1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * feeder_rate: (Codename: Z Resampler), which means any effort to create 31 * future replacement for this resampler are simply absurd unless 32 * the world decide to add new alphabet after Z. 33 * 34 * FreeBSD bandlimited sinc interpolator, technically based on 35 * "Digital Audio Resampling" by Julius O. Smith III 36 * - http://ccrma.stanford.edu/~jos/resample/ 37 * 38 * The Good: 39 * + all out fixed point integer operations, no soft-float or anything like 40 * that. 41 * + classic polyphase converters with high quality coefficient's polynomial 42 * interpolators. 43 * + fast, faster, or the fastest of its kind. 44 * + compile time configurable. 45 * + etc etc.. 46 * 47 * The Bad: 48 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I 49 * couldn't think of anything simpler than that (feeder_rate_xxx is just 50 * too long). Expect possible clashes with other zitizens (any?). 51 */ 52 53 #ifdef _KERNEL 54 #ifdef HAVE_KERNEL_OPTION_HEADERS 55 #include "opt_snd.h" 56 #endif 57 #include <dev/sound/pcm/sound.h> 58 #include <dev/sound/pcm/pcm.h> 59 #include "feeder_if.h" 60 61 #define SND_USE_FXDIV 62 #include "snd_fxdiv_gen.h" 63 #endif 64 65 #include "feeder_rate_gen.h" 66 67 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC) 68 #undef Z_DIAGNOSTIC 69 #define Z_DIAGNOSTIC 1 70 #elif defined(_KERNEL) 71 #undef Z_DIAGNOSTIC 72 #endif 73 74 #ifndef Z_QUALITY_DEFAULT 75 #define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR 76 #endif 77 78 #define Z_RESERVOIR 2048 79 #define Z_RESERVOIR_MAX 131072 80 81 #define Z_SINC_MAX 0x3fffff 82 #define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */ 83 84 #ifdef _KERNEL 85 #define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */ 86 #else 87 #define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */ 88 #endif 89 90 #define Z_RATE_DEFAULT 48000 91 92 #define Z_RATE_MIN FEEDRATE_RATEMIN 93 #define Z_RATE_MAX FEEDRATE_RATEMAX 94 #define Z_ROUNDHZ FEEDRATE_ROUNDHZ 95 #define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN 96 #define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX 97 98 #define Z_RATE_SRC FEEDRATE_SRC 99 #define Z_RATE_DST FEEDRATE_DST 100 #define Z_RATE_QUALITY FEEDRATE_QUALITY 101 #define Z_RATE_CHANNELS FEEDRATE_CHANNELS 102 103 #define Z_PARANOID 1 104 105 #define Z_MULTIFORMAT 1 106 107 #ifdef _KERNEL 108 #undef Z_USE_ALPHADRIFT 109 #define Z_USE_ALPHADRIFT 1 110 #endif 111 112 #define Z_FACTOR_MIN 1 113 #define Z_FACTOR_MAX Z_MASK 114 #define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX)) 115 116 struct z_info; 117 118 typedef void (*z_resampler_t)(struct z_info *, uint8_t *); 119 120 struct z_info { 121 int32_t rsrc, rdst; /* original source / destination rates */ 122 int32_t src, dst; /* rounded source / destination rates */ 123 int32_t channels; /* total channels */ 124 int32_t bps; /* bytes-per-sample */ 125 int32_t quality; /* resampling quality */ 126 127 int32_t z_gx, z_gy; /* interpolation / decimation ratio */ 128 int32_t z_alpha; /* output sample time phase / drift */ 129 uint8_t *z_delay; /* FIR delay line / linear buffer */ 130 int32_t *z_coeff; /* FIR coefficients */ 131 int32_t *z_dcoeff; /* FIR coefficients differences */ 132 int32_t *z_pcoeff; /* FIR polyphase coefficients */ 133 int32_t z_scale; /* output scaling */ 134 int32_t z_dx; /* input sample drift increment */ 135 int32_t z_dy; /* output sample drift increment */ 136 #ifdef Z_USE_ALPHADRIFT 137 int32_t z_alphadrift; /* alpha drift rate */ 138 int32_t z_startdrift; /* buffer start position drift rate */ 139 #endif 140 int32_t z_mask; /* delay line full length mask */ 141 int32_t z_size; /* half width of FIR taps */ 142 int32_t z_full; /* full size of delay line */ 143 int32_t z_alloc; /* largest allocated full size of delay line */ 144 int32_t z_start; /* buffer processing start position */ 145 int32_t z_pos; /* current position for the next feed */ 146 #ifdef Z_DIAGNOSTIC 147 uint32_t z_cycle; /* output cycle, purely for statistical */ 148 #endif 149 int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */ 150 151 z_resampler_t z_resample; 152 }; 153 154 int feeder_rate_min = Z_RATE_MIN; 155 int feeder_rate_max = Z_RATE_MAX; 156 int feeder_rate_round = Z_ROUNDHZ; 157 int feeder_rate_quality = Z_QUALITY_DEFAULT; 158 159 static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX; 160 161 #ifdef _KERNEL 162 static char feeder_rate_presets[] = FEEDER_RATE_PRESETS; 163 SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD, 164 &feeder_rate_presets, 0, "compile-time rate presets"); 165 SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN, 166 &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries"); 167 168 static int 169 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS) 170 { 171 int err, val; 172 173 val = feeder_rate_min; 174 err = sysctl_handle_int(oidp, &val, 0, req); 175 176 if (err != 0 || req->newptr == NULL || val == feeder_rate_min) 177 return (err); 178 179 if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max)) 180 return (EINVAL); 181 182 feeder_rate_min = val; 183 184 return (0); 185 } 186 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, 187 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 188 sysctl_hw_snd_feeder_rate_min, "I", 189 "minimum allowable rate"); 190 191 static int 192 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS) 193 { 194 int err, val; 195 196 val = feeder_rate_max; 197 err = sysctl_handle_int(oidp, &val, 0, req); 198 199 if (err != 0 || req->newptr == NULL || val == feeder_rate_max) 200 return (err); 201 202 if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min)) 203 return (EINVAL); 204 205 feeder_rate_max = val; 206 207 return (0); 208 } 209 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, 210 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 211 sysctl_hw_snd_feeder_rate_max, "I", 212 "maximum allowable rate"); 213 214 static int 215 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS) 216 { 217 int err, val; 218 219 val = feeder_rate_round; 220 err = sysctl_handle_int(oidp, &val, 0, req); 221 222 if (err != 0 || req->newptr == NULL || val == feeder_rate_round) 223 return (err); 224 225 if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX) 226 return (EINVAL); 227 228 feeder_rate_round = val - (val % Z_ROUNDHZ); 229 230 return (0); 231 } 232 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, 233 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 234 sysctl_hw_snd_feeder_rate_round, "I", 235 "sample rate converter rounding threshold"); 236 237 static int 238 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS) 239 { 240 struct snddev_info *d; 241 struct pcm_channel *c; 242 struct pcm_feeder *f; 243 int i, err, val; 244 245 val = feeder_rate_quality; 246 err = sysctl_handle_int(oidp, &val, 0, req); 247 248 if (err != 0 || req->newptr == NULL || val == feeder_rate_quality) 249 return (err); 250 251 if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX) 252 return (EINVAL); 253 254 feeder_rate_quality = val; 255 256 /* 257 * Traverse all available channels on each device and try to 258 * set resampler quality if and only if it is exist as 259 * part of feeder chains and the channel is idle. 260 */ 261 for (i = 0; pcm_devclass != NULL && 262 i < devclass_get_maxunit(pcm_devclass); i++) { 263 d = devclass_get_softc(pcm_devclass, i); 264 if (!PCM_REGISTERED(d)) 265 continue; 266 PCM_LOCK(d); 267 PCM_WAIT(d); 268 PCM_ACQUIRE(d); 269 CHN_FOREACH(c, d, channels.pcm) { 270 CHN_LOCK(c); 271 f = feeder_find(c, FEEDER_RATE); 272 if (f == NULL || f->data == NULL || CHN_STARTED(c)) { 273 CHN_UNLOCK(c); 274 continue; 275 } 276 (void)FEEDER_SET(f, FEEDRATE_QUALITY, val); 277 CHN_UNLOCK(c); 278 } 279 PCM_RELEASE(d); 280 PCM_UNLOCK(d); 281 } 282 283 return (0); 284 } 285 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, 286 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int), 287 sysctl_hw_snd_feeder_rate_quality, "I", 288 "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. " 289 __XSTRING(Z_QUALITY_MAX)"=high)"); 290 #endif /* _KERNEL */ 291 292 /* 293 * Resampler type. 294 */ 295 #define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH) 296 #define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR) 297 #define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR) 298 299 /* 300 * Macroses for accurate sample time drift calculations. 301 * 302 * gy2gx : given the amount of output, return the _exact_ required amount of 303 * input. 304 * gx2gy : given the amount of input, return the _maximum_ amount of output 305 * that will be generated. 306 * drift : given the amount of input and output, return the elapsed 307 * sample-time. 308 */ 309 #define _Z_GCAST(x) ((uint64_t)(x)) 310 311 #if defined(__i386__) 312 /* 313 * This is where i386 being beaten to a pulp. Fortunately this function is 314 * rarely being called and if it is, it will decide the best (hopefully) 315 * fastest way to do the division. If we can ensure that everything is dword 316 * aligned, letting the compiler to call udivdi3 to do the division can be 317 * faster compared to this. 318 * 319 * amd64 is the clear winner here, no question about it. 320 */ 321 static __inline uint32_t 322 Z_DIV(uint64_t v, uint32_t d) 323 { 324 uint32_t hi, lo, quo, rem; 325 326 hi = v >> 32; 327 lo = v & 0xffffffff; 328 329 /* 330 * As much as we can, try to avoid long division like a plague. 331 */ 332 if (hi == 0) 333 quo = lo / d; 334 else 335 __asm("divl %2" 336 : "=a" (quo), "=d" (rem) 337 : "r" (d), "0" (lo), "1" (hi)); 338 339 return (quo); 340 } 341 #else 342 #define Z_DIV(x, y) ((x) / (y)) 343 #endif 344 345 #define _Z_GY2GX(i, a, v) \ 346 Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \ 347 (i)->z_gy) 348 349 #define _Z_GX2GY(i, a, v) \ 350 Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx) 351 352 #define _Z_DRIFT(i, x, y) \ 353 ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y))) 354 355 #define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v) 356 #define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v) 357 #define z_drift(i, x, y) _Z_DRIFT(i, x, y) 358 359 /* 360 * Macroses for SINC coefficients table manipulations.. whatever. 361 */ 362 #define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1) 363 364 #define Z_SINC_LEN(i) \ 365 ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \ 366 Z_SHIFT) / (i)->z_dy)) 367 368 #define Z_SINC_BASE_LEN(i) \ 369 ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1)) 370 371 /* 372 * Macroses for linear delay buffer operations. Alignment is not 373 * really necessary since we're not using true circular buffer, but it 374 * will help us guard against possible trespasser. To be honest, 375 * the linear block operations does not need guarding at all due to 376 * accurate drifting! 377 */ 378 #define z_align(i, v) ((v) & (i)->z_mask) 379 #define z_next(i, o, v) z_align(i, (o) + (v)) 380 #define z_prev(i, o, v) z_align(i, (o) - (v)) 381 #define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1) 382 #define z_free(i) ((i)->z_full - (i)->z_pos) 383 384 /* 385 * Macroses for Bla Bla .. :) 386 */ 387 #define z_copy(src, dst, sz) (void)memcpy(dst, src, sz) 388 #define z_feed(...) FEEDER_FEED(__VA_ARGS__) 389 390 static __inline uint32_t 391 z_min(uint32_t x, uint32_t y) 392 { 393 394 return ((x < y) ? x : y); 395 } 396 397 static int32_t 398 z_gcd(int32_t x, int32_t y) 399 { 400 int32_t w; 401 402 while (y != 0) { 403 w = x % y; 404 x = y; 405 y = w; 406 } 407 408 return (x); 409 } 410 411 static int32_t 412 z_roundpow2(int32_t v) 413 { 414 int32_t i; 415 416 i = 1; 417 418 /* 419 * Let it overflow at will.. 420 */ 421 while (i > 0 && i < v) 422 i <<= 1; 423 424 return (i); 425 } 426 427 /* 428 * Zero Order Hold, the worst of the worst, an insult against quality, 429 * but super fast. 430 */ 431 static void 432 z_feed_zoh(struct z_info *info, uint8_t *dst) 433 { 434 uint32_t cnt; 435 uint8_t *src; 436 437 cnt = info->channels * info->bps; 438 src = info->z_delay + (info->z_start * cnt); 439 440 /* 441 * This is a bit faster than doing bcopy() since we're dealing 442 * with possible unaligned samples. 443 */ 444 do { 445 *dst++ = *src++; 446 } while (--cnt != 0); 447 } 448 449 /* 450 * Linear Interpolation. This at least sounds better (perceptually) and fast, 451 * but without any proper filtering which means aliasing still exist and 452 * could become worst with a right sample. Interpolation centered within 453 * Z_LINEAR_ONE between the present and previous sample and everything is 454 * done with simple 32bit scaling arithmetic. 455 */ 456 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 457 static void \ 458 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 459 { \ 460 int32_t z; \ 461 intpcm_t x, y; \ 462 uint32_t ch; \ 463 uint8_t *sx, *sy; \ 464 \ 465 z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \ 466 \ 467 sx = info->z_delay + (info->z_start * info->channels * \ 468 PCM_##BIT##_BPS); \ 469 sy = sx - (info->channels * PCM_##BIT##_BPS); \ 470 \ 471 ch = info->channels; \ 472 \ 473 do { \ 474 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \ 475 y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \ 476 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \ 477 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \ 478 sx += PCM_##BIT##_BPS; \ 479 sy += PCM_##BIT##_BPS; \ 480 dst += PCM_##BIT##_BPS; \ 481 } while (--ch != 0); \ 482 } 483 484 /* 485 * Userland clipping diagnostic check, not enabled in kernel compilation. 486 * While doing sinc interpolation, unrealistic samples like full scale sine 487 * wav will clip, but for other things this will not make any noise at all. 488 * Everybody should learn how to normalized perceived loudness of their own 489 * music/sounds/samples (hint: ReplayGain). 490 */ 491 #ifdef Z_DIAGNOSTIC 492 #define Z_CLIP_CHECK(v, BIT) do { \ 493 if ((v) > PCM_S##BIT##_MAX) { \ 494 fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \ 495 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \ 496 } else if ((v) < PCM_S##BIT##_MIN) { \ 497 fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \ 498 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \ 499 } \ 500 } while (0) 501 #else 502 #define Z_CLIP_CHECK(...) 503 #endif 504 505 #define Z_CLAMP(v, BIT) \ 506 (((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \ 507 (((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v))) 508 509 /* 510 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so 511 * there's no point to hold the plate any longer. All samples will be 512 * shifted to a full 32 bit, scaled and restored during write for 513 * maximum dynamic range (only for downsampling). 514 */ 515 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \ 516 c += z >> Z_SHIFT; \ 517 z &= Z_MASK; \ 518 coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \ 519 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 520 v += Z_NORM_##BIT((intpcm64_t)x * coeff); \ 521 z += info->z_dy; \ 522 p adv##= info->channels * PCM_##BIT##_BPS 523 524 /* 525 * XXX GCC4 optimization is such a !@#$%, need manual unrolling. 526 */ 527 #if defined(__GNUC__) && __GNUC__ >= 4 528 #define Z_SINC_ACCUMULATE(...) do { \ 529 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 530 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 531 } while (0) 532 #define Z_SINC_ACCUMULATE_DECR 2 533 #else 534 #define Z_SINC_ACCUMULATE(...) do { \ 535 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 536 } while (0) 537 #define Z_SINC_ACCUMULATE_DECR 1 538 #endif 539 540 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 541 static void \ 542 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 543 { \ 544 intpcm64_t v; \ 545 intpcm_t x; \ 546 uint8_t *p; \ 547 int32_t coeff, z, *z_coeff, *z_dcoeff; \ 548 uint32_t c, center, ch, i; \ 549 \ 550 z_coeff = info->z_coeff; \ 551 z_dcoeff = info->z_dcoeff; \ 552 center = z_prev(info, info->z_start, info->z_size); \ 553 ch = info->channels * PCM_##BIT##_BPS; \ 554 dst += ch; \ 555 \ 556 do { \ 557 dst -= PCM_##BIT##_BPS; \ 558 ch -= PCM_##BIT##_BPS; \ 559 v = 0; \ 560 z = info->z_alpha * info->z_dx; \ 561 c = 0; \ 562 p = info->z_delay + (z_next(info, center, 1) * \ 563 info->channels * PCM_##BIT##_BPS) + ch; \ 564 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 565 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \ 566 z = info->z_dy - (info->z_alpha * info->z_dx); \ 567 c = 0; \ 568 p = info->z_delay + (center * info->channels * \ 569 PCM_##BIT##_BPS) + ch; \ 570 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 571 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \ 572 if (info->z_scale != Z_ONE) \ 573 v = Z_SCALE_##BIT(v, info->z_scale); \ 574 else \ 575 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 576 Z_CLIP_CHECK(v, BIT); \ 577 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ 578 } while (ch != 0); \ 579 } 580 581 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \ 582 static void \ 583 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 584 { \ 585 intpcm64_t v; \ 586 intpcm_t x; \ 587 uint8_t *p; \ 588 int32_t ch, i, start, *z_pcoeff; \ 589 \ 590 ch = info->channels * PCM_##BIT##_BPS; \ 591 dst += ch; \ 592 start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \ 593 \ 594 do { \ 595 dst -= PCM_##BIT##_BPS; \ 596 ch -= PCM_##BIT##_BPS; \ 597 v = 0; \ 598 p = info->z_delay + start + ch; \ 599 z_pcoeff = info->z_pcoeff + \ 600 ((info->z_alpha * info->z_size) << 1); \ 601 for (i = info->z_size; i != 0; i--) { \ 602 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 603 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 604 z_pcoeff++; \ 605 p += info->channels * PCM_##BIT##_BPS; \ 606 x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \ 607 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 608 z_pcoeff++; \ 609 p += info->channels * PCM_##BIT##_BPS; \ 610 } \ 611 if (info->z_scale != Z_ONE) \ 612 v = Z_SCALE_##BIT(v, info->z_scale); \ 613 else \ 614 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 615 Z_CLIP_CHECK(v, BIT); \ 616 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \ 617 } while (ch != 0); \ 618 } 619 620 #define Z_DECLARE(SIGN, BIT, ENDIAN) \ 621 Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 622 Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 623 Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) 624 625 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 626 Z_DECLARE(S, 16, LE) 627 Z_DECLARE(S, 32, LE) 628 #endif 629 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 630 Z_DECLARE(S, 16, BE) 631 Z_DECLARE(S, 32, BE) 632 #endif 633 #ifdef SND_FEEDER_MULTIFORMAT 634 Z_DECLARE(S, 8, NE) 635 Z_DECLARE(S, 24, LE) 636 Z_DECLARE(S, 24, BE) 637 Z_DECLARE(U, 8, NE) 638 Z_DECLARE(U, 16, LE) 639 Z_DECLARE(U, 24, LE) 640 Z_DECLARE(U, 32, LE) 641 Z_DECLARE(U, 16, BE) 642 Z_DECLARE(U, 24, BE) 643 Z_DECLARE(U, 32, BE) 644 #endif 645 646 enum { 647 Z_RESAMPLER_ZOH, 648 Z_RESAMPLER_LINEAR, 649 Z_RESAMPLER_SINC, 650 Z_RESAMPLER_SINC_POLYPHASE, 651 Z_RESAMPLER_LAST 652 }; 653 654 #define Z_RESAMPLER_IDX(i) \ 655 (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality) 656 657 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \ 658 { \ 659 AFMT_##SIGN##BIT##_##ENDIAN, \ 660 { \ 661 [Z_RESAMPLER_ZOH] = z_feed_zoh, \ 662 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \ 663 [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \ 664 [Z_RESAMPLER_SINC_POLYPHASE] = \ 665 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \ 666 } \ 667 } 668 669 static const struct { 670 uint32_t format; 671 z_resampler_t resampler[Z_RESAMPLER_LAST]; 672 } z_resampler_tab[] = { 673 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 674 Z_RESAMPLER_ENTRY(S, 16, LE), 675 Z_RESAMPLER_ENTRY(S, 32, LE), 676 #endif 677 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 678 Z_RESAMPLER_ENTRY(S, 16, BE), 679 Z_RESAMPLER_ENTRY(S, 32, BE), 680 #endif 681 #ifdef SND_FEEDER_MULTIFORMAT 682 Z_RESAMPLER_ENTRY(S, 8, NE), 683 Z_RESAMPLER_ENTRY(S, 24, LE), 684 Z_RESAMPLER_ENTRY(S, 24, BE), 685 Z_RESAMPLER_ENTRY(U, 8, NE), 686 Z_RESAMPLER_ENTRY(U, 16, LE), 687 Z_RESAMPLER_ENTRY(U, 24, LE), 688 Z_RESAMPLER_ENTRY(U, 32, LE), 689 Z_RESAMPLER_ENTRY(U, 16, BE), 690 Z_RESAMPLER_ENTRY(U, 24, BE), 691 Z_RESAMPLER_ENTRY(U, 32, BE), 692 #endif 693 }; 694 695 #define Z_RESAMPLER_TAB_SIZE \ 696 ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0]))) 697 698 static void 699 z_resampler_reset(struct z_info *info) 700 { 701 702 info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 && 703 info->rsrc > feeder_rate_round) ? feeder_rate_round : 1)); 704 info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 && 705 info->rdst > feeder_rate_round) ? feeder_rate_round : 1)); 706 info->z_gx = 1; 707 info->z_gy = 1; 708 info->z_alpha = 0; 709 info->z_resample = NULL; 710 info->z_size = 1; 711 info->z_coeff = NULL; 712 info->z_dcoeff = NULL; 713 if (info->z_pcoeff != NULL) { 714 free(info->z_pcoeff, M_DEVBUF); 715 info->z_pcoeff = NULL; 716 } 717 info->z_scale = Z_ONE; 718 info->z_dx = Z_FULL_ONE; 719 info->z_dy = Z_FULL_ONE; 720 #ifdef Z_DIAGNOSTIC 721 info->z_cycle = 0; 722 #endif 723 if (info->quality < Z_QUALITY_MIN) 724 info->quality = Z_QUALITY_MIN; 725 else if (info->quality > Z_QUALITY_MAX) 726 info->quality = Z_QUALITY_MAX; 727 } 728 729 #ifdef Z_PARANOID 730 static int32_t 731 z_resampler_sinc_len(struct z_info *info) 732 { 733 int32_t c, z, len, lmax; 734 735 if (!Z_IS_SINC(info)) 736 return (1); 737 738 /* 739 * A rather careful (or useless) way to calculate filter length. 740 * Z_SINC_LEN() itself is accurate enough to do its job. Extra 741 * sanity checking is not going to hurt though.. 742 */ 743 c = 0; 744 z = info->z_dy; 745 len = 0; 746 lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len; 747 748 do { 749 c += z >> Z_SHIFT; 750 z &= Z_MASK; 751 z += info->z_dy; 752 } while (c < lmax && ++len > 0); 753 754 if (len != Z_SINC_LEN(info)) { 755 #ifdef _KERNEL 756 printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n", 757 __func__, len, Z_SINC_LEN(info)); 758 #else 759 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n", 760 __func__, len, Z_SINC_LEN(info)); 761 return (-1); 762 #endif 763 } 764 765 return (len); 766 } 767 #else 768 #define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1) 769 #endif 770 771 #define Z_POLYPHASE_COEFF_SHIFT 0 772 773 /* 774 * Pick suitable polynomial interpolators based on filter oversampled ratio 775 * (2 ^ Z_DRIFT_SHIFT). 776 */ 777 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \ 778 defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \ 779 defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \ 780 defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \ 781 defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X)) 782 #if Z_DRIFT_SHIFT >= 6 783 #define Z_COEFF_INTERP_BSPLINE 1 784 #elif Z_DRIFT_SHIFT >= 5 785 #define Z_COEFF_INTERP_OPT32X 1 786 #elif Z_DRIFT_SHIFT == 4 787 #define Z_COEFF_INTERP_OPT16X 1 788 #elif Z_DRIFT_SHIFT == 3 789 #define Z_COEFF_INTERP_OPT8X 1 790 #elif Z_DRIFT_SHIFT == 2 791 #define Z_COEFF_INTERP_OPT4X 1 792 #elif Z_DRIFT_SHIFT == 1 793 #define Z_COEFF_INTERP_OPT2X 1 794 #else 795 #error "Z_DRIFT_SHIFT screwed!" 796 #endif 797 #endif 798 799 /* 800 * In classic polyphase mode, the actual coefficients for each phases need to 801 * be calculated based on default prototype filters. For highly oversampled 802 * filter, linear or quadradatic interpolator should be enough. Anything less 803 * than that require 'special' interpolators to reduce interpolation errors. 804 * 805 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio" 806 * by Olli Niemitalo 807 * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf 808 * 809 */ 810 static int32_t 811 z_coeff_interpolate(int32_t z, int32_t *z_coeff) 812 { 813 int32_t coeff; 814 #if defined(Z_COEFF_INTERP_ZOH) 815 816 /* 1-point, 0th-order (Zero Order Hold) */ 817 z = z; 818 coeff = z_coeff[0]; 819 #elif defined(Z_COEFF_INTERP_LINEAR) 820 int32_t zl0, zl1; 821 822 /* 2-point, 1st-order Linear */ 823 zl0 = z_coeff[0]; 824 zl1 = z_coeff[1] - z_coeff[0]; 825 826 coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0; 827 #elif defined(Z_COEFF_INTERP_QUADRATIC) 828 int32_t zq0, zq1, zq2; 829 830 /* 3-point, 2nd-order Quadratic */ 831 zq0 = z_coeff[0]; 832 zq1 = z_coeff[1] - z_coeff[-1]; 833 zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1); 834 835 coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) + 836 zq1) * z, Z_SHIFT + 1) + zq0; 837 #elif defined(Z_COEFF_INTERP_HERMITE) 838 int32_t zh0, zh1, zh2, zh3; 839 840 /* 4-point, 3rd-order Hermite */ 841 zh0 = z_coeff[0]; 842 zh1 = z_coeff[1] - z_coeff[-1]; 843 zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) - 844 z_coeff[2]; 845 zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3); 846 847 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) + 848 zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0; 849 #elif defined(Z_COEFF_INTERP_BSPLINE) 850 int32_t zb0, zb1, zb2, zb3; 851 852 /* 4-point, 3rd-order B-Spline */ 853 zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) + 854 z_coeff[-1] + z_coeff[1]), 30); 855 zb1 = z_coeff[1] - z_coeff[-1]; 856 zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1); 857 zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) + 858 z_coeff[2] - z_coeff[-1]), 30); 859 860 coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) + 861 zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1; 862 #elif defined(Z_COEFF_INTERP_OPT32X) 863 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 864 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 865 866 /* 6-point, 5th-order Optimal 32x */ 867 zoz = z - (Z_ONE >> 1); 868 zoe1 = z_coeff[1] + z_coeff[0]; 869 zoe2 = z_coeff[2] + z_coeff[-1]; 870 zoe3 = z_coeff[3] + z_coeff[-2]; 871 zoo1 = z_coeff[1] - z_coeff[0]; 872 zoo2 = z_coeff[2] - z_coeff[-1]; 873 zoo3 = z_coeff[3] - z_coeff[-2]; 874 875 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 876 (0x00170c29LL * zoe3), 30); 877 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 878 (0x008cd4dcLL * zoo3), 30); 879 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 880 (0x0160b5d0LL * zoe3), 30); 881 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 882 (0x01cfe914LL * zoo3), 30); 883 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 884 (0x015508ddLL * zoe3), 30); 885 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 886 (0x0082d81aLL * zoo3), 30); 887 888 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 889 (int64_t)zoc5 * zoz, Z_SHIFT) + 890 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 891 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 892 #elif defined(Z_COEFF_INTERP_OPT16X) 893 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 894 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 895 896 /* 6-point, 5th-order Optimal 16x */ 897 zoz = z - (Z_ONE >> 1); 898 zoe1 = z_coeff[1] + z_coeff[0]; 899 zoe2 = z_coeff[2] + z_coeff[-1]; 900 zoe3 = z_coeff[3] + z_coeff[-2]; 901 zoo1 = z_coeff[1] - z_coeff[0]; 902 zoo2 = z_coeff[2] - z_coeff[-1]; 903 zoo3 = z_coeff[3] - z_coeff[-2]; 904 905 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 906 (0x00170c29LL * zoe3), 30); 907 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 908 (0x008cd4dcLL * zoo3), 30); 909 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 910 (0x0160b5d0LL * zoe3), 30); 911 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 912 (0x01cfe914LL * zoo3), 30); 913 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 914 (0x015508ddLL * zoe3), 30); 915 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 916 (0x0082d81aLL * zoo3), 30); 917 918 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 919 (int64_t)zoc5 * zoz, Z_SHIFT) + 920 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 921 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 922 #elif defined(Z_COEFF_INTERP_OPT8X) 923 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 924 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 925 926 /* 6-point, 5th-order Optimal 8x */ 927 zoz = z - (Z_ONE >> 1); 928 zoe1 = z_coeff[1] + z_coeff[0]; 929 zoe2 = z_coeff[2] + z_coeff[-1]; 930 zoe3 = z_coeff[3] + z_coeff[-2]; 931 zoo1 = z_coeff[1] - z_coeff[0]; 932 zoo2 = z_coeff[2] - z_coeff[-1]; 933 zoo3 = z_coeff[3] - z_coeff[-2]; 934 935 zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) + 936 (0x0018b23fLL * zoe3), 30); 937 zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) + 938 (0x0094b599LL * zoo3), 30); 939 zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) + 940 (0x016ed8e0LL * zoe3), 30); 941 zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) + 942 (0x01dae93aLL * zoo3), 30); 943 zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) + 944 (0x0153ed07LL * zoe3), 30); 945 zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) + 946 (0x007a7c26LL * zoo3), 30); 947 948 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 949 (int64_t)zoc5 * zoz, Z_SHIFT) + 950 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 951 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 952 #elif defined(Z_COEFF_INTERP_OPT4X) 953 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 954 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 955 956 /* 6-point, 5th-order Optimal 4x */ 957 zoz = z - (Z_ONE >> 1); 958 zoe1 = z_coeff[1] + z_coeff[0]; 959 zoe2 = z_coeff[2] + z_coeff[-1]; 960 zoe3 = z_coeff[3] + z_coeff[-2]; 961 zoo1 = z_coeff[1] - z_coeff[0]; 962 zoo2 = z_coeff[2] - z_coeff[-1]; 963 zoo3 = z_coeff[3] - z_coeff[-2]; 964 965 zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) + 966 (0x001a3784LL * zoe3), 30); 967 zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) + 968 (0x009ca889LL * zoo3), 30); 969 zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) + 970 (0x017ef0c6LL * zoe3), 30); 971 zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) + 972 (0x01e936dbLL * zoo3), 30); 973 zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) + 974 (0x014f5923LL * zoe3), 30); 975 zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) + 976 (0x00670dbdLL * zoo3), 30); 977 978 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 979 (int64_t)zoc5 * zoz, Z_SHIFT) + 980 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 981 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 982 #elif defined(Z_COEFF_INTERP_OPT2X) 983 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 984 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 985 986 /* 6-point, 5th-order Optimal 2x */ 987 zoz = z - (Z_ONE >> 1); 988 zoe1 = z_coeff[1] + z_coeff[0]; 989 zoe2 = z_coeff[2] + z_coeff[-1]; 990 zoe3 = z_coeff[3] + z_coeff[-2]; 991 zoo1 = z_coeff[1] - z_coeff[0]; 992 zoo2 = z_coeff[2] - z_coeff[-1]; 993 zoo3 = z_coeff[3] - z_coeff[-2]; 994 995 zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) + 996 (0x00267881LL * zoe3), 30); 997 zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) + 998 (0x00d683cdLL * zoo3), 30); 999 zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) + 1000 (0x01e2aceaLL * zoe3), 30); 1001 zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) + 1002 (0x022cefc7LL * zoo3), 30); 1003 zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) + 1004 (0x0131d935LL * zoe3), 30); 1005 zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) + 1006 (0x0018ee79LL * zoo3), 30); 1007 1008 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 1009 (int64_t)zoc5 * zoz, Z_SHIFT) + 1010 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 1011 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 1012 #else 1013 #error "Interpolation type screwed!" 1014 #endif 1015 1016 #if Z_POLYPHASE_COEFF_SHIFT > 0 1017 coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT); 1018 #endif 1019 return (coeff); 1020 } 1021 1022 static int 1023 z_resampler_build_polyphase(struct z_info *info) 1024 { 1025 int32_t alpha, c, i, z, idx; 1026 1027 /* Let this be here first. */ 1028 if (info->z_pcoeff != NULL) { 1029 free(info->z_pcoeff, M_DEVBUF); 1030 info->z_pcoeff = NULL; 1031 } 1032 1033 if (feeder_rate_polyphase_max < 1) 1034 return (ENOTSUP); 1035 1036 if (((int64_t)info->z_size * info->z_gy * 2) > 1037 feeder_rate_polyphase_max) { 1038 #ifndef _KERNEL 1039 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n", 1040 info->z_gx, info->z_gy, 1041 (intmax_t)info->z_size * info->z_gy * 2, 1042 feeder_rate_polyphase_max); 1043 #endif 1044 return (E2BIG); 1045 } 1046 1047 info->z_pcoeff = malloc(sizeof(int32_t) * 1048 info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO); 1049 if (info->z_pcoeff == NULL) 1050 return (ENOMEM); 1051 1052 for (alpha = 0; alpha < info->z_gy; alpha++) { 1053 z = alpha * info->z_dx; 1054 c = 0; 1055 for (i = info->z_size; i != 0; i--) { 1056 c += z >> Z_SHIFT; 1057 z &= Z_MASK; 1058 idx = (alpha * info->z_size * 2) + 1059 (info->z_size * 2) - i; 1060 info->z_pcoeff[idx] = 1061 z_coeff_interpolate(z, info->z_coeff + c); 1062 z += info->z_dy; 1063 } 1064 z = info->z_dy - (alpha * info->z_dx); 1065 c = 0; 1066 for (i = info->z_size; i != 0; i--) { 1067 c += z >> Z_SHIFT; 1068 z &= Z_MASK; 1069 idx = (alpha * info->z_size * 2) + i - 1; 1070 info->z_pcoeff[idx] = 1071 z_coeff_interpolate(z, info->z_coeff + c); 1072 z += info->z_dy; 1073 } 1074 } 1075 1076 #ifndef _KERNEL 1077 fprintf(stderr, "Polyphase: [%d/%d] %d entries\n", 1078 info->z_gx, info->z_gy, info->z_size * info->z_gy * 2); 1079 #endif 1080 1081 return (0); 1082 } 1083 1084 static int 1085 z_resampler_setup(struct pcm_feeder *f) 1086 { 1087 struct z_info *info; 1088 int64_t gy2gx_max, gx2gy_max; 1089 uint32_t format; 1090 int32_t align, i, z_scale; 1091 int adaptive; 1092 1093 info = f->data; 1094 z_resampler_reset(info); 1095 1096 if (info->src == info->dst) 1097 return (0); 1098 1099 /* Shrink by greatest common divisor. */ 1100 i = z_gcd(info->src, info->dst); 1101 info->z_gx = info->src / i; 1102 info->z_gy = info->dst / i; 1103 1104 /* Too big, or too small. Bail out. */ 1105 if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy))) 1106 return (EINVAL); 1107 1108 format = f->desc->in; 1109 adaptive = 0; 1110 z_scale = 0; 1111 1112 /* 1113 * Setup everything: filter length, conversion factor, etc. 1114 */ 1115 if (Z_IS_SINC(info)) { 1116 /* 1117 * Downsampling, or upsampling scaling factor. As long as the 1118 * factor can be represented by a fraction of 1 << Z_SHIFT, 1119 * we're pretty much in business. Scaling is not needed for 1120 * upsampling, so we just slap Z_ONE there. 1121 */ 1122 if (info->z_gx > info->z_gy) 1123 /* 1124 * If the downsampling ratio is beyond sanity, 1125 * enable semi-adaptive mode. Although handling 1126 * extreme ratio is possible, the result of the 1127 * conversion is just pointless, unworthy, 1128 * nonsensical noises, etc. 1129 */ 1130 if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX) 1131 z_scale = Z_ONE / Z_SINC_DOWNMAX; 1132 else 1133 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) / 1134 info->z_gx; 1135 else 1136 z_scale = Z_ONE; 1137 1138 /* 1139 * This is actually impossible, unless anything above 1140 * overflow. 1141 */ 1142 if (z_scale < 1) 1143 return (E2BIG); 1144 1145 /* 1146 * Calculate sample time/coefficients index drift. It is 1147 * a constant for upsampling, but downsampling require 1148 * heavy duty filtering with possible too long filters. 1149 * If anything goes wrong, revisit again and enable 1150 * adaptive mode. 1151 */ 1152 z_setup_adaptive_sinc: 1153 if (info->z_pcoeff != NULL) { 1154 free(info->z_pcoeff, M_DEVBUF); 1155 info->z_pcoeff = NULL; 1156 } 1157 1158 if (adaptive == 0) { 1159 info->z_dy = z_scale << Z_DRIFT_SHIFT; 1160 if (info->z_dy < 1) 1161 return (E2BIG); 1162 info->z_scale = z_scale; 1163 } else { 1164 info->z_dy = Z_FULL_ONE; 1165 info->z_scale = Z_ONE; 1166 } 1167 1168 /* Smallest drift increment. */ 1169 info->z_dx = info->z_dy / info->z_gy; 1170 1171 /* 1172 * Overflow or underflow. Try adaptive, let it continue and 1173 * retry. 1174 */ 1175 if (info->z_dx < 1) { 1176 if (adaptive == 0) { 1177 adaptive = 1; 1178 goto z_setup_adaptive_sinc; 1179 } 1180 return (E2BIG); 1181 } 1182 1183 /* 1184 * Round back output drift. 1185 */ 1186 info->z_dy = info->z_dx * info->z_gy; 1187 1188 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) { 1189 if (Z_SINC_COEFF_IDX(info) != i) 1190 continue; 1191 /* 1192 * Calculate required filter length and guard 1193 * against possible abusive result. Note that 1194 * this represents only 1/2 of the entire filter 1195 * length. 1196 */ 1197 info->z_size = z_resampler_sinc_len(info); 1198 1199 /* 1200 * Multiple of 2 rounding, for better accumulator 1201 * performance. 1202 */ 1203 info->z_size &= ~1; 1204 1205 if (info->z_size < 2 || info->z_size > Z_SINC_MAX) { 1206 if (adaptive == 0) { 1207 adaptive = 1; 1208 goto z_setup_adaptive_sinc; 1209 } 1210 return (E2BIG); 1211 } 1212 info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET; 1213 info->z_dcoeff = z_coeff_tab[i].dcoeff; 1214 break; 1215 } 1216 1217 if (info->z_coeff == NULL || info->z_dcoeff == NULL) 1218 return (EINVAL); 1219 } else if (Z_IS_LINEAR(info)) { 1220 /* 1221 * Don't put much effort if we're doing linear interpolation. 1222 * Just center the interpolation distance within Z_LINEAR_ONE, 1223 * and be happy about it. 1224 */ 1225 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy; 1226 } 1227 1228 /* 1229 * We're safe for now, lets continue.. Look for our resampler 1230 * depending on configured format and quality. 1231 */ 1232 for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) { 1233 int ridx; 1234 1235 if (AFMT_ENCODING(format) != z_resampler_tab[i].format) 1236 continue; 1237 if (Z_IS_SINC(info) && adaptive == 0 && 1238 z_resampler_build_polyphase(info) == 0) 1239 ridx = Z_RESAMPLER_SINC_POLYPHASE; 1240 else 1241 ridx = Z_RESAMPLER_IDX(info); 1242 info->z_resample = z_resampler_tab[i].resampler[ridx]; 1243 break; 1244 } 1245 1246 if (info->z_resample == NULL) 1247 return (EINVAL); 1248 1249 info->bps = AFMT_BPS(format); 1250 align = info->channels * info->bps; 1251 1252 /* 1253 * Calculate largest value that can be fed into z_gy2gx() and 1254 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will 1255 * be called early during feeding process to determine how much input 1256 * samples that is required to generate requested output, while 1257 * z_gx2gy() will be called just before samples filtering / 1258 * accumulation process based on available samples that has been 1259 * calculated using z_gx2gy(). 1260 * 1261 * Now that is damn confusing, I guess ;-) . 1262 */ 1263 gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) / 1264 info->z_gx; 1265 1266 if ((gy2gx_max * align) > SND_FXDIV_MAX) 1267 gy2gx_max = SND_FXDIV_MAX / align; 1268 1269 if (gy2gx_max < 1) 1270 return (E2BIG); 1271 1272 gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) / 1273 info->z_gy; 1274 1275 if (gx2gy_max > INT32_MAX) 1276 gx2gy_max = INT32_MAX; 1277 1278 if (gx2gy_max < 1) 1279 return (E2BIG); 1280 1281 /* 1282 * Ensure that z_gy2gx() at its largest possible calculated value 1283 * (alpha = 0) will not cause overflow further late during z_gx2gy() 1284 * stage. 1285 */ 1286 if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max)) 1287 return (E2BIG); 1288 1289 info->z_maxfeed = gy2gx_max * align; 1290 1291 #ifdef Z_USE_ALPHADRIFT 1292 info->z_startdrift = z_gy2gx(info, 1); 1293 info->z_alphadrift = z_drift(info, info->z_startdrift, 1); 1294 #endif 1295 1296 i = z_gy2gx(info, 1); 1297 info->z_full = z_roundpow2((info->z_size << 1) + i); 1298 1299 /* 1300 * Too big to be true, and overflowing left and right like mad .. 1301 */ 1302 if ((info->z_full * align) < 1) { 1303 if (adaptive == 0 && Z_IS_SINC(info)) { 1304 adaptive = 1; 1305 goto z_setup_adaptive_sinc; 1306 } 1307 return (E2BIG); 1308 } 1309 1310 /* 1311 * Increase full buffer size if its too small to reduce cyclic 1312 * buffer shifting in main conversion/feeder loop. 1313 */ 1314 while (info->z_full < Z_RESERVOIR_MAX && 1315 (info->z_full - (info->z_size << 1)) < Z_RESERVOIR) 1316 info->z_full <<= 1; 1317 1318 /* Initialize buffer position. */ 1319 info->z_mask = info->z_full - 1; 1320 info->z_start = z_prev(info, info->z_size << 1, 1); 1321 info->z_pos = z_next(info, info->z_start, 1); 1322 1323 /* 1324 * Allocate or reuse delay line buffer, whichever makes sense. 1325 */ 1326 i = info->z_full * align; 1327 if (i < 1) 1328 return (E2BIG); 1329 1330 if (info->z_delay == NULL || info->z_alloc < i || 1331 i <= (info->z_alloc >> 1)) { 1332 if (info->z_delay != NULL) 1333 free(info->z_delay, M_DEVBUF); 1334 info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO); 1335 if (info->z_delay == NULL) 1336 return (ENOMEM); 1337 info->z_alloc = i; 1338 } 1339 1340 /* 1341 * Zero out head of buffer to avoid pops and clicks. 1342 */ 1343 memset(info->z_delay, sndbuf_zerodata(f->desc->out), 1344 info->z_pos * align); 1345 1346 #ifdef Z_DIAGNOSTIC 1347 /* 1348 * XXX Debuging mess !@#$%^ 1349 */ 1350 #define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \ 1351 "z_"__STRING(x), (uint32_t)info->z_##x, \ 1352 (int32_t)info->z_##x) 1353 fprintf(stderr, "\n%s():\n", __func__); 1354 fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n", 1355 info->channels, info->bps, format, info->quality); 1356 fprintf(stderr, "\t%d (%d) -> %d (%d), ", 1357 info->src, info->rsrc, info->dst, info->rdst); 1358 fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy); 1359 fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1)); 1360 if (adaptive != 0) 1361 z_scale = Z_ONE; 1362 fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n", 1363 z_scale, Z_ONE, (double)z_scale / Z_ONE); 1364 fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info)); 1365 fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO"); 1366 dumpz(size); 1367 dumpz(alloc); 1368 if (info->z_alloc < 1024) 1369 fprintf(stderr, "\t%15s%10d Bytes\n", 1370 "", info->z_alloc); 1371 else if (info->z_alloc < (1024 << 10)) 1372 fprintf(stderr, "\t%15s%10d KBytes\n", 1373 "", info->z_alloc >> 10); 1374 else if (info->z_alloc < (1024 << 20)) 1375 fprintf(stderr, "\t%15s%10d MBytes\n", 1376 "", info->z_alloc >> 20); 1377 else 1378 fprintf(stderr, "\t%15s%10d GBytes\n", 1379 "", info->z_alloc >> 30); 1380 fprintf(stderr, "\t%12s %10d (min output samples)\n", 1381 "", 1382 (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1))); 1383 fprintf(stderr, "\t%12s %10d (min allocated output samples)\n", 1384 "", 1385 (int32_t)z_gx2gy(info, (info->z_alloc / align) - 1386 (info->z_size << 1))); 1387 fprintf(stderr, "\t%12s = %10d\n", 1388 "z_gy2gx()", (int32_t)z_gy2gx(info, 1)); 1389 fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n", 1390 "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max)); 1391 fprintf(stderr, "\t%12s = %10d\n", 1392 "z_gx2gy()", (int32_t)z_gx2gy(info, 1)); 1393 fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n", 1394 "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max)); 1395 dumpz(maxfeed); 1396 dumpz(full); 1397 dumpz(start); 1398 dumpz(pos); 1399 dumpz(scale); 1400 fprintf(stderr, "\t%12s %10f\n", "", 1401 (double)info->z_scale / Z_ONE); 1402 dumpz(dx); 1403 fprintf(stderr, "\t%12s %10f\n", "", 1404 (double)info->z_dx / info->z_dy); 1405 dumpz(dy); 1406 fprintf(stderr, "\t%12s %10d (drift step)\n", "", 1407 info->z_dy >> Z_SHIFT); 1408 fprintf(stderr, "\t%12s %10d (scaling differences)\n", "", 1409 (z_scale << Z_DRIFT_SHIFT) - info->z_dy); 1410 fprintf(stderr, "\t%12s = %u bytes\n", 1411 "intpcm32_t", sizeof(intpcm32_t)); 1412 fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n", 1413 "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE); 1414 #endif 1415 1416 return (0); 1417 } 1418 1419 static int 1420 z_resampler_set(struct pcm_feeder *f, int what, int32_t value) 1421 { 1422 struct z_info *info; 1423 int32_t oquality; 1424 1425 info = f->data; 1426 1427 switch (what) { 1428 case Z_RATE_SRC: 1429 if (value < feeder_rate_min || value > feeder_rate_max) 1430 return (E2BIG); 1431 if (value == info->rsrc) 1432 return (0); 1433 info->rsrc = value; 1434 break; 1435 case Z_RATE_DST: 1436 if (value < feeder_rate_min || value > feeder_rate_max) 1437 return (E2BIG); 1438 if (value == info->rdst) 1439 return (0); 1440 info->rdst = value; 1441 break; 1442 case Z_RATE_QUALITY: 1443 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX) 1444 return (EINVAL); 1445 if (value == info->quality) 1446 return (0); 1447 /* 1448 * If we failed to set the requested quality, restore 1449 * the old one. We cannot afford leaving it broken since 1450 * passive feeder chains like vchans never reinitialize 1451 * itself. 1452 */ 1453 oquality = info->quality; 1454 info->quality = value; 1455 if (z_resampler_setup(f) == 0) 1456 return (0); 1457 info->quality = oquality; 1458 break; 1459 case Z_RATE_CHANNELS: 1460 if (value < SND_CHN_MIN || value > SND_CHN_MAX) 1461 return (EINVAL); 1462 if (value == info->channels) 1463 return (0); 1464 info->channels = value; 1465 break; 1466 default: 1467 return (EINVAL); 1468 break; 1469 } 1470 1471 return (z_resampler_setup(f)); 1472 } 1473 1474 static int 1475 z_resampler_get(struct pcm_feeder *f, int what) 1476 { 1477 struct z_info *info; 1478 1479 info = f->data; 1480 1481 switch (what) { 1482 case Z_RATE_SRC: 1483 return (info->rsrc); 1484 break; 1485 case Z_RATE_DST: 1486 return (info->rdst); 1487 break; 1488 case Z_RATE_QUALITY: 1489 return (info->quality); 1490 break; 1491 case Z_RATE_CHANNELS: 1492 return (info->channels); 1493 break; 1494 default: 1495 break; 1496 } 1497 1498 return (-1); 1499 } 1500 1501 static int 1502 z_resampler_init(struct pcm_feeder *f) 1503 { 1504 struct z_info *info; 1505 int ret; 1506 1507 if (f->desc->in != f->desc->out) 1508 return (EINVAL); 1509 1510 info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO); 1511 if (info == NULL) 1512 return (ENOMEM); 1513 1514 info->rsrc = Z_RATE_DEFAULT; 1515 info->rdst = Z_RATE_DEFAULT; 1516 info->quality = feeder_rate_quality; 1517 info->channels = AFMT_CHANNEL(f->desc->in); 1518 1519 f->data = info; 1520 1521 ret = z_resampler_setup(f); 1522 if (ret != 0) { 1523 if (info->z_pcoeff != NULL) 1524 free(info->z_pcoeff, M_DEVBUF); 1525 if (info->z_delay != NULL) 1526 free(info->z_delay, M_DEVBUF); 1527 free(info, M_DEVBUF); 1528 f->data = NULL; 1529 } 1530 1531 return (ret); 1532 } 1533 1534 static int 1535 z_resampler_free(struct pcm_feeder *f) 1536 { 1537 struct z_info *info; 1538 1539 info = f->data; 1540 if (info != NULL) { 1541 if (info->z_pcoeff != NULL) 1542 free(info->z_pcoeff, M_DEVBUF); 1543 if (info->z_delay != NULL) 1544 free(info->z_delay, M_DEVBUF); 1545 free(info, M_DEVBUF); 1546 } 1547 1548 f->data = NULL; 1549 1550 return (0); 1551 } 1552 1553 static uint32_t 1554 z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c, 1555 uint8_t *b, uint32_t count, void *source) 1556 { 1557 struct z_info *info; 1558 int32_t alphadrift, startdrift, reqout, ocount, reqin, align; 1559 int32_t fetch, fetched, start, cp; 1560 uint8_t *dst; 1561 1562 info = f->data; 1563 if (info->z_resample == NULL) 1564 return (z_feed(f->source, c, b, count, source)); 1565 1566 /* 1567 * Calculate sample size alignment and amount of sample output. 1568 * We will do everything in sample domain, but at the end we 1569 * will jump back to byte domain. 1570 */ 1571 align = info->channels * info->bps; 1572 ocount = SND_FXDIV(count, align); 1573 if (ocount == 0) 1574 return (0); 1575 1576 /* 1577 * Calculate amount of input samples that is needed to generate 1578 * exact amount of output. 1579 */ 1580 reqin = z_gy2gx(info, ocount) - z_fetched(info); 1581 1582 #ifdef Z_USE_ALPHADRIFT 1583 startdrift = info->z_startdrift; 1584 alphadrift = info->z_alphadrift; 1585 #else 1586 startdrift = _Z_GY2GX(info, 0, 1); 1587 alphadrift = z_drift(info, startdrift, 1); 1588 #endif 1589 1590 dst = b; 1591 1592 do { 1593 if (reqin != 0) { 1594 fetch = z_min(z_free(info), reqin); 1595 if (fetch == 0) { 1596 /* 1597 * No more free spaces, so wind enough 1598 * samples back to the head of delay line 1599 * in byte domain. 1600 */ 1601 fetched = z_fetched(info); 1602 start = z_prev(info, info->z_start, 1603 (info->z_size << 1) - 1); 1604 cp = (info->z_size << 1) + fetched; 1605 z_copy(info->z_delay + (start * align), 1606 info->z_delay, cp * align); 1607 info->z_start = 1608 z_prev(info, info->z_size << 1, 1); 1609 info->z_pos = 1610 z_next(info, info->z_start, fetched + 1); 1611 fetch = z_min(z_free(info), reqin); 1612 #ifdef Z_DIAGNOSTIC 1613 if (1) { 1614 static uint32_t kk = 0; 1615 fprintf(stderr, 1616 "Buffer Move: " 1617 "start=%d fetched=%d cp=%d " 1618 "cycle=%u [%u]\r", 1619 start, fetched, cp, info->z_cycle, 1620 ++kk); 1621 } 1622 info->z_cycle = 0; 1623 #endif 1624 } 1625 if (fetch != 0) { 1626 /* 1627 * Fetch in byte domain and jump back 1628 * to sample domain. 1629 */ 1630 fetched = SND_FXDIV(z_feed(f->source, c, 1631 info->z_delay + (info->z_pos * align), 1632 fetch * align, source), align); 1633 /* 1634 * Prepare to convert fetched buffer, 1635 * or mark us done if we cannot fulfill 1636 * the request. 1637 */ 1638 reqin -= fetched; 1639 info->z_pos += fetched; 1640 if (fetched != fetch) 1641 reqin = 0; 1642 } 1643 } 1644 1645 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount); 1646 if (reqout != 0) { 1647 ocount -= reqout; 1648 1649 /* 1650 * Drift.. drift.. drift.. 1651 * 1652 * Notice that there are 2 methods of doing the drift 1653 * operations: The former is much cleaner (in a sense 1654 * of mathematical readings of my eyes), but slower 1655 * due to integer division in z_gy2gx(). Nevertheless, 1656 * both should give the same exact accurate drifting 1657 * results, so the later is favourable. 1658 */ 1659 do { 1660 info->z_resample(info, dst); 1661 info->z_alpha += alphadrift; 1662 if (info->z_alpha < info->z_gy) 1663 info->z_start += startdrift; 1664 else { 1665 info->z_start += startdrift - 1; 1666 info->z_alpha -= info->z_gy; 1667 } 1668 dst += align; 1669 #ifdef Z_DIAGNOSTIC 1670 info->z_cycle++; 1671 #endif 1672 } while (--reqout != 0); 1673 } 1674 } while (reqin != 0 && ocount != 0); 1675 1676 /* 1677 * Back to byte domain.. 1678 */ 1679 return (dst - b); 1680 } 1681 1682 static int 1683 z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, 1684 uint32_t count, void *source) 1685 { 1686 uint32_t feed, maxfeed, left; 1687 1688 /* 1689 * Split count to smaller chunks to avoid possible 32bit overflow. 1690 */ 1691 maxfeed = ((struct z_info *)(f->data))->z_maxfeed; 1692 left = count; 1693 1694 do { 1695 feed = z_resampler_feed_internal(f, c, b, 1696 z_min(maxfeed, left), source); 1697 b += feed; 1698 left -= feed; 1699 } while (left != 0 && feed != 0); 1700 1701 return (count - left); 1702 } 1703 1704 static struct pcm_feederdesc feeder_rate_desc[] = { 1705 { FEEDER_RATE, 0, 0, 0, 0 }, 1706 { 0, 0, 0, 0, 0 }, 1707 }; 1708 1709 static kobj_method_t feeder_rate_methods[] = { 1710 KOBJMETHOD(feeder_init, z_resampler_init), 1711 KOBJMETHOD(feeder_free, z_resampler_free), 1712 KOBJMETHOD(feeder_set, z_resampler_set), 1713 KOBJMETHOD(feeder_get, z_resampler_get), 1714 KOBJMETHOD(feeder_feed, z_resampler_feed), 1715 KOBJMETHOD_END 1716 }; 1717 1718 FEEDER_DECLARE(feeder_rate, NULL); 1719