449 if (value == info->rsrc) 1450 return (0); 1451 info->rsrc = value; 1452 break; 1453 case Z_RATE_DST: 1454 if (value < feeder_rate_min || value > feeder_rate_max) 1455 return (E2BIG); 1456 if (value == info->rdst) 1457 return (0); 1458 info->rdst = value; 1459 break; 1460 case Z_RATE_QUALITY: 1461 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX) 1462 return (EINVAL); 1463 if (value == info->quality) 1464 return (0); 1465 /* 1466 * If we failed to set the requested quality, restore 1467 * the old one. We cannot afford leaving it broken since 1468 * passive feeder chains like vchans never reinitialize 1469 * itself. 1470 */ 1471 oquality = info->quality; 1472 info->quality = value; 1473 if (z_resampler_setup(f) == 0) 1474 return (0); 1475 info->quality = oquality; 1476 break; 1477 case Z_RATE_CHANNELS: 1478 if (value < SND_CHN_MIN || value > SND_CHN_MAX) 1479 return (EINVAL); 1480 if (value == info->channels) 1481 return (0); 1482 info->channels = value; 1483 break; 1484 default: 1485 return (EINVAL); 1486 break; 1487 } 1488 1489 return (z_resampler_setup(f)); 1490 } 1491 1492 static int 1493 z_resampler_get(struct pcm_feeder *f, int what) 1494 { 1495 struct z_info *info; 1496 1497 info = f->data; 1498 1499 switch (what) { 1500 case Z_RATE_SRC: 1501 return (info->rsrc); 1502 break; 1503 case Z_RATE_DST: 1504 return (info->rdst); 1505 break; 1506 case Z_RATE_QUALITY: 1507 return (info->quality); 1508 break; 1509 case Z_RATE_CHANNELS: 1510 return (info->channels); 1511 break; 1512 default: 1513 break; 1514 } 1515 1516 return (-1); 1517 } 1518 1519 static int 1520 z_resampler_init(struct pcm_feeder *f) 1521 { 1522 struct z_info *info; 1523 int ret; 1524 1525 if (f->desc->in != f->desc->out) 1526 return (EINVAL); 1527 1528 info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO); 1529 if (info == NULL) 1530 return (ENOMEM); 1531 1532 info->rsrc = Z_RATE_DEFAULT; 1533 info->rdst = Z_RATE_DEFAULT; 1534 info->quality = feeder_rate_quality; 1535 info->channels = AFMT_CHANNEL(f->desc->in); 1536 1537 f->data = info; 1538 1539 ret = z_resampler_setup(f); 1540 if (ret != 0) { 1541 if (info->z_pcoeff != NULL) 1542 free(info->z_pcoeff, M_DEVBUF); 1543 if (info->z_delay != NULL) 1544 free(info->z_delay, M_DEVBUF); 1545 free(info, M_DEVBUF); 1546 f->data = NULL; 1547 } 1548 1549 return (ret); 1550 } 1551 1552 static int 1553 z_resampler_free(struct pcm_feeder *f) 1554 { 1555 struct z_info *info; 1556 1557 info = f->data; 1558 if (info != NULL) { 1559 if (info->z_pcoeff != NULL) 1560 free(info->z_pcoeff, M_DEVBUF); 1561 if (info->z_delay != NULL) 1562 free(info->z_delay, M_DEVBUF); 1563 free(info, M_DEVBUF); 1564 } 1565 1566 f->data = NULL; 1567 1568 return (0); 1569 } 1570 1571 static uint32_t 1572 z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c, 1573 uint8_t *b, uint32_t count, void *source) 1574 { 1575 struct z_info *info; 1576 int32_t alphadrift, startdrift, reqout, ocount, reqin, align; 1577 int32_t fetch, fetched, start, cp; 1578 uint8_t *dst; 1579 1580 info = f->data; 1581 if (info->z_resample == NULL) 1582 return (z_feed(f->source, c, b, count, source)); 1583 1584 /* 1585 * Calculate sample size alignment and amount of sample output. 1586 * We will do everything in sample domain, but at the end we 1587 * will jump back to byte domain. 1588 */ 1589 align = info->channels * info->bps; 1590 ocount = SND_FXDIV(count, align); 1591 if (ocount == 0) 1592 return (0); 1593 1594 /* 1595 * Calculate amount of input samples that is needed to generate 1596 * exact amount of output. 1597 */ 1598 reqin = z_gy2gx(info, ocount) - z_fetched(info); 1599 1600 #ifdef Z_USE_ALPHADRIFT 1601 startdrift = info->z_startdrift; 1602 alphadrift = info->z_alphadrift; 1603 #else 1604 startdrift = _Z_GY2GX(info, 0, 1); 1605 alphadrift = z_drift(info, startdrift, 1); 1606 #endif 1607 1608 dst = b; 1609 1610 do { 1611 if (reqin != 0) { 1612 fetch = z_min(z_free(info), reqin); 1613 if (fetch == 0) { 1614 /* 1615 * No more free spaces, so wind enough 1616 * samples back to the head of delay line 1617 * in byte domain. 1618 */ 1619 fetched = z_fetched(info); 1620 start = z_prev(info, info->z_start, 1621 (info->z_size << 1) - 1); 1622 cp = (info->z_size << 1) + fetched; 1623 z_copy(info->z_delay + (start * align), 1624 info->z_delay, cp * align); 1625 info->z_start = 1626 z_prev(info, info->z_size << 1, 1); 1627 info->z_pos = 1628 z_next(info, info->z_start, fetched + 1); 1629 fetch = z_min(z_free(info), reqin); 1630 #ifdef Z_DIAGNOSTIC 1631 if (1) { 1632 static uint32_t kk = 0; 1633 fprintf(stderr, 1634 "Buffer Move: " 1635 "start=%d fetched=%d cp=%d " 1636 "cycle=%u [%u]\r", 1637 start, fetched, cp, info->z_cycle, 1638 ++kk); 1639 } 1640 info->z_cycle = 0; 1641 #endif 1642 } 1643 if (fetch != 0) { 1644 /* 1645 * Fetch in byte domain and jump back 1646 * to sample domain. 1647 */ 1648 fetched = SND_FXDIV(z_feed(f->source, c, 1649 info->z_delay + (info->z_pos * align), 1650 fetch * align, source), align); 1651 /* 1652 * Prepare to convert fetched buffer, 1653 * or mark us done if we cannot fulfill 1654 * the request. 1655 */ 1656 reqin -= fetched; 1657 info->z_pos += fetched; 1658 if (fetched != fetch) 1659 reqin = 0; 1660 } 1661 } 1662 1663 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount); 1664 if (reqout != 0) { 1665 ocount -= reqout; 1666 1667 /* 1668 * Drift.. drift.. drift.. 1669 * 1670 * Notice that there are 2 methods of doing the drift 1671 * operations: The former is much cleaner (in a sense 1672 * of mathematical readings of my eyes), but slower 1673 * due to integer division in z_gy2gx(). Nevertheless, 1674 * both should give the same exact accurate drifting 1675 * results, so the later is favourable. 1676 */ 1677 do { 1678 info->z_resample(info, dst); 1679 #if 0 1680 startdrift = z_gy2gx(info, 1); 1681 alphadrift = z_drift(info, startdrift, 1); 1682 info->z_start += startdrift; 1683 info->z_alpha += alphadrift; 1684 #else 1685 info->z_alpha += alphadrift; 1686 if (info->z_alpha < info->z_gy) 1687 info->z_start += startdrift; 1688 else { 1689 info->z_start += startdrift - 1; 1690 info->z_alpha -= info->z_gy; 1691 } 1692 #endif 1693 dst += align; 1694 #ifdef Z_DIAGNOSTIC 1695 info->z_cycle++; 1696 #endif 1697 } while (--reqout != 0); 1698 } 1699 } while (reqin != 0 && ocount != 0); 1700 1701 /* 1702 * Back to byte domain.. 1703 */ 1704 return (dst - b); 1705 } 1706 1707 static int 1708 z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, 1709 uint32_t count, void *source) 1710 { 1711 uint32_t feed, maxfeed, left; 1712 1713 /* 1714 * Split count to smaller chunks to avoid possible 32bit overflow. 1715 */ 1716 maxfeed = ((struct z_info *)(f->data))->z_maxfeed; 1717 left = count; 1718 1719 do { 1720 feed = z_resampler_feed_internal(f, c, b, 1721 z_min(maxfeed, left), source); 1722 b += feed; 1723 left -= feed; 1724 } while (left != 0 && feed != 0); 1725 1726 return (count - left); 1727 } 1728 1729 static struct pcm_feederdesc feeder_rate_desc[] = { 1730 { FEEDER_RATE, 0, 0, 0, 0 }, 1731 { 0, 0, 0, 0, 0 }, 1732 }; 1733 1734 static kobj_method_t feeder_rate_methods[] = { 1735 KOBJMETHOD(feeder_init, z_resampler_init), 1736 KOBJMETHOD(feeder_free, z_resampler_free), 1737 KOBJMETHOD(feeder_set, z_resampler_set), 1738 KOBJMETHOD(feeder_get, z_resampler_get), 1739 KOBJMETHOD(feeder_feed, z_resampler_feed), 1740 KOBJMETHOD_END 1741 }; 1742 1743 FEEDER_DECLARE(feeder_rate, NULL); 1744