1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * feeder_rate: (Codename: Z Resampler), which means any effort to create 31 * future replacement for this resampler are simply absurd unless 32 * the world decide to add new alphabet after Z. 33 * 34 * FreeBSD bandlimited sinc interpolator, technically based on 35 * "Digital Audio Resampling" by Julius O. Smith III 36 * - http://ccrma.stanford.edu/~jos/resample/ 37 * 38 * The Good: 39 * + all out fixed point integer operations, no soft-float or anything like 40 * that. 41 * + classic polyphase converters with high quality coefficient's polynomial 42 * interpolators. 43 * + fast, faster, or the fastest of its kind. 44 * + compile time configurable. 45 * + etc etc.. 46 * 47 * The Bad: 48 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I 49 * couldn't think of anything simpler than that (feeder_rate_xxx is just 50 * too long). Expect possible clashes with other zitizens (any?). 51 */ 52 53 #ifdef _KERNEL 54 #ifdef HAVE_KERNEL_OPTION_HEADERS 55 #include "opt_snd.h" 56 #endif 57 #include <dev/sound/pcm/sound.h> 58 #include <dev/sound/pcm/pcm.h> 59 #include "feeder_if.h" 60 61 #define SND_USE_FXDIV 62 #include "snd_fxdiv_gen.h" 63 #endif 64 65 #include "feeder_rate_gen.h" 66 67 #if !defined(_KERNEL) && defined(SND_DIAGNOSTIC) 68 #undef Z_DIAGNOSTIC 69 #define Z_DIAGNOSTIC 1 70 #elif defined(_KERNEL) 71 #undef Z_DIAGNOSTIC 72 #endif 73 74 #ifndef Z_QUALITY_DEFAULT 75 #define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR 76 #endif 77 78 #define Z_RESERVOIR 2048 79 #define Z_RESERVOIR_MAX 131072 80 81 #define Z_SINC_MAX 0x3fffff 82 #define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */ 83 84 #ifdef _KERNEL 85 #define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */ 86 #else 87 #define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */ 88 #endif 89 90 #define Z_RATE_DEFAULT 48000 91 92 #define Z_RATE_MIN FEEDRATE_RATEMIN 93 #define Z_RATE_MAX FEEDRATE_RATEMAX 94 #define Z_ROUNDHZ FEEDRATE_ROUNDHZ 95 #define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN 96 #define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX 97 98 #define Z_RATE_SRC FEEDRATE_SRC 99 #define Z_RATE_DST FEEDRATE_DST 100 #define Z_RATE_QUALITY FEEDRATE_QUALITY 101 #define Z_RATE_CHANNELS FEEDRATE_CHANNELS 102 103 #define Z_PARANOID 1 104 105 #define Z_MULTIFORMAT 1 106 107 #ifdef _KERNEL 108 #undef Z_USE_ALPHADRIFT 109 #define Z_USE_ALPHADRIFT 1 110 #endif 111 112 #define Z_FACTOR_MIN 1 113 #define Z_FACTOR_MAX Z_MASK 114 #define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX)) 115 116 struct z_info; 117 118 typedef void (*z_resampler_t)(struct z_info *, uint8_t *); 119 120 struct z_info { 121 int32_t rsrc, rdst; /* original source / destination rates */ 122 int32_t src, dst; /* rounded source / destination rates */ 123 int32_t channels; /* total channels */ 124 int32_t bps; /* bytes-per-sample */ 125 int32_t quality; /* resampling quality */ 126 127 int32_t z_gx, z_gy; /* interpolation / decimation ratio */ 128 int32_t z_alpha; /* output sample time phase / drift */ 129 uint8_t *z_delay; /* FIR delay line / linear buffer */ 130 int32_t *z_coeff; /* FIR coefficients */ 131 int32_t *z_dcoeff; /* FIR coefficients differences */ 132 int32_t *z_pcoeff; /* FIR polyphase coefficients */ 133 int32_t z_scale; /* output scaling */ 134 int32_t z_dx; /* input sample drift increment */ 135 int32_t z_dy; /* output sample drift increment */ 136 #ifdef Z_USE_ALPHADRIFT 137 int32_t z_alphadrift; /* alpha drift rate */ 138 int32_t z_startdrift; /* buffer start position drift rate */ 139 #endif 140 int32_t z_mask; /* delay line full length mask */ 141 int32_t z_size; /* half width of FIR taps */ 142 int32_t z_full; /* full size of delay line */ 143 int32_t z_alloc; /* largest allocated full size of delay line */ 144 int32_t z_start; /* buffer processing start position */ 145 int32_t z_pos; /* current position for the next feed */ 146 #ifdef Z_DIAGNOSTIC 147 uint32_t z_cycle; /* output cycle, purely for statistical */ 148 #endif 149 int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */ 150 151 z_resampler_t z_resample; 152 }; 153 154 int feeder_rate_min = Z_RATE_MIN; 155 int feeder_rate_max = Z_RATE_MAX; 156 int feeder_rate_round = Z_ROUNDHZ; 157 int feeder_rate_quality = Z_QUALITY_DEFAULT; 158 159 static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX; 160 161 #ifdef _KERNEL 162 static char feeder_rate_presets[] = FEEDER_RATE_PRESETS; 163 SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD, 164 &feeder_rate_presets, 0, "compile-time rate presets"); 165 SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN, 166 &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries"); 167 168 static int 169 sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS) 170 { 171 int err, val; 172 173 val = feeder_rate_min; 174 err = sysctl_handle_int(oidp, &val, 0, req); 175 176 if (err != 0 || req->newptr == NULL || val == feeder_rate_min) 177 return (err); 178 179 if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max)) 180 return (EINVAL); 181 182 feeder_rate_min = val; 183 184 return (0); 185 } 186 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, 187 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 188 sysctl_hw_snd_feeder_rate_min, "I", 189 "minimum allowable rate"); 190 191 static int 192 sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS) 193 { 194 int err, val; 195 196 val = feeder_rate_max; 197 err = sysctl_handle_int(oidp, &val, 0, req); 198 199 if (err != 0 || req->newptr == NULL || val == feeder_rate_max) 200 return (err); 201 202 if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min)) 203 return (EINVAL); 204 205 feeder_rate_max = val; 206 207 return (0); 208 } 209 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, 210 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 211 sysctl_hw_snd_feeder_rate_max, "I", 212 "maximum allowable rate"); 213 214 static int 215 sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS) 216 { 217 int err, val; 218 219 val = feeder_rate_round; 220 err = sysctl_handle_int(oidp, &val, 0, req); 221 222 if (err != 0 || req->newptr == NULL || val == feeder_rate_round) 223 return (err); 224 225 if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX) 226 return (EINVAL); 227 228 feeder_rate_round = val - (val % Z_ROUNDHZ); 229 230 return (0); 231 } 232 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, 233 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 234 sysctl_hw_snd_feeder_rate_round, "I", 235 "sample rate converter rounding threshold"); 236 237 static int 238 sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS) 239 { 240 struct snddev_info *d; 241 struct pcm_channel *c; 242 struct pcm_feeder *f; 243 int i, err, val; 244 245 val = feeder_rate_quality; 246 err = sysctl_handle_int(oidp, &val, 0, req); 247 248 if (err != 0 || req->newptr == NULL || val == feeder_rate_quality) 249 return (err); 250 251 if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX) 252 return (EINVAL); 253 254 feeder_rate_quality = val; 255 256 /* 257 * Traverse all available channels on each device and try to 258 * set resampler quality if and only if it is exist as 259 * part of feeder chains and the channel is idle. 260 */ 261 bus_topo_lock(); 262 for (i = 0; pcm_devclass != NULL && 263 i < devclass_get_maxunit(pcm_devclass); i++) { 264 d = devclass_get_softc(pcm_devclass, i); 265 if (!PCM_REGISTERED(d)) 266 continue; 267 PCM_LOCK(d); 268 PCM_WAIT(d); 269 PCM_ACQUIRE(d); 270 CHN_FOREACH(c, d, channels.pcm) { 271 CHN_LOCK(c); 272 f = feeder_find(c, FEEDER_RATE); 273 if (f == NULL || f->data == NULL || CHN_STARTED(c)) { 274 CHN_UNLOCK(c); 275 continue; 276 } 277 (void)FEEDER_SET(f, FEEDRATE_QUALITY, val); 278 CHN_UNLOCK(c); 279 } 280 PCM_RELEASE(d); 281 PCM_UNLOCK(d); 282 } 283 bus_topo_unlock(); 284 285 return (0); 286 } 287 SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, 288 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, sizeof(int), 289 sysctl_hw_snd_feeder_rate_quality, "I", 290 "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. " 291 __XSTRING(Z_QUALITY_MAX)"=high)"); 292 #endif /* _KERNEL */ 293 294 /* 295 * Resampler type. 296 */ 297 #define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH) 298 #define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR) 299 #define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR) 300 301 /* 302 * Macroses for accurate sample time drift calculations. 303 * 304 * gy2gx : given the amount of output, return the _exact_ required amount of 305 * input. 306 * gx2gy : given the amount of input, return the _maximum_ amount of output 307 * that will be generated. 308 * drift : given the amount of input and output, return the elapsed 309 * sample-time. 310 */ 311 #define _Z_GCAST(x) ((uint64_t)(x)) 312 313 #if defined(__i386__) 314 /* 315 * This is where i386 being beaten to a pulp. Fortunately this function is 316 * rarely being called and if it is, it will decide the best (hopefully) 317 * fastest way to do the division. If we can ensure that everything is dword 318 * aligned, letting the compiler to call udivdi3 to do the division can be 319 * faster compared to this. 320 * 321 * amd64 is the clear winner here, no question about it. 322 */ 323 static __inline uint32_t 324 Z_DIV(uint64_t v, uint32_t d) 325 { 326 uint32_t hi, lo, quo, rem; 327 328 hi = v >> 32; 329 lo = v & 0xffffffff; 330 331 /* 332 * As much as we can, try to avoid long division like a plague. 333 */ 334 if (hi == 0) 335 quo = lo / d; 336 else 337 __asm("divl %2" 338 : "=a" (quo), "=d" (rem) 339 : "r" (d), "0" (lo), "1" (hi)); 340 341 return (quo); 342 } 343 #else 344 #define Z_DIV(x, y) ((x) / (y)) 345 #endif 346 347 #define _Z_GY2GX(i, a, v) \ 348 Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \ 349 (i)->z_gy) 350 351 #define _Z_GX2GY(i, a, v) \ 352 Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx) 353 354 #define _Z_DRIFT(i, x, y) \ 355 ((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y))) 356 357 #define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v) 358 #define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v) 359 #define z_drift(i, x, y) _Z_DRIFT(i, x, y) 360 361 /* 362 * Macroses for SINC coefficients table manipulations.. whatever. 363 */ 364 #define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1) 365 366 #define Z_SINC_LEN(i) \ 367 ((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \ 368 Z_SHIFT) / (i)->z_dy)) 369 370 #define Z_SINC_BASE_LEN(i) \ 371 ((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1)) 372 373 /* 374 * Macroses for linear delay buffer operations. Alignment is not 375 * really necessary since we're not using true circular buffer, but it 376 * will help us guard against possible trespasser. To be honest, 377 * the linear block operations does not need guarding at all due to 378 * accurate drifting! 379 */ 380 #define z_align(i, v) ((v) & (i)->z_mask) 381 #define z_next(i, o, v) z_align(i, (o) + (v)) 382 #define z_prev(i, o, v) z_align(i, (o) - (v)) 383 #define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1) 384 #define z_free(i) ((i)->z_full - (i)->z_pos) 385 386 /* 387 * Macroses for Bla Bla .. :) 388 */ 389 #define z_copy(src, dst, sz) (void)memcpy(dst, src, sz) 390 #define z_feed(...) FEEDER_FEED(__VA_ARGS__) 391 392 static __inline uint32_t 393 z_min(uint32_t x, uint32_t y) 394 { 395 396 return ((x < y) ? x : y); 397 } 398 399 static int32_t 400 z_gcd(int32_t x, int32_t y) 401 { 402 int32_t w; 403 404 while (y != 0) { 405 w = x % y; 406 x = y; 407 y = w; 408 } 409 410 return (x); 411 } 412 413 static int32_t 414 z_roundpow2(int32_t v) 415 { 416 int32_t i; 417 418 i = 1; 419 420 /* 421 * Let it overflow at will.. 422 */ 423 while (i > 0 && i < v) 424 i <<= 1; 425 426 return (i); 427 } 428 429 /* 430 * Zero Order Hold, the worst of the worst, an insult against quality, 431 * but super fast. 432 */ 433 static void 434 z_feed_zoh(struct z_info *info, uint8_t *dst) 435 { 436 uint32_t cnt; 437 uint8_t *src; 438 439 cnt = info->channels * info->bps; 440 src = info->z_delay + (info->z_start * cnt); 441 442 /* 443 * This is a bit faster than doing bcopy() since we're dealing 444 * with possible unaligned samples. 445 */ 446 do { 447 *dst++ = *src++; 448 } while (--cnt != 0); 449 } 450 451 /* 452 * Linear Interpolation. This at least sounds better (perceptually) and fast, 453 * but without any proper filtering which means aliasing still exist and 454 * could become worst with a right sample. Interpolation centered within 455 * Z_LINEAR_ONE between the present and previous sample and everything is 456 * done with simple 32bit scaling arithmetic. 457 */ 458 #define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 459 static void \ 460 z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 461 { \ 462 int32_t z; \ 463 intpcm_t x, y; \ 464 uint32_t ch; \ 465 uint8_t *sx, *sy; \ 466 \ 467 z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \ 468 \ 469 sx = info->z_delay + (info->z_start * info->channels * \ 470 PCM_##BIT##_BPS); \ 471 sy = sx - (info->channels * PCM_##BIT##_BPS); \ 472 \ 473 ch = info->channels; \ 474 \ 475 do { \ 476 x = pcm_sample_read(sx, AFMT_##SIGN##BIT##_##ENDIAN); \ 477 y = pcm_sample_read(sy, AFMT_##SIGN##BIT##_##ENDIAN); \ 478 x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \ 479 pcm_sample_write(dst, x, AFMT_##SIGN##BIT##_##ENDIAN); \ 480 sx += PCM_##BIT##_BPS; \ 481 sy += PCM_##BIT##_BPS; \ 482 dst += PCM_##BIT##_BPS; \ 483 } while (--ch != 0); \ 484 } 485 486 /* 487 * Userland clipping diagnostic check, not enabled in kernel compilation. 488 * While doing sinc interpolation, unrealistic samples like full scale sine 489 * wav will clip, but for other things this will not make any noise at all. 490 * Everybody should learn how to normalized perceived loudness of their own 491 * music/sounds/samples (hint: ReplayGain). 492 */ 493 #ifdef Z_DIAGNOSTIC 494 #define Z_CLIP_CHECK(v, BIT) do { \ 495 if ((v) > PCM_S##BIT##_MAX) { \ 496 fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \ 497 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \ 498 } else if ((v) < PCM_S##BIT##_MIN) { \ 499 fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \ 500 (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \ 501 } \ 502 } while (0) 503 #else 504 #define Z_CLIP_CHECK(...) 505 #endif 506 507 /* 508 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so 509 * there's no point to hold the plate any longer. All samples will be 510 * shifted to a full 32 bit, scaled and restored during write for 511 * maximum dynamic range (only for downsampling). 512 */ 513 #define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \ 514 c += z >> Z_SHIFT; \ 515 z &= Z_MASK; \ 516 coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \ 517 x = pcm_sample_read(p, AFMT_##SIGN##BIT##_##ENDIAN); \ 518 v += Z_NORM_##BIT((intpcm64_t)x * coeff); \ 519 z += info->z_dy; \ 520 p adv##= info->channels * PCM_##BIT##_BPS 521 522 /* 523 * XXX GCC4 optimization is such a !@#$%, need manual unrolling. 524 */ 525 #if defined(__GNUC__) && __GNUC__ >= 4 526 #define Z_SINC_ACCUMULATE(...) do { \ 527 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 528 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 529 } while (0) 530 #define Z_SINC_ACCUMULATE_DECR 2 531 #else 532 #define Z_SINC_ACCUMULATE(...) do { \ 533 _Z_SINC_ACCUMULATE(__VA_ARGS__); \ 534 } while (0) 535 #define Z_SINC_ACCUMULATE_DECR 1 536 #endif 537 538 #define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 539 static void \ 540 z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 541 { \ 542 intpcm64_t v; \ 543 intpcm_t x; \ 544 uint8_t *p; \ 545 int32_t coeff, z, *z_coeff, *z_dcoeff; \ 546 uint32_t c, center, ch, i; \ 547 \ 548 z_coeff = info->z_coeff; \ 549 z_dcoeff = info->z_dcoeff; \ 550 center = z_prev(info, info->z_start, info->z_size); \ 551 ch = info->channels * PCM_##BIT##_BPS; \ 552 dst += ch; \ 553 \ 554 do { \ 555 dst -= PCM_##BIT##_BPS; \ 556 ch -= PCM_##BIT##_BPS; \ 557 v = 0; \ 558 z = info->z_alpha * info->z_dx; \ 559 c = 0; \ 560 p = info->z_delay + (z_next(info, center, 1) * \ 561 info->channels * PCM_##BIT##_BPS) + ch; \ 562 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 563 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \ 564 z = info->z_dy - (info->z_alpha * info->z_dx); \ 565 c = 0; \ 566 p = info->z_delay + (center * info->channels * \ 567 PCM_##BIT##_BPS) + ch; \ 568 for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \ 569 Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \ 570 if (info->z_scale != Z_ONE) \ 571 v = Z_SCALE_##BIT(v, info->z_scale); \ 572 else \ 573 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 574 Z_CLIP_CHECK(v, BIT); \ 575 pcm_sample_write(dst, pcm_clamp(v, AFMT_##SIGN##BIT##_##ENDIAN),\ 576 AFMT_##SIGN##BIT##_##ENDIAN); \ 577 } while (ch != 0); \ 578 } 579 580 #define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \ 581 static void \ 582 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \ 583 { \ 584 intpcm64_t v; \ 585 intpcm_t x; \ 586 uint8_t *p; \ 587 int32_t ch, i, start, *z_pcoeff; \ 588 \ 589 ch = info->channels * PCM_##BIT##_BPS; \ 590 dst += ch; \ 591 start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \ 592 \ 593 do { \ 594 dst -= PCM_##BIT##_BPS; \ 595 ch -= PCM_##BIT##_BPS; \ 596 v = 0; \ 597 p = info->z_delay + start + ch; \ 598 z_pcoeff = info->z_pcoeff + \ 599 ((info->z_alpha * info->z_size) << 1); \ 600 for (i = info->z_size; i != 0; i--) { \ 601 x = pcm_sample_read(p, AFMT_##SIGN##BIT##_##ENDIAN); \ 602 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 603 z_pcoeff++; \ 604 p += info->channels * PCM_##BIT##_BPS; \ 605 x = pcm_sample_read(p, AFMT_##SIGN##BIT##_##ENDIAN); \ 606 v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \ 607 z_pcoeff++; \ 608 p += info->channels * PCM_##BIT##_BPS; \ 609 } \ 610 if (info->z_scale != Z_ONE) \ 611 v = Z_SCALE_##BIT(v, info->z_scale); \ 612 else \ 613 v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \ 614 Z_CLIP_CHECK(v, BIT); \ 615 pcm_sample_write(dst, pcm_clamp(v, AFMT_##SIGN##BIT##_##ENDIAN),\ 616 AFMT_##SIGN##BIT##_##ENDIAN); \ 617 } while (ch != 0); \ 618 } 619 620 #define Z_DECLARE(SIGN, BIT, ENDIAN) \ 621 Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \ 622 Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \ 623 Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) 624 625 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 626 Z_DECLARE(S, 16, LE) 627 Z_DECLARE(S, 32, LE) 628 #endif 629 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 630 Z_DECLARE(S, 16, BE) 631 Z_DECLARE(S, 32, BE) 632 #endif 633 #ifdef SND_FEEDER_MULTIFORMAT 634 Z_DECLARE(S, 8, NE) 635 Z_DECLARE(S, 24, LE) 636 Z_DECLARE(S, 24, BE) 637 Z_DECLARE(U, 8, NE) 638 Z_DECLARE(U, 16, LE) 639 Z_DECLARE(U, 24, LE) 640 Z_DECLARE(U, 32, LE) 641 Z_DECLARE(U, 16, BE) 642 Z_DECLARE(U, 24, BE) 643 Z_DECLARE(U, 32, BE) 644 Z_DECLARE(F, 32, LE) 645 Z_DECLARE(F, 32, BE) 646 #endif 647 648 enum { 649 Z_RESAMPLER_ZOH, 650 Z_RESAMPLER_LINEAR, 651 Z_RESAMPLER_SINC, 652 Z_RESAMPLER_SINC_POLYPHASE, 653 Z_RESAMPLER_LAST 654 }; 655 656 #define Z_RESAMPLER_IDX(i) \ 657 (Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality) 658 659 #define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \ 660 { \ 661 AFMT_##SIGN##BIT##_##ENDIAN, \ 662 { \ 663 [Z_RESAMPLER_ZOH] = z_feed_zoh, \ 664 [Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \ 665 [Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \ 666 [Z_RESAMPLER_SINC_POLYPHASE] = \ 667 z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \ 668 } \ 669 } 670 671 static const struct { 672 uint32_t format; 673 z_resampler_t resampler[Z_RESAMPLER_LAST]; 674 } z_resampler_tab[] = { 675 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 676 Z_RESAMPLER_ENTRY(S, 16, LE), 677 Z_RESAMPLER_ENTRY(S, 32, LE), 678 #endif 679 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT) 680 Z_RESAMPLER_ENTRY(S, 16, BE), 681 Z_RESAMPLER_ENTRY(S, 32, BE), 682 #endif 683 #ifdef SND_FEEDER_MULTIFORMAT 684 Z_RESAMPLER_ENTRY(S, 8, NE), 685 Z_RESAMPLER_ENTRY(S, 24, LE), 686 Z_RESAMPLER_ENTRY(S, 24, BE), 687 Z_RESAMPLER_ENTRY(U, 8, NE), 688 Z_RESAMPLER_ENTRY(U, 16, LE), 689 Z_RESAMPLER_ENTRY(U, 24, LE), 690 Z_RESAMPLER_ENTRY(U, 32, LE), 691 Z_RESAMPLER_ENTRY(U, 16, BE), 692 Z_RESAMPLER_ENTRY(U, 24, BE), 693 Z_RESAMPLER_ENTRY(U, 32, BE), 694 Z_RESAMPLER_ENTRY(F, 32, LE), 695 Z_RESAMPLER_ENTRY(F, 32, BE), 696 #endif 697 }; 698 699 #define Z_RESAMPLER_TAB_SIZE \ 700 ((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0]))) 701 702 static void 703 z_resampler_reset(struct z_info *info) 704 { 705 706 info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 && 707 info->rsrc > feeder_rate_round) ? feeder_rate_round : 1)); 708 info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 && 709 info->rdst > feeder_rate_round) ? feeder_rate_round : 1)); 710 info->z_gx = 1; 711 info->z_gy = 1; 712 info->z_alpha = 0; 713 info->z_resample = NULL; 714 info->z_size = 1; 715 info->z_coeff = NULL; 716 info->z_dcoeff = NULL; 717 if (info->z_pcoeff != NULL) { 718 free(info->z_pcoeff, M_DEVBUF); 719 info->z_pcoeff = NULL; 720 } 721 info->z_scale = Z_ONE; 722 info->z_dx = Z_FULL_ONE; 723 info->z_dy = Z_FULL_ONE; 724 #ifdef Z_DIAGNOSTIC 725 info->z_cycle = 0; 726 #endif 727 if (info->quality < Z_QUALITY_MIN) 728 info->quality = Z_QUALITY_MIN; 729 else if (info->quality > Z_QUALITY_MAX) 730 info->quality = Z_QUALITY_MAX; 731 } 732 733 #ifdef Z_PARANOID 734 static int32_t 735 z_resampler_sinc_len(struct z_info *info) 736 { 737 int32_t c, z, len, lmax; 738 739 if (!Z_IS_SINC(info)) 740 return (1); 741 742 /* 743 * A rather careful (or useless) way to calculate filter length. 744 * Z_SINC_LEN() itself is accurate enough to do its job. Extra 745 * sanity checking is not going to hurt though.. 746 */ 747 c = 0; 748 z = info->z_dy; 749 len = 0; 750 lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len; 751 752 do { 753 c += z >> Z_SHIFT; 754 z &= Z_MASK; 755 z += info->z_dy; 756 } while (c < lmax && ++len > 0); 757 758 if (len != Z_SINC_LEN(info)) { 759 #ifdef _KERNEL 760 printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n", 761 __func__, len, Z_SINC_LEN(info)); 762 #else 763 fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n", 764 __func__, len, Z_SINC_LEN(info)); 765 return (-1); 766 #endif 767 } 768 769 return (len); 770 } 771 #else 772 #define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1) 773 #endif 774 775 #define Z_POLYPHASE_COEFF_SHIFT 0 776 777 /* 778 * Pick suitable polynomial interpolators based on filter oversampled ratio 779 * (2 ^ Z_DRIFT_SHIFT). 780 */ 781 #if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \ 782 defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \ 783 defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \ 784 defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \ 785 defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X)) 786 #if Z_DRIFT_SHIFT >= 6 787 #define Z_COEFF_INTERP_BSPLINE 1 788 #elif Z_DRIFT_SHIFT >= 5 789 #define Z_COEFF_INTERP_OPT32X 1 790 #elif Z_DRIFT_SHIFT == 4 791 #define Z_COEFF_INTERP_OPT16X 1 792 #elif Z_DRIFT_SHIFT == 3 793 #define Z_COEFF_INTERP_OPT8X 1 794 #elif Z_DRIFT_SHIFT == 2 795 #define Z_COEFF_INTERP_OPT4X 1 796 #elif Z_DRIFT_SHIFT == 1 797 #define Z_COEFF_INTERP_OPT2X 1 798 #else 799 #error "Z_DRIFT_SHIFT screwed!" 800 #endif 801 #endif 802 803 /* 804 * In classic polyphase mode, the actual coefficients for each phases need to 805 * be calculated based on default prototype filters. For highly oversampled 806 * filter, linear or quadradatic interpolator should be enough. Anything less 807 * than that require 'special' interpolators to reduce interpolation errors. 808 * 809 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio" 810 * by Olli Niemitalo 811 * - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf 812 * 813 */ 814 static int32_t 815 z_coeff_interpolate(int32_t z, int32_t *z_coeff) 816 { 817 int32_t coeff; 818 #if defined(Z_COEFF_INTERP_ZOH) 819 820 /* 1-point, 0th-order (Zero Order Hold) */ 821 z = z; 822 coeff = z_coeff[0]; 823 #elif defined(Z_COEFF_INTERP_LINEAR) 824 int32_t zl0, zl1; 825 826 /* 2-point, 1st-order Linear */ 827 zl0 = z_coeff[0]; 828 zl1 = z_coeff[1] - z_coeff[0]; 829 830 coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0; 831 #elif defined(Z_COEFF_INTERP_QUADRATIC) 832 int32_t zq0, zq1, zq2; 833 834 /* 3-point, 2nd-order Quadratic */ 835 zq0 = z_coeff[0]; 836 zq1 = z_coeff[1] - z_coeff[-1]; 837 zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1); 838 839 coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) + 840 zq1) * z, Z_SHIFT + 1) + zq0; 841 #elif defined(Z_COEFF_INTERP_HERMITE) 842 int32_t zh0, zh1, zh2, zh3; 843 844 /* 4-point, 3rd-order Hermite */ 845 zh0 = z_coeff[0]; 846 zh1 = z_coeff[1] - z_coeff[-1]; 847 zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) - 848 z_coeff[2]; 849 zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3); 850 851 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) + 852 zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0; 853 #elif defined(Z_COEFF_INTERP_BSPLINE) 854 int32_t zb0, zb1, zb2, zb3; 855 856 /* 4-point, 3rd-order B-Spline */ 857 zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) + 858 z_coeff[-1] + z_coeff[1]), 30); 859 zb1 = z_coeff[1] - z_coeff[-1]; 860 zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1); 861 zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) + 862 z_coeff[2] - z_coeff[-1]), 30); 863 864 coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) + 865 zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1; 866 #elif defined(Z_COEFF_INTERP_OPT32X) 867 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 868 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 869 870 /* 6-point, 5th-order Optimal 32x */ 871 zoz = z - (Z_ONE >> 1); 872 zoe1 = z_coeff[1] + z_coeff[0]; 873 zoe2 = z_coeff[2] + z_coeff[-1]; 874 zoe3 = z_coeff[3] + z_coeff[-2]; 875 zoo1 = z_coeff[1] - z_coeff[0]; 876 zoo2 = z_coeff[2] - z_coeff[-1]; 877 zoo3 = z_coeff[3] - z_coeff[-2]; 878 879 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 880 (0x00170c29LL * zoe3), 30); 881 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 882 (0x008cd4dcLL * zoo3), 30); 883 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 884 (0x0160b5d0LL * zoe3), 30); 885 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 886 (0x01cfe914LL * zoo3), 30); 887 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 888 (0x015508ddLL * zoe3), 30); 889 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 890 (0x0082d81aLL * zoo3), 30); 891 892 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 893 (int64_t)zoc5 * zoz, Z_SHIFT) + 894 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 895 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 896 #elif defined(Z_COEFF_INTERP_OPT16X) 897 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 898 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 899 900 /* 6-point, 5th-order Optimal 16x */ 901 zoz = z - (Z_ONE >> 1); 902 zoe1 = z_coeff[1] + z_coeff[0]; 903 zoe2 = z_coeff[2] + z_coeff[-1]; 904 zoe3 = z_coeff[3] + z_coeff[-2]; 905 zoo1 = z_coeff[1] - z_coeff[0]; 906 zoo2 = z_coeff[2] - z_coeff[-1]; 907 zoo3 = z_coeff[3] - z_coeff[-2]; 908 909 zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) + 910 (0x00170c29LL * zoe3), 30); 911 zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) + 912 (0x008cd4dcLL * zoo3), 30); 913 zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) + 914 (0x0160b5d0LL * zoe3), 30); 915 zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) + 916 (0x01cfe914LL * zoo3), 30); 917 zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) + 918 (0x015508ddLL * zoe3), 30); 919 zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) + 920 (0x0082d81aLL * zoo3), 30); 921 922 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 923 (int64_t)zoc5 * zoz, Z_SHIFT) + 924 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 925 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 926 #elif defined(Z_COEFF_INTERP_OPT8X) 927 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 928 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 929 930 /* 6-point, 5th-order Optimal 8x */ 931 zoz = z - (Z_ONE >> 1); 932 zoe1 = z_coeff[1] + z_coeff[0]; 933 zoe2 = z_coeff[2] + z_coeff[-1]; 934 zoe3 = z_coeff[3] + z_coeff[-2]; 935 zoo1 = z_coeff[1] - z_coeff[0]; 936 zoo2 = z_coeff[2] - z_coeff[-1]; 937 zoo3 = z_coeff[3] - z_coeff[-2]; 938 939 zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) + 940 (0x0018b23fLL * zoe3), 30); 941 zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) + 942 (0x0094b599LL * zoo3), 30); 943 zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) + 944 (0x016ed8e0LL * zoe3), 30); 945 zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) + 946 (0x01dae93aLL * zoo3), 30); 947 zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) + 948 (0x0153ed07LL * zoe3), 30); 949 zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) + 950 (0x007a7c26LL * zoo3), 30); 951 952 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 953 (int64_t)zoc5 * zoz, Z_SHIFT) + 954 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 955 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 956 #elif defined(Z_COEFF_INTERP_OPT4X) 957 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 958 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 959 960 /* 6-point, 5th-order Optimal 4x */ 961 zoz = z - (Z_ONE >> 1); 962 zoe1 = z_coeff[1] + z_coeff[0]; 963 zoe2 = z_coeff[2] + z_coeff[-1]; 964 zoe3 = z_coeff[3] + z_coeff[-2]; 965 zoo1 = z_coeff[1] - z_coeff[0]; 966 zoo2 = z_coeff[2] - z_coeff[-1]; 967 zoo3 = z_coeff[3] - z_coeff[-2]; 968 969 zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) + 970 (0x001a3784LL * zoe3), 30); 971 zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) + 972 (0x009ca889LL * zoo3), 30); 973 zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) + 974 (0x017ef0c6LL * zoe3), 30); 975 zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) + 976 (0x01e936dbLL * zoo3), 30); 977 zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) + 978 (0x014f5923LL * zoe3), 30); 979 zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) + 980 (0x00670dbdLL * zoo3), 30); 981 982 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 983 (int64_t)zoc5 * zoz, Z_SHIFT) + 984 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 985 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 986 #elif defined(Z_COEFF_INTERP_OPT2X) 987 int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3; 988 int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5; 989 990 /* 6-point, 5th-order Optimal 2x */ 991 zoz = z - (Z_ONE >> 1); 992 zoe1 = z_coeff[1] + z_coeff[0]; 993 zoe2 = z_coeff[2] + z_coeff[-1]; 994 zoe3 = z_coeff[3] + z_coeff[-2]; 995 zoo1 = z_coeff[1] - z_coeff[0]; 996 zoo2 = z_coeff[2] - z_coeff[-1]; 997 zoo3 = z_coeff[3] - z_coeff[-2]; 998 999 zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) + 1000 (0x00267881LL * zoe3), 30); 1001 zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) + 1002 (0x00d683cdLL * zoo3), 30); 1003 zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) + 1004 (0x01e2aceaLL * zoe3), 30); 1005 zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) + 1006 (0x022cefc7LL * zoo3), 30); 1007 zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) + 1008 (0x0131d935LL * zoe3), 30); 1009 zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) + 1010 (0x0018ee79LL * zoo3), 30); 1011 1012 coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT( 1013 (int64_t)zoc5 * zoz, Z_SHIFT) + 1014 zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) + 1015 zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0; 1016 #else 1017 #error "Interpolation type screwed!" 1018 #endif 1019 1020 #if Z_POLYPHASE_COEFF_SHIFT > 0 1021 coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT); 1022 #endif 1023 return (coeff); 1024 } 1025 1026 static int 1027 z_resampler_build_polyphase(struct z_info *info) 1028 { 1029 int32_t alpha, c, i, z, idx; 1030 1031 /* Let this be here first. */ 1032 if (info->z_pcoeff != NULL) { 1033 free(info->z_pcoeff, M_DEVBUF); 1034 info->z_pcoeff = NULL; 1035 } 1036 1037 if (feeder_rate_polyphase_max < 1) 1038 return (ENOTSUP); 1039 1040 if (((int64_t)info->z_size * info->z_gy * 2) > 1041 feeder_rate_polyphase_max) { 1042 #ifndef _KERNEL 1043 fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n", 1044 info->z_gx, info->z_gy, 1045 (intmax_t)info->z_size * info->z_gy * 2, 1046 feeder_rate_polyphase_max); 1047 #endif 1048 return (E2BIG); 1049 } 1050 1051 info->z_pcoeff = malloc(sizeof(int32_t) * 1052 info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO); 1053 if (info->z_pcoeff == NULL) 1054 return (ENOMEM); 1055 1056 for (alpha = 0; alpha < info->z_gy; alpha++) { 1057 z = alpha * info->z_dx; 1058 c = 0; 1059 for (i = info->z_size; i != 0; i--) { 1060 c += z >> Z_SHIFT; 1061 z &= Z_MASK; 1062 idx = (alpha * info->z_size * 2) + 1063 (info->z_size * 2) - i; 1064 info->z_pcoeff[idx] = 1065 z_coeff_interpolate(z, info->z_coeff + c); 1066 z += info->z_dy; 1067 } 1068 z = info->z_dy - (alpha * info->z_dx); 1069 c = 0; 1070 for (i = info->z_size; i != 0; i--) { 1071 c += z >> Z_SHIFT; 1072 z &= Z_MASK; 1073 idx = (alpha * info->z_size * 2) + i - 1; 1074 info->z_pcoeff[idx] = 1075 z_coeff_interpolate(z, info->z_coeff + c); 1076 z += info->z_dy; 1077 } 1078 } 1079 1080 #ifndef _KERNEL 1081 fprintf(stderr, "Polyphase: [%d/%d] %d entries\n", 1082 info->z_gx, info->z_gy, info->z_size * info->z_gy * 2); 1083 #endif 1084 1085 return (0); 1086 } 1087 1088 static int 1089 z_resampler_setup(struct pcm_feeder *f) 1090 { 1091 struct z_info *info; 1092 int64_t gy2gx_max, gx2gy_max; 1093 uint32_t format; 1094 int32_t align, i, z_scale; 1095 int adaptive; 1096 1097 info = f->data; 1098 z_resampler_reset(info); 1099 1100 if (info->src == info->dst) 1101 return (0); 1102 1103 /* Shrink by greatest common divisor. */ 1104 i = z_gcd(info->src, info->dst); 1105 info->z_gx = info->src / i; 1106 info->z_gy = info->dst / i; 1107 1108 /* Too big, or too small. Bail out. */ 1109 if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy))) 1110 return (EINVAL); 1111 1112 format = f->desc->in; 1113 adaptive = 0; 1114 z_scale = 0; 1115 1116 /* 1117 * Setup everything: filter length, conversion factor, etc. 1118 */ 1119 if (Z_IS_SINC(info)) { 1120 /* 1121 * Downsampling, or upsampling scaling factor. As long as the 1122 * factor can be represented by a fraction of 1 << Z_SHIFT, 1123 * we're pretty much in business. Scaling is not needed for 1124 * upsampling, so we just slap Z_ONE there. 1125 */ 1126 if (info->z_gx > info->z_gy) 1127 /* 1128 * If the downsampling ratio is beyond sanity, 1129 * enable semi-adaptive mode. Although handling 1130 * extreme ratio is possible, the result of the 1131 * conversion is just pointless, unworthy, 1132 * nonsensical noises, etc. 1133 */ 1134 if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX) 1135 z_scale = Z_ONE / Z_SINC_DOWNMAX; 1136 else 1137 z_scale = ((uint64_t)info->z_gy << Z_SHIFT) / 1138 info->z_gx; 1139 else 1140 z_scale = Z_ONE; 1141 1142 /* 1143 * This is actually impossible, unless anything above 1144 * overflow. 1145 */ 1146 if (z_scale < 1) 1147 return (E2BIG); 1148 1149 /* 1150 * Calculate sample time/coefficients index drift. It is 1151 * a constant for upsampling, but downsampling require 1152 * heavy duty filtering with possible too long filters. 1153 * If anything goes wrong, revisit again and enable 1154 * adaptive mode. 1155 */ 1156 z_setup_adaptive_sinc: 1157 if (info->z_pcoeff != NULL) { 1158 free(info->z_pcoeff, M_DEVBUF); 1159 info->z_pcoeff = NULL; 1160 } 1161 1162 if (adaptive == 0) { 1163 info->z_dy = z_scale << Z_DRIFT_SHIFT; 1164 if (info->z_dy < 1) 1165 return (E2BIG); 1166 info->z_scale = z_scale; 1167 } else { 1168 info->z_dy = Z_FULL_ONE; 1169 info->z_scale = Z_ONE; 1170 } 1171 1172 /* Smallest drift increment. */ 1173 info->z_dx = info->z_dy / info->z_gy; 1174 1175 /* 1176 * Overflow or underflow. Try adaptive, let it continue and 1177 * retry. 1178 */ 1179 if (info->z_dx < 1) { 1180 if (adaptive == 0) { 1181 adaptive = 1; 1182 goto z_setup_adaptive_sinc; 1183 } 1184 return (E2BIG); 1185 } 1186 1187 /* 1188 * Round back output drift. 1189 */ 1190 info->z_dy = info->z_dx * info->z_gy; 1191 1192 for (i = 0; i < Z_COEFF_TAB_SIZE; i++) { 1193 if (Z_SINC_COEFF_IDX(info) != i) 1194 continue; 1195 /* 1196 * Calculate required filter length and guard 1197 * against possible abusive result. Note that 1198 * this represents only 1/2 of the entire filter 1199 * length. 1200 */ 1201 info->z_size = z_resampler_sinc_len(info); 1202 1203 /* 1204 * Multiple of 2 rounding, for better accumulator 1205 * performance. 1206 */ 1207 info->z_size &= ~1; 1208 1209 if (info->z_size < 2 || info->z_size > Z_SINC_MAX) { 1210 if (adaptive == 0) { 1211 adaptive = 1; 1212 goto z_setup_adaptive_sinc; 1213 } 1214 return (E2BIG); 1215 } 1216 info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET; 1217 info->z_dcoeff = z_coeff_tab[i].dcoeff; 1218 break; 1219 } 1220 1221 if (info->z_coeff == NULL || info->z_dcoeff == NULL) 1222 return (EINVAL); 1223 } else if (Z_IS_LINEAR(info)) { 1224 /* 1225 * Don't put much effort if we're doing linear interpolation. 1226 * Just center the interpolation distance within Z_LINEAR_ONE, 1227 * and be happy about it. 1228 */ 1229 info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy; 1230 } 1231 1232 /* 1233 * We're safe for now, lets continue.. Look for our resampler 1234 * depending on configured format and quality. 1235 */ 1236 for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) { 1237 int ridx; 1238 1239 if (AFMT_ENCODING(format) != z_resampler_tab[i].format) 1240 continue; 1241 if (Z_IS_SINC(info) && adaptive == 0 && 1242 z_resampler_build_polyphase(info) == 0) 1243 ridx = Z_RESAMPLER_SINC_POLYPHASE; 1244 else 1245 ridx = Z_RESAMPLER_IDX(info); 1246 info->z_resample = z_resampler_tab[i].resampler[ridx]; 1247 break; 1248 } 1249 1250 if (info->z_resample == NULL) 1251 return (EINVAL); 1252 1253 info->bps = AFMT_BPS(format); 1254 align = info->channels * info->bps; 1255 1256 /* 1257 * Calculate largest value that can be fed into z_gy2gx() and 1258 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will 1259 * be called early during feeding process to determine how much input 1260 * samples that is required to generate requested output, while 1261 * z_gx2gy() will be called just before samples filtering / 1262 * accumulation process based on available samples that has been 1263 * calculated using z_gx2gy(). 1264 * 1265 * Now that is damn confusing, I guess ;-) . 1266 */ 1267 gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) / 1268 info->z_gx; 1269 1270 if ((gy2gx_max * align) > SND_FXDIV_MAX) 1271 gy2gx_max = SND_FXDIV_MAX / align; 1272 1273 if (gy2gx_max < 1) 1274 return (E2BIG); 1275 1276 gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) / 1277 info->z_gy; 1278 1279 if (gx2gy_max > INT32_MAX) 1280 gx2gy_max = INT32_MAX; 1281 1282 if (gx2gy_max < 1) 1283 return (E2BIG); 1284 1285 /* 1286 * Ensure that z_gy2gx() at its largest possible calculated value 1287 * (alpha = 0) will not cause overflow further late during z_gx2gy() 1288 * stage. 1289 */ 1290 if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max)) 1291 return (E2BIG); 1292 1293 info->z_maxfeed = gy2gx_max * align; 1294 1295 #ifdef Z_USE_ALPHADRIFT 1296 info->z_startdrift = z_gy2gx(info, 1); 1297 info->z_alphadrift = z_drift(info, info->z_startdrift, 1); 1298 #endif 1299 1300 i = z_gy2gx(info, 1); 1301 info->z_full = z_roundpow2((info->z_size << 1) + i); 1302 1303 /* 1304 * Too big to be true, and overflowing left and right like mad .. 1305 */ 1306 if ((info->z_full * align) < 1) { 1307 if (adaptive == 0 && Z_IS_SINC(info)) { 1308 adaptive = 1; 1309 goto z_setup_adaptive_sinc; 1310 } 1311 return (E2BIG); 1312 } 1313 1314 /* 1315 * Increase full buffer size if its too small to reduce cyclic 1316 * buffer shifting in main conversion/feeder loop. 1317 */ 1318 while (info->z_full < Z_RESERVOIR_MAX && 1319 (info->z_full - (info->z_size << 1)) < Z_RESERVOIR) 1320 info->z_full <<= 1; 1321 1322 /* Initialize buffer position. */ 1323 info->z_mask = info->z_full - 1; 1324 info->z_start = z_prev(info, info->z_size << 1, 1); 1325 info->z_pos = z_next(info, info->z_start, 1); 1326 1327 /* 1328 * Allocate or reuse delay line buffer, whichever makes sense. 1329 */ 1330 i = info->z_full * align; 1331 if (i < 1) 1332 return (E2BIG); 1333 1334 if (info->z_delay == NULL || info->z_alloc < i || 1335 i <= (info->z_alloc >> 1)) { 1336 if (info->z_delay != NULL) 1337 free(info->z_delay, M_DEVBUF); 1338 info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO); 1339 if (info->z_delay == NULL) 1340 return (ENOMEM); 1341 info->z_alloc = i; 1342 } 1343 1344 /* 1345 * Zero out head of buffer to avoid pops and clicks. 1346 */ 1347 memset(info->z_delay, sndbuf_zerodata(f->desc->out), 1348 info->z_pos * align); 1349 1350 #ifdef Z_DIAGNOSTIC 1351 /* 1352 * XXX Debuging mess !@#$%^ 1353 */ 1354 #define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \ 1355 "z_"__STRING(x), (uint32_t)info->z_##x, \ 1356 (int32_t)info->z_##x) 1357 fprintf(stderr, "\n%s():\n", __func__); 1358 fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n", 1359 info->channels, info->bps, format, info->quality); 1360 fprintf(stderr, "\t%d (%d) -> %d (%d), ", 1361 info->src, info->rsrc, info->dst, info->rdst); 1362 fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy); 1363 fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1)); 1364 if (adaptive != 0) 1365 z_scale = Z_ONE; 1366 fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n", 1367 z_scale, Z_ONE, (double)z_scale / Z_ONE); 1368 fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info)); 1369 fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO"); 1370 dumpz(size); 1371 dumpz(alloc); 1372 if (info->z_alloc < 1024) 1373 fprintf(stderr, "\t%15s%10d Bytes\n", 1374 "", info->z_alloc); 1375 else if (info->z_alloc < (1024 << 10)) 1376 fprintf(stderr, "\t%15s%10d KBytes\n", 1377 "", info->z_alloc >> 10); 1378 else if (info->z_alloc < (1024 << 20)) 1379 fprintf(stderr, "\t%15s%10d MBytes\n", 1380 "", info->z_alloc >> 20); 1381 else 1382 fprintf(stderr, "\t%15s%10d GBytes\n", 1383 "", info->z_alloc >> 30); 1384 fprintf(stderr, "\t%12s %10d (min output samples)\n", 1385 "", 1386 (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1))); 1387 fprintf(stderr, "\t%12s %10d (min allocated output samples)\n", 1388 "", 1389 (int32_t)z_gx2gy(info, (info->z_alloc / align) - 1390 (info->z_size << 1))); 1391 fprintf(stderr, "\t%12s = %10d\n", 1392 "z_gy2gx()", (int32_t)z_gy2gx(info, 1)); 1393 fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n", 1394 "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max)); 1395 fprintf(stderr, "\t%12s = %10d\n", 1396 "z_gx2gy()", (int32_t)z_gx2gy(info, 1)); 1397 fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n", 1398 "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max)); 1399 dumpz(maxfeed); 1400 dumpz(full); 1401 dumpz(start); 1402 dumpz(pos); 1403 dumpz(scale); 1404 fprintf(stderr, "\t%12s %10f\n", "", 1405 (double)info->z_scale / Z_ONE); 1406 dumpz(dx); 1407 fprintf(stderr, "\t%12s %10f\n", "", 1408 (double)info->z_dx / info->z_dy); 1409 dumpz(dy); 1410 fprintf(stderr, "\t%12s %10d (drift step)\n", "", 1411 info->z_dy >> Z_SHIFT); 1412 fprintf(stderr, "\t%12s %10d (scaling differences)\n", "", 1413 (z_scale << Z_DRIFT_SHIFT) - info->z_dy); 1414 fprintf(stderr, "\t%12s = %u bytes\n", 1415 "intpcm32_t", sizeof(intpcm32_t)); 1416 fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n", 1417 "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE); 1418 #endif 1419 1420 return (0); 1421 } 1422 1423 static int 1424 z_resampler_set(struct pcm_feeder *f, int what, int32_t value) 1425 { 1426 struct z_info *info; 1427 int32_t oquality; 1428 1429 info = f->data; 1430 1431 switch (what) { 1432 case Z_RATE_SRC: 1433 if (value < feeder_rate_min || value > feeder_rate_max) 1434 return (E2BIG); 1435 if (value == info->rsrc) 1436 return (0); 1437 info->rsrc = value; 1438 break; 1439 case Z_RATE_DST: 1440 if (value < feeder_rate_min || value > feeder_rate_max) 1441 return (E2BIG); 1442 if (value == info->rdst) 1443 return (0); 1444 info->rdst = value; 1445 break; 1446 case Z_RATE_QUALITY: 1447 if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX) 1448 return (EINVAL); 1449 if (value == info->quality) 1450 return (0); 1451 /* 1452 * If we failed to set the requested quality, restore 1453 * the old one. We cannot afford leaving it broken since 1454 * passive feeder chains like vchans never reinitialize 1455 * itself. 1456 */ 1457 oquality = info->quality; 1458 info->quality = value; 1459 if (z_resampler_setup(f) == 0) 1460 return (0); 1461 info->quality = oquality; 1462 break; 1463 case Z_RATE_CHANNELS: 1464 if (value < SND_CHN_MIN || value > SND_CHN_MAX) 1465 return (EINVAL); 1466 if (value == info->channels) 1467 return (0); 1468 info->channels = value; 1469 break; 1470 default: 1471 return (EINVAL); 1472 break; 1473 } 1474 1475 return (z_resampler_setup(f)); 1476 } 1477 1478 static int 1479 z_resampler_get(struct pcm_feeder *f, int what) 1480 { 1481 struct z_info *info; 1482 1483 info = f->data; 1484 1485 switch (what) { 1486 case Z_RATE_SRC: 1487 return (info->rsrc); 1488 break; 1489 case Z_RATE_DST: 1490 return (info->rdst); 1491 break; 1492 case Z_RATE_QUALITY: 1493 return (info->quality); 1494 break; 1495 case Z_RATE_CHANNELS: 1496 return (info->channels); 1497 break; 1498 default: 1499 break; 1500 } 1501 1502 return (-1); 1503 } 1504 1505 static int 1506 z_resampler_init(struct pcm_feeder *f) 1507 { 1508 struct z_info *info; 1509 int ret; 1510 1511 if (f->desc->in != f->desc->out) 1512 return (EINVAL); 1513 1514 info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO); 1515 if (info == NULL) 1516 return (ENOMEM); 1517 1518 info->rsrc = Z_RATE_DEFAULT; 1519 info->rdst = Z_RATE_DEFAULT; 1520 info->quality = feeder_rate_quality; 1521 info->channels = AFMT_CHANNEL(f->desc->in); 1522 1523 f->data = info; 1524 1525 ret = z_resampler_setup(f); 1526 if (ret != 0) { 1527 if (info->z_pcoeff != NULL) 1528 free(info->z_pcoeff, M_DEVBUF); 1529 if (info->z_delay != NULL) 1530 free(info->z_delay, M_DEVBUF); 1531 free(info, M_DEVBUF); 1532 f->data = NULL; 1533 } 1534 1535 return (ret); 1536 } 1537 1538 static int 1539 z_resampler_free(struct pcm_feeder *f) 1540 { 1541 struct z_info *info; 1542 1543 info = f->data; 1544 if (info != NULL) { 1545 if (info->z_pcoeff != NULL) 1546 free(info->z_pcoeff, M_DEVBUF); 1547 if (info->z_delay != NULL) 1548 free(info->z_delay, M_DEVBUF); 1549 free(info, M_DEVBUF); 1550 } 1551 1552 f->data = NULL; 1553 1554 return (0); 1555 } 1556 1557 static uint32_t 1558 z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c, 1559 uint8_t *b, uint32_t count, void *source) 1560 { 1561 struct z_info *info; 1562 int32_t alphadrift, startdrift, reqout, ocount, reqin, align; 1563 int32_t fetch, fetched, start, cp; 1564 uint8_t *dst; 1565 1566 info = f->data; 1567 if (info->z_resample == NULL) 1568 return (z_feed(f->source, c, b, count, source)); 1569 1570 /* 1571 * Calculate sample size alignment and amount of sample output. 1572 * We will do everything in sample domain, but at the end we 1573 * will jump back to byte domain. 1574 */ 1575 align = info->channels * info->bps; 1576 ocount = SND_FXDIV(count, align); 1577 if (ocount == 0) 1578 return (0); 1579 1580 /* 1581 * Calculate amount of input samples that is needed to generate 1582 * exact amount of output. 1583 */ 1584 reqin = z_gy2gx(info, ocount) - z_fetched(info); 1585 1586 #ifdef Z_USE_ALPHADRIFT 1587 startdrift = info->z_startdrift; 1588 alphadrift = info->z_alphadrift; 1589 #else 1590 startdrift = _Z_GY2GX(info, 0, 1); 1591 alphadrift = z_drift(info, startdrift, 1); 1592 #endif 1593 1594 dst = b; 1595 1596 do { 1597 if (reqin != 0) { 1598 fetch = z_min(z_free(info), reqin); 1599 if (fetch == 0) { 1600 /* 1601 * No more free spaces, so wind enough 1602 * samples back to the head of delay line 1603 * in byte domain. 1604 */ 1605 fetched = z_fetched(info); 1606 start = z_prev(info, info->z_start, 1607 (info->z_size << 1) - 1); 1608 cp = (info->z_size << 1) + fetched; 1609 z_copy(info->z_delay + (start * align), 1610 info->z_delay, cp * align); 1611 info->z_start = 1612 z_prev(info, info->z_size << 1, 1); 1613 info->z_pos = 1614 z_next(info, info->z_start, fetched + 1); 1615 fetch = z_min(z_free(info), reqin); 1616 #ifdef Z_DIAGNOSTIC 1617 if (1) { 1618 static uint32_t kk = 0; 1619 fprintf(stderr, 1620 "Buffer Move: " 1621 "start=%d fetched=%d cp=%d " 1622 "cycle=%u [%u]\r", 1623 start, fetched, cp, info->z_cycle, 1624 ++kk); 1625 } 1626 info->z_cycle = 0; 1627 #endif 1628 } 1629 if (fetch != 0) { 1630 /* 1631 * Fetch in byte domain and jump back 1632 * to sample domain. 1633 */ 1634 fetched = SND_FXDIV(z_feed(f->source, c, 1635 info->z_delay + (info->z_pos * align), 1636 fetch * align, source), align); 1637 /* 1638 * Prepare to convert fetched buffer, 1639 * or mark us done if we cannot fulfill 1640 * the request. 1641 */ 1642 reqin -= fetched; 1643 info->z_pos += fetched; 1644 if (fetched != fetch) 1645 reqin = 0; 1646 } 1647 } 1648 1649 reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount); 1650 if (reqout != 0) { 1651 ocount -= reqout; 1652 1653 /* 1654 * Drift.. drift.. drift.. 1655 * 1656 * Notice that there are 2 methods of doing the drift 1657 * operations: The former is much cleaner (in a sense 1658 * of mathematical readings of my eyes), but slower 1659 * due to integer division in z_gy2gx(). Nevertheless, 1660 * both should give the same exact accurate drifting 1661 * results, so the later is favourable. 1662 */ 1663 do { 1664 info->z_resample(info, dst); 1665 info->z_alpha += alphadrift; 1666 if (info->z_alpha < info->z_gy) 1667 info->z_start += startdrift; 1668 else { 1669 info->z_start += startdrift - 1; 1670 info->z_alpha -= info->z_gy; 1671 } 1672 dst += align; 1673 #ifdef Z_DIAGNOSTIC 1674 info->z_cycle++; 1675 #endif 1676 } while (--reqout != 0); 1677 } 1678 } while (reqin != 0 && ocount != 0); 1679 1680 /* 1681 * Back to byte domain.. 1682 */ 1683 return (dst - b); 1684 } 1685 1686 static int 1687 z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b, 1688 uint32_t count, void *source) 1689 { 1690 uint32_t feed, maxfeed, left; 1691 1692 /* 1693 * Split count to smaller chunks to avoid possible 32bit overflow. 1694 */ 1695 maxfeed = ((struct z_info *)(f->data))->z_maxfeed; 1696 left = count; 1697 1698 do { 1699 feed = z_resampler_feed_internal(f, c, b, 1700 z_min(maxfeed, left), source); 1701 b += feed; 1702 left -= feed; 1703 } while (left != 0 && feed != 0); 1704 1705 return (count - left); 1706 } 1707 1708 static struct pcm_feederdesc feeder_rate_desc[] = { 1709 { FEEDER_RATE, 0, 0, 0, 0 }, 1710 { 0, 0, 0, 0, 0 }, 1711 }; 1712 1713 static kobj_method_t feeder_rate_methods[] = { 1714 KOBJMETHOD(feeder_init, z_resampler_init), 1715 KOBJMETHOD(feeder_free, z_resampler_free), 1716 KOBJMETHOD(feeder_set, z_resampler_set), 1717 KOBJMETHOD(feeder_get, z_resampler_get), 1718 KOBJMETHOD(feeder_feed, z_resampler_feed), 1719 KOBJMETHOD_END 1720 }; 1721 1722 FEEDER_DECLARE(feeder_rate, NULL); 1723